Improved derandomization of BPP using a hitting set generator

Oded Goldreich Avi Wigderson
Department of Computer Science Institute of Computer Science
Weizmann Institute of Science The Hebrew University of Jerusalem
Rehovot, ISRAEL. Givat-Ram, Jerusalem, Israel
oded@wisdom.weizmann.ac.il avi@cs.huji.ac.il

June 2, 1999

Abstract

A hitting-set generator is a deterministic algorithm which generates a set of strings that
intersects every dense set recognizable by a small circuit. A polynomial time hitting-set gen-
erator readily implies RP = P. Andreev et. al. (ICALP’96, and JACM 1998) showed that if
polynomial-time hitting-set generator in fact implies the much stronger conclusion BPP = P.
We simplify and improve their (and later) constructions.

Keywords: Derandomization, RP, BPP, one-sided error versus two-sided error,

1 Introduction

The relation between randomized computations with one-sided error and randomized computations
with two-sided error is one of the most interesting questions in the area. Specifically, we refer to
the relation betwen RP and BPP. In particular, does RP = P imply BPP = P?

The breakthrough paper of Andreev et. al. [1] (and its sequel [2]) gave a natural setting in
which the answer is YES. The setting is a specific natural way to prove RP = P, namely via
“hitting-set generators” (see exact definition below). Intuitively, such a generator outputs a set of
strings, that hits every large efficiently-recognizable set (e.g., the witness set of a positive input
of an RP language). Having such a generator which runs in polynomial time enables the trivial
deterministic simulation of an RP algorithm using each of its outputs as the random pad of the
given algorithm.

The main result of [1] was that such a generator for 1-sided error algorithms already suffices
to derandomize 2-sided error algorithms: the existence of polynomial-time hitting set generators
imply BPP =P.

Definition 1 (hitting set generator): An algorithm, G, is called a hitting set generator for circuits
if for every n,s € N (given in unary) generates as output a set of n-bit strings G(n,s) with the
following property: every circuit of size s on n input bits, which accepts at least half its inputs,
accepts at least one element from the set G(n,s).!

Since s = s(n) is the essential complexity parameter (n < s), we let tg(s) denote the running time of
the generator G on input (n, s), and Ng(s) denote the size of its output set. Clearly Ng(s) < tg(s).
The result of Andreev et. al. [1] is

Theorem 2 [1]: If there exists a hitting-set generator G running in time tg
then BPP C DTime(poly(tg(poly(n))).

With the most important special case (i.e., tg(s) = poly(s))
Corollary 3 [1]: If G runs in polynomial time then BPP = P.

Our main result is a simple proof of Theorem 2. To explain what simple means is not so simple,
and we have to explain how the given generator assumed in the theorem is used to enable the
derandomization of BPP, in the proof of [1] and in later proofs. Indeed later proofs (of [2] and
then [3]) were much simpler, but while proving Corollary 3, they fell short of proving Theorem 2.

The reader is warned that the following discussion is on an intuitive level and some things
cannot easily be made precise. If you don’t like such discussions, you are welcome to skip to the
formal proof in the next two sections.

The proof in [1] uses the generator in two ways. Once, literally as a producer of a hitting set for
all large efficient sets. Second, and more subtly, as a hard function. Observe that the existence of
such a generator G immediately implies the existence of a function in £ on O(logtg(s)) bits which
cannot be computed by circuits of size s. These two ways are combined in a rather involved way
for the derandomization of BPP.

It is interesting to note that for the case tg(s) = poly(s), the resulting hard function mentioned
above can be plugged into the pseudo—random generator of [6], to yield BPP = P as in Corolarry 3.

!Usually generators are defined to output only one string; in terms of the above definition it means that on input
an index i € {1,...,|G(n, s)|}, the generator outputs the i‘®
simpler to work with in the current context.

string in G(n, s). However, we find the current convention

However, [6] was unavailable to the authors of [1] at the time (the two papers are independent).
Moreover, [6] is far from “simple”, it does use the computational consequence which we are trying
to avoid, and anyway it is not strong enough to yield Theorem 2.

A considerably simpler proof was given in [2]. There the generator is used only in its “original
capacity”, as a hitting set generator, without explicitely using any computational consequence of
its existence. In some sense, this proof is more clearly a “black-box” use of the output set of the
generator. However, something was lost. The running time of the derandomization is replaced by
poly(tc (ta(poly(n))).

On the one hand, this is not too bad. For the interesting case of tg(s) = poly(s) (which
implies RP = P), they still get the consequence of 3 BPP = P (as iterating a polynomial function
twice results in a polynomial). On the other hand, if the function tg grows moderately so that
tg(tg(n)) = 2", then we have as assumption a highly nontrivial derandomization of RP, but the
consequence is a completely trivial derandomization of BPP.

The best (to our taste) way to understand the origin of the iterated application of the function
tg in the result above, is explained in the recent paper [3], which further simplifies the proof of [2].
They remind the reader that Sipser’s proof [8] putting BPP in 2 NII? actually gives much more.
In fact, viewed appropriately, it almost begs (with hindsight) the use of hitting sets!

The key is, that in both the V3 and 3V expressions for the BPP language, the “witnesses”
for the existential quantifier are abundant. Put differently, BPP C RPP*R? (where prRP is the
promise-problem version of RP). But if you have a hitting set, you can use it first to derandomize
the “oracle” part or the right hand side. This leaves us with an RTime(tg(poly(n)) machine, which
can again be derandomized (using hitting sets for tg(poly(n)) size circuits).

In short, the “two quantifier” representation of BPP, leads to a two-level recursive application
of the generator. It seems hopeless to reduce the number of quantifiers to one in Sipser’s result. So
another route has to be taken to prove Theorem 2 in a similar “direct” (or “black-box”) as above,
without incurring the penalty arising from this two level recursion.

We eliminate the recursion to have only one-level use of the hitting set, by “increasing the
dimension to two”: We view the possible random strings of the BPP algorithm as elements in a
matrix. This is inspired by another, recent proof (strengthening Sipser’s result) that BPP C MA,
due to Goldreich and Zuckerman [5]. There and here strong extractors (cf., [10] or [9]) are used
to ensure that in this matrix, the “non-witnesses” are not only few, but actually miss most rows
and columns. The hitting set is used to select a small subset of the rows and a small subset of
the columns, and the entries of this submatrix determine the result. Specifically we will look for
“enough” (yet few) rows which are monochromatic, and decide accordingly. The correctness and
efficiency of the test is spelled out is Lemma 6. It is essentially captured by the following simple
Ramsey-type result, which is seemingly new and may be of independent interest.

Proposition 4 Let n < 2F. Then for every n-vertex graph, either the graph or its complement has
a dominating set of size k. Furthermore, one can find such a set in polynomial time.

We end by observing that (like the previous results) our result holds in the context of promise
problems. Hence, the existence of hitting set generators provide an efficient way for approximately
counting the fraction of inputs accepted by a given circuit within additive polynomial fraction.
Formalizing this is standard and we leave it to the reader.

2 The Derandomization Procedure

Given L € BPP we first use strong results regarding extractors (cf., [10] or [9]) to obtain a proba-
bilistic polynomial-time algorithm, A, which on inputs of length n uses 2¢ = poly(n) many random
bits and errs with probability at most 2-(*1) 2 Let A(z,r) denote the output of algorithm A on
input « € {0,1}" and random-tape contents r € {0,1}%, and p be some fixed polynomial so that
the computation of A on inputs of length n can be implemented by circuits of size p(¢)/¢. Our
derandomization procedure, described below, utilizes a hitting-set generator H as defined above
(cf., Def. 1).

Derandomization procedure: On input z € {0,1}", letting A and £ be as above.

1. Invoking the hitting-set generator G obtain H «— G(¢, p(¢)). That is, H is a hitting set

for circuits of size p(f) and input length ¢. Denote the elements of H by ey, ..., ey, where
def

N = Ng(p(¢)) and each e; is in {0, 1},
2. Construct an N-by-N matrix, M = (v; j); j, so that v; ; = A(z, e;e;). That is, we run A with
all possible random-pads composed of pairs of strings in H.

3. Using a procedure to be specified below, determine whether for every ¢ columns there exists a
row on which all these columns have 1-value. If the procedure accepts then accept else rejects.
That is, we accept if and only if

Ver, .o co € [N] 3r € [N] s.te ALy (ve, = 1) (1)
We first show that if x € L then Eq. (1) holds, and analogously if z ¢ L then
Vri, .y e € [N] 3c € [N] 5.t ALy (0,0 = 0) (2)

Note that this by itself does not establish the correctness of the procedure. Neither did we specify
how to efficiently implement the procedure. To that end we use a general technical lemma which
implies that it cannot be the case that both Eq. (1) and Eq. (2) hold, and in fact efficiently decides
at least one which does not hold. These are defered to the next section. But first we prove the
above implications.

Proposition 5 If z € L (resp., © ¢ L) then Eq. (1) (resp., Eq. (2)) holds,

Proof: We shall prove a more general statement. That is, let xp be the characteristic function of
L (ie., xp(z) =1ifz € L and x1(x) = 0 otherwise). Then we prove that for every = € {0,1}", for
every { rows (resp., columns) there exists a column (resp., row) on which the value of the matrix
is x(2).

Fixing the input € {0,1}" to algorithm A, we consider the circuit C, which takes an 2{-bit
input 7 and outputs A(z,r) (i.e., evaluates A on input = and coins r). By the above hypothesis
(regarding the error probability of A), we have

Prr€{07]_}2l [Cx(T) #* XL(I)] < 2—([—1—1)

Thus, at least half the values of z € {0,1}¢ satisfy VyC,(y,2) = xz(z). We will use a much weaker
consequence, namely, that the above holds for every set of £ values of y (and this weakness is the
key to our more efficient reduction).

2We note that using [10], £ is linear in the randomness of the original BPP-algorithm, and the polynomial p below
is quite large. Using the extractors in [9, 7], one may be able to obtain more favorite bounds.

1. Fix any sequence § = (y1,...,4¢) so that y1,...,y, € {0,1}*. Then,
Pr_cro13e[(Vi) Cu(yiz) = x1(2)] > 1/2 (3)

Consider the circuit C, 5(2) ot A (Cu(yiz) = xu(x)). Then, by the above Pr,[C,7(z) =

xr(z)] > 1/2. On the other hand, the size of Cy 5 is merely ¢ times the size of C,, which was at
most p(£)/£. Thus, by definition of the hitting-set generator G, the set H = G(¢, p(¢)) must
contain a string z so that Cp5(2) = xr(x). By definition of C, 5 it follows that Cy(y;2) =
xrz(x) holds for every i € [{].

The above holds for any 7 = (y1, ..., y¢). Thus, for every 1, ...,y; € {0,1}* there exists z € H
so that A(z,y;2) = Cy(yiz) = xr(x) for every i € [{].

Thus we have proved that for every ¢ rows in M there exists a column on which the value of
the matrix is x(z).

2. A similar argument applies to sets of £ columns in M. Specifically, for every z1, ..., zp € {0,1}¢

1

Pryeqonyel(Vi) Culyzi) = x1(2)] 2 5

Again, we conclude that for every zi,...,z, € {0,1}, there exists y € H so that Cp(yz;) =
xL(z) for every i € [{]. Thus, for every ¢ columns in M there exists a row on which the value
of the matrix is xz(z).

The proposition follows. W

3 Correctness and Efficiency of the Derandomization

Proposition 5 shows that for every x either Eq. (1) or Eq. (2) holds. But, as stated above, it is not
even clear that Eq. (1) and Eq. (2) cannot hold simultaneously. This is asserted next.

Lemma 6 Every n-by-n Boolean matriz, with n < 2, either has k rows whose OR is the all
1’s row, or k columns whose AND is the all 0’s column. Moreover, there is a (deterministic)
polynomial-time algorithm that given such a matriz find such a set.

We prove the lemma momentarily. But first let use show that Eq. (1) and Eq. (2) cannot hold
simultaneously. We first note that in our case n = N = Ng(¢, p(£)) (which is smaller than 2¢ by the
hypothesis of Theorem 2) and k£ = ¢. Then we just apply the following corollary.

Corollary 7 For every n-by-n Boolean matriz, with n < 2, it is impossible that both
1. For every k rows there exists a column so that all the k rows have a 0-entry in this column.
2. For every k columns there exists a row so that all the k columns have a 1-entry in this row.

Furthermore, assuming one of the above holds, we can decide which holds in (deterministic) polynomial-
time.

Proof (of Corollary 7): Suppose Item (1) holds. Then, the OR of every k rows contains a
0-entry, and so cannot be the all 1’s row. Likewise, if Item (2) holds then the AND of every k
columns contains a 1-enrty, and so cannot be the all 0’s column. Thus, the case where both items
holds stands in contradiction to Lemma 6. Furthermore, finding a set as in the lemma yields which
of the two items does not hold. [}

Proof of Lemma 6: Let Sy = [n], R = 0, and repeart for ¢ = 1,2,.... Take a row j not in R
which has at least |S;|/2 1’s in S;. Add j to R, and let S;y; be the part of S; that had 0’s in row
j. We get stuck if for any ¢, no row in current [n] — R has at least |S;|/2 1’s in S;. Otherwise, we
terminate when S; = 0

If we never get stuck, then we generated at most log, n < k rows whose OR is the all 1’s row
(as the i® row has l-entries in every column in S;_; — S;, and the last S; is empty). On the
other hand, if we got stuck at iteration i, let S = S;. Note that every row has at least S/2 0’s in
the columns S. (This includes the rows in the current R which have only 0’s in the columns in
S C Si—1 C--- CSp.) But now picking greedily columns from S in sequence so as to contain the
largest number of 0’s in the remaining rows will clearly pick a 0 from every row after a set 1" of at
most k& columns from S were chosen.

Turning to the algorithmics, note that the above procedure for constructing R, S and T is
implementable in polynomial-time. Thus, in case the “row” procedure was completed successfully,
we may output the set of rows R, and otherwise the set T of columns. [

Proof of Theorem 2: Proposition 5 shows that for every z either Eq. (1) or Eq. (2) holds,
and furthermore that the former (resp., latter) holds whenever x € L (resp., z ¢ L). By applying
Corollary 7 as indicated above it follows that only one of these equation may hold. Using the decision
procedure gauarnteed by this corollary, we implement Step 3 in our derandomized procedure, and
Theorem 2 follows. |

References

[1] A.E. Andreev, A.E.F. Clementi, and J.D.P. Rolim. A new general derandomization
method. Journal of the Association for Computing Machinery (J. of ACM), 45(1), pages
179-213, 1998.

Hitting Sets Derandomize BPP. In XXIII International Colloguium on Algorithms, Logic
and Programming (ICALP’96), 1996.

[2] A.E. Andreev, A.E.F. Clementi, J.D.P. Rolim and L. Trevisan, Weak Random Sources,
Hitting Sets, and BPP Simulations. To appear in SIAM J. on Comput.. Preliminary
version in 38th FOCS, pages 264-272, 1997.

[3] H. Buhrman and L. Fortnow. One-sided versus two-sided randomness. In Proceedings
of the 16th Symposium on Theoretical Aspects of Computer Science. Lecture Notes in
Computer Science, Springer, Berlin, 1999.

[4] S. Even, A.L. Selman, and Y. Yacobi. The Complexity of Promise Problems with Ap-
plications to Public-Key Cryptography. Inform. and Control, Vol. 61, pages 159-173,
1984.

[5]

[6]

[7]

O. Goldreich and D. Zuckerman. Another proof that BPP subseteq PH (and more).
ECCC, TR97-045, 1997.

R. Impagliazzo, A. Wigderson, P=BPP unless E has Subexponential Circuits: Deran-
domizing the XOR Lemma. 29th STOC, pages 220-229, 1997.

R. Raz, O. Reingold and S. Vadhan. Extracting all the Randomness and Reducing the
Error in Trevisan’s Extractors In 31st STOC, pages 149-158, 1999.

M. Sipser. A complexity-theoretic approach to randomness. In 15th STOC, pages 330-335,
1983.

L. Trevisan. Constructions of Near-Optimal Extractors Using Pseudo-Random Genera-
tors. In 31st STOC, pages 141-148, 1999.

D. Zuckerman. Simulating BPP Using a General Weak Random Source. Algorithmica,
Vol. 16, pages 367-391, 1996.

