Proving Computational Ability

Mr1HIR BELLARE* ODED GOLDREICH!

August 1992

(Draft)

Abstract

We extend the notion of a proof of knowledge to a proof of the ability to perform some compu-
tational task.

* Department of Computer Science & Engineering, Mail Code 0114, University of California at San Diego, 9500
Gilman Drive, La Jolla, CA 92093. E-mail: mihir@cs.ucsd.edu

! Department of Applied Mathematics and Computer Science, Weizmann Institute of Science, Rehovot, Israel.
e-mail: oded@wisdom.weizmann.ac.il. Research was partially supported by grant No. 89-00312 from the US-Israel
Binational Science Foundation (BSF), Jerusalem, Israel.

1 Motivation

We extend the idea of proving “knowledge” of a string to encompass a notion of “proving the ability
to perform some task.” Specifically, we wish to formalize what it means to “prove the ability to
compute a function f on some instance distribution D.”

Such a notion might have many uses, and two of them are described here. Suppose Alice
possess a trapdoor, t(x), to a (publically known) trapdoor permutation f. and wishes to identify
herself to Bob, by demonstrating ability to invert f,. The proof of ability should be zero-knowledge
so to prevent Bob from latter impersonating Alice. Admittingly, in this case Alice can establish
her identity by directly proving, in a zero-knowledge manner, her knowledge of the trapdoor #(z)
(which corresponds to the index x of f,). Still it may be cheaper to prove ability to invert f,
(e.g., by using a trivial protocol in which the prover inverts f,. on instances chosen by the verifier).
This is particularly valid in case Alice posseses special purpose hardware, in which the trapdoor
is hard-wired, making it very easy for her to invert the function on inputs of her choice. A second
application is for a party to prove possesion of vast computing power by conducting very difficult
tasks (e.g., inverting one-way functions).

2 Definitions

For greater generality, we will consider relations rather than functions. By a family of relations we
mean a sequence { R, },e101}+, where R, C {0, 1}°I x {0,1}* for each x. For simplicity we restrict
our attention to polynomially bounded families; that is, we assume there is a polynomial p such
that (z,y) € R, implies |z| = |z| and |y| < p(]z|). Following the notation used in [1], we denote
Ro(2) ¥ {y: (2,y) € R, } and Ly, & { z: 3y such that (z,y) € R, }. Prover and verifier will
interact on common input z, with the goal of the interaction being for the prover to “convince”
the verifier that he has the “ability to solve R,.”

We need to address the meaning of both of the phrases in quotes above. We will first define
what it means for a machine to “solve a relation” (or a family of relations), and only next will we
define what is a “proof of ability” to do so.

The standard meaning of efficiently solving a relation, The standard meaning of solving a
relation, S C {0,1}* x {0,1}*, is the existence of an efficient algorithm that, on input z, outputs
y € S(z), called a solution to z, if such exists. This is a notion of worst case. Instead, we adopt
a notion of average case by which we consider a probability distribution on the inputs and require
that the algorithm is efficient on the average (with respect to the input distribution). An even more
liberal notion is derived by allowing the solver to ask for alternative inputs, which are generated
according to the same distribution (and independently of previous inputs), until it can present a
solution to any of the inputs.

Notation: Let 5 C {0,1}* x {0,1}*. Then dom(S) % {z € {0,1}*: S(z) £ 0} is the domain of §.

Definition 2.1 (Solving relations) Let S C {0,1}* x {0,1}* be a relation, and D be a distribution
on dom(S). Suppose t € N and let M(-) be a machine.

o We say that machine M(-) solves S under D in expected t steps if, on input (21, 22, ..., z;), with
each z; drawn independently according to D, machine M halts within expected t steps and outputs
a pair (z;,y) so that y € S(z). (The expectation here is over the random choices of M as well
as the t-product of the distribution D.)

o We say that machine M(-) strongly solves S under D in expected ¢ steps if, on input z, drawn
according to D, machine M halts within expected t steps with output y € S(z). (The expectation
here is over the random choices of M as well as the distribution D.)

Conventions: If a machine has several inputs, we may fix some of them to obtain a machine on the
remaining inputs. Likewise, for an oracle machine, we may fix the oracle and consider the resulting
machine. Specifically, suppose that the oracle machine M(-,-,-) has three inputs, then M4(z,y,)
denotes the machine with one input whose output on input z is M*(z,y, 2).

Let R = {Rs}req0,13- be afamily of relations. We say that D = {D, },eq0,13~ is an input distribution
for R if for every z, it holds that D, is a distribution on dom(R,). We are now ready to define
proofs of ability to solve (repectively, ability to strongly solve) a family of relations under a family
of distributions.

Definition 2.2 (Proofof ability) Let R = {R,}seq0,11+ be a family of relations, and D def {Ds}oeqo1)+

be an input distribution for R. Let k: {0,1}* — [0,1]. We say that an interactive function, V, is
a verifier of the ability to solve (resp., strongly solve), R under D with error k if the following two
conditions hold.

e non-triviality: There exists an interactive function P* so that for all x, all possible interactions
of V with P* on common input x are accepting (i.e. Pr[trp. yo.(2)€ACCy(2)] =1).

o validity: There exists a constant ¢ > 0 and a probabilistic oracle machine K(-,-,-) such that for
every interactive function P, every x € {0,1}* and every v € ACCy(x), machine K'=(z,v,")
satisfies the following condition:

if p(z) < Prltrpyo. () € ACCy ()] > w(x) then machine KP=(x,7,-) solves (resp.,
strongly solves) R, under D, in an expected number of steps bounded by

2]

p(z) — r(z)
The oracle machine K is called an ability extractor (resp., strong ability extractor) under D.

Hence an ability extractor is given a sequence of instances, each independently selected according to
D,, and is supposed to output a solution to one of these instances within the specified (expected)
time bound. A strong ability extractor is given a single instance, selected according to D,, and is
supposed to output a solution to this instances within the specified (expected) time bound.

Proofs of knowledge (as per [1, Definition 3.1]) are a special case of proofs of ability. To
justify this claim, given a binary relation R we define the family of relations R = {R,} so that
R, ={(2,y): (z,y) € R}. Clearly, dom(R,) is the singleton {2} if R(z) # 0 and () otherwise. Let
D, be the distribution on dom(R,) which, in the former case, assigns the entire probability mass
to z (and is undefined in the latter case). Clearly D = {D,} is an input distribution for R. It is
easy to see that if V' is a verifier of the ability to solve R under D (with error x) then V is also a
knowledge verifer for R (with knowledge error).

Definition 2.2 refers to a specific input distribution. Clearly, both the ability-verifier and the
ability-extractor may depend on this distribution, and this dependency seems inevitable. How-
ever, the dependency on the input distribution can be “uniform” in the sense that both verifier
and extractor can be fixed machines with access to a random source which generates the input
distribution. We call such a proof of ability distribution-free.

Convention: Let D be a family of distributions for some R, and let M be an (interactive and/or
oracle) probabilistic machine. A D-source augmentation of machine M is a machine that, on
input x, in addition to the standard behaviour of M can obtain elements draw independently from
distribution D, (at the cost of reading them).

Definition 2.3 (Distribution-free proof of ability) Let R = { R, }oeqo,11+ be a family of relations, and

let k: {0,1}* — [0,1].

o We say that an interactive machine, V', is a distribution-free verifier of the ability to solve R with
error k if for every input distribution, denoted D, for R, the D-source augmentation of machine
V' constitutes a verifier of the ability to solve R under D with error k.

o We say that a distribution-free verifier of the ability to solve R (with error r) has a distribution-
free ability extractor if there exists an oracle machine, K, so that the D-source augmentation of
machine K constitutes a ability extractor under D.

A definition of a distribution-free strong ability extractor is derived analogously.

3 Examples

To demonstrate the above definitions we consider two natural examples. Both examples refer to
a familty of trapdoor one-way permutations, { f; }seqo,13+- The string x is called the index of the
permutation f, : {0, 1}l — {0,1}1*l. There exists an efficient algorithm that, on input index z
and argument y, returns the value f.(y). There is an efficient algorithm that, on input index 2 and
value v, returns the inverse of f, on v (i.e., f7!(v)).

Example 1: Consider a verifier that, on common input z, sends the prover a single uniformly
selected string v € {0,1}/”l, and accepts if and only if the prover answers with the inverse of v
under f, (i.e., with y satisfying f.(y) = v). We show (below) that the above verifier is an ability-
verifier for inverting f, under the uniform distribution.

Example 2: Consider a verifier that, on common input =z € {0,1}" (n € N), sends the prover
2n uniformly and indepedently selected strings, vy, ...,vq, € {0,1}", and accepts if and only if
the prover answers with the inverse of each of these v;’s under f, (i.e., with y,..., s, satisfying
fe(y;) = v, for every 7). We show (below) that the above verifier is a strong ability-verifier for
inverting f, on at least one out of 2|z| of uniformly selected instances.

Proposition 3.1 The program described in Example 1 is an ability-verifier (with error zero) for

solving R = {R.} under D = {D,}, where
o R, = {(U,y) U= fx(y)};

e D, is uniform over the set of all strings of length |x|.

Furthermore, if the verifier in Fxample 1, selects v according to an arbitrary distribution D,, then
the system described constitutes a distribution-free proof of ability.

proof sketch: We present here only the case of uniform distribution. Consider an arbitrary, fixed
prover. Let p, denote the probability that the verifier is convinced on common input xz. Here
the probability space is over all choices of both the verifier and prover. Assume, without loss of
generality, that p, > 2717l, otherwise the extractor satisfies the requirement by merely exhaustive
search. Also, we may assume that the ability-extractor “knows” p, since it may estimate p, in
expected time poly(z)/p, by repeated experiments. Let ¢.(v) denote the probability that the

verifier is convinced conditioned on the event that it chose and sent v to the prover. Here the
probability distribution is merely over the prover’s random coins (in case it is at all probabilistic).
Let V(i) be the set of v’s for which ¢,(v) is greater than 27" and smaller/equal to 271, Clearly,
there exists an ¢ < |z| such that

Vo(D)] _ pa -2
ol ~ n (1)

We are now ready to present the ability-extractor. Formally speaking, the extractor gets as input an
index, z, and a sequence of independently and uniformly selected |z|-bit long strings, and its task is
to invert f, on one of them. However, to simplify the exposition, we prefer to think of these strings
as being chosen by the extractor. Hence, on input z, the extractor executes m Lt [log,(1/p:)]

copies of the following procedure, each with a different value of 7 € {1,...,m}. The i*" copy consists

of uniformly and independently selecting M Lt poly(n)/(p, - 2°) values, vy, ..., vy, and executing
the following sub-procedure on each of them. The sub-procedure with value v; invokes the prover’s
program (as oracle), on input @ and message v;, for poly(n)-2¢ times, each time checking whether
the prover’s answer is the inverse of v; under f,. Once a positive answer is obtained, the extractor
halts with the corresponding value-inverse pair.

The extractor’s expected running-time is bounded above by

m

poly(n) i _ Ppoly(n)
;W'(de(n)'ﬂ =

To evaluate the performace of the above extractor, consider the i*® copy, where 7 satisfies Equa-
tion (1). With overwhelmingly high probability (i.e., greater than 1 — 27"), one of the v;’s chosen
in this copy satisfies ¢, > 27°. Hence, with overwhelmingly high probability, the extractor inverts
fo on this v;. The exponentially small error probabilities can be eliminated by running an exhaus-
tive search algorithm (for inverting f,) in parallel to the entire algorithm described above. The
proposition follows. O

Proposition 3.2 The program described in Example 2 is a strong ability-verifier for solving R =

{R.} under D = {D,}, where
o Ry =A{(vi,.,vopepy) s sty = fuly)}s

o D, is uniform over the set of strings of length 2|z|*.

proof sketch: As in the proof of Proposition 3.1, we consider an arbitrary fixed prover and let
p. denote the probability that the verifier is convinced on common input z. As before, we may
assume that p, > 271”1 and that the ability-extractor has a good estimate of p,. Let n Lt ||, and
consider an 2n-dimentional table in which the dimensions correspond to the 2n values chosen by
the verifier. The (vy, ..., v2,)-entry in the table equals the probability that the prover convinces the
verifier (i.e., successfuly inverts f, on v, through vs,) conditioned on the event that the verifier
sent message (vq,...,vs,) to the prover. The probability here is merely on the prover’s random
choices. As in the proof of Proposition 3.1, we consider a partition of these probabilities to clusters
of similar magnitude. It follows that there exists an m < 2n such that at least a ¢, wf pe - 27 /20
fraction of the entries have value greater than 27. We call these entries admisible. It follows that
there exists a dimention 7 so that at least a %/q,/2 > 5 of the rows in the i"" dimention contain at
least ¢, /2n admisible entries. We call such a (m,1) pair good.

We are now ready to present the strong ability-extractor. The extractor gets as input an index,
z, and a uniformly chosen 2|z|*long string T = (vy, ..., va,), where v; € {0,1}" and n = |z|. The

extractor is suppose to find a solution to 7, and this amounts to inverting f, on one of the v;’s. To
this end the extractor executes 8n® copies of the following procedure, each with a different triples
(m,1,7), where 1 < m,i,j <2n. The (m,i,7)™ copy of the procedure tries to invert f, on v;,
using the parameters ¢ and m. Specifically, the (m,1, 7)™ copy consists of repeatedly invoking the
sub-procedure A4,,; on input v;, for at most |poly(n)/(p, - 27)] times.

On input v, the sub-procedure A,,; proceeds as follows.
1. Selects uniformly 2n strings of length n each. These strings are denoted wq, ..., ug,;

2. Invokes the (oracle to the) prover poly(n) - 2™ times, each time with input z and verifier’s
message (U, ..., Ui_1, U, Uip1, ..., Uzn). The message consist of the sequence selected at step (1),
except that u; is replaced by v.

3. Ifin one of these invocations, the prover answers with a 2n-tuple (yi, ..., y2,,) such that f.(y;) =
v then the extractor halts with output (v, y;).

Clearly, the expected running-time of the above extractor can be bounded by poly(z)/p.. To
evaluate the performance of the above extractor, consider a good pair (m,). By definition of
a good pair, it follows that at least one half of the rows in the ™ direction contain at least
Pmi Lt pe - 2™/(2n)? entries on which the prover convinces the verifier with probability at least
27™. Let us denote the set of n-bit strings corresponding to these rows by S5,. It follows that for
every v € 9,, the sub-procedure A,,; inverts f, on v with probability at least p; ,,, —27". Hence,
when invoking A,, ; on v for poly(n)/p.,,; times, with overwhelming probability (i.e., greater than
1 —27") we invert f, on v. The final observarion is that, since |5,| > + - 2", the probability that
none of 2n indepedently and uniformly selected n-bit strings hits S, is very small (i.e., smaller
than 277). As in the proof of Proposition 3.1, the exponentially small error can be elliminated. It

follows that the extractor strongly solve R, under D,. O

Acknowledgements

Work done while the first author was at the IBM T.J. Watson Research Center, New York.

References

[1]

M. Bellare and O. Goldreich, “On Defining Proofs of Knowledge,” Advances in Cryptol-
ogy — Crypto 92 Proceedings, Lecture Notes in Computer Science Vol. 740, Springer- Verlag,
E. Brickell, ed., 1992.

M. Bellare and S. Goldwasser, “New Paradigms for Digital Signatures and Message Authenti-
cation based on Non-Interactive Zero-Knowledge Proofs,” Advances in Cryptology — Crypto 89
Proceedings, Lecture Notes in Computer Science Vol. 435, Springer-Verlag, G. Brassard, ed.,
1989.

G. Brassard, D. Chaum, and C. Crépeau, “Minimum Disclosure Proofs of knowledge,” JCSS,
Vol. 37, No. 2, 1988, pp. 156-189.

J. Boyar, C. Lund and R. Peralta, “On the Communication Complexity of Zero-Knowledge
Proofs.” 1989.

G. Brassard, C. Crépeau, S. Laplante and C. Léger, “Computationally Convincing Proofs of
Knowledge,” Proc. of the 8th STACS, 1991.

U. Feige, A. Fiat, and A. Shamir, “Zero-Knowledge Proofs of Identity”, Journal of Cryptology,
Vol. 1, 1988, pp. 77-94. (Preliminary version in the 19th STOC, 1987.)

U. Feige, and A. Shamir, “Witness Indistinguishability and Witness Hiding Protocols”, Pro-
ceedings of the Twenty Second Annual Symposium on the Theory of Computing, ACM, 1990.

7. Galil, S. Haber, and M. Yung, “Symmetric Public-Key Encryption”, Advances in Cryptol-
ogy — Crypto 85 Proceedings, Lecture Notes in Computer Science Vol. 218, Springer-Verlag,
H. Williams, ed., 1985.

M. Furer, O. Goldreich, Y. Mansour, M. Sipser, and S. Zachos, “On Completeness and Sound-
ness in Interactive Proof Systems”, Advances in Computing Research: a research annual, Vol.
5 (S. Micali, ed.), pp. 429-442, 1989.

0. Goldreich, “A Uniform-Complexity Treatment of Encryption and Zero-Knowledge”, J. of
Cryptology, Vol. 6, No. 1, 1993.

0. Goldreich, and H. Krawczyk, “On Sequential and Parallel Composition of Zero-Knowledge
Protocols”, Proceedings of ICALP 90, Lecture Notes in Computer Science Vol. 443, Springer
Verlag, 1990.

0. Goldreich, S. Micali, and A. Wigderson, “Proofs that Yields Nothing but Their Validity or
All Languages in NP Have Zero-Knowledge Proof Systems”, JACM, July 1991. (Preliminary
version in the 27th FOCS, 1986.)

0. Goldreich, and Y. Oren, “Definitions and Properties of Zero-Knowledge Proof Systems”,
Jour. of Cryptology, Vol. 7, No. 1, 1994.

S. Goldwasser, S. Micali, and C. Rackoff, “The Knowledge Complexity of Interactive Proof
Systems”, SIAM J. on Computing, Vol. 18, No. 1, 1989, pp. 186-208. (Preliminary version in
the 17th STOC, 1985.)

[15] S. Haber, “Multi-Party Cryptographic Computations: Techniques and Applications”, PhD
Dissertation, Computer Science Dept., Columbia University, Nov. 1987.

[16] Y. Oren, “On the Cunning Power of Cheating Verifiers: Some Observations about Zero-
Knowledge Proofs”, Proceedings of the Twenty Eighth Annual Symposium on the Foundations
of Computer Science, IEEE, 1987.

[17] A. Shamir, “IP=PSPACE”, Proceedings of the Thirty First Annual Symposium on the Foun-
dations of Computer Science, IEEE, 1990.

[18] M. Tompa and H. Woll, “Random Self-Reducibility and Zero-Knowledge Interactive Proofs
of Possession of Information,” University of California (San Diego) Computer Science and
Engineering Dept. Technical Report Number CS92-244 (June 1992). (Preliminary version in
the 27th FOCS, 1987, pp. 472-482.)

[19] M. Yung, Some eurocrypt paper about proving ability to factor, to be located.

