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1. INTRODUCTIONA fundamental notion in complexity theory is that of probability distributions which are com-putationally indistinguishable. This notion originates from the pioneering work of [Goldwasser,Micali 82] and was presented in full generality in the fundamental work of [Yao 82]. Loosely speak-ing, two probability distributions are computationally indistinguishable if no e�cient algorithmcan "tell them apart". Namely, the output distribution of every e�cient algorithm is oblivious ofwhether the input is taken from the �rst distribution or from the second distribution.Clearly, every two distributions which are statistically close are also computationally indistin-guishable. Using a counting argument one can show that the converse does not hold [Goldreich,Krawczyk 89]; namely, there exist two distributions which are statistically very di�erent yet arecomputationally indistinguishable. However, these distributions are not e�ciently constructible.A fundamental question in this area is whether there exist two e�ciently constructible distribu-tions which are computationally indistinguishable, yet statistically very di�erent. In the sequel werefer to a positive answer to the above question as the non-triviality of computational indistin-guishability.The (hypothetical) existence of pseudorandom generators, introduced and developed by [Blum,Micali 82] and [Yao 82], imply the non-triviality of computational indistinguishability. A pseudo-random generator is an e�cient (deterministic) algorithm which stretches short seeds into longeroutput sequences such that the output distribution on a uniformly chosen seed is computationallyindistinguishable from a uniform distribution. It is easy to see that the pseudorandom outputdistribution and the uniform distribution constitute a non-trivial case of computational indistin-guishability.We conclude that the existence of pseudorandom generators is a su�cient condition for thenon-triviality of computational indistinguishability. In this note we prove that this condition isalso a necessary one. Namely, the non-triviality of computational indistinguishability implies theexistence of pseudorandom generator.2The notion of false entropy, introduced by [Impagliazzo, Levin, Luby 89], plays a centralrole in our proof. This notion yields a special case of two e�ciently constructible distributionswhich are statistically di�erent yet computationally indistinguishable. We �rst show that the non-triviality of computational indistinguishability implies the existence of false entropy and concludeby employing a result of [Impagliazzo, Levin, Luby 89] which states that the existence of falseentropy implies the existence of pseudorandom generators.
2We stress that it is not currently known whether pseudorandom generators do exist. Recently, it has beenshown that the existence of one-way functions (another widely believed complexity assumption) is a necessary andsu�cient condition for the existence of pseudorandom generators (cf. [Impagliazzo, Levin, Luby 89] and [Hastad89]).



2. FORMAL SETTINGFor a formal setting we consider sequences of probability distributions (called ensembles)instead of single probability distributions.De�nition 1: An ensemble X = fXngn2N is a sequence of random variables each ranging overbinary strings. (Sometimes we omit n 2 N from the notation.)De�nition 2: An ensemble X = fXngn2N is polynomial-time constructible if there exists aprobabilistic polynomial-time algorithm, S, such that Xn = S(1n). (On input 1n algorithm Shas output distribution Xn.)De�nition 3: Two ensembles X = fXng and Y = fYng are said to be statistically di�erent ifthere exists a constant c > 0 and an integer N such that for all n � NX� jProb(Xn = �) � Prob(Yn = �)j > 1nc :The ensembles X = fXng and Y = fYng are statistically close if for every c > 0 there existsan integer N such that for all n � NX� jProb(Xn = �) � Prob(Yn = �)j < 1nc :Two ensembles which are not statistically close are not necessarily statistically di�erent. Sta-tistically close ensembles constitute an uninteresting case of polynomially indistinguishable en-sembles (see De�nition 4).De�nition 4 [Goldwasser, Micali 82, and Yao 82]: Two ensembles X = fXng and Y = fYngare polynomially indistinguishable if for every (probabilistic) polynomial-time algorithm, A, andevery c > 0 there exists an integer N such that for all n � NjProb(A(Xn) = 1) � Prob(A(Yn) = 1)j < 1nc :De�nition 5: An ensemble X = fXngn2N is called uniform if there exists a function l :N 7! N,such that for every n and every � 2 f0; 1gl(n):Prob(Xn = �) = 2�l(n)If l(n) = n, for all n, then X is call the uniform ensemble. The uniform ensemble is denoted byU = fUng; namely, for every � 2 f0; 1gn: Prob(Un = �) = 2�n.De�nition 6 [Yao 82]: An ensemble X = fXng is called pseudorandom if it is polynomiallyindistinguishable from some uniform ensemble.



De�nition 7 [Blum, Micali 82]: A deterministic polynomial-time algorithm G is called a pseu-dorandom generator if the following two conditions hold1) For every s 2 f0; 1g� : jG(s)j > jsj.2) The ensemble fG(Un)gn2N is pseudorandom.Theorem: The following two conditions are equivalent:1) There exists a pseudorandom generator,2) There exists a pair of polynomial-time constructible ensembles which are statistically di�er-ent yet polynomially indistinguishable.3. PROOF OF THE THEOREMTo see that condition (1) implies (2), let G be a pseudorandom generator, and l : N ! Nbe a function so that fG(Un)gn2N and fUl(n)gn2N are polynomially indistinguishable. SincejG(�)j > j�j, it follows that l(n) > n. Also, G(Un) must concentrate on strings of length l(n)(i.e. Prob(jG(Un)j = l(n)) > 23) and hence l(n) can be computed with very high probabilityin poly(n)-time. Namely, there exists a probabilistic polynomial-time algorithm L such thatProb(L(1n) = l(n)) > 1 � 2�n. Let Yn denote the following two step random process: �rstassign l � L(1n) and next assign Yn a string chosen uniformly in f0; 1gl. Then Y = fYng ispolynomial-time constructible and satis�es Prob(Yn 2 f0; 1gl(n)) 1 � 2�n and Prob(Yn = �jYn 2f0; 1gl(n)) = 2�l(n) for every � 2 f0; 1gl(n). Hence fG(Un)g and fYng (being polynomial-timeconstructible, statistical di�erent, and polynomially indistinguishable) satisfy condition (2).To see that condition (2) implies condition (1) we use the notion of false entropy introducedin [Impagliazzo, Levin, Luby 89].De�nition 8: A polynomial-time constructible ensemble F = fFng is said to have false entropy(is a false entropy ensemble) if there exists a polynomial-time constructible ensemble D = fDng,such that F and D are polynomially indistinguishable and D has higher entropy than F . Namely,there exists a constant c 0 and an integer N such that for all n � NEnt(Dn) � Ent(Fn) + 1ncwhere Ent is the entropy functional assigning to each random variable X its entropy�X� Prob(X = �) � log2(Prob(X = �)):The proof follows immediately from the subsequent two lemmas.



Lemma 1: Let fXng and fYng be a pair of ensembles as in condition (2) of the Theorem. Thenthere exists a false entropy ensemble.Lemma 2 [Impagliazzo, Levin, Luby 89]: If there exists a false entropy ensemble then there existsa pseudorandom generator.3.1 Proof of Lemma 1A construction which proves the lemma is obtained by letting Fn = (0; Xn) with probability1/2 and Fn = (1; Yn) with probability 1/2. The ensemble fDng used to demonstrate that fFnghas false entropy is Dn = (B;Xn) with probability 1/2 and Dn = (B; Yn) with probability1/2, where B is uniformly distributed over f0; 1g independently of all other random variables. Itis simpler, however, to verify the validity of the more complex construction given below.Let c > 0 be such that for all su�ciently large n we haveX� jProb(Xn = �) � Prob(Yn = �)j > 1ncDe�ne �Xn to be n2c+1 independent copies of Xn, and �Yn to be n2c+1 independent copies of Yn.Clearly, f �Xng and f �Yng are both polynomial-time constructible. Standard technique can be usedto show that f �Xng and f �Yng are polynomial-time indistinguishable (e.g., consider "hybrids" H incomposed of i independent copies of Xn followed by n2c+1 � i independent copies of Yn). �X and�Y are statistically very di�erent; namely:X�� jProb( �Xn = ��) � Prob( �Yn = ��)j > 1 � 2�n:We now apply the above construction to �Xn and �Yn (instead of to Xn and Yn). Formally,�Fn equals (0; �Xn) with probability 1/2 and (1; �Yn) otherwise. �Dn equals (B; �Xn) with probability1/2 and (B; �Yn) otherwise. Clearly, �Fn and �Dn are polynomial indistinguishable, while �Dn hashigher entropy than �Fn (as the �rst bit of �Dn is independent of the rest, while in �Fn the �rst bitis determined with very high probability by the rest).Remark: An analogous argument can be applied directly to Fn and Dn. The �rst bit of Fncan be predicted with non-negligible advantage (rather than almost determined) from the rest.3.2 Proof of Lemma 2 - SketchThe proof originates from [Impagliazzo, Levin, Luby 89]. A sketch is presented here for thesake of self-containment.Let F = fFng be a false entropy ensemble and D = fDng the ensemble used to demonstratethis property. Let S be a probabilistic polynomial-time algorithm satisfying S(1n) = Fn (such analgorithm exists since Fn is polynomial-time constructible). Let t(n) be a bound on the runningtime of S(1n). We may view S(1n) as selecting at random a sequence of t(n) bits, denoted r, and



then evaluating f(r), where f is a polynomial-time computable function. Let Rn be uniform overf0; 1gt(n), then Fn = f(Rn).Suppose Ent(Dn) > Ent(Fn) + 1nc , and let e(n) def= Ent(Fn). Shorthand t = t(n), e = e(n)and let m = (nc � t)O(1) and l = m(t� e)�m2=3t � n. Consider the following three ensembles:(1) h; f(r1):::f(rm); h(r1:::rm)(2) h; f(r1):::f(rm); s(3) h; Dn:::Dn; s (this ensemble contains m independent copies of Dn)where (in the appropriate ensembles) r1:::rm are uniformly selected each in f0; 1gt, the strings is uniformly selected in f0; 1gl, and h is a randomly selected function from a family ofuniversal2 hash functions mapping m � t-bit strings to l-bit strings. Such families have the(de�ning) property that every two elements of the domain are mapped (uniformly and) in apairwise independent manner by a function chosen uniformly in the family. We require thefamily to have succinct representation: the functions in the family should be representableby strings of length nc, where c is a constant independent of n.It is easy to see that the ensembles (2) and (3) are polynomially indistinguishable (as F = ff(Rn)gandD are polynomially indistinguishable). To show that the ensembles (1) and (2) are statisticallyclose, observe that for most sequences r1; r2; :::; rm, the number of pre-images of f(r1)�f(r2)���f(rm)is at least 2m(t�e)�m2=3�t = 2l+n (as the average logarithm of pre-image size for each f(ri) is t� eand m independent repetitions of an experiment are unlikely to deviate from the expectation bymore than pm times the maximal value). It can be shown that most functions chosen from theabove family map a subset of size 2l+n almost uniformly onto f0; 1gl (see [Impagliazzo, Levin,Luby 89] for the non-trivial technical details). Hence, ensembles (1) and (2) are statistically close.We conclude that ensembles (1) and (3) are polynomially indistinguishable.We now show that the entropy of ensemble (3) is greater than the number of random bits usedin the construction of ensemble (1). The entropy of ensemble (3) is at leastjhj + m � (e + 1nc ) + m � (t� e)�m2=3 � t� n > jhj + m � t + m � 1nc � 2m2=3 � t:With a suitable choice of m (e.g. m = (3nc � t)3) this is substantially more than jhj + m � twhich is the number of bits used in the construction of ensemble (1).Finally, applying a suitable hashing function on ensembles (1) and (3) yields a pseudorandomgenerator G. I.e., G(h0; h; r1:::rm) = h0 � h0(h; f(r1):::f(rm); h(r1:::rm));where h0 is a hashing function chosen from a suitable class. The output distribution of G is poly-nomially indistinguishable from the distribution h0 �h0(h;Dn:::Dn; s) and the latter is statisticallyclose to a uniform ensemble.
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