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1 IntroductionWe consider the following archetypal reconstruction problem:Given: An oracle (black box) for an arbitrary function f : F n ! F , a class of functions C,and a parameter �.Output: A list of all functions g 2 C that agree with f on at least � fraction of the inputs.The reconstruction problem can be interpreted in several ways within the framework ofcomputational learning theory. First, it falls within the framework of learning with persistentnoise. Here one assumes that the function f is derived from some function in the class C by\adding" noise to it. Typical works in this direction either tolerate only small amounts ofnoise [2, 42, 21, 39] (i.e., that the function is modi�ed only at a small fraction of all possibleinputs) or assume that the noise is random [1, 26, 20, 25, 33, 13, 36] (i.e., that the decision ofwhether or not to modify the function at any given input is made by a random process). Incontrast, we take the setting to an extreme, by considering a very large amount of (possiblyadversarially chosen) noise. In particular, we consider situations in which the noise disturbsthe outputs for almost all inputs.A second interpretation of the reconstruction problem is within the framework of \agnos-tic learning" introduced by Kearns et al. [23] (see also [29, 30, 24]). In the setting of agnosticlearning, the learner is to make no assumptions regarding the natural phenomenon under-lying the input/output relationship of the function, and the goal of the learner is to comeup with a simple explanation that best �ts the examples. Therefore the best explanationmay account for only part of the phenomenon. In some situations, when the phenomenonappears very irregular, providing an explanation that �ts only part of it is better than noth-ing. Kearns et al. did not consider the use of queries (but rather examples drawn from anarbitrary distribution), since they were skeptical that queries could be of any help. We showthat queries do seem to help (see below).Yet another interpretation of the reconstruction problem, which generalizes the \agnosticlearning" approach, is the following. Suppose that the natural phenomena can be explainedby several simple explanations that together cover most of the input-output behavior butnot all of it. Namely, suppose that the function f agrees almost everywhere with one of asmall number of functions gi 2 C. In particular, assume that each gi agrees with f on atleast a � fraction of the inputs but that for some (say 2�) fraction of the inputs f does notagree with any of the gi's. This setting was investigated by Ar et al. [3]. The reconstructionproblem described above may be viewed as a (simpler) abstraction of the problem consideredin [3]. As in the case of learning with noise, there is no explicit requirement in the setting of[3] that the noise level be small, but all their results require that the fraction of inputs leftunexplained by the gi's be smaller than the fraction of inputs on which each gi agrees withf . Our relaxation (and results) do not impose such a restriction on the noise and thus makethe setting more appealing and closer in spirit to \agnostic learning".1.1 Our ResultsIn this paper, we consider the special case of the reconstruction problem when the hypothesisclass is the set of n-variate polynomials of bounded total degree d. (The total degree of a1



monomial Qi xdii is Pi di; that is, the sum of the degrees of the variables in the monomial.The total degree of a polynomial is the maximum total degree of monomials with non-zerocoe�cient in the polynomial. For example, the total degree of the polynomial x21x32 + 5x42 is5.) The most interesting aspect of our results is that they relate to very small values of theparameter � (the fraction of inputs on which the hypothesis has to �t the function f). Ourmain results are:� An algorithm that given d, F and � = 
(qd=jF j), and provided oracle access to anarbitrary function f : F n ! F , runs in time (n=�)O(d) and outputs a list including alldegree d polynomials that agree with f on at least a � fraction of the inputs.� An algorithm that given F and � > 0, and provided oracle access to an arbitrary functionf : F n ! F , runs in time poly(n=�) and outputs a list including all linear functions(degree d = 1 polynomials) that agree with f on at least a � def= 1jF j + � fraction of theinputs.� A new bound on the number of degree d polynomials that may agree with a givenfunction f : F n ! F on a � � qd=jF j fraction of the inputs. This bound is derivedfrom a more general result about the number of codewords from an error-correctingcode that may be close to a given word.A special case of interest is when the function f is obtained by picking an arbitrary degree dpolynomial p, and letting f agree with p on an arbitrary � = 
(q djF j) fraction of the inputsand be set at random otherwise.1 In this case, with high probability, only one polynomial(i.e., p) agrees with f on a � fraction of the inputs (see Section 5). Thus, in this case, theabove algorithm will output only the polynomial p.Additional Remarks:1. Any algorithm for the explicit reconstruction problem as stated above would need tooutput all the coe�cients of such a polynomial, requiring time at least �n+dd �. Moreoverthe number of such polynomials could grow as a function of 1� . Thus it seems reasonablethat the running time of such a reconstruction procedure should grow as a polynomialfunction of 1� and �nd�.We stress that the above comment does not apply to \implicit reconstruction" algo-rithms as discussed in Section 1.4.2. For d < jF j, the condition � > djF j seems a natural barrier for our investigation, sincethere are exponentially many (in n) degree d polynomials that are at distance � djF jfrom some functions (see Proposition 21).3. Queries seem essential to our learning algorithm. We provide two indications to ourbelief, both referring to the special case of F = GF(2) and d = 1. First, if queriesare not allowed, then a solution to the reconstruction problem yields a solution to thelongstanding open problem of \decoding random (binary) linear codes". (Note thateach random example given to the reconstruction algorithm corresponds to a random1This is di�erent from \random noise" as the set of corrupted inputs is selected adversarially { only thevalues at these inputs are random. 2



linear equation on the information variables. We admit that the longstanding openproblem is typically stated for a linear number of equations, but nothing is known evenin case the number of equations is polynomial in the information length.)Another well-studied problem that reduces to the problem of noisy reconstruction is theproblem of \learning parity with noise" [20], which is commonly believed to be hardwhen one is only allowed uniformly and independently chosen examples [20, 7, 22].Learning parity with noise is considered hard even for random noise, whereas here thenoise is adversarial.4. In Section 6, we give evidence that the reconstruction problem may be hard, for �very close to d=jF j, even in the case where n = 2. A variant is shown to be hard evenfor n = 1.1.2 A Coding Theory PerspectiveWe �rst introduce the formal de�nition of an error-correcting code (see, e.g. [31]). Forpositive integers N;K;D and q, an [N;K;D]q error-correcting code is a collection of qKsequences of N -elements each from f1; : : : ; qg, called codewords, in which no two sequenceshave a \Hamming distance" of less than D (i.e., every pair of codewords disagree on at leastD locations).Polynomial functions lead to some of the simplest known constructions of error-correctingcodes: A function from F n to F may be viewed as an element of F jF jn | by writing down ex-plicitly the function's value on all jF jn inputs. Then the \distance property" of polynomialsyields that the set of sequences corresponding to bounded-degree polynomial functions forman error-correcting code with non-trivial parameters (for details, see Proposition 16). Specif-ically, the set of n-variate polynomial of total degree d over F = GF(q) yields a [N;K;D]qerror-correcting code with N = jF jn, K = �n+dd � and D = (jF j � d) � jF jn�1. These con-structions have been studied in the coding theory literature. The case n = 1 leads to\Reed-Solomon codes", while the case of general n is studied under the name \Reed-Mullercodes".Our reconstruction algorithm may be viewed as an algorithm that takes an arbitraryword from F jF jn and �nds a list of all codewords from the Reed-Muller code that agree withthe given word in � fraction of the coordinates (i.e., 1 � � fraction of the coordinates havebeen corrupted by errors). This task is referred to in the literature as the \list-decoding"problem [11]. For codes achieved by setting d such that d=jF j ! 0, our list decodingalgorithm recovers from errors when the rate of errors approaches 1. We are not aware ofany other case where an approach other (and better) than brute-force can be used to performlist decoding with the error-rate approaching 1. Furthermore, our decoding algorithm workswithout examining the entire codeword.1.3 Related Previous WorkFor sake of scholarly interest, we discuss several related areas in which related work has beendone. In this subsection, it would be more convenient to refer to the error-rate 1� � rather3



than to the rate of agreement �.Polynomial interpolation: When the noise rate is 0, our problem is simply that ofpolynomial interpolation. In this case the problem is well analyzed and the reader is referredto [48], for instance, for a history of the polynomial interpolation problem.Self-Correction: In the case when the noise rate is positive but small, one approach usedto solving the reconstruction problem is to use self-correctors, introduced independently in[8] and [28]. Self-correctors convert programs that are known to be correct on a fraction �of inputs into programs that are correct on each input. Self-correctors for values of � thatare larger than 3=4 have been constructed for several algebraic functions [5, 8, 9, 28, 34],and in one case this was done for � > 1=2 [15].2 We stress that self-correctors correct agiven program using only the information that the program is supposed to be computing afunction from a given class (e.g., a low-degree polynomial). Thus, when the error is largerthan 12 and the class contains more than a single function, such self-correction is no longerpossible since there could be more than one function in the class that agrees with the givenprogram on an � < 1=2 fraction of the inputs.Cryptography and Learning Theory: In order to prove the security of a certain \hard-core predicate" relative to any \one-way function", Goldreich and Levin solved a specialcase of the (explicit) reconstruction problem [17]. Speci�cally, they considered the linearcase (i.e., d = 1) for the Boolean �eld (i.e., F = GF(2)) and any agreement rate that isbigger than the error-rate (i.e., � > 12). Their ideas were subsequently used by Kushilevitzand Mansour [25] to devise an algorithm for learning Boolean decision trees.1.4 Subsequent workAt the time this work was �rst published [18] no algorithm other than brute force was knownfor reconstructing a list of degree d polynomials agreeing with an arbitrary function on avanishing fraction of inputs, for any d � 2. Our algorithm solves this problem with expo-nential dependence on d, but with polynomial dependence on n, the number of variables.Subsequently some new reconstruction algorithms for polynomials have been developed. Inparticular, Sudan [40], and Guruswami and Sudan [19] have provided new algorithms forreconstructing univariate polynomials from large amounts of noise. Their running time de-pends only polynomially in d and works for � = 
(qd=jF j). Notice that the agreementrequired in this case is larger than the level at which our NP-hardness result (of Section 6)holds. The results of [40] also provide some reconstruction algorithms for multivariate poly-nomials, but not for as low an error as given here. In addition, the running time growsexponentially with n. Wasserman [44] gives an algorithm for reconstructing polynomialsfrom noisy data that works without making queries. The running time of the algorithm of[44] also grows exponentially in n and polynomially in d.As noted earlier (see Remark 1 in Section 1.1), the running time of any explicit recon-struction algorithm has to have an exponential dependence on either d or n. However this2Speci�cally, self-correctors correcting 1�(d) fraction of error for f that are degree d polynomial functionsover a �nite �eld F , jF j � d + 2, were found by [5, 28]. For d=jF j ! 0, the fraction of errors that a self-corrector could correct was improved to almost 1=4 by [14] and then to almost 1=2 by [15] (using a solutionfor the univariate case given by [45]). 4



need not be true for implicit reconstruction algorithms: By the latter term we mean algo-rithms that produce as output a sequence of oracle machines, such that for every multivariatepolynomial that has agreement � with the function f , one of these oracle machines, givenaccess to f , computes that polynomial. Recently, Arora and Sudan [4] gave an algorithm forthis implicit reconstruction problem. The running time of their algorithm is bounded by apolynomial in n and d, and it works correctly provided that � � (dO(1))=jF j
(1); that is, theiralgorithm needs a much higher agreement, but works in time polynomial in all parameters.The reader may verify that such an implicit reconstruction algorithm yields an algorithm forthe explicit reconstruction problem with running time that is polynomial in �n+dd �. (E.g., byapplying noise-free polynomial-interpolation to each of the oracle machines provided above,and testing the resulting polynomial for agreement with f .) Finally, Sudan, Trevisan, andVadhan [41], have recently improved the result of [4], further reducing the requirement on� to � > 2qd=jF j). The algorithm of [41] thus subsumes the algorithm of this paper for allchoices of parameters, except d = 1.1.5 Rest of this paperThe rest of the paper is organized as follows. In Section 2 we motivate our algorithm,starting with the special case case of the reconstruction of linear polynomials. The generalcase algorithm is described formally in Section 3, along with an analysis of its correctness andrunning time assuming an upper bound on the number of polynomials that agree with a givenfunction at � fraction of the inputs. In Section 4 we provide two such upper bounds. Thesebounds do not use any special (i.e., algebraic) property of polynomials, but rather apply ingeneral to collections of functions that have large distance between them. In Section 5 weconsider a random model for the noise applied to a function. Speci�cally, the output eitheragrees with a �xed polynomial or is random. In such a case we provide a stronger upperbound (speci�cally, 1) on the number of polynomials that may agree with the black box. InSection 6 we give evidence that the reconstruction problem may be hard for small values ofthe agreement parameter �, even in the case when n = 1. We conclude with an applicationof the linear-polynomial reconstruction algorithm to complexity theory: Speci�cally, we useit in order to prove the security of new (generic) hard-core functions (see Section 7).Notations: In what follows, we use GF(q) to denote the �nite �eld on q elements. We as-sume arithmetic in this �eld (addition, subtraction, multiplication, division and comparisonwith zero) may be performed at unit cost. For a �nite set A, we use the notation a 2R Ato denote that a is a random variable chosen uniformly at random from A. For a positiveinteger n, we use [n] to denote the set f1; : : : ; ng.2 Motivation to the algorithmWe start by presenting the algorithm for the linear case, and next present some of the ideasunderlying the generalization to higher degrees. We stress that whereas Section 2.1 providesa full analysis of the linear case, Section 2.2 merely introduces the additional ideas that willbe employed in dealing with the general case. The presentation in Section 2.1 is aimed to5



facilitate the generalization from the linear case to the general case.2.1 Reconstructing linear polynomialsWe are given oracle access to a function f : GF(q)n ! GF(q) and need to �nd a polynomial(or actually all polynomials) of degree d that agrees with f on at least a � = dq + � fractionof the inputs, where � > 0. Our starting point is the linear case (i.e., d = 1); namely, we arelooking for a polynomial of the form p(x1; :::; xn) = Pni=1 pixi. In this case our algorithm isa generalization of an algorithm due to Goldreich and Levin [17]3. (The original algorithmis regained by setting q = 2.)We start with the following de�nition: The i-pre�x of a linear polynomial p(x1; :::; xn)is the polynomial that results by summing up all of the monomials in which only the �rsti variables appear. That is, the i-pre�x of the polynomial Pnj=1 pjxj is Pij=1 pjxj. Thealgorithm proceeds in n rounds, so that in the ith round we �nd a list of candidates for thei-pre�xes of p.In the ith round, the list of i-pre�xes is generated by extending the list of (i�1)-pre�xes.A simple (and ine�cient) way to perform this extension is to �rst extend each (i� 1)-pre�xin all q possible ways, and then to \screen" the resulting list of i-pre�xes. A good screeningis the essence of the algorithm. It should guarantee that the i-pre�x of a correct solution pdoes pass and that not too many other pre�xes pass (as otherwise the algorithm consumestoo much time).The screening is done by subjecting each candidate pre�x, (c1; :::; ci), to the followingtest. Pick m = poly(n=�) sequences uniformly from GF(q)n�i. For each such sequence�s = (si+1; :::; sn) and for every � 2 GF(q), estimate the quantityP�s(�) def= Pr1;:::;ri2GF(q) 24f(�r; �s) = iXj=1 cjrj + �35 (1)where �r = (r1; : : : ; ri). The value � can be thought of as a guess for Pnj=i+1 pjsj. For every�xed su�x �s, all these probabilities can be approximated simultaneously by using a sampleof poly(n=�) sequences (r1; :::; ri), regardless of q. If one of these probabilities is signi�cantlylarger than 1=q then the test accepts due to this su�x, and if no su�x makes the test acceptthen it rejects. The actual algorithm is presented in Figure 1.Observe that a candidate (c1; :::; ci) passes the test of Figure 1 if for at least one sequenceof �s = (si+1; :::; sn) there exists a � so that the estimate for P�s(�) is greater than 1q+ �3 . Clearly,for a correct candidate (i.e., (c1; :::; ci) that is a pre�x of a polynomial p = (p1; :::; pn) havingat least 1q + � agreement with f) and � = Pnj=i+1 pjsj, it holds that E�s[P�s(�)] � 1q + �. UsingMarkov's inequality, it follows that for a correct candidate, an �=2 fraction of the su�xes aresuch that for each such su�x �s and some �, it holds that P�s(�) � 1q + �2 ; thus the correctcandidate passes the test with overwhelming probability. On the other hand, for any su�x �s,if a pre�x (c1; : : : ; ci) is to pass the test (with non-negligible probability) due to su�x �s, thenit must be the case that the polynomial Pij=1 cjxj has at least agreement-rate of 1q + �4 with3We refer to the original algorithm as in [17], not to a simpler algorithm that appears in later versions(cf., [27, 16]). 6



Test-pre�x(f; �; n; (c1; : : : ; ci))Repeat poly(n=�) times:Pick �s = si+1; : : : ; sn 2R GF(q).Let t def= poly(n=�).for k = 1 to t doPick �r = r1; : : : ; ri 2R GF(q)�(k)  f(�r; �s)�Pij=1 cjrj.endforIf 9 � s.t. �(k) = � for at least 1q + �3 fraction of the k'sthen output accept and halt.endRepeat.If all iterations were completed without accepting, then reject.Figure 1: Implementing the screening processthe function f 0(x1; : : : ; xi) def= f(x1; : : : ; xi; si+1; : : : ; sn). It is possible to bound the numberof (i-variate) polynomials that have so much agreement with any function f 0. (Sections 4contains some such bounds.) Thus, in each iteration, only a small number of pre�xes passthe test, thereby limiting the total number of pre�xes that may pass the test in any one ofthe poly(n=�) iterations.The above yields a poly(nq=�)-time algorithm. In order to get rid of the q factor inrunning-time, we need to modify the process by which candidates are formed. Instead ofextending each (i�1)-pre�x, (c1; :::; ci�1), in all q possible ways, we do the following: We pickuniformly s def= (si+1; :::; sn) 2 GF(g)n�i, r def= (r1; :::; ri�1) 2 GF(q)i�1 and r0; r00 2 GF(q),and solve the following system of equationsr0x+ y = f(r1; :::; ri�1; r0; si+1; :::; sn)� i�1Xj=1 cjrj (2)r00x+ y = f(r1; :::; ri�1; r00; si+1; :::; sn)� i�1Xj=1 cjrj (3)using the solution for x as the value of the ith coe�cient (i.e., set ci = x). This extensionprocess is repeated poly(n=�) many times, obtaining at most poly(n=�) candidate i-pre�xes,per each candidate (i� 1)-pre�x. We then subject each i-pre�x in the list to the screeningtest (presented in Figure 1), and keep only the candidates that pass the test.We need to show that if the (i� 1)-pre�x of a correct solution is in the list of candidates(at the beginning of round i) then the i-pre�x of this solution will be found in the extensionprocess. Let p = (p1; :::; pn) be a correct solution (to the reconstruction problem for f).Then Pr;r;s[p(r; r; s) = f(r; r; s)] � 1q + � > �. It follows that for at least an �=2 fractionof the sequences (r; s), the polynomial p satis�es p(r; r; s) = f(r; r; s) for at least an �=27



fraction of the possible r's. Let � represent the value of the sum Pnj=i+1 pjsj, and notethat p(r; r; s) = Pi�1j=1 pjrj + pir + �. Then, with probability 
(�3) over the choices ofr1; : : : ; ri�1; si+1; : : : ; sn and r0; r00, the following two equations hold:r0pi + � = f(r1; :::; ri�1; r0; si+1; :::; sn)� i�1Xj=1 pjrjr00pi + � = f(r1; :::; ri�1; r00; si+1; :::; sn)� i�1Xj=1 pjrjand r0 6= r00. (I.e., with probability at least �2 , the pair (�r; �s) is good, and conditioned on thisevent r0 is good with probability at least �2 , and similarly for r00 losing a term of 1q < �4 toaccount for r00 6= r0. We may assume that 1=q < �=4, since otherwise q < 4=� and we cana�ord to perform the simpler procedure above.) Thus, with probability 
(�3), solving thesystem (2)-(3) with (c1; :::; ci�1) = (p1; :::; pi�1) yields x = pi. Since we repeat the processpoly(n=�) times for each (i � 1)-pre�x, it follows that the correct pre�x always appears inour candidate list.Recall that correct pre�xes pass the screening process with overwhelmingly high proba-bility. Using Theorem 18 (of Section 4) to bound the number of pre�xes passing the screeningprocess, we have:Theorem 1 Given oracle access to a function f and parameters �; k, our algorithm runs inpoly(k�n� )-time and outputs, with probability at least 1 � 2�k, a list satisfying the followingproperties:1. The list contains all linear polynomials that agree with f on at least a � = 1q+� fractionof the inputs.2. The list does not contain any polynomial that agrees with f on less than a 1q+ �4 fractionof the inputs.2.2 Generalizing to higher degreeWe remind the reader that in this subsection we merely introduce the additional ideas usedin extending the algorithm from the linear case to the general case. The algorithm itself ispresented and analyzed in Section 3.Dealing with polynomials of degree d > 1 is more involved than dealing with lin-ear polynomials, still we employ a similar strategy. Our plan is again to \isolate" theterms/monomials in the �rst i variables and �nd candidates for their coe�cients. In partic-ular, if p(x1; : : : ; xn) is a degree d polynomial on n variables then p(x1; : : : ; xi; 0; : : : ; 0) is adegree � d polynomial on i variables that has the same coe�cients as p on all monomialsinvolving only variables in f1; : : : ; ig. Thus, p(x1; : : : ; xi; 0; : : : ; 0) is the i-pre�x of p.We show how to extend a list of candidates for the (i�1)-pre�xes of polynomials agreeingwith f into a list of candidates for the i-pre�xes. Suppose we get the (i � 1)-pre�x p that8



we want to extend. We select d + 1 distinct elements r(1); :::; r(d+1) 2 GF(q), and considerthe functions f (j)(x1; :::; xi�1) def= f(x1; :::; xi�1; r(j); 0; :::; 0)� p(x1; :::; xi�1): (4)Suppose that f equals some degree d polynomial and that p is indeed the (i�1)-pre�x of thispolynomial. Then f (j) is a polynomial of degree d� 1 (since all the degree d monomials inthe �rst i variables have been canceled by p). Furthermore, given an explicit representationof f (1); :::; f (d+1), we can �nd (by interpolation) the extension of p to a i-pre�x. The lastassertion deserves some elaboration.Consider the i-pre�x of f , denoted p0 = p0(x1; :::; xi�1; xi). In each f (j), the monomials ofp0 that agree on the exponents of x1; :::; xi�1 are collapsed together (since xi is instantiatedand so monomials containing di�erent powers of xi are added together). However, using thed + 1 collapsed values, we can retrieve the coe�cients of the di�erent monomials (in p0).That is, for each sequence of exponents (e1; :::; ei�1) such that Pi�1j=1 ej � d, we retrieve thecoe�cients of all the (Qi�1j=1 xej ) � xki in p0, by interpolation that refers to the coe�cients ofQi�1j=1 xej in the f (`)'s.4To complete the high level description of the procedure we need to show how to obtain thepolynomials representing the f (j)'s. Since in reality we have only have access to a (possiblyhighly noisy) oracle for the f (j)'s, we use the main procedure for �nding a list of candidatesfor these polynomials. We point out that the recursive call is to a problem of degree d� 1,which is lower than the degree we are currently handling.The above description ignores a real di�culty that may occur: Suppose that the agree-ment rate of f with some p� is at least �, and so we need to recover p�. For our strategy towork, the agreement rate of the f (j)'s with p�(: : : ; 0n�i) must be close to �. However, it maybe the case that p� does not agree with f at all on the inputs in GF(q)i0n�i, although p� doesagrees with f on a � fraction of inputs in GF(q)n. Then solving the subproblem (i.e., tryingto retrieve polynomials close to the f (j)'s) gives us no information about p�. Thus, we mustmake sure that the agreement rate on the subproblems on which we recurse is close to theoriginal agreement rate. This can be achieved by applying a random linear transformationto the coordinate system as follows: Pick a random nonsingular matrix R and de�ne newvariables y1; : : : ; yn as (y1; : : : ; yn) = �y � R�x (each yi is a random linear combination ofthe xi's and vice versa). This transformation can be used to de�ne a new instance of thereconstruction problem in terms of the yi's, and for the new instance the agreement rate onthe subproblems on which we recurse is indeed close to the original agreement rate. Observethat1. the total degree of the problem is preserved;2. the points are mapped pairwise independently, and so the fraction of agreement pointsin all subspaces of the new problem is close to the agreement rate in the original space;and4Let ck be the coe�cient of (Qi�1j=1 xej ) � xki in p0, and v` be the coe�cient of Qi�1j=1 xej in f (`). Then,v` =Pdk=0(r(`))kck, and the ck's can be found given the v`'s.9



3. one can easily transform the coordinate system back to the xi's, and so it is possibleto construct a new black box consistent with f that takes �y as an input.(It may be noted that the transformation does not preserve other properties of the polyno-mial; e.g., its sparsity.)Comment: The above solution to the above di�culty is di�erent than the one in theoriginal version of this paper [18]. The solution there was to pick many di�erent su�xes(instead of 0n�i), and to argue that at least in one of them the agreement rate is preserved.However, picking many di�erent su�xes creates additional problems, which needed to bedealt with carefully. This resulted in a more complicated algorithm in the original version.3 Algorithm for degree d > 1 polynomialsRecall that we are given oracle access to a function f : GF(q)n ! GF(q), and need to �ndall polynomials of degree d that agrees with f on at least a � fraction of the inputs.The main algorithm Find-all-poly will use several subroutines: Compute-coe�cients, Test-valid, Constants, Brute-force, and Extend. The main algorithm is recursive, in n (the numberof variables) and d (the degree), with the base case d = 0 being handled by the subroutineConstants and the other bases cases corresponding to n � 4 being handled by the subrou-tine Brute-force. Most of the work is done in Find-all-poly and Extend, which are mutuallyrecursive.The algorithms have a number of parameters in their input. We describe the commonlyoccurring parameters �rst:� q is the size of the �eld we will be working with; i.e., F = GF(q). (Unlike otherparameters, the �eld never changes in the recursive calls.)� f will be a function from GF(q)n to GF(q) given as an oracle to the current procedure,and n will denote the number of variables of f .� d will denote the degree of the polynomial we are hoping to reconstruct, and � willdenote the agreement parameter. Typically, the algorithm will have to reconstruct alldegree d polynomials having agreement at least � with f .Many of the algorithms are probabilistic and make two-sided error.�  will be the error parameter controlling the probability with which a valid solutionmay be omitted from the output.� � will be the error parameter controlling the error with which an invalid solution isincluded in the output list.Picking a random element of GF(q) is assumed to take unit time, as are �eld operations andcalls to the oracle f .The symbol x will typically stand for a vector in GF(q)n, while the notation xi will referto the ith coordinate of x. When picking a sequence of vectors, we will use superscripts10



to denote the vectors in the sequence. Thus, x(j)i will denote the ith coordinate of the jthelement of the sequence of vectors x(1); x(2); : : :. For two polynomials p1 and p2, we writep1 � p2 if p1 and p2 are identical. (In this paper, we restrict ourselves to polynomials ofdegree less than the �eld size; thus identity of polynomials as functions is equivalent toidentity of polynomials as a formal sum of monomials.) We now generalize the notion of thepre�x of a polynomial in two ways. We extend it to arbitrary functions, and then extend itto arbitrary su�xes (and not just 0i).De�nition 2 For 1 � i � n and a1; : : : ; an�i 2 F , the (a1; : : : ; an�i)-pre�x of a functionf : F n ! F , denoted f ja1;:::;an�i, is the i-variate function f ja1;:::;an�i : F i ! F , given byf ja1;:::;an�i(x1; :::; xi) = f(x1; : : : ; xi; a1; : : : ; an�i). The i-pre�x of f is the function f j0n�i.When specialized to a polynomial p, the i-pre�x of p yields a polynomial on the variablesx1; : : : ; xi whose coe�cients are exactly the coe�cients of p on monomials involving onlyx1; : : : ; xi.Fixing a �eld GF(q), we will use the notation Nn;d;� to denote the maximum (over allpossible f) of the number of polynomials of degree d in n variables that have agreement� with f . In this section we will �rst determine our running time as a function of Nn;d;�,and only next use bounds on Nn;d;� (proven in Section 4) to derive the absolute runningtimes. We include the intermediate bounds since it is possible that the bounds of Section 4may be improved, and this would improve our running time as well. By de�nition, Nn;d;� ismonotone non-decreasing in d and n, and monotone non-increasing in �. These facts will beused in the analysis.3.1 The subroutinesWe �rst axiomatize the behavior of each of the subroutines. Next we present an implemen-tation of the subroutine, and analyze it with respect to the axiomatization.(P1) Constants(f; �; n; q;  ), with probability at least 1 �  , returns every degree 0 (i.e.,constant) polynomial p such that f and p agree on � fraction of the points.5Constants works as follows: Set k = O( 1�2 log 1 ) and pick x(1); : : : ; x(k) independently anduniformly at random from GF(q)n. Output the list of all constants a (or equivalently thepolynomial pa = a) such that jfi 2 [k]jf(x(i)) = agj � 34�k.An easy application of Cherno� bounds indicates that the setting k = O( 1�2 log 1 ) su�cesto ensure that the error probability is at most  . Thus the running time of Constants isbounded by the time to pick x(1); : : : ; x(k) 2 GF(q)n which is O(kn) = O( 1�2n log 1 ).Proposition 3 Constants(f; �; n; q;  ) satis�es (P1). Its running time is O( 1�2n log 1 ).5Notice that we do not make any claims about the probability with which constants that do not havesigni�cant agreement with f may be reported. In fact we do not need such a condition for our analysis.If required, such a condition may be explicitly enforced by \testing" every constant that is returned forsu�cient agreement. Note also that the list is allowed to be empty if no polynomial has su�ciently largeagreement. 11



Another simple procedure is the testing of agreement between a given polynomial and ablack box.(P2) Test-valid(f; p; �; n; d; q;  ; �) returns true, with probability at least 1 �  , if p is ann-variate degree d polynomial with agreement at least � with f . It returns false withprobability at least 1 � � if the agreement between f and p is less than �2 . (It mayreturn anything if the agreement is between �2 and �.)Test-valid works as follows: Set k = O( 1�2 log 1minf ;�g) and pick x(1); : : : ; x(k) independentlyand uniformly at random from GF(q)n. If f(x(i)) = p(x(i)) for at least 34� fraction of thevalues of i 2 [k] then output true else false.Again an application of Cherno� bounds yields the correctness of Test-valid. The runningtime of Test-valid is bounded by the time to pick the k points from GF(q)n and the time toevaluate p on them, which is O( 1�2 (log 1minf ;�g)�n+dd �).Proposition 4 Test-valid(f; p; �; n; d; q;  ; �) satis�es (P2). Its running time is bounded byO( 1�2 (log 1minf ;�g)�n+dd �).Next we describe the properties of a \brute-force" algorithm for reconstructing polyno-mials.(P3) Brute-force(f; �; n; d; q;  ; �) returns a list that includes, with probability 1�  , everydegree d polynomial p such that f and p agree on � fraction of the points. Withprobability at least 1� � it does not output any polynomial p whose agreement withf is less than �2 .Notice that the goal of Brute-force is what one would expect to be the goal of Find-all-poly.Its weakness will be its running time, which is doubly exponential in n and exponential ind. However, we only invoke it for n � 4. In this case its running time is of the order of ��d4 .The description of Brute-force is given in Figure 2.Lemma 5 Brute-force(f; �; n; d; q;  ; �) satis�es (P3). Its runs in time O(kl3�2 (log k�)) wherel = �n+dd � and k = O �(� � dq )�l �log 1 ��.Proof: The running time of Brute-force is immediate from its description (using the factthat a naive interpolation algorithm for a (multivariate) polynomial with l coe�cients runsin time O(l3) and the fact that each call to Test-valid takes at most O( l�2 log k�) time). If apolynomial p that is the output of the multivariate interpolation step has agreement less than�2 with f , then by the correctness of Test-valid it follows that p is passed with probabilityat most �=k. Summing up over the k iterations, we have that the probability that anypolynomial with agreement less than �2 is included in the output list is at most �.To prove that with probability at least 1� , Test-valid outputs every polynomial p with� agreement f , let us �x p and argue that in any one of the k iterations, p is likely to be12



Brute-force(f; �; n; d; q;  ; �)Set l = �n+dd �k = O �(� � dq )�l �log 1 ��L  �.Repeat k timesPick x(1); : : : ; x(l) 2R GF(q)n.Multivariate interpolation step:Find p : GF(q)n ! GF(q) of degree d s.t. 8i 2 [l], p(x(i)) = f(x(i)).If Test-valid(f; p; �; n; d; q; 12 ; �=k) then L  L [ fpg.endRepeatreturn(L) Figure 2: Brute-forceadded to the output list with probability � = 12(�� dq )l . The lemma follows from the fact thatthe number of iterations is a su�ciently large multiple of 1� .To prove that with probability at least � the polynomial p is added to L (in a singleiteration), we show that with probability at least 2� the polynomial interpolated in theiteration equals p. The lemma follows from the fact that Test-valid will return true withprobability at least 12 .To show that p is the polynomial returned in the interpolation step, we look at the taskof �nding p as the task of solving a linear system. Let ~p denote the l dimensional vectorcorresponding to the coe�cients of p. Let M be the l � l dimensional matrix whose rowscorrespond to the points x(1); : : : ; x(l) and whose columns correspond to the monomials inp. Speci�cally, the entry Mi;j, where j corresponds to the monomial xd11 : : : xdnn , is given by(x(i)1 )d1 : : : (x(i)n )dn. Finally let ~f be the vector (f(x(1)); : : : ; f(x(l))). To show that p is thepolynomial returned in this step, we show that with high probability, M is of full rank andp(x(i)) = f(x(i)) for every i.The last assertion is proven by induction on i. Let M (i) denote the i� l matrix with the�rst i rows of M . Fix x(1); : : : ; x(i�1) such that p(x(j)) = f(x(j)) for every j 2 [i � 1]. Weargue that with probability at least �� dq over the choice of x(i), it holds that p(x(i)) = f(x(i))AND the rank of M (i) is greater than that of M (i�1). It is easy to see that f(x(i)) = p(x(i))with probability at least �. To complete the proof it su�ces to establish that the probability,over a random choice of x(i), that M (i) has the same rank as M (i�1) is at most dq . Considertwo polynomials p1 and p2 such that p1(x(j)) = p2(x(j)) for every j 2 [i � 1]. Then for therank of M (i) to be the same as the rank of M (i�1) it must be that p1(x(i)) = p2(x(i)) (elsethe solutions to the ith system are not the same as the solutions to the i� 1th system). Butfor distinct polynomials p1 and p2 the event p1(x(i)) = p2(x(i)) happens with probability atmost dq for randomly chosen x(i). This concludes the proof of the lemma.13



As an extension of univariate interpolations, we have:(P4) Compute-coe�cients(p(1); : : : ; p(d+1); r(1); : : : ; r(d+1); n; d; q;  ) takes as input d+1 poly-nomials p(j) in n�1 variables of degree d�1 and d+1 values r(j) 2 GF(q) and returnsa degree d polynomial p : GF(q)n ! GF(q) such that pjr(j) � p(j) for every j 2 [d+1],if such a polynomial p exists (otherwise it may return anything).Compute-coe�cients works as a simple interpolation algorithm: Speci�cally it �nds d+1univariate polynomials h1; : : : ; hd+1 such that hi(r(j)) equals 1 if i = j and 0 otherwise andthen returns the polynomial p(x1; : : : ; xn) = Pd+1j=1 hj(xn)�p(j)(x1; : : : ; xn�1). Note that indeedp(x1; :::; xn�1; r(j)) = d+1Xk=1hk(xn) � p(k)(x1; : : : ; xn�1)= p(j)(x1; : : : ; xn�1)Note that the polynomials hi(x) = Qj2f1;:::;d+1g;j 6=i � x�r(j)r(i)�r(j)� depend only on the r(j)'s. (Thus,it su�ces to compute them once, rather than computing them from scratch for each monomialof p as suggested in Section 2.2.)Proposition 6 Compute-coe�cients(p(1); : : : ; p(d+1); r(1); : : : ; r(d+1); n; d; q;  ) satis�es (P4).Its running time is O(d2�n+dd �).3.2 The main routinesAs mentioned earlier, the main subroutines are Find-all-poly and Extend, whose inputs andproperties are described next. They take, among other inputs, a special parameter � whichwill be �xed later. For the sake of simplicity, we do not require Find-all-poly and Extendat this point to output only polynomials with good agreement. We will consider this issuelater, when analyzing the running times of Find-all-poly and Extend.(P5) Find-all-poly(f; �; n; d; q;  ; �; �) returns a list of polynomials containing every polyno-mial of degree d on n variables that agrees with f on at least a � fraction of the inputs.Speci�cally, the output list contains every degree d polynomial p with agreement �with f , with probability at least 1�  .The algorithm is described formally in Figure 3. Informally, the algorithm uses the(\trivial") subroutines for the base cases n � 4 or d = 0, and in the remaining (interesting)cases it iterates a randomized process several times. Each iteration is initiated by a randomlinear transformation of the coordinates. Then in this new coordinate system, Find-all-poly�nds (using the \trivial" subroutine Brute-force) a list of all 4-variate polynomials havingsigni�cant agreement with the 4-pre�x of the oracle.6 It then extends each polynomial in the6In principle we could apply Brute-force for any constant number of variables (and not just 4). However,since the running time is doubly-exponential in the number of variables, we try to use Brute-force only for asmall number of variables. The need for using Brute-force when the number of variables is very small comesabout due to the fact that in such a case (e.g., two variables) the randomization of the coordinate systemdoes not operate well. Furthermore, applying Brute-force for univariate polynomials seems unavoidable. Forsimplicity of exposition, we choose to apply Brute-force also for 2, 3 and 4-variate polynomials. This allowsbetter settings of some parameters and simpli�es the calculations at the end of the proof of Lemma 7.14



list one variable at a time till it �nds the n-pre�x of the polynomial (which is the polynomialitself). Thus the crucial piece of the work is relegated to the subroutine Extend, which issupposed to extend a given (i� 1)-pre�x of a polynomial with signi�cant agreement with fto its i-pre�x. The goals of Extend are described next.(P6) Extend(f; p; �; n; d; q;  ; �; �) takes as input a degree d polynomial p in n� 1 variablesand with probability at least 1� returns a list of degree d polynomials in n variablesthat includes every polynomial p� that satis�es the following conditions:1. p� has agreement at least � with f .2. p�jj has agreement at least � � � with f jj for every j 2 f0; : : : ; dg.3. p�j0 � p.Figure 4 describes the algorithm formally. Extend returns all n-variable extensions p�,of a given (n � 1)-variable polynomial p, provided p� agrees with f in a strong sense: p�has signi�cant agreement with f and each p�jj has signi�cant agreement with f jj (for everyj 2 f0; : : : ; dg). (The latter agreement requirement is slightly lower than the former.) Torecover p�, Extend �rst invokes Find-all-poly to �nd the polynomials p�jj for d+1 values of j.This is feasible only if a polynomial p�jj has good agreement with f jj, for every j 2 f0; : : : ; dg.Thus, it is crucial that when Extend is called with f and p, all p�'s with good agreementwith f also satisfy the stronger agreement property (above). We will show that the callingprogram (i.e., Find-all-poly at the higher level of recursion) will, with high probability, satisfythis property, by virtue of the random linear transformation of coordinates.All the recursive calls (of Find-all-poly within Extend) always involve a smaller degreeparameter, thereby ensuring that the algorithms terminate (quickly). Having found a list ofpossible values of p�jj, Extend uses a simple interpolation (subroutine Compute-coe�cients)to �nd a candidate for p�. It then uses Test-valid to prune out the many invalid polynomialsthat are generated this way, returning only polynomials that are close to f .We now go on the formal analysis of the correctness of Find-all-poly and Extend.3.3 Correctness of Find-all-poly and ExtendLemma 7 If � � 1 � 1q , � � d+1q , and q � 3 then Find-all-poly satis�es (P5) and Extendsatis�es (P6).Proof: We prove the lemma by a double induction, �rst on d and for any �xed d, weperform induction on n. We shall rely on the properties of Compute-coe�cients, Test-valid,Constants, and Brute-force, as established above.Assume that Find-all-poly is correct for every d0 < d (for every n0 � n for any such d0.)We use this to establish the correctness of Extend(f; p; n0; d; q;  ; �) for every n0 � n. Fix apolynomial p� satisfying the hypothesis in (P6). We will prove that p� is in the output listwith probability 1 �  Nn0;d;� . The correctness of Extend follows from the fact that there areat most Nn0;d;� such polynomials p� and the probability that there exists one for which thecondition is violated is at most  . 15



Find-all-poly(f; �; n; d; q;  ; �; �);If d = 0 return(Constants(f; �; n; q;  ));If n � 4 return(Brute-force(f; �; n; d; q;  ; �));L  fg;Repeat O(log Nn;d;� ) times:Pick a random nonsingular n� n matrix R over GF(q)Pick a random vector b 2 GF(q)n.Let g denote the oracle given by g(y) = f(R�1(y � b)).L4  Brute-force(gj0n�4 ; �; 4; d; q; 110n ; �).for i = 5 to n doLi  fg /* List of (d; i)-prefixes */for every polynomial p 2 Li�1 doLi = Li [ Extend(gj0n�i; p; �; i; d; q; 110n ; �; �)endforendforUntransform Ln: L0n  fp0(x) def= p(Rx + b)jp 2 Lng.L  L [ L0n.endRepeatreturn(L) Figure 3: Find-all-polyTo see that p� is part of the output list, notice that, by the inductive hypothesis onFind-all-poly, when invoked with agreement parameter � � �, it follows that for any �xedj 2 f0; : : : ; dg, the polynomial p�jj � p is included in L(j) with probability 1 �  2(d+1)Nn0 ;d;� .This follows from the fact that p�jj�p and f jj�p have agreement at least � ��, the fact thatp�jj � p = p�jj� p�j0 is a degree d� 1 polynomial7, and thus, by the inductive hypothesis onthe correctness of Find-all-poly, such a polynomial should be in the output list. By the unionbound, we have that for every j 2 f0; : : : ; dg, the polynomial p�jj�p is included in L(j) withprobability 1 �  2Nn0;d;��� , and in such a case p� � p will be one of the polynomials returnedby an invocation of Compute-coe�cients. In such a case p� will be tested by Test-valid andaccepted with probability at least 1�  2Nn0 ;d;��� . Again summing up all the error probabilities,we have that p� is in the output list with probability at least 1 �  Nn0;d;��� . This concludesthe correctness of Extend.7To see that p�jj � p�j0 is a polynomial of total degree at most d � 1, notice that p�(x1; : : : ; xn) canbe expressed uniquely as r(x1; : : : ; xn�1) + xnq(x1; : : : ; xn), where degree of q is at most d � 1. Thusp�jj � p�j0 = j � q(x1; : : : ; xn�1; j) is also of degree d� 1.16



Extend(f; �; p; n; d; q;  ; �; �).L0  fg.L(0)  f�0g (where �0 is the constant 0 polynomial).for j = 1 to d dof (j)  f jj � p.L(j)  Find-all-poly(f (j); � � �; n; d� 1; q;  2Nn;d;���(d+1) ; �; �).endforfor every (d+ 1)-tuple (p(0); : : : ; p(d)) with p(k) 2 L(k) dop0  Compute-coe�cients(p(0); : : : ; p(d); 0; : : : ; d; n; d; q).if Test-valid(f; p+ p0; �; n; d; q;  =(2Nn;d;���); �) thenL0  L0 [ fp+ p0g;endforreturn(L0). Figure 4: ExtendWe now move on to the correctness of Find-all-poly(f; �; n; d; q;  ; �; �). Here we will tryto establish that for a �xed polynomial p with agreement � with f , the polynomial p isadded to the list L with constant probability in each iteration of the Repeat loop. Thusthe probability that it is not added in any of the iterations is at most  Nn;d;� and thus theprobability that there exists a polynomial that is not added in any iteration is at most  .We may assume that n � 5 and d � 1 (or else correctness is guaranteed by the trivialsubroutines).Fix a degree d polynomial p with agreement � with the function f : GF(q)n ! GF(q).We �rst argue that (R; b) form a \good" linear transformation with constant probability.Recall that from now onwards Find-all-poly works with the oracle g : GF(q)n ! GF(q) givenby g(y) = f(R�1(y � b)). Analogously de�ne p0(y) = p(R�1(y � b)), and notice p0 is also apolynomial of degree d. For any i 2 f5; : : : ; ng and j 2 f0; : : : ; dg, we say that (R; b) is goodfor (i; j) if the agreement between gjj;0n�i and p0jj;0n�i is at least ��. Lemma 8 (below) showsthat the probability that (R; b) is good for (i; j) with probability at least 1� 1qi�1 ��2 + 1�(1��)2 �.Now call (R; b) good if it is good for every pair (i; j), where i 2 f5; : : : ; ng and j 2 f0; : : : ; dg.Summing up the probabilities that (R; b) is not good for (i; j) we �nd that (R; b) is not goodwith probability at mostdXj=0 nXi=5 2 + 1�(1� �)2! � q�i+1= (d+ 1) �  2 + 1�(1� �)2! � nXi=5 q�i+117



< (d+ 1) �  2 + 1�(1� �)2! � q�3q � 1� 2q2(q � 1) + 1q � 1 (Using � � 1� 1q , � � d+1q , and d+ 1 � q.)� 1118 (Using q � 3.)Conditioned upon (R; b) being good and relying on the property of Brute-force, it followsthat L4 contains the 4-pre�x of p with probability at least 1 � 110n . Inductively, we havethat the i-pre�x of p is not contained in the list Li with probability at most i10n . (By theinductive hypothesis on Extend, with probability at most 110n the (i � 1)-pre�x of p is inLi�1 and yet the i-pre�x is not returned by Extend.) Thus, with probability at most 110 , thepolynomial p is not included in Ln (conditioned upon (R; b) being good). Adding back theprobability that (R; b) is not good, we conclude that with probability at most 1118+ 110 < 34 , thepolynomial p is not in Ln in any single iteration. This concludes the proof of the correctnessof Find-all-poly.3.4 Analysis of the random linear transformationWe now �ll in the missing lemma establishing the probability of the \goodness" of a randomlinear transformation.Lemma 8 Let f and g be functions mapping GF(q)n to GF(q) that have � agreement witheach other, and let R be a random non-singular n� n matrix and b be a random element ofGF(q)n. Then, for every i 2 f1; : : : ; ng and j 2 GF(q):PrR;b hf 0jj;0n�i and g0jj;0n�i have less than �� agreementi � 1qi�1 �  2 + 1�(1� �)2! ;where f 0(y) = f(R�1(y � b)) and g0(y) = g(R�1(y � b)).Proof: Let G = fx 2 GF(q)njf(x) = g(x)g, be the set of \good" points. Observe that� = jGj=qn. Let SR;b = fx 2 GF(q)njRx+ b has j0n�i as su�xg. Then we wish to show thatPrR;b " jSR;b \GjjSR;bj < � � jGjqn # � 1qi�1  2 + 1�(1� �)2! : (5)Observe that the set SR;b can be expressed as the pre-image of (j; 0n�i) in the map � :GF(q)n ! GF(q)m, where m = n � i + 1, given by �(x) = R0x + b0 where R0 is the m � nmatrix obtained by taking the bottom m rows of R and b0 is the vector obtained by takingthe last m elements of b. Note that R0 is a uniformly distributed m� n matrix of full rankover GF(q) and b0 is just a uniformly distributed m-dimensional vector over GF(q). We �rstanalyze what happens when one drops the full-rank condition on R0.18



Claim 9 Let R0 be a random m � n matrix over GF(q) and b0 be a random element ofGF(q)m. For some �xed vector ~s 2 GF(q)m let S = fxjR0x + b0 = ~sg. Then, for any setG � GF(q)n, PrR0;b0 " jS \GjjSj < � � jGjqn # � qm(1� �)2jGj + q�(n�m):Proof: We rewrite the probability in the claim asPrR0;b0 "jS \Gj < � � jGj � jSjqn #� PrR0;b0 "jS \Gj < � � jGj � qn�mqn or jSj > qn�m#� PrR0;b0 "jS \Gj < � � jGjqm # + PrR0;b0 hjSj > qn�miThe event in the second term occurs only if the matrix R0 is not full rank, and so the secondterm is bounded by q�(n�m) (see Claim 10). We thus focus on the �rst term.For x 2 G � GF(q)n, let I(x) denote an indicator random variable that is 1 if x 2 S (i.e.,R0x+ b0 = ~s) and 0 otherwise. Then, the expected value of I(x), over the choice of (R0; b0), isq�m. Furthermore, the random variables I(x1) and I(x2) are independent, for any distinctx1 and x2. Now, jS \Gj = Px2G I(x), and we are interested in the probability that the sumPx2G I(x) is smaller than � � jGj � q�m (whereas the expected value of the sum is jGj � q�m).A standard application of Chebychev's inequality yields the desired bound.8To �ll the gap caused by the \full rank clause" (in the above discussion), we use thefollowing claim.Claim 10 The probability that a randomly chosen m � n matrix over GF(q) is not of fullrank is at most q�(n�m).Proof: We can consider the matrix as being chosen one row at a time. The probabilitythat the jth row is dependent on the previous j � 1 rows is at most qj�1=qn. Summing upover j going from 1 to m we get that the probability of getting a matrix not of full rank isat most q�(n�m).Finally we establish (5). Let ER0;b0 denote the event that jS\GjjSj < � � jGjqn (recall thatS = SR0;b0) and let FR0;b0 denote the event that R0 is of full row rank. Then considering thespace of uniformly chosen matrices R0 and uniformly chosen vectors b0 we are interested inthe quantity: PrR0;b0[ER0;b0 jFR0;b0 ] � PrR0;b0[ER0;b0] + PrR0;b0[:(FR0 ;b0)]� qm(1� �)2jGj + 2 � q�(n�m):8Speci�cally, we obtain a probability bound of jGj�q�m((1��)�(jGj�q�m))2 = qm(1��)2�jGj as required.19



The lemma follows by substituting m = n� i + 1 and jGj = � � 2n.3.5 Analysis of the running time of Find-all-polyLemma 11 For integers d0; n0; q and �; �0 2 [0; 1] satisfying �d0�0 � 2d0=q, let M =max0�d�d0fNn0;d;(�d0�d)�(�0=2)g: Then, with probability 1���(n20(d0+1)2M logM)d0+1�log(1= 0),the running time of Find-all-poly(f; �0; n0; d0; q;  0; �; �) is bounded by a polynomial inMd0+1,(n0 + d0)d0 , ( 1�d0�0 )(d0+4)4 , log 1 0 and log 1� .Proof: We �x n0 and d0. Observe that in all recursive calls to Find-all-poly, � and d arerelated by the invariant � = �d0�d�0. Now, assuming the algorithms run correctly, theyshould only return polynomials with agreement at least �=2 (which motivates the quantityM). Further, in all such calls, we have that �d0�0 � dq � �d0�0=2. Observe further thatthe parameter � never changes and the parameter  only a�ects the number of iterationsof the outermost call to Find-all-poly. In all other calls, this parameter (i.e.,  ) is at least 1 def= 120n0(d0+1)M . Assume for simplicity that  0 �  1. Let T1; T2; T3; and T4 denote themaximum running time of any of the subroutine calls to Constants, Test-valid, Brute-force,and Compute-coe�cients, respectively. Let T = maxfT1; T2; T3; T4g. ThenT1 = O n�2d0�20 � log 1 0!T2 = O 1�2d0�20 �  n0 + d0d0 ! � log 1minf 0; �g!T3 = O kl3(�d0�0=2)2 � log k�!where l = O((d0 + 4)4) and k = O ���(d0+4)4 � (�0=2)�(d0+4)4 � log 1 0�.T4 = O d20 �  n0 + d0d0 !!Note that all the above quantities are bounded by polynomials in (n0 + d0)d0 , ( 2�d0�0 )(d0+4)4 ,logM , log 1� , and thus so is T . In what follows we show that the running time is boundedby some polynomial in (n0d0M)(d0+1) and T and this will su�ce to prove the lemma.Let P (d) denote an upper bound on the probability that any of the recursive calls madeto Find-all-poly by Find-all-poly(f; �d0�d�0; n; d; q;  ; �; �) returns a list of length greater thanM , maximized over f , 1 � n � n0,  �  0. Let F (d) denote an upper bound on the runningtime on Find-all-poly(f; �d0�d�0; n; d; q;  ; �; �), conditioned upon the event that no recursivecall returns a list of length greater than M . Similarly let E(d) denote an upper bound onthe running time of Extend, under the same condition.We �rst derive recurrences for P . Notice that the subroutine Constants never returnsa list of length greater than 2�d0�0 (every constant output must have a fraction of �d0�02representation in the sampled points). Thus P (0) = 0. To bound P (d) in other cases, weobserve that every iteration of the Repeat loop in Find-all-poly contributes an error probability20



of at most � from the call to Brute-force, and at most n0�4 times the probability that Extendreturns an invalid polynomial (i.e., a polynomial with agreement less than �d=2 with its inputfunction f). The probability that Extend returns such an invalid polynomial is bounded bythe sum of (d+1) �P (d� 1) [from the recursive calls to Find-all-poly] and Md+1 �� [from thecalls to Test-valid]. (Notice that to get the �nal bound we use the fact that we estimate thisprobability only when previous calls do not produce too long a list.) Finally the number ofiterations of the Repeat loop in Find-all-poly is at most log(M= ), by the de�nition of M .Recall that in the outer most call of Find-all-poly, we have  =  0 whereas in all other calls �  1, where log(1= 1) = log(20n0(d0 + 1)M) < n0(d0 + 1) logM , for su�ciently large n0.Thus summing up all the error probabilities , we haveP (d) < log(M= ) � n0 � �(d+ 1) � P (d� 1) +Md+1 � ��where for d = d0 we use  =  0 and otherwise  =  1. It follows thatP (d0) < log(M= 0) � n0 � �(d0 + 1) � P (d0 � 1) +Md+1 � ��< log(M= 0) � n0 � (d0 + 1) � �(n0 � (d0 + 1))2 logM�d0 �Md+1 � �< �n20 � (d0 + 1)2 �M logM�d0+1 � � � log(1= 0)A similar analysis for F and E yields the following recurrences:F (0) � TF (d) � n20(d0 + 1)(logM) � E(d)E(d) � (d+ 1)F (d� 1) +Md+1TSolving the recurrence yields F (d) � (n20(d0 + 1)2M logM)d+1T . This concludes the proofof the lemma.Lemma 12 For integers d0; n0 and �; �0 2 [0; 1], let M = max0�d�d0fNn0;d;(�d0�d)�(�0=2)g: If� � 1� 1d0+1 and �0 � 2eqd0q then M � O( 1�20 ).Proof: We use Part (2) of Theorem 17, which claims that Nn;d;� � 1�2�(d=q) , provided�2 � d=q. Let �d = �d0�d�0. Then �d=2 � (1 � 1d0+1)d0+1 � (�0=2) � �0=2e � qd=q, by thecondition in the lemma. Thus M is at most 1�2d�(d=q) � 2�2d = O( 1�20 ).Theorem 13 Given oracle access to a function f and suppose �; k; d and q are parameterssatisfying � � maxfd+1q ; 2eqd=qg and q � 3. Let � = 1 � 1d+1 ,  = 2�k and � = 2�k �(n(d + 1) 1�20 )�2(d+1). Then, given oracle access to a function f : GF(q)n ! GF(q), thealgorithm Find-all-poly(f; �; n; d; q;  ; �; �) runs in poly((k�nd=�)O(d4))-time and outputs, withprobability at least 1� 2�k, a list containing all degree d polynomials that agree with f on atleast an � fraction of the inputs. Furthermore, the list does not contain any polynomials thatagree with f on less than an �2 fraction of the inputs.21



Remarks:1. Thus, combining Theorems 1 and 13, we get reconstruction algorithms for all d < q,provided � is large enough. Speci�cally, for the case q = 2 and d = 1, we invokeTheorem 1.2. The constant 2e in the lower bound on � can be replaced by (1 + �)ed=q, for any � > 0,by re-calibrating the subroutine Test-valid and by setting � = 1� 1q .Proof: The main part of the correctness claim follows from Lemma 7, and the running-timebound follows from Lemmas 11 and 12. (In particular, note that the condition �d0�0 � 2d=qfrom Lemma 11 is met, since �d0 = 1e and �0 � 2qd=q � 2d=q.) The furthermore partfollows from the proof of Lemma 11.4 Counting: Worst CaseIn this section we give a worst-case bound on the number of polynomials that agree witha given function f on � fraction of the points. In the case of linear polynomials our boundworks for any � > 1q , while in the general case our bound works only for � that is largeenough. The bounds are derived using a very elementary property of polynomial functions,namely that two of them do not agree on too many points. In fact we �rst state and provebounds for any generic \error correcting code" and then specialize the bound to the case ofpolynomials.4.1 General error-correcting boundsWe �rst recall the standard de�nition of error-correcting codes. To do so we refer to stringsover an alphabet [q]. For a string R 2 [q]N (R for received word) and i 2 [N ], we let R(i)denote the ith coordinate of R. The Hamming distance between strings R1 and R2, denoted�(R1; R2), is the number of coordinates i where R1(i) 6= R2(i).De�nition 14 (Error correcting code) For integers N;K;D and q an [N;K;D]q codeis a family of qK strings from [q]N such that for any two distinct strings in the family, theHamming distance between them is at least D. That is, if C � [q]N is an [N;K;D]q codethen jCj = qK and for every C1 6= C1 2 C it holds that �(C1; C2) � D.In the following theorem we take an arbitrary word R 2 [q]N and consider the number ofcodeword that may have a Hamming distance of at most (1� �) �N from R (i.e., codewordsthat agree with R on at least � � N coordinates). We give an upper bound provided � issu�ciently large (as a function of D=N).Theorem 15 Let N;D and q satisfy DN < 1 and de�ne 
 def= 1 � DN > 0. Let � > 0 andR 2 [q]N . Suppose that C1; : : : ; Cm 2 [q]N are distinct codewords from an [N;K;D]q codethat satisfy �(R;Cj) � (1� �) �N , for all j 2 f1; : : : ; mg. Then the following bounds hold:22



1. If � > q2 + 
4 � p
 � 
2 then m < 2�+ 
2 .It follows that if � > p2
 then m < 2=�.2. If 
 � 1q and � > 1q +q(
 � 1q ) � (1� 1q ) then m � (1�
)�(1� 1q )(��(1=q))2�(1� 1q )(
� 1q ) .It follows that if (
 � 1q and) � > minfp
; 1q + q
 � 1qg then m � 1�
�2�
 < 1�2�
 . Inparticular, for 
 = 1q , the bounds hold for every � > 1q .For small 
, the latter (simpler) expressions given in each of the two parts of the theoremprovide good approximations to the former (tighter) expressions. The fact that the formerexpressions imply the latter ones is obvious for Part (1), and is proved below for Part (2).Additional Remarks:1. The bounds in the two parts of the theorem apply in di�erent situations and yielddi�erent bounds on m. The �rst bound applies for somewhat larger values of � andyields a stronger bound that is O(1� ). The second bound applies also for smaller valuesof � and yields a bound that grows as �( 1�2 ).2. Note that Part (2) only considers codes with distance D � (1�1=q) �N (i.e., 
 � 1=q).Still, the bound m � (1�
)�(1� 1q )(��(1=q))2�(1� 1q )(
� 1q ) , holds also in case 
 < 1=q, provided � � 1=q.(See Footnote 9 at the end of the proof of Part (2).) We mention that it is wellknown that codes with distance D � (1� 1=q) �N have at most qN codewords, whichimmediately implies m � qN � N=
 (for any 
 � 1=q regardless of �).Proof (of Part 1): The bound in Part (1) is proven by a simple inclusion-exclusionargument. For any m0 � m, we count the number of coordinates i 2 [N ] that satisfy theproperty that one of the �rst m0 codewords agree with R on coordinate i. Namely, let�j(i) = 1 if Cj(i) = R(i) and �j(i) = 0 otherwise. Then, by inclusion-exclusion we getN � jfi : 9j �j(i) = 1gj� m0Xj=1Xi �j(i)�� X1�j1<j2�m0Xi �j1(i)�j2(i)� m0 � �N �  m02 ! � max1�j1<j2�m0 jfi : Cj1(i) = Cj2(i)gjwhere the last inequality is due to the fact that Cj agrees with R on at least �N coordinates.Since two codewords R1 and R2 can agree on at most N �D coordinates, we get:8m0 � m; m0�N � m0(m0 � 1)2 � (N �D) � N: (6)Consider the function g(y) def= 
2 � y2� (�+ 
2 ) � y+1. Then (6) says that g(m0) � 0, for everyinteger m0 � m. Let �1 and �2 be the roots of g. To establish Part (1) we show that23



� The roots �1 and �2 are both real numbers.� The roots are both non-negative.� j�1 � �2j > 1.� min(�1; �2) < 2�+ 
2 .Without loss of generality, suppose �1 � �2. It follows that m � �1, since otherwiseg(m0) < 0 for every m0 2 (�1; �2) and in particular for the integer m0 = b�1c + 1, incontradiction to the above (i.e., g(m0) � 0 for every m0 � m).Let � = 
=2. Then g(y) = �y2 � (� + �) � y + 1. The roots, �1 and �2 are real, providedthat � def= (� + �)2 � 4� is positive which follows from a stronger requirement (see below).Without loss of generality, suppose �1 � �2. To guarantee �2��1 > 1, we require 2 � p�2� > 1which translates to � > �2 (and hence � > 0 as required above). We need to show that(� + �)2 � 4� > �2which occurs if � > p�2 + 4���. Plugging in the value of � we �nd that the last inequalityis exactly what is guaranteed in the hypothesis of Part (1) of the theorem statement. Thus�1 and �2 are real and �2 � �1 > 1. Lastly, we bound the smaller root �1. First we provethe upper bound. �1 = � + � �q(� + �)2 � 4�2�= � + �2� � 241�  1� 4�(� + �)2!1=235< � + �2� � "1�  1� 4�(� + �)2!#= 2� + �where the inequality follows by � > 0. Again by plugging in the value of � we get thedesired bound. For the lower bound, consider the �rst equality in the above displayed set ofinequalities and note that since � > 0, we have�1 = � + � �q(� + �)2 � 4�2� > 0:
24



Proof (of Part 2): We �rst introduce some notation. In what follows we will use thearithmetic of integers modulo q to simplify some of our notation. This arithmetic willbe used on the letters of the alphabet, i.e., the set [q]. For j 2 f1; : : : ; mg and i 2 [N ]let �j(i) = 1 if Cj(i) 6= R(i) and 0 otherwise. (Notice that �j(i) = 1 � �j(i).) For j 2f1; : : : ; mg, t 2 f0; : : : ; q � 1g and i 2 [N ] let �(t)j (i) = 1 if Cj(i) � R(i) � t (mod q) and0 otherwise. Thus �j(i) = 1 if and only if there exists t 6= 0 such that �(t)j (i) = 1. Letwj def= jfi : Cj(i) 6= R(i)gj = Pi �j(i) and let w = Pmj=1 wjm . The fact that the Cj's are closeto R implies that wj � (1� �) �N , for all j.Our proof generalizes a proof due to S. Johnson (c.f., MacWilliams and Sloane [31]) forthe case q = 2. The central quantity used to bound m in the binary case can be generalizedin one of the two following ways: S � Xj1;j2;i�j1(i)�j2(i):S 0 � Xj1;j2;iXt6=0 �(t)j1 (i)�(t)j2 (i):The �rst quantity sums, over all j1; j2, the number of coordinates for which Cj1 and Cj2 bothdi�er from R. The second quantity sums, over all j1; j2, the number of coordinate where Cj1and Cj2 agree with each other, but disagree from R by t. (Notice that the two quantities arethe same for the case q = 2.) While neither one of the two quantities are su�cient for ouranalysis, their sum provides good bounds.Lower bound on S + S 0: The following bound is shown using counting arguments whichconsider the worst way to place a given number of di�erences between the Cj's and R. LetNi = jfjjCj(i) 6= R(i)gj = Pj �j(i) and let N (t)i = jfjjCj(i) � R(i) � t (mod q)gj =Pj �(t)j (i). Note that PiNi = PiPt6=0N (t)i = mw. We can lower bound S as follows:S = Xj1;j2;i�j1(i)�j2(i) =Xi N2i � (mw)2N :where the last inequality above follows from the fact that subject to the condition PiNi =mw, the sum of Ni's squared is minimized when all the Ni's are equal. Similarly, usingPiPt6=0N (t)i = mw, we lower bound S 0 as follows:S 0 = Xj1;j2;iXt6=0 �(t)j1 (i)�(t)j2 (i) =Xi Xt6=0(N (t)i )2 � (mw)2(q � 1)N :By adding the two lower bounds above we obtain:S + S 0 � (mw)2N + (mw)2(q � 1)N = qq�1m2w2N : (7)Upper bound on S + S 0: For the upper bound we perform a careful counting argumentusing the fact that the Cj's are codewords from an error-correcting code. For �xed j1; j2 2f1; : : : ; mg and t1; t2 2 [q], letM (j1j2)t1t2 � jfij�(t1)j1 (i) = �(t2)j2 (i) = 1gj:25



For every j1; j2, we view the M (j1j2)t1t2 's as elements of a q � q matrix M (j1j2). Now, S and S 0can be expressed as sums of some of the elements of the matricesM (j1j2). Summing over the(q � 1)� (q � 1) minors of all the matrices we get:S = Xj1;j2 Xt1 6=0 Xt2 6=0M (j1j2)t1t2and summing the diagonal elements of M (j1j2) over all j1j2, we getS 0 = Xj1j2Xt6=0M (j1j2)tt :We start by upper bounding the internal sum above for �xed pair (j1; j2), j1 6= j2. Sincethe Cj's are codewords from an [N;K;D]q code we have Rj1(i) = Rj2(i) for at most N �Dvalues of i, so Xt6=0M (j1j2)tt � N �D �M (j1j2)00 = 
N �M (j1j2)00 :Note that the sum of the values of all elements of M (j1j2) equals N , and N � wj1 (resp.N�wj2) is equal to the sum of the values of the 0th column (resp. row) ofM (j1j2). To boundthe remaining term in the summation above we use inclusion-exclusion as follows:Xt1 6=0 Xt2 6=0M (j1j2)t1t2= Xt1 Xt2 M (j1j2)t1t2 ��Xt1 M (j1j2)t10 ��Xt2 M (j1j2)0t2 +M (j1j2)00= N � (N � wj1)� (N � wj2) +M (j1j2)00= wj1 + wj2 �N +M (j1j2)00 :Combining the bounds above we have (for j1 6= j2)Xt6=0M (j1j2)tt + Xt1 6=0 Xt2 6=0M (j1j2)t1t2 � (
N �M (j1j2)00 ) + (wj1 + wj2 �N +M (j1j2)00 )= wj1 + wj2 � (1� 
) �N:(The key point above is the cancellation of M (j1j2)00 .) Observe that if j1 = j2 = j, then thequantity Pt1 6=0Pt2 6=0M (jj)t1t2 = Pt6=0M (jj)tt = wj.We now combine the bounds above as follows:S + S 0 = Xj 0@Xt6=0M (jj)tt + Xt1 6=0 Xt2 6=0M (jj)t1t21A+ Xj1 6=j20@Xt6=0M (j1j2)tt + Xt1 6=0 Xt2 6=0M (j1j2)t1t2 1A� 2Xj wj + Xj1 6=j2(wj1 + wj2 � (1� 
)N)= 2m2w �m(m� 1)(1� 
)N:Thus, we get: S + S 0 � (2w � (1� 
) �N) �m2 + (1� 
) �N �m: (8)26



Putting it together: Combining (7) and (8) and letting � = 1� w=N , we getm � (1� 
) � 1(wN )2 qq�1 + 1� 
 � 2 � wN= (1� 
) � 1(1� �)2 qq�1 + 1� 
 � 2(1� �) :provided (1� �)2 qq�1 + 1� 
 ��2(1� �) � 0. Let g(x) def= qq�1x2 � 2x+ (1� 
). Note thatg(x) is monotone decreasing when x � q�1q . Note further that 1q � � � � and thus we get:m � (1� 
) � 1g(1� �) ;provided g(1 � �) > 0. We need to bound � so that g(1 � �) > 0. Observe �rst thatg(x) = qq�1 � � q�1q � x�2 � �
 � 1q�. Thus g(x) > 0 if q�1q � x > q q�1q � (
 � 1q ). (Notethat the expression in the square root is non-negative, since 
 � 1q .)9 In other words,g(1� �) > 0, provided � > 1q +r�1� 1q� � �
 � 1q�. In this case the bound obtained on m is1�
g(1��) = 1�
qq�1 �(�� 1q )2�(
� 1q ) . This is exactly as claimed in the main part of Part (2).We now move on to prove secondary bounds claimed in Part (2). Firstly, we show thatg(1��) > 0 for � > 1q+q
 � 1q . This follows immediately from the above and the inequality:1q +s
 � 1q > 1q +vuut 1� 1q! �  
 � 1q!:Next, we verify that g(1� �) > 0 for every � > p
. Let x = 1� �. Then 1� x = � > p
.In this case we have: g(x) =  1 + 1q � 1!x2 � 2x+ 1� 
= (1� x)2 + 1q � 1x2 � 
� (1� x)2 � 
> 0Thus g(1 � �) > 0 provided � > minfp
; 1q + q
 � 1qg. We now derive the claimed upperbounds on m. Setting x = 1� �, and using g(x) � (1� x)2 � 
, we get g(1� �) � �2 � 
.Thus m � 1�
g(1��) � 1�
�2�
 < 1�2�
 .9For 
 < 1q , the function g is positive everywhere. However to use the inequality g(1� �) � g(1� �), weneed � � 1q . This gives the bound claimed in Additional Remark 2 after Theorem 15.27



4.2 The special case of polynomialsRecall that a function f : GF(q)n ! GF(q) may be viewed as a string of length qn withletters from the set [q]. Viewed in this way we get the following construction of a code usingmultivariate polynomials. These codes are known as Reed-Muller codes in the coding theoryliterature.Proposition 16 The collection of degree d polynomials in n variables over GF(q) form an[N;K;D]q code, for N = qn, K = �n+dd � and D = (q � d) � qn�1.Proof: The parameters N and K follow by de�nition. The distance bound D is equivalentto the well-known fact [10, 38, 46] that two degree d (multivariate) polynomials over GF(q)may agree in at most d=q fraction of the inputs.Combining Theorem 15 with Proposition 16 (and using 
 = dq in the theorem), we getthe following upper bound on the number of polynomials with � agreement with an arbitraryfunction.Theorem 17 Let � > 0 and f : GF(q)n ! GF(q). Suppose that p1; : : : ; pm : GF(q)n !GF(q) are distinct degree d polynomials that satisfy Prx2GF(q)n [f(x) = pi(x)] � �, for alli 2 f1; : : : ; mg. Then the following bounds hold:1. If � > q2 + d4q �qdq �� d2q then m < 2�+ d2q .In particular, if � > q2d=q then m < 2=�.2. If � > 1+p(d�1)(q�1)q then m � (q�d)(q�1)q2 � 1(�� 1q )2� (q�1)(d�1)q2 .In particular, if � > minfqdq ; 1q +qd�1q g then m < 1�2�(d=q) .We emphasize the special case of linear polynomials (i.e., d = 1):Theorem 18 Let � > 0 and f : GF(q)n ! GF(q). Suppose that p1; : : : ; pm : GF(q)n !GF(q) are distinct linear functions that satisfy Prx2GF(q)n [f(x) = pi(x)] � 1q + �, for alli 2 f1; : : : ; mg. Then m � �1� 1q�2 � 1�2 � 4�2 .Proof: Just substitute d = 1 and � = 1q + � in the main part of Part (2) of Theorem 17.
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4.3 On the tightness of the upper boundsWe show that several aspects of the bounds presented above are tight. We start with theobservation that Theorem 15 can not be extended to smaller � without (possibly) relying onsome special properties of the code.Proposition 19 Let �0; 
0 satisfy the identity�0 = 1q +vuut 
0 � 1q! �  1� 1q!: (9)Then for any � > 0, and for su�ciently large N , there exists an [N;K;D]q code C, withN�DN � 
0 + �, a word R 2 [q]N and M � 2
(�2N) codewords C1; : : : ; CM 2 C such that�(R;Cj) � (1� (�0 � �)) �N , for every j 2 [M ].Remark: The proposition above should be compared against Part (2) of Theorem 15. Thatpart says that for �0 and 
0 satisfying (9) and any [N;K;D]q code with N�DN = 
0, thereexist at most O( 1�20 ) codewords at distance at most (1� �0) �N from any string of length N .In contrast, the proposition says that if �0 is reduced slightly (to �0 � �) and 
0 increasedslightly (to 
0 + �), then there could be exponentially many codewords at this distance.Proof: The bound is proven by a standard probabilistic argument. The code C will consistonly of the codewords C1; : : : ; CM that will be close to the string R. The codewords Cj's arechosen randomly and independently by the following process. Let p 2 [0; 1], to be determinedshortly.For every codeword Cj, each coordinate is chosen independently as follows: With prob-ability p it is set to be 1, and with probability 1� p it is chosen uniformly from f2; : : : ; qg.The string R is simply 1N .Observe that for any �xed j, the expected number of coordinates where R and Cj agreeis pN . Thus with probability at most 2�
(�2N), the agreement between R and Cj is less than(p � �)N . It is possible to set M = 2
(�2N) so that the probability that there exists such aword Cj is less than 12 .Similarly the expected agreement between Ci and Cj is �p2 + (1�p)2q�1 � � N . Thus theprobability that the agreement between a �xed pair is �N larger than this number is at most2�
(�2N). Again it is possible to set M = 2
(�2N) such that the probability that such a pairCi and Cj exists is less than 12 .Thus there is a positive probability that the construction yields an [N;
( �2Nlog q ); D]q codewith N�DN = p2 + (1�p)2q�1 + �, so that all codewords are within a distance of (1� (p� �))N ofthe word R. Thus, the setting �0 = p and 
0 = p2 + (1�p)2q�1 would yield the proposition, onceit is veri�ed that this setting satis�es (9). The latter fact is easily veri�ed by the followingalgebraic manipulations, starting with our setting of �0 and 
0.
0 = �20 + (1� �0)2q � 1 29



, qq � 1 � �20 � 2q � 1 � �0 + 1q � 1 � 
0 = 0, �20 � 2q � �0 + 1q � q � 1q � 
0 = 0,  �0 � 1q!2 =  
0 � 1q! �  1� 1q!, �0 = 1q +vuut 
0 � 1q! �  1� 1q!This concludes the proof.Next we move on to the tightness of the bounds regarding polynomials. We show thatTheorem 18 is tight for � = O(1=q), whereas Part (1) of Theorem 17 is tight for � = �(1=pq)and d = 1. The results below show that for a given value of � that meets the conditions ofthe appropriate theorem, the value of m can not be made much smaller.Proposition 20 Given a prime p, and an integer k satisfying 1 < k � p=3, let � = k=p.Then, there exists a function f : GF(p)! GF(p) and at least m def= 118(k�1)�2 linear functionsf1; : : : ; fm : GF(p) ! GF(p) such that jfxjfi(x) = f(x)gj � �p = k, for all i 2 f1; : : : ; mg.Furthermore, if � > q1=p then m > 1� � 1.For � = 2p = 1p + �, we get m = 118�2 (which establishes tightness of the bound m � 4�2 = 16�2given in Theorem 18). For � = q2p + 1p > q2p , we get m > 1� � 1 (which establishes tightnessof the bound m � 2� given for d = 1 in Part (1) of Theorem 17).Proof: We start by constructing a relation R � GF(p) � GF(p) such that jRj � p andthere exist many linear functions g1; : : : ; gm such that jR \ f(x; gi(x))jx 2 GF(p)gj � k forall i. Later we show how to transform R and the gi's so that R becomes a function that stillagrees with each transformed gi on k inputs.Let l = bp=kc and recall that � = k=p. Notice l � 1� and l � 1� � 1. The relation Rconsists of the k � l � p pairs in the square f(i; j)j0 � i < k; 0 � j < lg. Let G be the set ofall linear functions that agree with R in at least k places. We shall show that G has size atleast 1=(18�2(k � 1)). Given non-negative integers a; b s.t. a � (k � 1) + b < l, consider thelinear function ga;b(x) = ax + b mod p. Then, ga;b(i) 2 f0; : : : ; l� 1g, for ever such (a; b) andi 2 f0; : : : ; k � 1g. Thus, ga;b(i) intersects R in k places. Lastly, we observe that there areat least 1=(18�2(k � 1)) distinct pairs (a; b) s.t. a � (k � 1) + b < l: Fixing any a < l, thereare at least l� (k� 1)a� 1 possible values for b, and so that the total number of pairs is atleast l�1k�1Xa=0 l � (k � 1)a� 1 =  l � 1k � 1 + 1! � (l � 1)� (k � 1) � l�1k�1 � � l�1k�1 + 1�2> (l � 1)22(k � 1) 30



� (1� 2�)22�2(k � 1) (Using l � 1��� .)� 118�2(k � 1) (Using � � 13 .)Next, we convert the relation R into a function in two stages. First we stretch the relationby a factor of l to get a new relation R0. That is, R0 def= f(l � i; j)j(i; j) 2 Rg. We modifythe functions ga;b 2 G accordingly: That is, g0a;b(x) def= ga;b(l�1 � x) = (a � l�1)x+ b, where l�1is the multiplicative inverse of l (mod p) and ga;b(x) = ax + b. Thus, if ga;b(i) = j, theng0a;b(l � i) = j, and so if (i; ga;b(i)) 2 R then (l � i; g0a;b(l � i)) 2 R0. It follows that is ga;b agreeswith R on at least k places then g0a;b agrees with R0 on at least k places. Thus, letting G 0denote the set of linear functions that agree with R0 in k places, we have g0a;b 2 G 0 if ga;b 2 G.Moreover the map from G to G 0 is one-to-one (i.e., ga;b is mapped to g0a;b � gl�1�a;b), implyingjG 0j � jGj. (Actually, the argument above extends to show that jG 0j = jGj.)We note that for all a < l (which in turn is smaller than p=2), it holds that l�1 � a6� � 1(mod p). (This is the case since otherwise a � �l � p � l (mod p), in contradiction toa < p=2.)Last we introduce a slope to R0, so that it becomes a function. Speci�cally, R00 def= f(i +j; j)j(i; j) 2 R0g = f(l � i+ j; j)j(i; j) 2 Rg. Notice that for any two distinct (i1; j1); (i1; j2) 2R00, we have i1 6= i2 (since i1 = l � i01 + j1, i2 = l � i02 + j2, and j1; j2 2 f0; :::; l � 1g), and soR00 can be extended to a function f : GF(p) ! GF(p) (i.e., if (i; j) 2 R00 then j = f(i)).Now for every function g0(x) = a0x + b0 2 G 0, consider the function g00(x) = a00x + b00, wherea00 = a0=(1 + a0) and b00 = b0=(1 + a0) (and recalling that a0 6� � 1 (mod p)). Observe that ifg0(x) = y, then g00(x + y) = a01 + a0 � (x + g0(x)) + b01 + a0= a01 + a0 � (x + a0x + b0) + 11 + a0 � b0= a0x + b0 = yThus, if g0 agrees with R0 in at least k places then g00 agrees with R00 in at least k places (since(x; g0(x)) 2 R0 implies (x + g0(x); g00(x + g0(x))) 2 R00 and x1 + g0(x1) = (a0 + 1) � x1 + b01 6=(a0 + 1) � x2 + b01 = x2 + g0(x2) for all x1 6= x2), and hence g00 agrees with f in at least kplaces. Again, the mapping of g0 to g00 is one-to-one (since the system a00 = a0=(1 + a0) andb00 = b0=(1 + a0) has at most one solution in (a0; b0)). Thus, if we use G 00 to denote the set oflinear functions that agree with f in k places, then we have jG 00j � jG 0j � jGj � 118�2(k�1) , asdesired.For the furthermore clause, observe that if � > q1=p then our setting dictates l � 1 <pp < k and so l�1k�1 < 1. Actually, in this case we may use fg0;b : b = 0; :::; l � 1g in role ofG, G 0 and G 00, and derive jGj � l � 1� � 1.Finally we note that the bounds in Theorem 17 always require � to be larger thand=q. Such a threshold is also necessary, or else there can be exponentially many degreed polynomials close to the given function. This is shown in the following proposition.31



Proposition 21 Let q be a prime-power, d < q and � = dq � d�1q2 . Then, there exist ann-variate function f over GF(q), and at least qn�1 degree d polynomials that agree with f onat least a � fraction of the inputs.Note that for d = 1 we have � = 1q . Also, by a minor extension of the following proof, wemay use in role of f any n-variate degree d polynomial over GF(q).Proof: We use the all-zero function in role of f . Consider the family of polynomials havingthe form Qd�1i=1 (x1 � i) � Pni=2 cixi, where c2; :::; cn 2 GF(q). Clearly, each member of thisfamily is a degree d polynomial and the family contains qn�1 di�erent polynomials. Now,each polynomial in the family is zero on inputs (a1; :::; an) satisfying either a1 2 f1; :::; (d�1)gor Pni=2 ciai = 0, where the ci's are these specifying the polynomial in the collection. Sinceat least a d�1q + (1 � d�1q ) � 1q fraction of the inputs satisfy this condition, the propositionfollows.5 Counting: A Random CaseIn this section we present a bound on the number of polynomials that can agree with afunction f if f is chosen to look like a polynomial p on some domain D and random on otherpoints. Speci�cally, for jDj � 2(d+ 1) � qn�1, we show that with high probability p itself isthe only polynomial that agrees with f on at least jDj (and even jDj=2) points.Theorem 22 Let � � 2(d+1)q . Suppose that D is an arbitrary subset of density � in GF(q)n,and p(x1; :::; xn) is a degree d polynomial. Consider a function f selected as follows:1. f agrees with p on D;2. the value of f on each of the remaining points is uniformly and independently chosen.That is, for every x 2 D def= GF(q)n n D, the value of f(x) is selected at random inGF(q).Then, with probability at least 1 � expf(nd log2 q) � �2qn�2g, the polynomial p is the onlydegree d polynomial that agrees with f on at least a �=2 fraction of the inputs.Thus, for functions constructed in this manner, the output of our reconstruction algorithmwill be a single polynomial; namely, p itself.Proof: We use the fact that for two polynomials p1 6= p2 in GF(q)n, p1(x) = p2(x) onat most d=q fraction of the points in GF(q)n [10, 38, 46]. Thus, except for p, no otherdegree d polynomial can agree with f on more than dq � qn points in D. The probabilitythat any polynomial p0 agrees with f on more than a 1q + � fraction of the points in D is atmost expf��2qng. Furthermore, in order to agree with f on more than an �2 fraction of allpoints, p0 must agree with f on at least � �2 � dq� � qn of the points in D, and so we can use� � (�=2)�(d=q)1�� � 1q > �2 � d+1q + ��((�=2)�(d=q))q � �q . Thus, the probability that there exists a32



degree d n-variate polynomial, other than p, that agrees with f on at least an �=2 fractionof all points is at most qnd � expf� � �q�2 qng, and the theorem follows.6 Hardness ResultsIn this section we give evidence that the (explicit or implicit) reconstruction problem maybe hard for some choices of d and the agreement parameter �, even in the case when n = 1.We warn the reader that the problems shown to be hard does di�er in some very signi�cantways from the reconstruction problems considered in previous sections. In particular, theproblems will consider functions and relations de�ned on some �nite subset of a large �eld,either the �eld of rational numbers or a su�ciently large �eld of prime order, where theprime is speci�ed in binary. The hardness results use the \large" �eld size crucially.Furthermore, the agreement threshold for which the problem is shown hard is very small.For example, the hardness results of Section 6.2, de�nes a function f : H1�H2 ! F , whereF is a large �eld and H1; H2 are small subsets of F . In such a hardness result, one shouldcompare the threshold � of agreement that is required, against dmaxfjH1j;jH2jg , since the latterratio that determines the \distance" between two polynomials on this subset of the inputs.Our hardness results typically hold for � � d+2maxfjH1j;jH2jg . We stress that the agreementis measured as a fraction of the subset mentioned above, rather than as a fraction of then-tuples over the �eld (in case it is �nite), which is much smaller.6.1 NP-hardness for a variant of the univariate reconstructionproblemWe de�ne the following (variant of the) interpolation problem PolyAgree:Input: Integers d; k;m, and a set of pairs P = f(x1; y1); : : : ; (xm; ym)g such that 8i 2[m]; xi 2 F , yi 2 F , where F is either the �eld of rationals or a prime �eld given by its sizein binary.10Question: Does there exist a degree d polynomial p : F n ! F for which p(xi) = yi for atleast k di�erent i's?We stress that the pairs in P are not required to have distinct x-components (i.e., xi = xjmay hold for some i 6= j). Our result takes advantage of this fact.Theorem 23 PolyAgree is NP-hard.Remark: This result should be contrasted with the results of [40, 19]. They show thatPolyAgree is easy provided k � pdm, while our result shows it is hard without this condition.In particular, the proof uses m = 2d+3 and k = d+2 (and so k < pdm). Furthermore, ourresult is established using a set of pairs in which xi = xj holds for some i 6= j, whereas thisnever happens when given oracle access to a function (as in previous sections and in [40, 19]).10When F is the �eld of rational numbers, the input elements are assumed to be given as a ratio of twoN -bit integers. In such a case the input size is measured in terms of the total bit length of all inputs.33



In the next subsection, we show that in it is hard even in the oracle setting when the numberof variables is at least two.Proof: We present the proof for the case of the �eld of rational numbers only. It is easyto verify that the proof also holds if the �eld F has prime order that is su�ciently large (seeparenthetical comments at the end of the proof for further details.)We reduce from subset sum: Given integers B; a1; : : : ; a`, does there exist a subset of theai's that sum to B (without loss of generality, ai 6= 0 for all i).In our reduction we use the fact that degree d polynomials satisfy certain interpolationidentities. In particular, let �i = (�1)i+1�d+1i � for 1 � i � d + 1 and �0 = �1. ThenPd+1i=0 �if(i) = 0 if and only if (0; f(0)); (1; f(1)); : : : ; (d + 1; f(d + 1)) lies on a degree dunivariate polynomial.We construct the following instance of PolyAgree. Set d = l�1, m = 2d+3 and k = d+2.Next, set xi  i, xd+1+i  i, yi  ai=�i, and yd+1+i  0 for 1 � i � d + 1. Finally, setx2d+3  0 and y2d+3  B.No polynomial can pass through both (xi; yi) = (i; ai=�i) and (xd+1+i; yd+1+i) = (i; 0) forany i, since ai 6= 0. We show that there is a polynomial of degree d that passes through(0; B) and one of either (i; 0) or (i; ai=�i) for each 1 � i � d + 1 if and only if there is asubset of a1; : : : ; ad+1 whose sum is B.Assume that there is a polynomial p of degree d that passes through (0; B) and oneof (i; 0) and (i; ai=�i) for each 1 � i � d + 1. Let S denote the set of indices for whichp(i) = ai=�i (and p(i) = 0 for i 2 [d+ 1]nS). Then0 = d+1Xi=0 �ip(i) = �0 �B +Xi2S �i � ai�i = �B +Xi2S ai (10)Similarly, if there is set of indices S such thatPi2S ai = B, then we de�ne f so that f(0) = B,f(i) = ai=�i for i 2 S and f(i) = 0 for i 2 [d + 1]nS. Observing that Pd+1i=0 �if(i) = 0 itfollows that there is a degree d polynomial that agrees with f on i = 0; :::; d+ 1.For the case where F is a �nite �eld of order q, we assume that the integers B anda1; : : : ; ad+1 are all multiples of �i for every i. (This assumption can be realized easily bymultiplying all integers in the input by lcm(j�0j; : : : ; j�d+1j).) Further we pick q > jBj +Pd+1i=1 jaij. The only change to the proof is that the equalities in Equation (10) directly holdonly modulo q. At this stage, we use the condition q > jBj + Pd+1i=1 jaij to conclude thatB = Pi2S ai.6.2 NP-hardness of the reconstruction problem for n � 2In the above problem, we did not require that the xi's be distinct. Thus this result does notdirectly relate to the black box model used in this paper. The following result applies to ourblack box model for n-variate functions, for any n � 2.We de�ne a multivariate version of PolyAgree that requires that the xi's be distinct. Weactually de�ne a parameterized family FunctionalPolyAgreen, for any n � 1.34



Input: Integer d, a �eld F , a �nite subset H � F n, a rational number �, and a functionf : H ! F , given as a table of values.Question: Does there exist a degree d polynomial p : F n ! F for which p(x) = f(x) for atleast � fraction of the x's from H?Theorem 24 For every n � 2, FunctionalPolyAgreen is NP-hard.Proof: We prove the theorem for n = 2. The other cases follow by simply making aninstance where only the values of �rst two variables vary in the set H and the remainingvariables are assigned some �xed value (say 0).The proof of this theorem builds on the previous proof. As above we reduce from subsetsum. Given an instance B; a1; : : : ; al of the subset sum problem, we set d = l � 1 andk = 2(d + 1) and F to be the �eld of rationals. (We could also work over any prime �eldGF(q), provided q � jBj+Pni=1 jaij.) Let � = d+32(d+2) . We set H1 = f0; : : : ; d+1g, H2 = [2k].and let H = H1 �H2. For i 2 H1 we let �i = (�1)i+1�d+1i � as before. For i 2 H1 � f0g, letyi = ai=�i as before. The function f is de�ned as follows:f(i; j) = 8><>: B if i = 0yi if i 2 H1 � f0g and j 2 [k]0 otherwise (i.e., if i 2 H1 � f0g and j 2 fk + 1; : : : ; 2kgThis completes the speci�cation of the instance of the FunctionalPolyAgree2 problem. Wenow argue that if the subset sum instance is satis�able then there exists a polynomial p withagreement � (on inputs from H) with f . Let S 2 [l] be a subset such that Pi2S ai = B.Then the function p(i; j) def= p0(i) def= 8><>: B if i = 0yi if i 2 S0 if i 2 H1 n Sis a polynomial in i of degree d (since Pd+1i=0 �ip0(i) = �B +Pi2S ai = 0). Furthermore, pand f agree in 2k + k(d + 1) inputs from H. In particular p(0; j) = f(0; j) = B for everyj 2 [2k], p(i; j) = f(i; j) = yi if i 2 S and j 2 [k] and p(i; j) = f(i; j) = 0 if i 62 S andj 2 fk + 1; : : : ; 2kg. Thus p and f agree on a fraction 2k+k(d+1)2(d+2)k = d+32(d+2) = � of the inputsfrom H, as required.We now argue that if the reduction leads to a satis�able instance of the FunctionalPolyAgree2problem then the subset sum instance is satis�able. Fix a polynomial p that has agreement� with f ; i.e., p(i; j) = f(i; j) for at least 2k + k(d + 1) inputs from H. We argue �rst thatin such a case p(i; j) = p0(i) for some polynomial p0(i) and then the proof will be similar tothat of Theorem 23. The following claim is crucial in this proof.Claim 25 For any i 2 [d+ 1], if jfjjp(i; j) = f(i; j)gj � k, then there exists ci 2 f0; yig s.t.p(i; j) = ci for every j 2 [2k].
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Proof: Consider the function p(i)(j) def= p(i; j). p(i) is a degree d polynomial in j. Byhypothesis (and the de�nition of f(i; j)) we have, p(i)(j) 2 f0; yig for k values of j 2 [2k].Hence p(i)(j) = 0 for k=2 values of j or p(i)(j) = yi for k=2 values of j. In either case wehave that p(i), a degree d polynomial, equals a constant polynomial for k=2 = d + 1 pointsimplying that p(i) is a constant. That p(i)(j) = ci 2 f0; yig follows from the hypothesis andde�nition of f .From the claim above it follows immediately that for any i 2 [d + 1], jfjjf(i; j) =p(i; j)gj � k. Now using the fact that f and p agree on 2k + k(d+ 1) inputs it follows thatfor every i 2 [d + 1], f(i; j) = p(i; j) for exactly k values of j; and f(0; j) = p(0; j) = Bfor all values of j. Using the above claim again we conclude that we can de�ne a functionp0(i) def= ci 2 f0; yig if i 2 [d + 1] and p0(0) = B such that p(i; j) = p0(i) for every (i; j) 2 H.Furthermore p0(i) is a degree d polynomial, since p is a degree d polynomial; and hencePd+1i=0 �ip0(i) = 0. Letting S = fi 2 [d + 1]jyi 6= 0g, we get �B + Pi2S �iyi = 0 which inturns implies B = Pi2S ai. Thus the instance of the subset sum problem is satis�able. Thisconcludes the proof.7 An application to complexity theoryIn this section we use the linear-polynomial reconstruction algorithm in order to prove the se-curity of new (generic) hard-core functions, generalizing the result of Goldreich and Levin [17](which provides hard-core predicates). We comment that an alternative construction of(generic) hard-core functions was also presented in [17], where its security was reduced tothe security of a speci�c hard-core predicate via a \computational XOR lemma" (due to [43]).For further details, see [16].Loosely speaking, a function h : f0; 1g� ! f0; 1g� is called a hard-core of a functionf : f0; 1g� ! f0; 1g� if h is polynomial-time, but given f(x) it is infeasible to distinguishh(x) from a random jh(x)j-bit long string. Thus, not only that h(x) is hard to �nd givenf(x), it is even hard to recognize h(x) once given (with f(x) but without x). Intuitively, ifh is a hard-core of f then it must be hard to invert f (i.e., given f(x) �nd x). We formulateall these notions below, assuming for simplicity that f is length-preserving (i.e., jf(x)j = jxjfor all x 2 f0; 1g�).De�nition 26 (one-way function) A function f : f0; 1g� ! f0; 1g� is called one-way ifthe following two conditions hold:1. The function f is computable in polynomial-time.2. For every probabilistic polynomial-time algorithm A, every polynomial p and all su�-ciently large n Px2f0;1gn[A(f(x)) 2 f�1(f(x))] < 1p(n)De�nition 27 (hard-core function) A function h : f0; 1g� ! f0; 1g� is called a hard-coreof a function f : f0; 1g� ! f0; 1g� if the following two conditions hold:36



1. The function h is computable in polynomial-time.2. For every probabilistic polynomial-time algorithm D, every polynomial p and all su�-ciently large n���Px2f0;1gn [D(f(x); h(x)) = 1]�Px2f0;1gn ; r2f0;1gjh(x)j [D(f(x); r) = 1]��� < 1p(n)Theorem 28 Let f 0 be a one-way function, and ` be a polynomial-time computable inte-ger function satisfying `(m) = O(logm). For x = (x1; :::; xm) 2 GF(2`(m))m and y =(y1; :::; ym) 2 GF(2`(m))m, let f(x; y) def= (f 0(x); y) and h(x; y) def= Pmi=1 xiyi. Then h is ahard-core of f .This theorem generalizes the result of Goldreich and Levin [17] from ` � 1 to any logarith-mically bounded `.Proof: Suppose towards the contradiction that there exists a probabilistic polynomial-timealgorithm D and a polynomial p so that for in�nitely many m's���Px;y2GF(2`(m))m [D(f(x; y); h(x; y)) = 1]�Px;y2GF(2`(m))m ; r2GF(2`(m))[D(f(x; y); r) = 1]��� � 1p(m)Let �(m) denote the di�erence (inside the absolute value), and assume, without loss ofgenerality, that it is positive. Using the above D we �rst prove the following:Claim: There exists a probabilistic polynomial-time algorithmA so that for thesem's satis�esPx;y2GF(2`(m))m [A(f(x; y)) = h(x; y)] � 2�`(m) + �(m)2`(m) � 1Proof: The claim may be established by analyzing the success probability of the followingalgorithm A: On input z = f(x; y), uniformly select r 2 GF(2`(m)), invoke D(z; r), andreturn r if D(z; r) = 1 and a uniformly selected value in GF(2`(m)) n frg otherwise. Detailsfollow. Px;y[A(f(x; y)) = h(x; y)] = Px;y;r[A(f(x; y)) = h(x; y) & r = h(x; y)]+Px;y;r[A(x; y) = h(x; y) & r 6= h(x; y)]= Px;y;r[D(f(x; y); r) = 1 & r = h(x; y)]+Px;y;r;r0[D(f(x; y); r) = 0 & r0 = h(x; y) 6= r]where r0 denotes a uniformly selected value in GF(2`(m)) n frg. Letting L = 2`(m), we have:Px;y;r[D(f(x; y); r) = 1 & r = h(x; y)] = 1L �Px;y;r[D(f(x; y); r) = 1 j r = h(x; y)]= 1L �Px;y;r[D(f(x; y); h(x; y)) = 1]37



On the other handPx;y;r;r0[D(f(x; y); r) = 0 & r0 = h(x; y) 6= r]= 1L� 1 �Px;y;r[D(f(x; y); r) = 0 & r 6= h(x; y)]= 1L� 1 � (Px;y;r[D(f(x; y); r) = 0]�Px;y;r[D(f(x; y); r) = 0 & r = h(x; y)])= 1L� 1 � �1�Px;y;r[D(f(x; y); r) = 1]� 1L + 1L �Px;y[D(f(x; y); h(x; y)) = 1]�Combining the above, we getPx;y[A(f(x; y)) = h(x; y)]= 1L �Px;y;r[D(f(x; y); h(x; y)) = 1]+ 1L + 1L� 1 � � 1L �Px;y[D(f(x; y); h(x; y)) = 1]�Px;y;r[D(f(x; y); r) = 1]�= 1L + 1L� 1 � (Px;y[D(f(x; y); h(x; y)) = 1]�Px;y;r[D(f(x; y); r) = 1])� 1L + 1L� 1 � �(m)and the claim follows. QEDLet A be as in the above claim. Recalling that f(x; y) = (f 0(x); y), observe that A givesrise to a function Fz0 : GF(2`(m))m ! GF(2`(m)) de�ned by Fz0(y) def= A(z0; y), and it holdsthat Px;y2GF(2`(m))m [Ff 0(x)(y) = mXi=1 xiyi] � 2�`(m) + �(m)2`(m) � 1Thus, for at least an �(m)2`(m)+1 fraction of the possible x = (x1; :::; xm)'s it holds thatPy2GF(2`(m))m [Ff 0(x)(y) = mXi=1 xiyi] � 2�`(m) + �(m)2`(m)+1Applying Theorem 1 to such Ff 0(x), with � = 2�`(m)+ �(m)2`(m)+1 , we obtain a list of all polynomialsthat agree with Ff 0(x) on at least a 2�`(m) + �(m)2`(m)+1 fraction of the inputs. This list includesx, and hence we have inverted the function f 0 in time poly(m=�) = poly(jxj). This happenson a polynomial fraction of the possible x's, and thus we have reached a contradiction to thehypothesis that f 0 is a one-way function.AcknowledgmentsWe are grateful to Mike Kearns and Dana Ron for discussion regarding agnostic learning.We thank Eyal Kushilevitz and Yishay Mansour for comments regarding an early version38
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