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Preface (by O.G., June 1997): This write-up was reproduced (without substantialproofreading) from an old troff �le which contained the Crypto87 version of thiswork. The conversion was done automatically using some software (which is notperfectly �t for the input �le). Thus, I've super�cially gone over the output andeliminated some failures of the conversion (but I may not have caught them all). Idid not try to improve the exposition.In fact, I was amazed at the poor level of the exposition. It requires a drastic improve-ment which I'm not going to perform now. In particular, the overall organization isnot spelled-out: So I've added an organization paragraph at the end of the Introduc-tion.Finally, I'd like to call the readers attention to the simple protocol presented in Sub-section 3.1. This protocol utilizes Oblivious Transfer in order to present a maximum-privacy 2-party protocol for a speci�c Boolean function on three bits. Private com-putation of this speci�c function is all that is required for the multi-party maximum-privacy protocol generator of [GMW2] (in the version attributed to [HM]).1. INTRODUCTIONThe main purpose of many cryptographic protocols is to allow parties to collaborate towardssome common goal, while maintaining the maximum possible privacy of their secrets. Typically,the common goal is to compute some function of the local inputs (secrets) held by the di�erentparties. Maximum privacy means that this value is distributively computed without revealingmore about the local inputs than what is revealed by the value itself. More formally, let xi bethe local input of party i (1 � i � n), and f be an n-argument function. The parties wish toobtain the value f(x1; :::; xn), but do not wish to leak any further information about their localinputs. To better understand what is meant by this requirement, consider the situation whenall parties trust an additional party. In this case, each party may (secretly) send his local inputto the trusted party, which will then compute the value of the function, and announce this valueto all parties. A maximum privacy protocol achieves the e�ect of the trusted party withoutusing a trusted party. Namely, whatever a party can e�ciently compute when participating in amaximum privacy protocol, he could have e�ciently computed after participating in the above"trusted party" protocol. To better understand what is meant by maximum privacy, considerthe problem of computing the sum of the local inputs (i.e. f(x1; x2; :::; xn) = Pni=1 xi). Amaximum privacy protocol for computing the sum of the local inputs guarantees that whatevera coalition T of parties can e�ciently compute when participating in the protocol, can alsobe e�ciently computed from their local inputs (fxigi2T ) and the sum of all local inputs (i.e.Pni=1 xi). Equivalently, all they learned about the local inputs of the other parties is their sum(i.e. Pi=2T xi), and this of course can not be avoided. Goldreich, Micali and Wigderson [GMW2]have proposed a method for generating maximum privacy protocols for computing any functionf . Their method is in fact a polynomial-time algorithm that given as input a Turing Machinedescription of the (n-argument) function f , outputs a maximum privacy n-party protocol forcomputing f . These protocols use instances of a maximum privacy two-party subprotocol for thefollowing particular protocol problem (in S5 { the symmetric group of 5 elements):



Input: A's local input is a permutation, � 2 S5, while B's local input is a permutation � 2 S5.Output: A's local output is a permutation � 0 2 S5, and B's local output is a permutation�0 2 S5 such that � � � = �0 � � 0. (Here � means permutation composition.)Recently, an e�ciency improvement of the [GMW2] algorithm has been suggested by Haberand Micali [HM]. The protocols output by their algorithm use instances of a maximum privacytwo-party subprotocol for the following particular problem (in GF (2) arithmetic):Input: A's local input is a pair of bits a1 and a2, while B's input consists of the bits b1 and b2.Output: A's local output is a bit a0, while B's local output is a bit b0 such that a0 + b0 =P2i=1 ai � bi.Both, [GMW2] and [HM] use for solving the above problems, a general result of Yao [Y2]:a method for generating maximum privacy two-party protocols for any two-argument function.This method (modi�ed in [GMW2] by using ideas from [EGL]) guarantees maximum privacyunder the assumption that trapdoor one-way permutations exist. In this paper, we present directsolutions to the above two particular protocol problems, avoiding the use of Yao's general result.In fact, we present two alternative approaches for solving both problems. The �rst approachconsists of a simple reduction of these two problems to a variant of Oblivious Transfer, whichcan implemented assuming the existence of any trapdoor one-way permutation. The secondapproach consists of designing direct solutions to these two problems, assuming the intractabilityof the Quadratic Residuosity problem. Both approaches yield simpler and more e�cient solutionsthan the ones obtained by Yao's result. Our protocols and their applications are presented ina model where parties follow the protocol properly, except that they may store all intermediatecomputations done during the execution. Thus, we concentrate only in guaranteeing that theprotocols have maximum privacy. Using the results of [GMW2], each maximum privacy protocolin the above model can be transformed into a protocol guaranteeing both maximum privacy andcorrectness of output in a model where a minority of the parties may deviate from the protocolin arbitrary (but polynomial-time) manner.Organization (added in June 1997):Section 2 (Preliminaries): This section contains general background material (Subsections 2.1{2.4) as well as speci�c background (Subsections 2.5{2.7).Section 3 (Solving the GF(2) scalar-product problem): This is the more important part of thework and the reason I've borthered at all to reproduce it from a tro� �le. It contains a simplesolution using 1-out-of-2 Oblivious Transfer and zero-knowledge proofs (Subsection 3.1) aswell as a more e�cient solution based on Quadratic Residousity (rest of the section). Thebare solution of Subsection 3.1 (without zero-knowledge proofs) is e�cient but only holdsfor the \semi-honest" model. The solution presented in Subsection 3.2 (and analyzed inSubsect. 3.3{3.5) holds for a more general model in which the adversary is allowed arbitrarypolynomial-time behaviour which does not violates the correctness of the computation. Thismodel is called the value-preserving adversary model (see Subsection 2.4).Section 4 (Solving the S5 permutation problem): The ideas of Section 3 are extended to dealwith a more complex problem. There is no real reason to care about this part (since the



problem of Section 3 is su�cient for the envisioned application).2. PRELIMINARIESIn this section, we recall the basic de�nitions and notations used in this paper.2.1. Two-party Cryptographic ProtocolsLoosely speaking, a two-party cryptographic protocol is a pair of programs run by a corre-sponding pair of interacting Turing Machines. An interactive Turing Machine is a Turing machinewith the following tapes:1) A read only input tape.2) A read only random tape.3) A read/write working tape.4) A pair of communication tapes, one being read-only and the other write-only.5) A write only output tape.The machine can be thought of as using the bits of the random tape as coin tosses, sendingmessages through its write-only communication tape, and receiving messages on its read-onlycommunication tape. It should be noted that the current con�guration of the machine is deter-mined by the context of its input tape, random tape, and read-only communication tape. Twointeractive machines A and B, are called an interactive pair (of Turing machines) if they sharetheir communication tapes in the obvious manner (i.e. A's read-only communication tape isB's write-only communication tape and via versa). We consider only polynomial-time protocols.These are protocols consisting of pairs of programs, such that the running time of each programis polynomial in the length of the input. Typically, we will not be interested in a particularexecution of a protocol, but rather in the probability distribution on the set of possible execu-tions. This probability distribution is a function of the local inputs and internal coin tosses ofthe interacting machines. A particularly intersting probability distribution is de�ned by a party'sview of the execution. The party's view of an execution contains the contents of his local inputand random tapes, as well as the contents of his read-only communication tape. We stress thatthe contents of the input tape and the read-only communication tape can not be modi�ed (orerased) by the program. We denote by AB(y)(x) the probability distribution de�ned by A's viewof an execution, in which A has local input x, and B has local input y.2.2. Polynomial IndistinguishabilityA fundamental notion regarding probability distributions is the inability to e�ciently tell themapart. This notion is captured by the de�nition of polynomially indistinguishable probabilityensembles originating in [GM, Y1] and sketched below. A probability ensemble Y = (Y1; Y2; :::) is



an in�nite sequence of probability distributions, where Yk is a probability distribution on binarystrings. Typically, the support of Yk will contain strings of length polynomial in k. A test, T ,is a probabilistic polynomial time algorithm that on input a string x output a bit b. Let PTYkdenote the probability that T outputs 1 on input a string randomly selected with a probabilitydistribution Yk. Two ensembles X and X 0 are polynomially indistinguishable if for all tests T , forall constants c > 0, and for su�ciently large k,jPTXk � PTX0k j < 1kc2.3. The Privacy RequirementIn the introduction, we have motivated maximum privacy protocols as ones allowing thedistributed computation of functions without revealing more about the local inputs than whatis revealed by the value of the function. It was required that whatever a party can e�cientlycompute when participating in a maximum privacy protocol, he could have e�ciently computedfrom his local input and the value of the function. Clearly, it su�ces to require that he cane�ciently compute his view of the execution from his local input and the value of the function.A formal de�nition follows. (For �rst reading of the de�nition, assume that z is the integer k inunary representation and that its sole purpose is to allow the used of the formalism of polynomialindistinguishability.)De�nition 1 (A program preserves privacy with respect to a particular program.): Let � be aprobability ensemble (�1;�2; :::) such that �k is a probability distribution on triples (x; y; z).Program B preserves the privacy of f with respect to program A if there is a probabilisticpolynomial-time machine M , that for every ensemble �, when given input x; z and f(x; y) out-puts M(x; z; f(x; y)) such that ensemble M(x; z; f(x; y)) is polynomially indistinguishable fromthe ensemble AB(y)(x; z). (Here the triple (x; y; z) is chosen with probability distribution �k.)In fact, we allow z to be arbitrary, thus capturing a priori information that party A mighthave had on the input of B. This way, we guarantee that even with the help of such a prioriinformation, executing the protocol does not reveal more about the local inputs than is revealed bythe value of f(x; y). Although maximum privacy is de�ned here with respect to the computationof functions, the de�nition naturally extends to the computation of probability distributions.2.4 Two Models of Party's BehaviorIn this paper we consider two types of party's behavior. The �rst type, called semi-honestbehavior consists of a party following his program while recording all intermediate computingsteps on a special tape (called the history tape) and conducting an arbitrary polynomial-timecomputation using the history tape as an input. Note that even if a program of a semi-honestspeci�es that it has to erase the contents of his working tape, this contents still appear on thehistory tape. Yao [Y2] (resp. Goldreich, Micali and Wigderson [GMW2]) presents a method of"forcing" the participants of any two-party (resp. multi-party) protocol to behave in a semi-honest manner.De�nition 2 (Protocol which preserves privacy in the semi-honest model): A two-party protocol(A,B) preserves the privacy of f in the semi honest model if program A preserves privacy with



respect to program B and program B preserves privacy with respect to program A.De�nition 3 (Maximum privacy protocol.): A protocol (A;B) has maximum privacy if programA preserves privacy with respect to all polynomial-time program B� and program B preservesprivacy with respect to all polynomial-time program A�.When talking about a cryptographic protocol we are usually interesting in two properties,correctness and privacy (correctness means that the true value of f is being computing by theprotocol.). In this paper we are concerned only with the privacy condition. This can be moti-vated in two ways. First we believe that privacy and correctness are distinct notions which arebetter understood when dealt separately. Correctness is easily dealt using zero-knowledge proofs[GMW1], while privacy even in the semi-honest model requires di�erent techniques [GMW2].Secondly, it is natural to consider setting in which the parties are very interested in obtainingthe correct value of the function and on top of this seek to gain additional information (but notat the cost of not getting the correct value). This is formulated by the following behavior model.A value-preserving adversary, consists of a party which may deviates from the protocol in anymanner that does not change the true value of f . We introduce two protocols for the same prob-lem, the �rst preserve privacy in the semi-honest model while the second has maximum privacy.2.5 One-out-of-Two Oblivious TransferSusan and Ron are friends. Susan has two secret bit, which Ron wants. In order to preservetheir friendship Susan is willing to give Ron only one of her secret at his choice, but Ron doesnot want her to know which secret he chose. A one-out-of-two Oblivious Transfer, denoted OT 12 ,is a two-party protocol which guarantees that Ron gets only the secret (bit) he has chosen whileSusan does not know which secret he chose. The OT 12 as motivated above, must be related toa model of behavior. We consider OT 12 in the semi-honest model and in the value-preservingadversary model. When we say that a protocol implements OT 12 in a speci�c model we meanthat the OT 12 properties hold when the party's behavior is restricted to is model. 2.6. TheQuadratic Residuosity ProblemLet m be a composite integer, the product of two large primes p and q. We denote by Z�m themultiplicative group modulo m. The set of quadratic residue modulo m is denoted byQm = fa : 9x 2 Z�m s.t. a � x2(m)gFor every a 2 Z�m, the Jacobi symbol of a mod m, denoted ( am), is de�ned as (ap ) � (aq ), where (ap )is +1 if a is a quadratic residue modulo p and �1 otherwise. The Jacobi symbol ( am ) can be easilycomputed from a and m. Clearly, ( am ) = �1 implies a =2 Qm, but the converse does not hold.In fact, distinguishing elements of Qm from quadratic non-residues mod m (with Jacobi Symbol1) is considered intractable. (This computation is easy if the factorization of m is known.) Toconcentrate on elements with Jacobi Symbol 1, we denoteZ(+1)m = fa 2 Z�m : ( am) = +1g.Nm = Z(+1)m �Qm



The Quadratic Character of xmod m, denoted QCm(x), is de�ned as 0 if x 2 Qm and 1 otherwise.The Quadratic Residuosity problem is to determine, on input x andm, the value of QCm(x). Thistask is considered intractable in the following senseIntractability Assumption of Quadratic Residuosity [GM]: Let C = fCig be an in�nitesequence of Boolean circuits such that Ci has 2i input bits. Let fCi denote the fraction of integersm product of two primes, of length i=2 bits each, such that for every x 2 Z(+1)m , Ci(x;m) =QCm(x). Then, for every family of polynomial size circuits, C = fCig, every constant c > 0 andsu�ciently large i, fCi < i�c. (Here the size of a circuit family C = fCig is a function mapping ito the number of gates in Ci.)We use the fact that, under the intractability assumption of Quadratic Residuosity, it isinfeasible to guess the quadratic character with any non-negligible advantage over 1=2.De�nition: We say that C polynomially approximates Quadratic Residuosity, if there exist aconstant c > 0 such that for in�nitely many i'sProb (Ci(x;m) = QCm(x)) > 12 + 1ncwhere the probability is taken over all possible m = p � q (with p and q being two primes of lengthi=2 each) and all x 2 Z(+1)m with uniform probability distribution.Theorem [GM]: Under the intracability Assumption of Quadratic Residuosity, there exist nofamily of polynomial size circuits that polynomially approximates Quadratic Residuosity.2.7. Notations� Let S be a �nite set. By e 2R S we mean an element randomly chosen from the set S withuniform probability distribution.� We denote by S5 the group formed by the set of all permutations over f1,2,3,4,5g, andpermutation composition as operator. (This group is known as the symmetric group.)3. THE GF(2) SCALAR PRODUCT PROTOCOLIn this section we present a maximum privacy two-party protocol for the problem of distribu-tively computing scalar product in GF (2), de�ned as follows:Input: A's local input is a t-dimensional binary vector �a = (a1; a2; :::; at), while B's inputis another t-dimensional binary vector �b = (b1; b2; :::; bt).Output: A's local output is a bit a0, while B's local output is a bit b0 such that a0+ b0 =Pti=1 ai � bi.



In fact, we are interested in the case t = 2, which is exactly the subprotocol required for theHaber Micali protocol generator [HM]. For simplicity, we present a protocol for the followingrelated problem:Input: A's local input is a pair of bits a0 and a1, while B's input is a single bit b1.Output: B's local output is a bit b0 which equals a0 + a1 � b1. (A has no local output.)It is easy to reduce the original problem to the later problem. Alternatively, one may use theideas of the protocol described below to directly solve the original problem.3.1 Protocol For Semi-Honest Using OT 12 .A de�nes its �rst secret to be a0 and his second secret to be a0 + a1. Using OT 12 B choosesone of A's secrets according to the value of b1. If b1 = 0 then B chooses the �rst secret, otherwisehe chooses the second secret. It easy to see that B's output bit equals a0+a1b1, thus correctnessholds. The privacy in the semi-honest model holds by the de�nition of OT 12 in the semi-honestmodel. An OT 12 is simply implemented in the semi-honest model, assuming the existence of trap-door one way permutation [GMW2], unfortunately this implementation does not have maximumprivacy. Zero knowledge proofs can be used in order to ensure that this OT 12 protocol hasmaximum privacy, however the modi�ed protocol is no longer simple and e�cient. An e�ciencyimprovement have been achieved in the next maximum privacy protocol for the scalar productproblem, that is under the Quadratic Residuosity Assumption.3.2. The Protocol in the Value-Preserving Adversary model.Preprocessing: B chooses at random two k-bit primes p; q. (k is the security parameter)B computes m = p � q. Next, B chooses y 2R Nm and publishes the couple m; y.i) B chooses s 2R Z�m and computes � = (s2 � yb1 mod m). B sends � to A.ii) A chooses r 2R Z�m and computes � = (r2 � ya0 � �a1 mod m). A sends � to B.iii) B checks the quadratic residuosity of �, and sets b0 = QCm(�).3.3. Correctness of the ProtocolWe �rst show, that the above protocol is correct; namely that the output satis�es the speci�cationconditions.Claim 1: The bit b0 computed by B does equal a0 + a1 � b1.Proof: B gets� � r2 � ya0 � �a1 � r2 � ya0(s2 � yb1)a1 � (r � sa1)2 � ya0+a1b1 (mod m).B set b0 = QCm(�) � a0 + a1 � b1 (mod 2). 2



3.4. Maximum Privacy of the ProtocolWe now prove that the above protocol has the maximum privacy property. First we use theIntractability Assumption of subsection 2.6 to prove that B preserves privacy with respect to anyA�, and next we prove that A preserves privacy with respect to any B� (using no assumptions).By De�nition 1, program B preserves privacy with respect to A� if there exists a machine which,on input the local inputs of A� and the value of the function, simulates the interaction between A�and B. This requirement has to be satis�ed for any possible input that A� may have, includingencoding of possible a-priori information on B's inputs (denoted z). However, if the modulus m ischosen in the preprocessing and is input to the protocol then z may depend on it. In particular, zmay contain the prime factorization of m and in such a case clearly B does not preserve privacy.This problem may be resolved in one of the following ways:1) HavingB choosem at random each time the protocol is executed, instead of having it chosenin a preprocessing stage. This completely solves the problem, at the cost of substantiallydecreasing the e�ciency of the protocol.2) Leaving the protocol as it is, and relaxing the de�nition of privacy preserving. The de�nitionis relaxed by restricting z to be polynomial-time computable. In particular, z = R(b1; m; y),where R is a probabilistic polynomial-time algorithm. (Thus, z may be a random variable.)This restriction is justi�ed by the applications of the above protocol. Typically, the protocolwill be used many times, each time with the same modulus (m) but with possibly di�erenta0; a1; b1. When considering the i-th application of the protocol, the input to A� is thehistory of the previous i � 1 applications. One can then use induction on i to show thatprivacy is preseved in i successive applications of the protocol. In the induction step, we usethe fact that the history of the previous i�1 can be simulated by a probabilistic polynomial-time machine, and thus the input z in the current application satis�es the restriction.In the following Claim, we use adopt the second alternative. The reader may easily modify ourproof to show that the modi�ed protocol (as suggested in the �rst alternative) preserves privacyin the original sense (of De�nition 1).Claim 2: Assuming intractability of Quadratic Residuosity and restricting z to be polynomial-time computable (see (2) above), program B of the above protocol preserves privacy with respectto any A�.Proof 's Sketch: To prove the claim, we demonstrate a machine M which on input a0; a1, m; y andz (as restricted above) outputs a probability distribution M(a0; a1; m; y; z) which is polynomiallyindistinguishable from A�B(b1;p;q;m;y)(a0; a1; m; y; z). Machine M proceeds as follows:(Simulates step (i) of machine B): Sets b01 = 1, chooses s 2R Z�m, and computes �0 = (s2 �yb01mod m). Outputs its inputs together with �0 and stops.We will show that the output of M is polynomially indistinguishable from the contents of theinput and read-only communication tapes of A� (when interacting with B). The only potential



di�erence between M(a0; a1; m; y; z) and A�B(b1;p;q;m;y)(a0; a1; m; y; z) may be created by a di�er-ence between the distribution of � and �0.There are essentially two cases.Case 1: Prob(b1 = 1) > 1 � k�c, for all c > 0 and su�ciently large k. In such a case, theensembles M(� � �) and AB(���)(� � �) are almost the same and can not be polynomially distinguished(regardless of the di�culty of determining Quadratic Residuosity).Case 2: There exist a constant c > 0 such that Prob(b1 = 0) > k�c for in�nitely many k's. As-sume, on the contrary, that there is a (polynomial-time) test T distinguishing M(a0; a1; m; y; z)from A�B(b1;p;q;m;y)(a0; a1; m; y; z), when (a0; a1; m; y), (b1; p; q;m; y) and z are taken from a dis-tribution, denoted �k, in which p; q are randomly selected k-bit primes, m = pq, y 2R Nm, andz = R(b1; m; y), where R is a probabilistic polynomial-time machine. In such a case, we usethe test T to construct a family of circuits for approximating Quadratic Residuosity. (Detailsfollow.)Let Ik be a value of (a0; a1) for which the test T distinguishes the above two ensembles. With noloss of generality, assume that T outputs 1 with higher probability on the ensemble M(� � �) thanon the ensemble AB(���)(� � �).The k-th circuit incorporates Ik and the test T , working as follows: On input a k-bit composite mand x 2 Z(+1)m , the circuit computes y and z as explained below, feeds T with (Ik; m; y; z; x) andoutputs T 's answer. (x is placed in the position of � (�0).) It is left to specify the computationof y and z.The circuit chooses y 2R Z(+1)m , and computes z = R(b1; m; y) using the probabilistic polynomial-time machine R (which is incorporated in the circuit). Note that the test T will determine cor-rectly the quadratic character of x 2 Z(+1)m , in case y 2 Nm. We do not know how T behavesin case y 2 Qm. Therefore, before using y to test the quadratic character of x we estimate thebehavior of the test with this y. Namely, we select many ri 2R Qm (by letting ri = s2i , wheresi 2R Z�m) and feed the test T with either (Ik; m; y; z; ri) or (Ik; m; y; z; ri � y). If the test Tdistinguishes these two cases, we use this y for determining the quadratic character of x (i.e. feedT with (Ik; m; y; z; x)). Otherwise, we try again.One can show that the circuits constructed as above do approximate Quadratic Residuosity witha non-negligible advantage. The technical details are quite standard, and are omitted here. Wereach a contradiction to the Quadratic Residuosity Assumption, and the Claim follows. 2We nowprove preservation of privacy with respect to B. This time we use no intractability assumptions.Claim 3: The protocol preserves privacy with respect to B.Proof 's Sketch: We will show that there exist a machineM which on input b1; k; z and f(a0; a1; b1)(= a1 � b1+a0 mod 2), outputs a probability distribution which is identical to the distribution onB's input and read-only tapes during interaction with A. M operates as follows.1) M randomly chooses two k-bit primes p; q, computes m = p � q, and chooses y 2R (Z(+1)m �Qm).2) M chooses r0 2R Z�m, computes �0 � r02 � yf(a0;a1;b1) (mod m), and outputs (its input and)�0.



Recall that A calculate � as � � r2 � ya0 � �a1 � (r � sa1)2 � ya0+a1b1 (mod m), where r 2R Z�m.Since both r � sa1 and r0 are uniformly distributed in Z�m, � and �0 have identical probabilitydistribution. The Claim follows. 23.5. Summing UpCombining Claims 1, 2 and 3, we getTheorem 1: The above protocol is a maximum privacy protocol for the simpli�ed GF (2) scalarproduct problem.A protocol for the original GF (2) scalar product problem, can be easily derived and provenusing the above ideas. The protocol of subsection 3.1 is modi�ed as follows. In step (i), B choosess1; s2; :::; st 2R Z�m, computes �i = (s2i � ybimodm), and sends �1; �2; :::; �t to A. In step (ii), Acomputes �i = �aii , chooses r 2R Z�m and a0 2R f0; 1g, computes � = (r2 � ya0 � �ti=1�imodm),and sends � to B. In step (iii), B sets b0 = QCm(�) (=a0 +Pti=1 aibi).4. THE PERMUTATION SWITCHING PROTOCOLIn this section, we present a two-party protocol with maximum degree privacy for the problemof switching permutations de�ned as follows:Input: A's local input is a permutation, � 2 S5, while B's local input is a permutation � 2 S5.Output: A's local output is a permutation � 0 2 S5, and B's local output is a permutation�0 2 S5 such that � � � = �0 � � 0.An equivalent formulation used in the sequel isInput: A's local input is a pair of permutations, �; � 0 2 S5. B's local input is a permutation� 2 S5.Output: B's local output is �0 = � � � � � 0. (A has no local output.)One-out-of 120 Oblivious Transfer can be implements to solve the above problem in the semi-honest model. A maximum privacy protocol for the permutation switching problem is followingpresents, that is under the Quadratic Residuosity Assumption.4.0. ConventionsThroughout this section, we use quite non-standard representation of permutations. The reasonfor this representation is that it allows to composite a non-encrypted permutation with an en-crypted permutation resulting in an encrypted permutation. We represent permutations in S5 byquintuples of distinct elements in f1,2,3,4,5g. By (i1; i2:::i5) we mean the permutation mappingik to k (8k = 1:::5). For example let � = (3; 5; 1; 2; 4), then � � (A;B;C;D;E) = (C;E;A;B;D).Assume that we encrypt quintuples (i1; :::; i5) by encrypting each element separately; namelyE(i1; :::; i5) = E(i1); :::; E(i5). Then, given � = (3; 5; 1; 2; 4) and E(i1; :::; i5) we can computeE(� � (i1; i2; i3; i4; i5)) = E(i3; i5; i1; i2; i4) = E(i3); E(i5); E(i1); E(i2); E(i4) = � �E(i1; :::; i5)



The representation used above allows us to compute E(� � �) from � and E(�). We wish to beable to compute E(� � �) from E(�) and �. Using two particular encryption formats, E and~E, we are able to compute ~E(� � �) from E(�) and �. We encrypt quintuples � = (i1; :::; i5)by encrypting each element separately. Namely E(�) = E(i1); :::; E(i5). To encrypt an elementi 2 f1; 2; :::; 5g we use a quintuple of elements in Z(+1)m (m = p � q is composed of two largeprimes), with a quadratic residue in the i-th location and quadratic non-residues in all otherlocations. Speci�cally Em(i) is a probabilistic encryption equaling (s1; s2; :::; s5), where si 2R Qmand sj 2R Nm, for all j 6= i. For notational convenience we use E(�) instead of Em(�). Forsimplicity, we use the shorthand (Q;N;N;N;N) for E(1) ((N;Q;N;N;N) for E(2), etc.), whereQ denotes s 2R Qm and N denotes s 2R (Z(+1)m � Qm). The advantage of this encryptionmethod is that it allows us to compute an encryption of the Boolean predicate i = j from E(i)and E(j), without yielding any additional information about i; j 2 f1; 2; 3; 4; 5g. Given E(i)and E(j), we �rst apply coordinate-wise multiplication to the two quintuples, and next applya random permutation to the result. In case i = j, coordinate-wise multiplication yields aquintuple of Quadratic residues. In case i 6= j, coordinate-wise multiplication yields a quintuplewith Quadratic Non-residues in the i-th and j-th location, and Quadratic residues elsewhere. Forexample, coordinate-wise multiplication of E(2) = (N;Q;N;N;N) by E(4) = (N;N;N;Q;N)yields (Q;N;Q;N;Q). Applying a random permutation to the result, yields (in case i 6= j) aquintuple with two Quadratic Non-residues.4.1. The Protocol in the Value-Preserving Adversary model.Preprocessing: B chooses at random two k-bit primes p; q. (k is the security parameter)B computes m = p � q. Next, B chooses y 2R Nm and publishes the couple m; y.1) B encrypt (his input) �, using Quadratic non-residues and residues mod m. (Encryptionis as speci�ed above.) B sends E(�) to A.2) A computes E(� � �) by applying (his �rst input) � to E(�), as described above.Let (i1; i2; :::; i5) = ��� 0, (� 01; � 02; :::; � 05) = � 0, and (e1; e2; :::; e5) = E(��).for j = 1 to 5 do begin (steps 3:j and 4:j):3. A computes ~E(ij) as follows. First,A picks new probabilistic encryptions E(1); E(2); :::;E(5)(using m and y).for l = 1 to 5 A computes the coordinate-wise multiplication of ej and E(l), and randomlypermutes the resulting quintuple. Denote the randomly permuted result by rj;l.A forms �ve pairs (rj;1; � 01); (rj;2; � 02); :::; (rj;5; � 05), orders the pairs by their rightmost element,and sends the pairs (in this order) to B.4. B retrieves ij as follows. Among the �ve pairs received from A, party B �nds a pair witha leftmost element consisting of an "all Quadratic residues" quintuple. B sets �0j to be therightmost element of that pair.5) B's local output is �0 = (�01; �02; :::; �05).



4.2. Correctness of the ProtocolWe �rst show, that the above protocol is correct; namely that the output satis�es the speci�cationconditions.Claim 4: The permutation �0 locally output by B equals � � � � � 0.Proof: Clearly, in step 2 A correctly computes E(� � �) We now show that �0j computed by Bin step 4:j equals ij, for every j (1 � j � 5). The coordinate-wise multiplication of ej andE(l) equals (Q;Q;Q;Q;Q) if and only if the j-th element of (the quintuple representing thepermutation) �� equals l. Thus, �0j is set to � 0l , where l is the j-th element of ��. It follows that�0 equals (� � �) � � 0. 24.3. Maximum Privacy of the ProtocolWe now prove that the above protocol has the maximum privacy property. First we use theIntractability Assumption of subsection 2.6 to prove that B preserves privacy with respect toany A�, and next we prove that A preserves privacy with respect to any B� The proofs use ideassimilar to those used in the proofs of Claims 2 and 3.Claim 5: Assuming intractability of Quadratic Residuosity (as in subsection 2.4), the aboveprotocol preserves privacy with respect to A.Proof 's Sketch: To prove the claim, we construct a machine M that on input �; � 0, m; y and arestricted polynomial-time computable auxiliary input z, (see (2) at subsection 3.4) outputs theinputs together with the encryption of the identity permutation. As in the proof of Claim 2, abilityto distinguish this output from the contents of A's (input and read-only communication) tapeswill be converted to a contradiction of the Intractability Assumption of Quadratic Residuosity.2 We now prove preservation of privacy with respect to B. This time we use no intractabilityassumptions.Claim 6: The protocol preserves privacy with respect to B.Motivation to the Proof: What does B learn from the ~E(ij)'s? Since A uses independently chosenprobabilistic encryptions in each step 3:j, we concentrate on what is learned from ~E(i1). B hasreceived �ve pairs, the left element of one of them is (Q;Q;Q;Q;Q) while the left elements ofthe other pairs are quintuples with three Q's and two N 's. It is crucial that the location of theN 's in these quintuples is "random" and thus does not leak any information.Proof ' Sketch: We will show that there exist a machine M which on input �;m; y; z and �0(= ��� 0), outputs a probability distribution which is identical to the distribution on B's inputand read-only tapes during interaction with A. M operates as followsfor j = 1 to 5 do begin1. M constructs �ve pairs (vj;1; 1); (vj;2; 2); :::; (vj;5; 5), where the quintuple v�0j is (a random)(Q;Q;Q;Q;Q) and all the other quintuples have three (random) quadratic residues in
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