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1 IntroductionThis paper focuses on the class Honest-Veri�er Statistical Zero-Knowledge1 (HVSZK) [12] | thatis, the class of decision problems possessing statistical zero-knowledge proofs. Recent years havewitness a renewed interest in this class, sparkled to a great extent by Okamoto's work [16]. Themain two results of that work areThm. I: Every language in HVSZK has a public-coin Honest-Veri�er Statistical Zero-Knowledgeproof system.Thm. II: The class HVSZK is closed under complementation.Subsequent work have relied on the above Thm. I, and provided among other things:� A promise problem2 complete for the class HVSZK, and an alternative proof of Thm. II [18].� A construction of a (general veri�er) Statistical Zero-Knowledge proof system for any languagein HVSZK [11].Both works rely on the characterization of HVSZK as equal to public-coin HVSZK, provided byThm. I. Unfortunately, the proof of Thm. I in [16] is very complicated and was fully understoodby very few researchers.The primary motivation of this work is to provide a simpler proof of Thm. I. Our basic ideais to apply some of Okamoto's techniques [16] to the Aiello-Hastad transformation [1] of HVSZKinto AM, rather than applying them (as done in [16]) to the Goldwasser-Sipser transformation [13]of IP into AM.To further clarify the proof, we introduce a promise problem, and show that: (1) any problemin HVSZK reduces to the new promise problem, and (2) the new promise problem has a public-coin HVSZK proof system. Our proof of the Part (1) relies on the work of Fortnow, Aiello andHastad [8, 1]; whereas in proving Part (2) we rely on two protocols due to Okamoto [16]. We stressthat we provide self-contained de�nitions, implementations and analysis of the latter two protocols.1.1 Public-coin versus general proof systemsRecall that public-coin (a.k.a Arthur-Merlin) proof systems [2, 3] are interactive proof systems [12]in which the prescribed veri�er's strategy amounts to sending uniformly chosen messages at eachround, and deciding whether to accept by evaluating a polynomial-time predicate of the conver-sation transcript. That is, in each round, the veri�er tosses a predetermined number of coins andsends the outcome to the prover, and at the end it decides whether to accept by applying a predicateto the (full) sequence of messages it has sent and received.Public-coin proof systems are easier to analyze and manipulate than general interactive proofs,and thus the result of Goldwasser and Sipser [13] by which the former are as powerful as thelatter found many applications (e.g., [9, 15, 4]). As mentioned above, the same and more so istrue regarding Statistical Zero-Knowledge: That is, Okamoto's result [16] (i.e., Thm. I), by whichpublic-coin HVSZK equals HVSZK, has played a major role in many subsequent results (e.g., hisThm. II as well as in [18, 11]). Thus, providing a clear proof of Thm. I is of major importance tothis area.1 For basic de�nitions, see Appendix A.2 A promise problem � is a pair of disjoint sets of strings, corresponding to yes and no instances, respectively [7].1



1.2 A new HVSZK-complete problem: Entropy Di�erenceThe new promise problem referred to above is called Entropy Di�erence. Recall that the entropy ofa random variable X , denoted H(X), is de�ned asH(X) def= X� Pr [X = �] � log2(1=Pr [X = �]) (1)The promise problem involves the entropies of distributions which are encoded by circuits whichsample from them. That is, if X is a circuit mapping f0; 1gm to f0; 1gn, we identify X with theprobability distribution induced on f0; 1gn by feeding X the uniform distribution on f0; 1gm.De�nition 1.1 (Entropy Di�erence): The promise problem Entropy Di�erence, denoted ED =(EDyes; EDno), consists of EDyes def= f(X; Y ) : H(X) > H(Y ) + 1gEDno def= f(X; Y ) : H(Y ) > H(X) + 1gwhere X and Y are distributions encoded as circuits which sample from them.As stated above, our main results areTheorem 1.2 (HVSZK-hardness): Any promise problem in HVSZK reduces (via a Karp reduc-tion) to ED.(Theorem 1.2 combined with a simple constant-round interactive proof for ED implies thatHVSZK �AM\ coAM. We believe that this provides an a much simpler argument than the one presentedin [8, 1], although it does use all the underlying ideas of these works.)3Theorem 1.3 (ED in public-coin HVSZK): ED has a public-coin Honest-Veri�er Statistical Zero-Knowledge proof system.Combining Theorems 1.2 and 1.3,4 we see that any language in HVSZK has a public-coin HVSZKproof system (i.e., Thm. I). Furthermore, observing that ED easily reduces to its complement, itfollows that HVSZK is closed under complementation (i.e., Thm. II).Discussion: Some super�cial similarity does exist between the above and what was done in [18].In the latter work, the authors de�ned a promise problem, called Statistical Di�erence (denotedSD),5 and showed that it is complete for the class HVSZK. However, their reduction of HVSZK toSD used Thm. I to restrict attention to public-coin HVSZK only. Thus, the results in [18] (relying3 We note that much of the simpli�cation is due to [17].4 Actually, we also use the fact that the reduction in Theorem 1.2 is not length-decreasing. Alternatively, onemay use the fact that ED is easily padded to increase the length of instance descriptions.5 Statistical Di�erence, denoted SD = (SDyes; SDno), consists ofSDyes def= f(X;Y ) : �(X ; Y ) < 1=3gSDno def= f(X;Y ) : �(X ; Y ) > 2=3gwhere X and Y are as in De�nition 1.1, and �(X ; Y ) denote the statistical di�erence between them (i.e., �(X ; Y ) def=12 �P� jPr [X = �]� Pr [Y = �] j). 2



on Thm. I) cannot be used to establish Thm. I. Interestingly, the HVSZK proof system for SDpresented in [18] is not of the public-coin type (yet it is one-round).In retrospect, the term Statistical Zero-Knowledge (coined by Goldwasser, Micali and Rack-o� [12]) sounds prophetic of the key role played by computational problems regarding statisti-cal measures in the study of this class (which is also known by the name Almost-Perfect Zero-Knowledge).1.3 ExtensionsLet us stress that by (honest-veri�er) statistical zero-knowledge we mean a simulation, upto neg-ligible deviation error, by a strict (rather than expected) probabilistic polynomial-time machine.This makes Theorem 1.3 seemingly stronger, but potentially weakens Theorem 1.2. However, aswe shortly explain, Theorem 1.2 is in fact stronger than stated.De�nition 1.4 (simulator deviation): Let (P; V ) be a proof system for a promise problem � =(�yes;�no), and let M be a probabilistic polynomial-time machine. Suppose that for some function� : N 7! N and every x 2 �yes the statistical di�erence between the veri�er's view, denoted hP; V i(x)and M(x) is at most �(jxj). Then we say that M simulates (P; V ) with deviation �.Typically, HVSZK is de�ned as the class of languages having interactive proofs with negligible6simulator deviation. A weaker notion is that of weak-HVSZK (cf., analogous to weak-SZK con-sidered in, e.g., [6]):De�nition 1.5 (weak-HVSZK): A proof system is said to be weak (honest-veri�er) StatisticalZero-Knowledge if for every polynomial p there exists a probabilistic polynomial-time machine Mpwhich simulates the proof system with simulator deviation 1=p(�).Speci�cally, the running-time of Mp may depend on p. Clearly, weak-HVSZK contains languageshaving HVSZK proofs under a liberal de�nition allowing expected polynomial-time simulators.That is, suppose that � has an interactive proof system (P; V ) and an expected polynomial-timesimulator M which simulates (P; V ) with negligible deviation. Then, for any polynomial p, wecan construct a strict polynomial-time simulator Mp which simulates (P; V ) with deviation 1=p(�)simply by truncating long runs of M ; that is, runs which take more than p times the expectednumber of steps. It follows that � is in weak-HVSZK. All these variants of HVSZK are coveredby the following extension of Theorem 1.2:Theorem 1.6 (Theorem 1.2, extended): Any promise problem in weak-HVSZK reduces (via aKarp-reduction) to ED.In fact, the proof only utilizes simulations with deviation smaller than the reciprocal of the (cubeof the) total number of bits sent in the proof system. On the other hand, Theorem 1.3 can bestrengthened as follows:Theorem 1.7 (Theorem 1.3, extended): ED has a public-coin proof system which can be simulatedwith exponentially vanishing deviation.Combining Theorems 1.6 and 1.7, we get6Recall that a function f :N! N is negligible if for any polynomial p(�), f(n) < 1=p(n) for su�ciently large n.3



Corollary 1.8 Every language in weak-HVSZK has a public-coin proof system which can be sim-ulated with exponentially vanishing deviation.Using the results in [11] we infer that weak-HVSZK equals SZK, where the latter refers to Sta-tistical Zero-Knowledge against any veri�er. Speci�cally,Corollary 1.9 Every language in weak-HVSZK has a (public-coin) general statistical zero-knowledgeproof system. Furthermore, the latter can be simulated using a universal probabilistic polynomial-time simulator which uses any veri�er strategy as a black-box and has only an exponentially van-ishing deviation.1.4 OrganizationIn Section 2, we use the Aiello{Hastad characterization of HVSZK to show that every problemin HVSZK reduces to ED. In Section 3, we exhibit a public coin statistical zero-knowledge proofsystem for ED, assuming the existence of two subprotocols due to Okamoto [16]. In Section 4, wedescribe these two subprotocols and prove their correctness.2 HVSZK reduces to EDIn this section, we describe the Aiello{Hastad characterization of statistical zero-knowledge [1] andshow how it can be used to prove that every promise problem in HVSZK reduces to ED. FollowingPetrank and Tardos [17], we present the Aiello{Hastad characterization using a formulation ofentropy, rather than in the formulation of set sizes used in [1]. In order to do this, we need to �rstdiscuss relative entropy.2.1 Entropy and Relative EntropyRecall the de�nition of the entropy, denoted H(X), of a random variable X :H(X) def= X� Pr [X = �] � log(1=Pr [X = �]) = E��X [log(1=Pr [X = �])] (2)where all logarithms above and in the sequel are to base 2. The binary entropy function, H2(p) def=p log(1=p) + (1� p) log(1=(1� p)), equals the entropy of a 0-1 random variable with expectation p.We will make use of two measures of similarity between probability distributions. The �rstmeasure is the well-known statistical di�erence: The statistical di�erence between the randomvariables X and Y , denoted �(X ; Y ), is de�ned by�(X ; Y ) def= 12 �X� jPr [X = �]� Pr [X = �] j = maxS fPr [X 2 S]� Pr [Y 2 S]g (3)The second measure is the Kullback{Leibler distance:De�nition 2.1 Let X and Y be two probability distributions on a �nite set D. The relative entropy(or Kullback{Leibler distance) between X and Y is de�ned asKL (X j Y ) = E��X �log Pr [X = �]Pr [Y = �]� :4



We let KL2(p; q) def= p log(p=q) + (1� p) log((1� p)=(1� q)). Note that if X and Y are 0-1 randomvariables with expections p and q respectively, then KL (X j Y ) = KL2(p; q). It can be shown thatKL (X j Y ) is always nonnegative and KL (X j Y ) = 0 i� X and Y are identically distributed [5,Thm. 2.6.3]. Hence, KL (X j Y ) can be viewed as some sort of \distance" between X and Y , thoughit does not satisfy symmetry or the triangle inequality.2.2 The Aiello{Hastad CharacterizationIntution. Let � be any language (or promise problem) in HVSZK and consider a statisticalzero-knowledge proof system for � and the corresponding simulator. We think of the output of thesimulator as describing the moves of a virtual prover and a virtual veri�er. Following Fortnow [8], theAiello{Hastad characterization describes properties of the output of the simulator which distinguishbetween yes instances and no instances. One thing we are guaranteed by the statistical zero-knowledge property is that the simulator outputs accepting conversations with high probabilitywhen the input is a yes instance. Thus, if on some input x, the simulator outputs rejecting orinvalid conversations with high probability, x is easily identi�ed to be a no-instance. The di�cultycomes from the fact that the simulator might output accepting conversations with high probabilityeven when x is a no-instance, even though this cannot occur when any real prover interacts withthe true veri�er due to the soundness of the proof system. Intuitively, this discrepancy comes fromthe fact that the virtual prover has the ability to cheat and \see" future veri�er messages, a powerwhich the real prover does not have. Thus, Aiello and Hastad consider what happens when onetakes away the power of the virtual prover to cheat. That is, following [8], they consider a realprover strategy PS , called the simulation-based prover, which determines its messages based onthe same distribution as the virtual prover's residual probability space conditioned only on pastmessages. Now, the interaction between PS and the real veri�er describes exactly what happenswhen we take away the power of the simulated prover to cheat. Thus, the relative entropy betweenthe output of S and the interaction between PS and the real veri�er is a measure of the amountof cheating that virtual prover performs, and this distinguishes between yes instances and noinstances. The �nal crucial observation in the Aiello{Hastad characterization is that this relativeentropy can be rewritten as a simple expression involving entropies of pre�xes of the simulator'soutput.Notation. Let � be any language (or promise problem) in HVSZK and let (P; V ) be a statisticalzero-knowledge proof system for � with simulator S. Without loss of generality, we assume thaton inputs of length n, the veri�er tosses exactly ` = `(n) coins, and the interaction between Pand V consists of 2r = 2r(n) messages, each of length ` = `(n) so that the prover's messages arethose with odd index. Also, we may assume that the last message of the veri�er consists of itsrandom coins. We are interested in the random variables, hP; V i(x) and S(x), describing the realinteraction and the simulation, respectively. We also consider pre�xes of these random variables,where hP; V i(x)i and S(x)i denote the pre�x of length i � ` of the corresponding random variable.At times, we may drop x from these notations. We say that a 2r �` bit string 
 is a transcript (w.r.tV ) if the veri�er messages in 
 correspond to what it would have sent given the random coins (asspeci�ed in the last bits in 
) and previous messages of the prover (included in 
). We say that atranscript 
 is accepting if the veri�er accepts on it.The simulation-based prover. In order to formalize the above intuition, a de�nition of thesimulation-based prover, denoted PS , needs to be given. Given an execution pre�x 
 2 f0; 1g(i�1)`,5



prover PS responses as follows:� If S(x) outputs conversations that begin with 
 with probability 0, then PS replies with adummy message, say 0`(jxj).� Otherwise, PS replies according with the same conditional probability as the prover in theoutput of the simulator. That is, it replies � 2 f0; 1g`(jxj) with probabilityp� = Pr[S(x)i = 
�jS(x)i�1 = 
]Following our previous notation, we denote conversation transcripts coming from the interactionbetween PS and V by hPS ; V i(x), and its pre�xes by hPS ; V i(x)i.Rewriting KL (S(x) j hPS; V i(x)). Following the intuition given above, the quantity that we willanalyze is the relative entropy between S(x) and hPS ; V i(x). This relative entropy KL (S(x) j hPS; V i(x))can be rewritten as a simple expression referring only to entropies of pre�xes of S(x).Lemma 2.2 (implicit in [1], explicit in [17]):KL (S(x) j hPS; V i(x)) = `� rXi=1 [H(S(x)2i)� H(S(x)2i�1)]Proof: For readability, we will omit x in the notation. For 
 2 f0; 1g2r` and i = 0; :::; 2r, we let
i denote the i � ` pre�x of 
. Then, by de�nition,KL (S j hPS; V i) = X
2f0;1g2r`Pr [S = 
] � log Pr [S = 
]Pr [hPS ; V i = 
]= X
2f0;1g2r`Pr [S = 
] � log Q2ri=1 Pr [Si = 
ijSi�1 = 
i�1]Q2ri=1 Pr �hPS ; V ii = 
ijhPS ; V ii�1 = 
i�1�= X
2f0;1g2r`Pr [S = 
] � log Qrj=1Pr [S2j = 
2jjS2j�1 = 
2j�1]Qrj=1 Pr hhPS ; V i2j = 
2jjhPS ; V i2j�1 = 
2j�1iwhere the last equality is due to the de�nition of PS (by which Pr hhPS ; V i2j�1 = 
2j�1jhPS; V i2j�2 = 
2j�2iequals Pr [S2j�1 = 
2j�1jS2j�2 = 
2j�2]). A key observation is that the denominator in the abovefraction equals the reciprocal of the number of possible outcomes of the veri�er coins (i.e., 2�`),since even-indexed messages of hPS ; V i are generated by V exactly as in hP; V i. Multiplying boththe numerator and denominator in the above fraction by Qrj=1 Pr [S2j�1 = 
2j�1], we obtainKL (S j hPS ; V i) = X
2f0;1g2r`Pr [S = 
] � log Qrj=1 Pr [S2j = 
2j]2�` �Qrj=1 Pr [S2j�1 = 
2j�1]= rXj=1 X
2f0;1g2r`Pr [S = 
] � log Pr [S2j = 
2j]+` + rXj=1 X
2f0;1g2r`Pr [S = 
] � log 1Pr [S2j�1 = 
2j�1]= � rXj=1H(S2j) + `+ rXj=1H(S2j�1)The lemma follows. 6



The behaviour of PS on yes instances: Note that even in case of a yes instance, the behaviourof PS need not exactly �t the behavior of either the prescribed prover P or the virtual prover(discussed above). Yet, in the case of yes instance, prover PS behaves \almost" as P and thevirtual prover. More generally,Lemma 2.3 (implicit in [1, 17]): Let � def= �(S(x) ; hP; V i(x)) and suppose that � � 1=2. Then,KL (S(x) j hPS; V i(x)) � 3r2 � ` � � + 2r �H2(�)Proof: By Lemma 2.2,KL (S j hPS; V i) = `+ 2rXi=1(�1)i+1 �H(Si)� `+ 2rXi=1(�1)i+1 �H(hP; V ii) + 2rXi=1 jH(Si)� H(hP; V ii)jConsider a perfect simulator (i.e., of zero deviation), denoted S, for (P; V ). Note that the simulator-based-prover with respect to S is P itself. Thus, by Lemma 2.2,`+ 2rXi=1(�1)i+1 �H(hP; V ii) = `+ 2rXi=1(�1)i+1 �H(Si)= KL �S j hP; V i� = 0Finally, we use the fact (cf., Appendix B) that for any two random variables, X and Y , rangingover domain D it holds thatjH(X)�H(Y )j � (log jDj) ��(X ; Y ) + H2 (�(X ; Y ))Combining all the above, we getKL (S j hPS; V i) � 2rXi=1 jH(Si)� H(hP; V ii)j� 2rXi=1 [i` ��(Si ; hP; V ii) + H2 (�(Si ; hP; V ii))]� (2r2 + r) � ` ��(S ; hP; V i) + 2r �H2 (�(S ; hP; V i))and the lemma follows.The behaviour of PS on no instances: In contrary to the above, for no instances, if S(x)outputs accepting transcripts with high probability then S(x) and hPS ; V i(x) must be very di�erent.More generally,Lemma 2.4 (implicit in [1, 17]): Let p denote the probability that S(x) outputs an accepting tran-script, and q be the maximum, taken over all possible provers P �, that hP �; V i(x) is accepting.Suppose that p � q. Then, KL (S(x) j hPS; V i(x)) � KL2(p; q)7



Proof: For any random variables X and Y and any function f it holds that KL (X j Y ) �KL (f(X) j f(Y )) (cf., Appendix B). Letting f(
) = 1 if 
 is accepting and f(
) = 0 otherwise, wehave KL (S(x) j hPS; V i(x)) � KL2(p; q0)where q0 � q equals the probability that hPS ; V i(x) accepts. Using the fact that KL2(p; q0) �KL2(p; q), for any q0 � q � p (cf., Appendix B), we are done.2.3 The ReductionUsing the above characterization, we easily Karp-reduce any promise problem � in HVSZK toED. Let (P; V ) and S be a proof system and a simulator as formulated in the previous subsection(namely, the proof system consists of 2r messages of length ` and the veri�er's last message consistsof its random coins). Then, an instance x is reduced to a pair of distributions (Xx; Yx) as follows.� Xx is the cross product of the distributions S(x)2; S(x)4; :::; S(x)2r.� Yx is the cross product of the distributions S(x)1; S(x)3; :::; S(x)2r�1 and a uniform distribu-tion on `(jxj)� 2 bits.Lemma 2.5 (Validity of the reduction): Suppose that S simulates a proof system (P; V ) withsoundness error at most 0:1 for � with simulation deviation smaller than 1=(2r`)2. Further supposethat S always outputs an accepting transcript. Then,1. If x 2 �yes then H(Xx) > H(Yx) + 1.2. If x 2 �no then H(Yx) > H(Xx) + 1.The extra condition (of always outputing an accepting transcript) can be easily enforced by a minormodi�cation of the simulator (and possibly the proof systems). See details in the proof of Theo-rem 1.6 below.Proof: We may assume that r` > 128, by simply padding messages with extra bits. Suppose�rst that x 2 �yes. Combining Lemmas 2.2 and 2.3, we haveH(Yx)�H(Xx) =  `� 2 + rXi=1 H(S(x)2i�1)!� rXi=1 H(S(x)2i)!= KL (S(x) j hPS; V i(x))� 2� 3r2` � �+ 2r �H2(�)� 2 < �1where � def= �(S(x) ; hP; V i(x)) � 1=(2r`)2, and the last inequality also uses H2(�) � p�=4 (since� < 2�14) and p�=4 < 1=8r. Thus, H(Xx) > H(Yx) + 1 and (Xx; Yx) 2 EDyes follows.Suppose now that x 2 �no. Combining Lemmas 2.2 and 2.4, we haveH(Yx)� H(Xx) = KL (S(x) j hPS; V i(x))� 2� KL2(1; 0:1)� 2= log 10 � 2 > 1(In the �rst inequality, we used KL (S(x) j hPS; V i(x)) > KL2(1; q), where q is the the maximum,taken over all possible provers P �, that hP �; V i(x) is accepting.) Thus, H(Yx) > H(Xx) + 1 and(Xx; Yx) 2 EDno follows. 8



Proof of Theorem 1.6: Assume you are given a proof system with two-sided error 1/3 (i.e., com-pleteness and sounded errors both bounded by 1/3), and simulator deviation (r0`0)�2 � (log r0`0)�5.where the interaction consists of 2r0 � 1 messages of length m, and `0 = max(m; q), where q is thenumber of coins used by the veri�er. We now modify the proof system by having the veri�er sendthe prover its coins at the end and modify the simulator accordingly. This does not a�ect the com-pleteness error, soundness error, or simulator deviation. Now there are 2r0 messages, each of lengthat most `0. Repeating the proof system for k times (either sequentially or in parallel) and rulingby majority, we obtain two-sided error of exp(�
(k)). Using k = �(log r0`0) we obtain a proofsystem with total communication 2r` = O(r0`0 log r0`0), two-sided error (2r`)�2=2 and simulationerror (2r`)�2=2.Next, modify the proof system so that 02r` becomes an accepting transcript, and modify thesimulator so that it always outputs an accepting transcript (by possibly substituting the output with02r`). The resulting proof system has soundness error at most 2�` + (2r`)�2=2, and the simulationerror is at most (2r`)�2. Assuming, without loss of generality, that 2�` + (2r`)�2=2 < 0:1, we arein position to apply Lemma 2.5, and the theorem follows.3 A public-coin HVSZK proof system for EDIn this section, we prove Theorem 1.7. That is, we present a public-coin honest-veri�er statisticalzero-knowledge proof system for Entropy Di�erence (ED). In presenting the proof system, we willassume the existence of two subprotocols due to Okamoto [16], which we will describe in Section 4.3.1 OverviewWe begin with an exposition of the standard protocol for proving lower bounds on set sizes, whichis the starting point for our proof system. We stress that all protocols described in this section (aswell as in the entire paper) are public-coin protocols.3.1.1 The standard lower bound protocolSuppose S is some subset of f0; 1gn and a prover M (\Merlin") wants to convince a veri�er A(\Arthur") that jSj � 2m. Assuming A has oracle access to a procedure which tests membershipin S, there is a simple public-coin protocol which can be used to accomplish this task. The protocolwas �rst described in [2, 13] and orginates with a lemma of Sipser [19]. For every pair of integersk and `, let Hk;` be a family of 2-universal hash functions mapping f0; 1gk to f0; 1g`.Lower bound protocol (M;A), on input n and m (and membership oracle for S � f0; 1gn)1. A selects h uniformly from Hn;m and sends h to M .2. M selects x uniformly from S \ h�1(0) (if this intersection is nonempty) and sends x to A.7If the intersection is empty, M sends fail to A.3. A accepts if both h(x) = 0 and x 2 S and rejects otherwise.The best analysis of the above protocol was provided in [1].Lemma 3.1 Completeness: If jSj � 2k � 2m, then A accepts with probability at least 1� 2�k.7Here 0 is a canonically �xed element of f0; 1gm. 9



Soundness: If jSj � 2�k � 2m, then no matter what strategy M uses, A accepts with probability atmost 2�k.In fact, this protocol also has a sort of statistical zero-knowledge property. The property holds withrespect to the inputs n and m, provided that jSj � 2m and that one is given a uniformly selectedelement of S.Lemma 3.2 (implicit in [16]) Let H be a 2-universal family of hash functions mapping a domainD to a range R. Let S be a subset of D such that jRj � � � jSj. Then the following two distributionshave statistical di�erence �
(1):(A) Choose h uniformly in H, and x uniformly in h�1(0)\ S. Output (h; x).8(B) Choose x uniformly in S, and h uniformly in fh0 2 H : h0(x) = 0g. Output (h; x).Think of D = f0; 1gn, R = f0; 1gm, and � = 2m=jSj. Then, Distribution (A) corresponds to A'sview of the execution of the protocol and Distribution (B) provides a simulation with deviation (atmost) (2m=jSj)
(1) for it.3.1.2 A simple case of EDWe now sketch how the above lower bound protocol can be used to give a public-coin HVSZK proofsystem for a simpli�ed version of ED. We call a distribution X 
at if all strings in the support ofX have the same probability. That is, X is the uniform distribution on some subset of its domain.The simplifying assumptions we make are that we are working with a pair of distributions X andY (encoded by circuits which sample from them) such that1. X and Y are both 
at.2. jH(X)�H(Y )j > k, where k is the \security parameter."Now, we want to give a statistical zero-knowledge protocol by which M can convince A to acceptif H(X) > H(Y ) + k and M cannot convince A to accept if H(Y ) < H(X) + k. Since X and Yare 
at, they are uniform over subsets SX and SY of their domain. By the de�nition of entropy,jSX j = 2H(X) and jSY j = 2H(Y ). So proving that H(X) � H(Y ) is equivalent to proving thatjSX j � jSY j. So, one approach would be to use the above lower bound protocol to prove a lowerbound on jSX j, and use an upper bound protocol with similar properties (cf., [8]) to prove an upperbound on jSY j. Note that this by itself would do for placing the simpli�ed version of ED in AM(and similar ideas can be applied to the general version ED; see x3.1.3).The problem with the above is that it requires the prover to reveal H(X) and H(Y ) (or approx-imations of these quantities). In fact, the zero-knowledge properties asserted above are relative tothe given/asserted lower bound, and do not seem to hold when the bound is not given. Indeed,there seems to be no e�cient way for the veri�er to approximate the size of S, even when given amembership oracle to S. To overcome this di�culty, we adopt a technique of Okamoto [16] (whichhe calls \complementary usage of messages").Recall that we are given a circuit (which we also denote Y ) which samples from Y , and letm denote the length of the input to this circuit. So, for any point y in the support of Y , we let
Y (y) � f0; 1gm denote the set of inputs to the circuit which yield output y. Then, Pr [Y = y] =2�m � j
Y (y)j. Since Y is 
at, we have8 In case h�1(0) \ S = ; the output is de�ned to be a special failure symbol.10



j
Y (y)j = 2m �Pr [Y = y] = � 2m � 2�H(Y ) if y 2 SY .0 otherwise.Thus, proving an upper bound on H(Y ) is equivalent to proving a lower bound on 
Y (y) for anyy in the support of Y .The key observation is that for any y 2 SY , jSX � 
Y (y)j = 2H(X)+m�H(Y ). So proving thatH(X) � H(Y ) (which was our original goal) is equivalent to proving that jSX � 
Y (y)j � 2m.Now we've reduced the problem to proving a lower bound for a set size which we know (namely2m, which can be computed by just looking at the circuit which computes Y )! This gives rise tothe following \zero-knowledge" protocol.Proof system (M;A) for simple case of ED, on input (X; Y )Let m denote the input length of Y , and n denote the output length of X .1. M selects y distributed according to Y and sends y to A.2. A selects a hash function h uniformly from Hn+m;m and sends h to M .3. M selects (x; r) uniformly from (SX � 
Y (y))\ h�1(0) and sends (x; r) to A.4. A checks that Y (r) = y and that h(x; r) = 0. If either does not hold, A rejects immediatelyand the protocol ends.5. M selects q uniformly from 
X(x) and sends q to A.6. A checks that X(q) = x and accepts if this holds and rejects otherwise.The last two steps in the above protocol are for M to prove that x is in fact in the support of X .Now it follows immediately from our earlier discussion and the completeness and soundness of thelower bound protocol that this protocol is also complete and sound.1. Completeness: If H(X) > H(Y )+k andX and Y are both 
at, thenA accepts with probabilityat least 1� 2�k.2. Soundness: If H(Y ) < H(X) + k and X and Y are both 
at, then no matter what strategyM uses, A accepts with probability at most 2�k .The statistical zero-knowledge property of this proof system also follows readily from that of thelower bound protocol. Consider the following simulator:Simulator for simpli�ed ED proof system, on input (X; Y )1. Choose q and r uniformly at random and let x = X(q), y = Y (r).2. Choose h uniformly from fh 2 Hn+m;m : h(x; r) = 0g.3. Output (y; h; (x; r); q).The deviation of this simulator can be analyzed as follows: The string y is clearly distributedidentically in both the proof system and the simulator. In the simulator, conditioned on y, thepair (x; r) is selected uniformly from SX � 
Y (y), and then h is selected uniformly among thosethat map (x; r) to 0. In the protocol, conditioned on y, the function h is selected uniformly inHn+m;m and then (x; r) is selected uniformly from (SX �
Y (y))\ h�1(0). Thus, by Lemma 3.2, itfollows that if H(X)�H(Y ) > k (i.e., jSX �
Y (y)j > 2m+k), then the distributions on (y; h; (x; r))in the simulator and the proof system have statistical di�erence 2�
(k). Finally, conditioned on(y; h; (x; r)), the string q is selected uniformly from 
X(x) in both distributions, and so it does notincrease the statistical di�erence. 11



3.1.3 Treating general instances of EDThere are several problems in generalizing the proof system of x3.1.2 to arbitrary instances ofED. Clearly, the simplifying assumptions we made will not hold in general. The assumption thatjH(X)� H(Y )j > k is easy to achieve. If we let X 0 (resp., Y 0) consist of k independent copies ofX (resp., Y ), then H(X 0) = k �H(X) (resp., H(Y 0) = k � H(Y )). So, the di�erence in entropies ismultiplied by k.The assumption that X and Y are both 
at presents more serious di�culties. As we will see,taking many independent copies of each distribution yields distributions that are \nearly 
at" (ina sense to be made precise later), but the protocol still needs further modi�cation to work with\nearly 
at" rather than truly 
at distributions. The �rst problem is that if Y is only nearly 
at,then M may select y to be \too heavy" (i.e., y has probability much greater than 2�H(Y )), allowinghim too many choices for r and leading to violation of the soundness property. Similarly, althoughthere are only about 2H(X) choices for x that have probability near 2�H(X), if X is only nearly
at, there may be many more choices for x (alas these are \too light" { i.e., have probability muchsmaller than 2�H(X)). This too gives M too much freedom (this time in choice of x) and may leadto violation of the soundness property.In order to solve these problems, we use two subprotocols of Okamoto [16]: The �rst is a\sample generation" protocol, which is a protocol forM and A to select a sample from a nearly 
atdistribution Y such that no matter what strategy M uses, the sample will not be too heavy. Thiswill replace Step 1 in the proof system of x3.1.2, and guarantee that M does not have too muchfreedom in its choice of r (in Step 3). The second protocol is a \sample test" protocol, which is away for M to prove that a sample x taken from a nearly 
at distribution X is not too light. Thiswill replace Steps 5 and 6 in the proof system of x3.1.2, and guarantee that M does not have toomuch freedom in its choice of x (in Step 3).We stress that both of these subprotocols will be public-coin and will possess appropriatesimulability properties to ensure that the resulting protocol for ED is a public-coin HVSZK proofsystem. In the rest of this section, we will specify the properties of these subprotocols, and formulateand analyze the proof system for ED assuming that these subprotocols exist. In Section 4, we presentthese subprotocols and prove that they have the asserted properties.3.2 Flattening distributionsAs a preliminary step towards treating the general instances of ED, we formulate the process of\
attening" distributions (i.e., making them \nearly 
at" by taking many independent copies).De�nition 3.3 (heavy, light and typical elements): Let X be a distribution, x an element pos-sibly in its support, and � a positive real number. We say that x is �-heavy (resp., �-light) ifPr [X = x] � 2� � 2�H(X) (resp., Pr [X = x] � 2�� � 2�H(X)). Otherwise, we say that x is �-typical.A natural relaxed de�nition of 
atness follows. The de�nition links the amount of slackness allowedin \typical" elements with the probability mass assigned to non-typical elements.De�nition 3.4 (
at distributions): A distribution X is called �-
at if for every t > 0 the proba-bility that an element chosen from X is t ��-typical is at least 1� 2�t2+1.By straightforward application of Hoe�ding Inequality (cf., Appendix C), we have12



Lemma 3.5 (
attening lemma): Let X be a distribution, k a positive integer, and 
kX denotethe distribution composed of k independent copies of X. Suppose that for all x in the support of Xit holds that Pr [X = x] � 2�m. Then 
kX is pk �m-
at.The key point is that the entropy of 
kX grows linearly with k, whereas its deviation from 
atnessgrows signi�cantly more slowy (i.e., linear in pk) as a function of k.3.3 Subprotocol speci�cationsBelow (as above), all distributions are given in form of a circuit which generate them. The inputto these protocols will consist of a distribution, denoted X . We will denote by m (resp., n) thelength of the input to (resp., output of) the circuit generating the distribution X . In all protocolsparty A is required to run in polynomial-time (in length of the common input), which means inparticular that the total number of bits exchanged in the interaction is so bounded.De�nition 3.6 (Sample Generation Protocol): A public-coin protocol (M;A) is called a samplegeneration protocol if on common input a distribution X and parameters �; t, such that X is �-
atand t � �,9 the following holds:1. (\completeness"): If both parties are honest then A's output will be t��-typical with probabilityat least 1�m � 2�
(t2).2. (\soundness"): If A is honest then, no matter how M plays, A's output is 2pt� ��-heavywith probability at most m � 2�
(t2). (A may abort with no output.10)3. (strong \zero-knowledge"): There exists a polynomial-time simulator S so that for every(X;�; t) as above, the following two distributions have statistical di�erence at most m�2�
(t2):(A) Execute (M;A) on common input (X;�; t) and output the view of A, appended by A'soutput.(B) Choose x � X and output (S((X;�; t); x); x).The above zero-knowledge property is referred to as strong since the simulator cannot producea view-output pair by �rst generating the view and then computing the corresponding output.Instead, the simulator is forced (by the explicit inclusion of x in Distribution (B)) to generate aconsistent random view for a given random output (of A). We comment that the trivial protocol inwhich A uniformly selects an input r to the circuit X and reveals both r and the output x = X(r)cannot be used since the simulator is only given x and it may be di�cult to �nd an r yielding x ingeneral. Still, a Sample Generation protocol is implicit in Okamoto's work [16] (where it is calleda \Pre-test").Theorem 3.7 (implicit in [16]) There exists a public-coin sample generation protocol. Further-more, the number of communication rounds in the protocol is linear in q.A proof of Theorem 3.7 is presented in Section 4.De�nition 3.8 (Sample Test Protocol): A public-coin protocol (M;A) is called a sample test pro-tocol if on common input a distribution X, a string x 2 f0; 1gn and parameters �; t, such that Xis �-
at and t � �,the following holds:9The condition t � � is to simplify the error expressions and will always be satis�ed in our applications.10 It will indeed do so if detecting cheating. 13



1. (\completeness"): If both parties are honest and x is t��-typical then A accepts with probabilityat least 1�m � 2�
(t2).2. (\soundness"): If x is 6pt� ��-light and A is honest then, no matter how M plays, A acceptswith probability at most m � 2�
(t2).3. (weak \zero-knowledge"): There exists a polynomial-time simulator S so that for every(X;�; t) as above and for every t ��-typical x, the following two distributions have statisticaldi�erence at most m � 2�
(t2):(A) Execute (M;A) on common input (X; x;�; t) and output the view of A, prepended by x.(B) On input (X; x;�; t) and an auxiliary input r uniformly distributed in 
X(x), output(x; S((X;x;�; t); r)).The above zero-knowledge property is referred to as weak since the simulator gets a random rgiving rise to x (i.e., x = X(r)) as an auxiliary input (whereas A is only given x). We commentthat a simple public-coin testing protocol exists in case one can approximate the size of 
X(x) anduniformly sample from it. However, this may not be the case in general. Still, a Sample Testingprotocol is implicit in Okamoto's work [16] (where it is called a \Post-test").Theorem 3.9 (implicit in [16]) There exists a public-coin sample testing protocol. Furthermore,the number of communication rounds in the protocol is linear in q.A proof of Theorem 3.9 is presented in Section 4.3.4 The protocol for EDWe assume, without loss of generality, that the number of input (resp., output) bits of X equalsthe number for Y (e.g., by augmenting one circuit by dummy input or output bits). Let m and ndenote the corresponding quantities. Furthermore, let s denote the total length of the descriptionof both X and Y . The �rst step in the following protocol is an \ampli�cation step" which yieldsdistributions which are adequately 
at. The protocol uses subprotocols for Sample Generation andSample Testing as guaranteed by Theorems 3.7 and 3.9, respectively.Proof system (M;A) for ED, on input (X; Y )1. Both A and M set V = 
kX and W = 
kY , where k def= 216 �m6 � s.2. The parties utilize a Sample Generation protocol, with inputs (W;pk �m;ps), obtaining anoutput denoted w.3. Party A uniformly selects h 2 Hkn+km;km , and sends it to M .4. M selects (v; r) from the distribution V � 
W (w)11 conditioned on h(v; r) = 0, and sends(v; r) to A.5. A checks that W (r) = w and that h(v; r) = 0. If either does not hold, A rejects immediatelyand the protocol ends.6. The parties utilize a Sample Test protocol, with inputs (V; v;pk �m;ps), and A accepts i�the test was concluded satisfactorily.11Here, and in the rest of the paper, we write use the same notation for a set (e.g., 
W (w)) and the uniformdistribution on that set. 14



We �rst show that the ampli�cation step (i.e., Step 1) is indeed appropriate. That is,Fact 3.10 Distributions V and W are pk �m-
at.Fact 3.10 is immediate by Lemma 3.5 and the setting of the parameters. Given Fact 3.10, we turnto the essence of the analysis of the protocol. The completeness property of the protocol will followfrom the zero-knowledge one, and so we start by establishing the soundness property.Lemma 3.11 (soundness): Suppose that H(Y ) > H(X) + 1. Then A accepts with probability atmost exp(�
(s)).Proof: By the hypothesis we have H(W ) > H(V )+k. By Fact 3.10, both distributions are �-
at,with � = pk �m = 28m4ps. Observe that the Sample Generation and Testing subprotocols areinvoked with parameters t = ps and � = pk �m. Thus, the soundness condition of the SampleGeneration protocol implies that with probability at most km � exp(�
(t2)) = exp(�
(s)) theoutcome, w, is 2pt� ��-heavy.Suppose that w is not 2pt� ��-heavy. Then we claim that M will be forced to select a v thatis 6pt� ��-light with probability at least 1� exp(�
(s)). By Lemma 3.1, it su�ces to show thatthe number of pairs (v; r) such that W (r) = w and v is not 6pt� ��-light is at most 2�
(s) � 2km.Since w is not 2pt� ��-heavy, there are at most 2km�H(W )+2pt��� values of r such thatW (r) = w.In addition, the number of non-6pt� ��-light choices for v is at most 2H(V )+6pt��� (as each suchv has probability at least 2�6pt��� � 2�H(V ) under V ). Thus, the total number of pairs (v; r) suchthat W (r) = w and v is not 6pt� ��-light is at most2km�H(W )+2pt��� � 2H(V )+6pt��� = 28pt���+H(V )�H(W ) � 2km:However, by our hypothesis and our setting of parameters8pt� ��+H(V )� H(W ) < 8pt� ��� k= (8 � 212 � 216) �m6s < �sThus, by Lemma 3.1, the probability that M can return a suitable non-6pt� ��-light v in Step 4is at most exp(�
(s)). On the other hand, if M returns a 6pt� ��-light v then the probabilitythat it will be accepted by the Sample Test is at most km � exp(�
(t2)) = exp(�
(s)). The claimfollows.Simulator for the above protocol, on input (X; Y )1. Set V = 
kX and W = 
kY , where k def= 216 �m6 � s.2. Select uniformly r0; r 2 f0; 1gkm, and let v = V (r0) and w = W (r).3. Simulate an execution of the Sample Generation protocol on input ((W;pk � m;ps); w),obtaining a view, denoted �, ending with output w.4. Party A uniformly selects h 2 Hkn+km;km so that h(v; r) = 0.125. Simulate an execution of the Sample Generation protocol on input (V; v;pk � m;ps) andauxiliary input r0, obtaining a view, denoted �.12This step can be e�ciently implemented for all popular constructions of 2-universal families (e.g., the lineartransformations family). Also note that by the 2-universal property of such families, functions mapping any �xedstring to 0 always exist. 15



6. Output ((�;w); h; (v; r); �).The correctness of this simulator will rely on the following variant of the Leftover Hash Lemma [14],proved in Appendix D.Lemma 3.12 (implicit in [16]) Let H be a 2-universal family of hash functions mapping a domainD to a range R and let 0 be any �xed element of R. Let Z be a distribution on D such thatwith probability 1 � � over z selected according to Z, Pr [Z = z] � "=jRj. Then the following twodistributions have statistical di�erence at most 3(� + "1=3):(A) Choose h uniformly in H. Select z according to Z conditioned on h(z) = 0. Output (h; z).(B) Choose z according to Z. Select h uniformly in fh0 2 H : h(z) = 0g. Output (h; z).Lemma 3.13 (zero-knowledge and completeness): Suppose that H(X) > H(Y ) + 1. Then thestatistical di�erence between the view of the veri�er on common input (X; Y ) and the output ofthe simulator on input (X; Y ) is at most exp(�
(s)). Furthermore, with probability at least 1 �exp(�
(s)), the simulator generates an accepting transcript, and so in the real interaction theveri�er accepts with probability at least 1� exp(�
(s)).Proof: Analogously to the proof of Lemma 3.11, we note that both V and W are �-
at, for� = 28m4ps, and we have H(V ) > H(W ) + k.By the strong zero-knowledge property of the Sample Generation protocol, the pair (�;w) inthe output of the simulator has statistical di�erence at most km � 2�
(s) = 2�
(s) from a realexecution of that protocol. Since W is �-
at, the string w is t�-light with probability at most2�
(s) in the simulator. Thus, we consider the distributions on (h; (v; r)) conditioned on any pair(�;w) such that w is not t�-light. To analyze this, we apply Lemma 3.12 with Z = V � 
W (w),D = f0; 1gkn+km, and R = f0; 1gkm. Distribution (A) (resp., (B)) in Lemma 3.12 corresponds tothe distribution of (h; (v; r)) in the proof system (resp., simulator). Since V is �-
at, the followingholds with probability � 1� 2�s+1 over (v; r) selected according to V � 
W (w):Pr [V � 
W (w) = (v; r)] = Pr [V = v] � 1j
W (w)j< 2�H(V )+t� � 12km�H(W )�t�< 2�k+2t�jRj= 2�216m6s+2�28m4sjRj� 2�sjRjThus, we can take � = 2�s+1 and " = 2�s in Lemma 3.12, and see that the two distributions on(h; (v; r)) have statistical di�erence 2�
(s) (conditioned on history (�;w)). Finally, including � onlyincreases the statistical di�erence by 2�
(s) by the weak zero-knowledge property of the SampleTest protocol (noting that in the simulator, v is t�-light with probability at most 2�s+1 and r isdistributed uniformly in 
V (v)). 16



4 The Sample Generation and Test ProtocolsIn this section, we present Okamoto's protocols for generating and testing samples from a nearly
at distribution. Recall that these protocols must be public coin and furthermore must satisfycertain \zero-knowledge" properties.4.1 OverviewSample Generation. Here the input to the protocol (M;A) is a �-
at distribution X (encodedby a circuit) and the output should be a sample x from this distribution. We require that, nomatter what strategy M follows, x will not be too heavy. If, however, both parties play honestly,then x should be nearly typical with high probability, and should be simulatable for an externallyspeci�ed x. In particular, the protocol should not reveal an input to the circuit X that yields x,as the simulator is only given x and it may be di�cult to �nd an input yielding x in general. Ifwe remove this condition, the problem becomes trivial: A could just sample x according to X andreveal both x and the input used to produce it. Since X is nearly 
at, x will be nearly typical withhigh probability.Okamoto's solution to this problem has the following general structure: M proposes a samplex (which is supposed to be distributed according to X) and sends it to A. (Of course, if M isdishonest, he can choose x to be too heavy.) Then M and A engage in a short \game" which endsby M proposing another sample x0. Roughly speaking, this game has the following properties:1. If x is too heavy, then no matter what strategyM follows, he will be forced to select x0 whichis noticeably lighter than x.2. If x is not too heavy, then no matter what strategyM follows, he will be forced to choose x0that is also not too heavy.3. If x is nearly typical and M plays honestly, then x0 will also be nearly typical.4. If M plays honestly, then A's view of the game is simulatable for an externally speci�ed x0.Clearly, repeating this game many times to obtain a sequence of samples x0; : : : ; xm (where x0is proposed by M and xi+1 = x0i) will have the e�ect of pushing a heavy proposal for x0 closer andcloser to the nearly typical set. Taking m su�ciently large (but still polynomial in the appropriateparameters), xm will be guaranteed to be not too heavy, no matter how M plays. On the otherhand, if M plays honestly, all the samples will be nearly typical. Finally, the simulability propertyof the game enables the entire Sample Generation protocol to be simulated \backwards" for anexternally speci�ed xm.Sample Test. Here the input to the protcol (M;A) is a �-
at distribution X (encoded by acircuit) together with a string x from the domain of X . At the end of the protocol, A accepts orrejects. We require that if x is too light, A should reject with high probabability. If, however, xis nearly typical and both parties play honestly, then A should accept with high probability, and,moreover, A's view of the interaction should be simulatable (given additionally a random input forX which yields x).The general structure of this protocol is very similar to that of the Sample Generation protocol.Given x,M and A engage in a short game which ends byM proposing another sample x0. Roughlyspeaking, this game has the following properties:17



1. If x is too light, then no matter what strategyM follows, he will be forced to select x0 whichis noticeably lighter than x.2. If x is nearly typical and M plays honestly, then x0 will also be nearly typical.3. If both parties play honestly, then A's view of the game is simulatable (given a random inputto X which yields x).Clearly, repeating this game many times to obtain a sequence x0; : : : ; xm (where x0 = x andxi+1 = x0i) will have the e�ect of making a light input sample lighter and lighter. Taking msu�ciently large, xm�1 will be so light that it has zero probability, so there is no xm lighter thanxm�1 and A will reject! Notice that we do not care what happens in the pushing game if xi is nottoo light and M plays dishonestly; if the original input is too light (which is the the only time weworry about a dishonest M), all the subsequent xi's will also be too light with high probability.On the other hand, if the original input x is nearly typical and M plays honestly, all the sampleswill be nearly typical. Finally, the simulability property of the game enables the entire SampleGeneration protocol to be simulated \forwards" given coins for x. Amazingly, the game used forthe Sample Test protocol is identical to the game used for the Sample Generation protocol. Wedescribe this \pushing" game in the next section, and subsequently give formal descriptions of thetwo protocols.4.2 The pushing gameThroughout the remainder of Section 4, X is a �-
at distribution encoded by a circuit and m(resp., n) denotes the length of the input (resp., output) of the circuit generating X . Recall thatfor positive integers k and `, Hk;` denotes a 2-universal family of hash functions mapping f0; 1gkto f0; 1g`.The basic game underlying the Sample Generation and Sample Test protocols is the following1-round protocol (called \sequentially recursive hashing" in [16]):Pushing game (M;A), on input (X; x;�; t), where x 2 f0; 1gn and t � �1. A chooses h uniformly from Hm+n;m�3t� and sends h to M .2. M chooses (r; x0) from the distribution 
X(x) � X , conditioned on h(r; x0) = 0, and sends(r; x0) to A. (If there is no such pair (r; x0), then M sends fail to A.)3. A checks that X(r) = x and h(r; x0) = 0. If both conditions hold, A outputs x0. Otherwise Arejects.Observe that if j
X(x)j = ;, then A rejects with probability 1. In order to describe remainingthe properties of the pushing game, we de�ne the weight of a string x relative to a circuit X bywtX(x) = log(Pr [X = x] � 2H(X)). So, x is 
-heavy i� wtX(x) � 
 and x is 
-light i� wtX(x) � �
.Also note that for x in the support of X , jwtX(x)j � m. When the distribution X is clear from thecontext, we will often write wt(x) instead of wtX(x). The following lemma asserts that no matterhow M plays, if the input to the game is atypical, then the output is noticeably lighter. (Thebehavior on typical inputs is analyzed later | in Lemma 4.2.)Lemma 4.1 If A follows the prescribed strategy in the pushing game, then no matter what strategyM uses, the following hold: 18



1. (\heavy gets lighter") With probability � 1� 2�
(t2), either wt(x0) < max(wt(x)� 1; 2pt�)or A rejects.2. (\light gets lighter") If wt(x) � �6pt� � �, then with probability � 1 � 2�
(t2), eitherwt(x0) < wt(x)� 1 or A rejects.Proof: 1. Let S be the set of x0 such that wt(x0) � max(wt(x)� 1; 2pt� ��). We need to showthat with probability at most 2�
(t2) over the choice of h from Hm+n;m�3t�, there exists a pair(r; x0) 2 
X(x)� S such that h(x; r0) = 0. By the soundness of the standard lower-bound protocol(Lemma 3.2), it su�ces to prove thatj
X(x)� Sj � 2�
(t2) � 2m�3t�:The intuition is that the number of x0 that are heavier than max(wt(x)� 1; 2pt� ��) is so smallthat not even the size of 
X(x) can compensate.By de�nition of wt(x), j
X(x)j = 2m�H(X)+wt(x). We now bound jSj. First, since X is �-
at,we have 2�4t�+1 � Prx0�X hwt(x0) � 2pt� ��i� Pr [X 2 S]= Xx02SPr �X = x0�On the other hand, every x0 2 S is (wt(x)� 1)-heavy, so Pr [X = x0] � 2�H(X)+wt(x)�1. Thus,2�4t�+1 � jSj � 2�H(X)+wt(x)�1:Putting everything together, we havej
X(x)� Sj � 2m�H(X)+wt(x) � � 2�4t�+12�H(X)+wt(x)�1�= 2m�4t�+2� 2�t2+2 � 2m�3t�;as desired. (In the last inequality, we used the fact that t � �.)2. Let S = fx0 : wt(x0) � wt(x)�1g. Again, it su�ces to show that j
X(x)�Sj � 2�
(t2) �2m�3t�.Here the intuition is that j
X(x)j is so small (since x is so light) that the only way forM to succeedis to choose x0 even lighter than x (since there cannot be too many strings of noticeable probabilitymass). This time we bound jSj by dividing S into two parts. De�neS1 = fx0 : wt(x)� 1 � wt(x0) � �2pt� ��gS2 = fx0 : �2pt� �� < wt(x0)g;so that S = S1 [ S2. Since every x0 2 S2 has probability mass greater than 2�H(X)�2pt���, wemust have jS2j < 2H(X)+2pt���� 2H(X)�wt(x)�4t�;19



where the last inequality follows from wt(x) � �6pt� �� and � � t. We now bound jS1j. SinceX is �-
at, we have 2�4t�+1 � Pr �X 0 2 S1�� jS1j � 2�H(X)+wt(x)�1:Thus, jS1j � 2H(X)�wt(x)�4t�+2, and sojSj = jS1j+ jS2j < 2H(X)�wt(x)�4t�+3;and j
X(x)� Sj � 2m�H(X)+wt(x) � 2H(X)�wt(x)�4t�+3= 2m�4t�+3� 2�t2+3 � 2m�3t�;as desired.The pushing game has the following simulability and \completeness" properties when both partiesare honest:Lemma 4.2 If both parties follow the protocol in the pushing game and x is t�-typical, then thefollowing two distributions have statistical di�erence at most 2�
(t2):(A) Execute the pushing game on input (X; x;�; t) to obtain (h; r; x0). Output (h; r; x0).(B) Let x0 be distributed according to X and let r be selected uniformly from 
X(x). Chooseh uniformly in Hm+n;m�3t� subject to h(r; x0) = 0. Output (h; r; x0).Proof: We apply Lemma 3.12 with Z = 
X(x) � X , D = f0; 1gm+n and R = f0; 1gm�3t�.Distribution (A) (resp., (B)) in Lemma 3.12 corresponds to Distribution (A) (resp., (B)) above.Since X is �-
at, the following holds with probability � 1� 2�t2+1 over (r; x0) selected accordingto 
X(x)�X : Pr �
X(x) = (r; x0)� = Pr �X = x0� � 1j
X(x)j< 2�H(X)+t� � 12m�H(X)�t�= 2�t�jRjThus, we can take � = 2�t2+1 and " = 2�t� � 2�t2 in Lemma 3.12, and see that the two distributionshave statistical di�erence 2�
(t2).4.3 The protocolsThe sample generation and test protocols simply consist of many repetitions of the basic pushinggame: 20



Sample Generation Protocol (M;A), on input (X;�; t), where t � �1. M selects x0 2 f0; 1gn according to X and sends x0 to A.2. Repeat for i from 1 to m: M and A execute the Pushing Game on input (X; xi�1;�; t) andlet xi be the output.3. A outputs xm unless it rejected in one of the Pushing Games, in which case it rejects.Sample Test Protocol (M;A), on input (X; x;�; t), where x 2 f0; 1gn and t � �1. Let x0 = x.2. Repeat for i from 1 to m + 1: M and A execute the Pushing Game on input (X; xi�1;�; t)and let xi be the output.3. A rejects if it rejected in any of the Pushing Games, else it accepts.4.4 Correctness of Sample Generation ProtocolUsing the properties of the Pushing Game, we now prove that the Sample Generation Protocolsatis�es De�nition 3.6 and thus Theorem 3.7 holds.Soundness. By Lemma 4.1 (Part 1) and induction, we see that for every 0 � i � m, withprobability at least 1� i �2�
(t2), either wt(xi) < max(wt(x0)� i; 2pt�) or A rejects. In particular,since wt(x0) � m, with probability at least 1�m � 2�
(t2), we havewt(xm) < max(wt(x0)�m; 2pt� ��) = 2pt� ��unless A rejects, as desired.Completeness and Zero-Knowledge. First we observe that the completeness condition fol-lows from the strong zero-knowledge condition: In Distribution (B) of De�nition 3.6, x is distributedaccording to X , and hence is t�-typical with probability � 1�2�t2+1 by the �-
atness of X . Sincex corresponds to the output of the Sample Generation protocol in Distribution (A) and Distribu-tions (A) and (B) have statistical di�erence at most 2�
(t2), the output of the Sample GenerationProtocol must be t�-typical with probability at least 1� 2�t2+1 � 2�
(t2) = 1� 2�
(t2).Now we prove the zero-knowledge condition. Consider the following probabilistic polynomial-time simulator:Simulator for Sample Generation Protocol, on input ((X;�; t); x)1. Let xm = x.2. For i from m down to 1 repeat:(a) Choose ri�1 uniformly from f0; 1gm and let xi�1 = X(ri�1).(b) Choose hi uniformly from Hm+n;m�3t� subject to hi(ri�1; xi) = 0.3. Output (x0; h1; (r0; x1); h2; (r1; x2); : : : ; hm; (rm�1; xm)):21



We prove by induction on i that the distribution on ti = (x0; h1; (r0; x1); : : : ; hi; (ri�1; xi)) inthe output of the simulator (when x is chosen according to X) has statistical di�erence at mosti � 2�
(t2) from the veri�er's view of the Sample Generation protocol up to the end of the i'thexecution of the Pushing Game. Clearly this is true for i = 0, as in both cases x0 is distributedaccording to X . Now suppose it is true for i; we will prove it for i + 1. From the following twoobservations it follows that the statistical di�erence only increases by 2�t2+1 + 2�
(t2) = 2�
(t2)when going from i to i+ 1:1. In the simulator, xi is t�-typical with probability at least 1� 2�t2+1.2. For any history ti = (x0; h1; (r0; x1); : : : ; hi; (ri�1; xi)) in which xi is t�-typical, the followingtwo distributions have statistical di�erence 2�
(t2):(A) A's view of the (i+ 1)'st Pushing Game conditioned on history ti.(B) The distribution of (hi+1; (ri; xi+1)) conditioned on history ti in the output of the sim-ulator.Observation 1 is immediate from the fact that xi is distributed according to X in the simulatorand X is �-
at. Observation 2 follows from Lemma 4.2, observing that conditioned on historyti, the triple (hi+1; (ri; xi+1)) in the output of the simulator is selected exactly according to theDistribution (B) in Lemma 4.2. That is, conditioned on history ti, ri is selected uniformly from
X(xi), xi+1 is distributed according to X , and h is selected uniformly in Hm+n;m�3t� subject toh(ri; xi+1) = 0.4.5 Correctness of Sample Test ProtocolFinally, we prove that the Sample Test Protocol satis�es De�nition 3.8 and thus Theorem 3.9 holds.Soundness. By Lemma 4.1 (Part 2) and induction, we see that if wt(x) � �6pt� � �, thenwith probability at least 1 � i � 2�
(t2), for every 0 � i � m + 1, wt(xi) < wt(x0) � i (or Arejects). In particular, since wt(x0) < H(X), with probability at least 1 � m � 2�
(t2), we havewt(xm) < H(X)�m unless A rejects at some iteration. Since m�H(X) + wt(xm) = log j
X(xm)jcannot be negative unless j
X(xm)j = ;, it follows that with probability at least 1�m � 2�
(t2), Amust reject in one of the iterations.Completeness and Zero-Knowledge. First we prove the zero-knowledge condition. Considerthe following probabilistic polynomial-time simulator:Simulator for Sample Test Protocol, on input ((X; x;�; t); r)1. Let x0 = x and r0 = r.2. For i from 1 to m repeat:(a) Choose ri uniformly from f0; 1gm and let xi = X(ri).(b) Choose hi uniformly from Hm+n;m�3t� subject to hi(ri�1; xi) = 0.3. Output (x0; h1; (r0; x1); h2; (r1; x2); : : : ; hm+1; (rm; xm+1)):22



We prove by induction on i that the distribution on ti = (x0; h1; (r0; x1); : : : ; hi; (ri�1; xi)) inthe output of the simulator (when r is selected uniformly from 
X(x) and x is t�-typical) hasstatistical di�erence at most i � 2�
(t2) from the veri�er's view of the Sample Test protocol up tothe end of the i'th execution of the Pushing Game. Clearly this is true for i = 0. The inductionstep is proved analogously to the argument used for the Sample Generation Protocol, using thesame two observations and noting that, although the simulator works in reverse order, the selectionof ri and hi is as before.Now we observe that the completeness condition follows from the weak zero-knowledge conditionand the particular simulator we have given above. Speci�cally, the above simulator always outputstranscripts which would make A accept. Since it has statistical di�erence at most m � 2�
(t2) fromthe Sample Test protocol, A must accept in the Sample Test protocol with probability at least1�m � 2�
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� Completeness: For every x 2 �yes, the veri�er V accepts with probability at least 1� c(jxj)after interacting with the prover P on common input x.� Soundness: For every x 2 �no and every potential strategy P �, the veri�er V accepts withprobability at most s(jxj), after interacting with P � on common input x.In such a case, we say that the proof system has completeness error c and soundness error s.Public-coin proof systems (a.k.a Arthur-Merlin proof systems) are interactive proof systems inwhich the prescribed veri�er's strategy amounts to the following: In each round, the veri�er tossesa predetermined number of coins and sends the outcome to the prover, and at the end it decideswhether to accept by applying a predicate to the (full) sequence of messages it has sent and received.We typically denote the prover-veri�er pair in such systems by (M;A) (for Merlin and Arthur).We are mainly concerned with interactive proof systems having the following zero-knowledgeproperty [12]:De�nition A.2 (Honest-veri�er statistical zero-knowledge { HVSZK):� The view of an interactive machine consists of the common input, its internal coin tosses,and all messages it has received. We denote by hP; V i(x) the view of the veri�er V whileinteracting with P on common input x.� A function � : N 7! [0; 1] is called negligible if for every positive polynomial p and all su�-ciently large n 2 N, �(n) < 1=p(n).� An interactive proof system (P; V ) for a promise problem � = (�yes;�no) is honest-veri�erstatistical zero-knowledge if there exists a probabilistic polynomial-time machine (called a sim-ulator), S, and a negligible function � : N 7! [0; 1] (called the simulator deviation) so that forevery x 2 �yes the statistical di�erence between S(x) and hP; V i(x) is at most �(jxj).� HVSZK denotes the class of promise problems having honest-veri�er statistical zero-knowledgeinteractive proof systems.General statistical zero-knowledge proof systems are such where the zero-knowledge requirementholds for any (polynomial-time computable) veri�er stategy, rather than merely for the prescribed/honestveri�er V . Actually, even a stronger requirement can be proven to be equivalent to HVSZK {see [11].B Statistical InequalitiesFact B.1 For any two random variables, X and Y , ranging over a domain D it holds thatjH(X)�H(Y )j � log(jDj � 1) � � + H2(�)where � def= �(X ; Y ).This fact can be inferred from Fano's Inequality (cf., [5, Thm. 2.11.1]). A more direct proof follows.Proof: Assume � > 0 or else the claim is obvious. Let p(x) def= Pr [X = x] and q(x) def= Pr [X = x].25



De�ne m(x) def= minfp(x); q(x)g. Then Px2Dm(x) = 1 � �. De�ne random variables Z0, X 0 andY 0 so that Pr �Z 0 = x� = m0(x) def= 11� � �m(x)Pr �X 0 = x� = p0(x) def= 1� � (p(x)�m(x))Pr �Y 0 = x� = q0(x) def= 1� � (q(x)�m(x))Think of X (resp., Y ) as being generated by picking Z 0 with probability 1 � � and X 0 (resp., Y 0)otherwise. Then, H(X) � (1� �) �H(Z0) + � �H(X 0) + H2(�)H(Y ) � (1� �) �H(Z0)Observing that Pr [X 0 = x] = 0 on at least one x 2 D, it follows that H(X 0) � log(jDj � 1), andthe fact follows.Comment: The above bound is tight. Let e 2 D and consider X which is identically e, and Ywhich with probability 1� � equals e and otherwise is uniform over D n feg. Clearly, �(X ; Y ) = �and H(Y )� H(X) = � log(jDj � 1) + H2(�)� 0.Fact B.2 For any random variables X and Y and any function f it holds that KL (X j Y ) �KL (f(X) j f(Y )).This fact can be easily inferred from the Log Sum Inequality (cf., [5, Thm. 2.7.1]). A more directproof follows.Proof: Expanding the de�nition of KL (X j Y ) we getKL (X j Y ) = Xv Pr [f(X) = v] � Xx:f(x)=vPr [X = xjf(X) = v] � log Pr [f(X) = v] � Pr [X = xjf(X) = v]Pr [f(Y ) = v] � Pr [Y = xjf(Y ) = v]= Xv Pr [f(X) = v] � Xx:f(x)=vPr [X = xjf(X) = v] � log Pr [f(X) = v]Pr [f(Y ) = v]+Xv Pr [f(X) = v] � Xx:f(x)=vPr [X = xjf(X) = v] � log Pr [X = xjf(X) = v]Pr [Y = xjf(Y ) = v]Now, the �rst summation equals KL (f(X) j f(Y )), whereas the second equals Pv Pr [f(X) = v] �KL (Xv j Yv), where Xv (resp., Yv) denotes the residual distribution of X conditioned on f(X) = v(resp., Y conditioned on f(Y ) = v).Comment: The above bound is in fact equivalent to the Log Sum Inequality (i.e.,Pi ai log(ai=bi) �(Pi ai) log(Pi ai=Pi bi), for all non-negative ai's and bi's). To deduce to Log Sum Inequality fromthe above bound, one may �rst prove a special case in whichPi ai =Pi bi = 1 (by de�ning X andY so that the ai's and bi's represent their probability mass, and let f be a constant function). Thegeneral case is derived by easy manipulation. 26



Fact B.3 For any 0 � q0 � q � p � 1, it holds that KL2(p; q0) � KL2(p; q).Proof: We use the fact (cf., [5, Thm. 2.7.2]) that for every 0 � p; q1; q2 � 1 and 0 � � � 1.KL2(p; �q1 + (1� �)q2) � � �KL2(p; q1) + (1� �) �KL2(p; q2)Picking q1 = q0, q2 = p and � such that �q1 + (1� �)q2 = q, we have KL2(p; q) � � �KL2(p; q0) +(1� �) � 0, and the fact follows.C Proof of the Flattening LemmaFor every x in the support of X , we let w(x) = � log Pr [X = x]. Then w maps the support of X ,denoted D, to [0; m]. Let X1; :::; Xk be identical and independent copies of X . The lemma assertsthat for every t, Pr"����� kXi=1 w(Xi)� k �H(X)����� � t �mpk# � 2�t2+1Observe that E(w(Xi)) = Px Pr [X = x]w(x) = H(X), for every i. Thus, the lemma follows bya straightforward application of Hoe�ding Inequality: Speci�cally, de�ne random variables �i =w(Xi), let � = E(�i) and � = tm=pk, and usePr"�����Pki=1 �ik � ������ � �# � 2 � exp��2�2m2 � k�= 2 � exp ��2t2�The lemma follows.D Proof of the Hashing LemmaWe denote the two distributions on pairs (h; z) in Lemma 3.12 by A = (AH; AZ) and B = (BH; BZ).By the de�nition of statistical di�erence, it su�ces to show that for every set S � H�D, Pr [A 2 S]�Pr [B 2 S] � 3(� + "1=3). In order to do this, we �rst will argue that for \most" pairs (h; z),Pr [A = (h; z)] is not too much greater than Pr [B = (h; z)]. Observe that both distributions A andB only output pairs (h; z) such that h(z) = 0. Now, for any (h; z) 2 H�D such that h(z) = 0, wehave Pr [A = (h; z)] = Pr [AH = h] � Pr [AZ = zjAH = h]= 1jHj � Pr [Z = z]Pw2h�1(0)Pr [Z = w] ;and Pr [B = (h; z)] = Pr [BZ = z] � Pr [BH = hjBZ = z]= Pr [Z = z] � 1jfh0 : h0(z) = 0gj= Pr [Z = z] � jRjjHj ;27



where the last equality follows from 2-universality.Thus, showing that Pr [A = (h; z)] is not too much greater than Pr [B = (h; z)] for most pairs(h; z) amounts to showing that for most h, Pw2h�1(0)Pr [Z = w] is not too much smaller than1=jRj. In order to prove a lower bound on this sum (for most h), we restrict the sum to a slightlysmaller set of w's. Let L = fw 2 D : Pr [Z = w] � "=jRjg, so by hypothesis, Pr [Z 2 L] = 1 � �.For w 2 D and h 2 H, de�ne indicator functions�w(h) = n 1 if h(w) = 00 otherwiseDe�ne f(h) =Pw2LPr [Z = w] � �w(h). Thus,Xw2h�1(0)Pr [Z = w] = Xw2DPr [Z = w] � �w(h) � f(h)By 2-universality, for h selected uniformly in H, the random variables f�w(h)gw2D each havemean 1=jRj and are pairwise independent. Thus,Eh[f(h)] = Xw2L Pr [Z = w]jRj = 1� �jRjand Varh[f(h)] � Xw2L Pr [Z = w]2jRj� Xw2L Pr [Z = w] � "jRj2� "jRj2By Chebyshev's inequality,Prh "f(h)� 1� �jRj < �"1=3jRj # � Varh(f(h))("1=3=jRj)2 � "1=3:Let G = fh 2 H : f(h) � (1� � � "1=3)=jRjg be the set \good" h's for which f(h) is not toomuch smaller than 1=jRj. Then for every z 2 D and h 2 G,Pr [A = (h; z)] � Pr [Z = z]jHj � jRj1� � � "1=3 = Pr [B = (h; z)]1� � � "1=3 :Thus, for any S � H �D,Pr [A 2 S] � Pr [A 2 S and AH 2 G] + Pr [AH =2 G]� Pr [B 2 S and BH 2 G]1� � � "1=3 + "1=3� Pr [B 2 S] +  � + "1=31� � � "1=3! �Pr [B 2 S] + "1=3� Pr [B 2 S] + 3(� + "1=3);(as long as �+"1=3 � 1=2, which we may assume as otherwise the lemma is trivially satis�ed). Thiscompletes the proof. 28


