
Appeared in Advances in Cryptology { Crypto `86 (Proceedings), (A.M. Odlyzko ed.),Lecture Note in Computer Science (263) Springer Verlag, pages 104{110, 1987.Two Remarks Concerningthe Goldwasser-Micali-Rivest Signature Scheme(Reproduced from preprint)Oded GoldreichDepartment of Computer Science and Applied MathematicsWeizmann Institute of Scienve, Rehovot, IsraelABSTRACTThe focus of this note is the Goldwasser-Micali-Rivest Signature Scheme (presented inthe 25th POCS , 1984). The GMR scheme has the salient property that, unless factoringis easy, it is infeasible to forge any signature even through an adaptive chosen messageattack. We present two technical contributions with respect to the GMR scheme:1) The GMR scheme can be made totally \memoryless": That is, the signature generatedby the signer on message M does not depend on the previous signed messages. (Inthe original scheme, the signature to a message depends on the number of messagessigned before.)2) The GMR scheme can be implemented almost as e�ciently as the RSA: The originalimplementation of the GMR scheme based on factoring, can be speeded-up by a factorof jN j. Thus, both signing and verifying take time O(jN j3 log2 jN j). (Here N is themoduli.)
Work done while author was in the Laboratory for Computer Science, MIT.Partially supported by a Weizmann Postdoctoral Fellowship, an IBM Postdoctoral Fellow-ship, and NSF Grant DCR-8509905. 1



1. IntroductionIn 1984, Goldwasser, Micali and Rivest presented a signature scheme robust againstadaptive chosen message attack [GMR]: no adversary who �rst receives signatures to mes-sages of his choice, can later create a signature of even a single additional message. Thescheme uses two pairs of trapdoor permutations, and is proven to be secure (in the abovesense) if these pairs have a certain clawfree property (i.e. it is infeasible to �nd x and ysuch that f0(x) = f1(y)). It was shown that the intractability assumption of factoringimplies the clawfree condition, and thus a concrete factoring-based implementation waspresented.The original GMR scheme su�ers from two aesthetic drawbacks:1) The signature scheme is not completely \memoryless". That is, the signature gener-ated by the signer slightly depends on the previous signed messages.2) The signing process in the suggested factoring-based implementation is too slow. Letn be the security parameter (i.e. the length of the moduli), then signing takes morethan n4 steps (as opposed to n3 steps in the RSA).In this note we suggest a modi�cation of the abstract GMR scheme, and a speed-up in itsfactoring-based implementation. These suggestions eliminate the drawbacks listed above,while maintaining the security of the original scheme. That is, the modi�ed scheme istotally \memoryless", and its implementation using factoring is almost as fast as the RSA(while being much more secure than RSA!).The rest of this note is organized as follows. In Section 2 we brie
y review the GMRsignature scheme. The reader is encourage to consult the original paper [GMR] for a morecomplete exposition of the GMR scheme. (This reference is also an excellent source forthe critical review and a historical account of the problem of obtaining digital signatures.)In Section 3, we present a modi�cation which makes the GMR scheme \memoryless".In Section 4, we present a speed-up in the factoring-based implementation of the GMRscheme. Our conclusions are presented in Section 5.2. Overview of the GMR SchemeThe GMR scheme is basically a two-stage authentication process. First the signer'sentry in the public �le is used to authenticate a random point of reference (hereafter calledREF ). Next this REF is used to authenticate the message in a bit-by-bit manner. Thesame REF is never used to authenticate two di�erent messages. The scheme utilizes twopairs of trapdoor clawfree permutations, denoted (f0; f1) and (g0; g1). The f-pair is usedfor the �rst stage (authentication of the REF), while the g-pair is used for the second stage(authentication of the message).The REFs are generated from the public �le by using a tree structure (hereafter calledthe REF tree). The same REF tree is used to sign all messages. The root of the REFtree contains part of the signer's (entry in the) public �le. Each internal node in theREF tree has a constant number of children (say three). Leaves in the REF tree are usedto authenticate messages (in the second stage of the signing process). It was originallyproposed [GMR] that only the third node of each internal node be a leaf, while the otherchildren be potential internal nodes. As we will see in the sequel, this particular tree2



structure (for the REF tree) is not essential.Authentication of the nodes in the REF tree is done successively: each node is au-thenticated by its father in the tree. A crucial detail in the GMR scheme is the mannerin which one REF authenticates its children. Each REF is partitioned into �ve parts: its\name" (denoted x), the names of its children (denoted y1, y2, y3), and a \tag" (denoted t)binding them all together. The tag is computed using the �rst pair of (trapdoor) clawfreepermutations f0 and f1, through what is called an authentication step.Let F�1(�; x) = f�1� (x), for every � 2 f0; 1g. Let F�1(��; x) = F�1(�; f�1� (x)), forevery � 2 f0; 1g and � 2 f0; 1g.The the �ve parts of the REF satisfy t = F�1(y1y2y3; x).(The REF tree should not be confused with the tree-like nature of the authentication step.)The authentication of the message, in the second stage, consists of a single authenticationstep that uses the g-pair. This authentication step binds the message m (to be signed) toa leaf in the REF tree. The tag t binding the leaf named x with the message m satis�est = G�1(m;x), where G�1 is de�ned analogously to F�1 based on the permutations g0and g1.To sign a new message, m, the signer identi�es a leaf that was not used so far (namedz). If no such leaf exists, the signer identi�es an unused internal node names x (i.e. a nodewhich is a potential internal node but has no children yet), randomly selects names forits children (y1; y2; y3), computes a tag binding the children to their father (i.e. uses thetrapdoor information to compute t = F�1(y1; y2; y3; x)), stores the names of the children,and sets x = y3. The signer retrieves (or recomputes) the tags for all the authenticationsteps leading from the root of the REF tree to the leaf named z. (It is crucial that, in allsignatures produced, the same names are used for the same nodes.) This completes the�rst stage of the signing process. Next the signer uses the trapdoor information (for thepair g0 and g1) to compute the tag G�1(m; z). The signature consists of the list of allauthentication steps mentioned above (corresponding to a path from the root to a leaf andan extra step authenticating the message by the leaf).To verify the validity of a signature, the veri�er checks that the list corresponds toa path from the root to a leaf, and that all tags along this path are valid. To validatet = F�1(�; x), the veri�er computes F (�; t) and compares it to x.3. Making the GMR Scheme MemorylessAs hinted in the outline of the GMR scheme, the particular way of using the nodes inthe REF tree is not essential to the scheme. In the original scheme, the nodes were usedin a \greedy" manner so to minimize the length of the �rst signatures. The drawback inthat suggestion is that it was required to remember the identity of the last node used formessage authentication (i.e. to store the number of messages signed so far). Our aim is toeliminate the dependency of the next signature on the past. Thus, we suggest to use theREFs in the tree di�erently than in the original scheme.Let n be the security parameter, and let k = (log2 n)2. For message authentication(second stage), we will use only the REFs in the k th level of the REF tree. In other words,the REF tree will be a full binary tree of depth k. The key idea is to use a randomly chosen3



(k-level) leaf in order to authenticate a new message. With very high probability, we willnever use the same leaf twice (in the second stage). This is the case since 2k was chosento be much larger than the number of messages to be ever signed.The last detail to be mentioned is that the names of the nodes in the REF tree shouldbe generated using a pseudorandom function (applied to the location of the node), ratherthan randomly. This way, we guarantee that the same names are always used for the samenodes, without having to store these names. (The idea to use pseudorandom functionsto eliminate this part of the storage requirement in the GMR scheme was suggested byLeonid Levin.) Assuming the existence of one-way permutations, pseudorandom functionscan be e�ciently constructed [GGM].Proving that the modi�ed signature scheme is as secure as the original scheme requiresa two-step argument. First, one should consider a hybrid scheme where the names of thenodes in the REF tree are generated randomly as in the original scheme. The proof ofsecurity for this scheme is conceptionally identical to the proof presented in [GMR], and isonly a little more involved in details. Next, one uses the polynomially indistinguishabilityof the pseudorandom functions (from random functions), to show that the proposed schemeis as secure as the hybrid scheme.Remark: the identity of the (k-level) leaf to be used can be computed by applying apseudorandom function to the message to be signed. Thus, no coin tosses are requiredduring the signing process. One can easily show that the security feature is preserved.4. Speeding-up the Signing Process in the Factoring Based ImplementationThe computational bottleneck in the signing/verifying process are, respectively, thecomputation of F�1(�; �) given the trapdoor and the computation of F (�; �). In the factoring-based implementation presented in [GMR], F�1(�; �) was computed in jN j4 steps, whileF (�; �) was computed in jN j3 steps, where N is the modulus in use. In this section we showhow to compute F�1 in jN j3 steps.In the implementation based on factoring, N = pq is the product of two primessatisfying p � q � 3 (mod 4) and p 6= q (mod 8). This way, each quadratic residue modN has a unique square root which is a quadratic residue itself, and neither +2 nor �2is a quadratic residue mod N . f0 and f1 are de�ned to be permutations over the set ofquadratic residues mod N : f0(x) = x2 (mod N)and f1(x) = 4 � x2 (mod N) :Let px denote the square root of x which is a quadratic residue mod N . Thus, f�10 (x) =px and f�11 (x) = px=4 . Note that p4 6= 2 (mod N). This observation is the key forproving that, unless factoring is easy, the permutations f0 and f1 de�ned above constitutea pair of (trapdoor) clawfree permutations. For more details see [GMR].Recall the de�nition of F�1(�; x)F�1(�1�2 � � ��n; x) = f�1�1 �f�1�2 �� � � f�1�n (x) � � ��� :4



The obvious way to compute F�1(�; x) is by successively taking square roots. Thisresults in �(j�j) exponentiations. We present an alternative and faster way for computingF�1(�; x). This way requires only a constant number of exponentiations, and is based onthe following observation:Let M denote the length of �, and i(�) denote the integer naturally encoded by thestring �. Let RN (2m; z) denote the 2m th root of z modulo N (i.e. the quadraticresidue obtained from z by repeating the p� operator m times). ThenF�1(�; x) = RN (2m; x)(RN (2m; 4))i(�) (mod N) :(See example in the Appendix.)Computing RN (2m; z) reduces to computing it modulo each of the factors (i.e. computingRp(2m; z) and Rq(2m; z) and applying the Chinese Reminder Theorem. Rather than com-puting Rp(2m; z) by successive applications of p� , we compute it by one exponentiation:(Pre)-compute, invp(2) = (p+ 1)=4, the \inverse" of 2 modulo �(p) = p� 1).(Note that Rp(2; z) = zinvp(2).)(Pre)-compute, invp(2m) = (invp(2))m mod p� 1, the \inverse" of 2m modulo �(p).Compute rp = zinvp(2m) (mod p).(Clearly, rp = Rp(2m; z).)Thus, computing F�1 reduces to a constant number of modular exponentiations.5. ConclusionsIncorporating the two modi�cations into the GMR signature scheme, we get a schemewhich is as secure as the original one, and is both \memoryless" and \practical". (It isimportant to note that assuming the intractability of factoring, pseudorandom functionsf can be implemented, and that evaluating f(�) can be done in n3 � j�j steps. Also notethat the length of the argument to f is k = (log2 n)2.)The \dependency on the past" in the original GMR scheme has nothing to do withthe resolution of the \Paradox" mentioned in [GMR]. The paradox is resolved by observingthat the adversary is uniform, while the real signer is \non-uniform". For further discussionsee [GMR].Throughout this note, we have implicitly assumed that the length of the message tobe signed is linear in the security parameter (n). However, the GMR scheme works alsoif this is not the case, while the running time (naturally) increases. In case we are usingthe factoring-based implementation and the message has length m � n, the signing timeincreases by an additive term of O(m �n) and the veri�cation time increases by an additiveterm of O(m � n2). A di�erent approach suggested recently by Damgard is to �rst hashthe message using collision free hash functions and then to sign the hashed value [D].Interestingly, Damgard also shows that such hash functions can be constructed based onthe existence of any pair of clawfree permutations.5



ACKNOWLEDGEMENTSSection 4 is joint work with Sha� Goldwasser. I would like to thank her for thecollaboration, and for the permission to present the result here. I would also like to thankLouis Guillou for suggesting a simpli�cation in the presentation of this result.I am grateful to Sha� Goldwasser, Silvio Micali and Ron Rivest for many illuminatingdiscussions concerning their signature scheme.REFERENCES[D] Damgard, I.B., \Collision Free Hash Functions and Public Key Signature Schemes",manuscript, 1986.[DH] Di�e, W. and M.E. Hellman, \New Directions in Cryptography", IEEE Trans.Inform. Theory, Vol. IT-22, No. 6, November 1976, pp. 644{654.[GGM] Goldreich, O., S. Goldwasser and S. Micali, \How to Construct Random Func-tions", Proc. 25th Symp. on Foundation of Computer Science, 1984, pp. 464{479.To appear in J. ACM .[GMR] Goldwasser, S., S. Micali and R.L. Rivest, \A Paradoxical Solution to the SignatureProblem", Proc. 25th Symp. on Foundation of Computer Science, 1984, pp. 441{448. A better version is available from the authors.[RSA] Rivest, R.L., A. Shamir and L. Adleman, \A Method for Obtaining Digital Signa-tures and Public Key Cryptosystems", Comm. ACM , Vol. 21, February 1978, pp.120{126.

6



APPENDIXRecall the de�nition of F�1(�; x)F�1(�1�2 � � ��n; x) = f�1�1 �f�1�2 �� � � f�1�n (x) � � ���and f�10 (x) = px and f�11 (x) =px=4 ;where pz is the square root of z which is a quadratic residue modulo N . Let us considerthe case where the length of � is 2. we get,F�1(00; x) = f�10 �f�10 (x)� =qpx = RN (22; x)(RN(22; 4))0 (mod N)F�1(01; x) = f�10 �f�11 (x)� =qpx=4 = RN (22; x)(RN (22; 4))1 (mod N)F�1(10; x) = f�11 �f�10 (x)� =qpx=4 = RN (22; x)(RN (22; 4))2 (mod N)F�1(11; x) = f�11 �f�11 (x)� =qpx=4=4 = RN (22; x)(RN (22; 4))3 (mod N) :

7


