Reproduced from an old troff file (dating 1987/88).

COMPUTATIONAL RANDOMNESS

(a survey)

Oded Goldreich

ABSTRACT

A recent behaviouristic approach to randomness is surveyed. In this approach a probability
distribution is considered ”pseudorandom” if no "efficient procedure” can distinguish it from the
uniform probability distribution. Remarkably, pseudorandomness so defined is expandable in the
sense that (assuming the existence of 1-1 one-way functions) short pseudorandom sequences can
be deterministically and efficiently expanded into much longer pseudorandom sequences. The
new approach to randomness is based on basic concepts and results from the theory of resource-
bounded computation. In order to make the survey as accessible as possible, we have presented
elements of the theory of resource bounded computation (but only to the extent required for the
description of the new approaches). This survey is not intended to provide an account of the
more traditional approaches to randomness (e.g. Kolmogorov Complexity) and this approach is
described only in order to confront it with the new approach.

Note added in Dec. 1997: Section 4 of this survey may be read only for historical purposes.
Otherwise, it is far inferior to results known nowadays, and consequently to existing presentations.
For further details see Appendix.

1. INTRODUCTION

Randomness is playing an increasingly important role in computation. It is frequently used in the
design of sequential, parallel and distributed algorithms, and is of course central to cryptography.
Gaining a better understanding of randomness thus yields a deeper understanding of computation
and stronger computational tools. Indeed, a lot of attention has been devoted to formalize the
notion of randomness and for building good pseudo-random number generators. Kolmogorov sug-
gested to measure the randomness of a string by the length of its shortest description. Thus, Kol-
magorov randomness is an inherent property of individual strings. Unfortunately, this approach
is non-constructive and is not applicable to pseudo-random number generation. Given their wide
applicability, "pseudo-random number generators” have appeared with the first computers, before
it was understood what properties they should satisfy. Evidently good pseudo-random sequences
should have some of the statistical properties of truely random sequences. The statistical prop-
erties of linear congruential generators were extensively studied by Knuth [K]. This approach is
empirical in nature and fails to yield general results of the form ”for all practical purposes using
the pseudo-random sequences is as good as using truely random ones”. The fact that a pseudo-
random number sequence passes some statistical tests, does not guarantee that it will pass a new
test, i.e. that it is good for a future (untested) application. Recently, a constructive approach to
randomness based on computation complexity has been initiated by Manuel Blum, Silvio Micali
and Andy Yao [BM, Y]. Roughly speaking, a subset S of {0,1}" is computationally random if
any statistical test that runs in polynomial time cannot distinguish strings randomly selected in
S from strings randomly selected in {0,1}". Here “objects” are implicitly judged equal if they
demonstrate the same "feasibly measurable” behavior. This approach is constructive both in the
following two senses: First, one can test whether a subset is pseudorandom. Second, assuming
the existence of one-way functions (i.e. functions that are easy to evaluate but hard to invert) one
can specify a deterministic polynomial-time algorithm (a generator) that on input random k-bit
long seeds, outputs k°-bit strings (¢ > 1) undistinguishable, in polynomial time, from truly ran-
dom k®-long bit-strings. Essentially this means that any probabilistic polynomial time procedure
gives the same results when its source of randomness is an unbiased coin or the output of such a
generator. (Else the procedure would constitute an efficient statistical test that distinguishes the
two). Under the thesis that all practical purposes correspond to polynomial-time procedures, the
strings output by the generator are as good as truely random strings for all practical purposes.

Organization

In Section 2 we recall some basic notions from the theory of resource bounded computation and
state our assumption concerning one-way functions. In Section 3, we present the fundamental
definitions of ”polynomially indistinguishable probability ensembles” and ”pseudorandom ensem-
bles”. In Section 4 we show that, under the one-wayness assumption, pseudorandomness can be
expanded. Section 5 consists of a discussion of the above notions and results. Further develop-

ment and applications of the theory of pseudorandomness (e.g. pseudorandom functions) appear
in Section 6.

2. BACKGROUND : RESOURCE — BOUNDED COMPUTATION

We begin this section by recalling the definitions of P and BPP — the complexity classes cor-
responding to deterministic and probabilistic polynomial-time computations. We continue by
presenting the definition of one-way functions, which plays a central role in the construction of
pseudorandom generators and in the general results concerning zero-knowledge proofs. The the-
ory of resource bounded computations is developed in terms of asymptotic behaviour. Typically,
we will consider the number of steps taken by an algorithm (i.e. a Turing machine) as a function
of its input length, bound this function from above by a ”smoother” function, and ask whether
the bound is (or can be) a polynomial. This convention allows us to disregard special (short)
inputs on which the machine may behave exceptionally good, and helps us concentrate on the
”typical” behaviour of the machine.

2.1. Deterministic Polynomial-Time Computations

Traditionally in computer science, deterministic polynomial-time computations are associated
with efficient computations. (Throughout the article, a polynomial-time computation means a
computations in which the number of elementary computing steps is bounded by a polynomial
in the length of the input.) This association stems from the acceptability of determinististic
computing steps and polynomial-time computations as feasible in practice. The preference of de-
terministic computing steps (over non-deterministic ones) is self evident. Polynomial-time compu-
tations are advocated as efficient due to the moderate growing rate of polynomials and due to the
correspondence between problems which are known to have ”practically efficient” solutions and
those known to have polynomial-time solutions. Deterministic polynomial-time computations are
captured by the complexity class P (P stands for Polynomial). The complexity class P is defined
as the set of languages satisfying for each I €P there exists an algorithm A and a polynomial
p(-) such that the following two conditions hold:

1) On input a bit string = (z € {0,1}*), algorithm A halts after at most p(|z|) steps, where |z|
is the length of the string .

2) On input z, algorithm A halts in an accepting state if and only if z € L. (Otherwise it halts
in a "rejecting state”.)

2.2. Probabilistic Polynomial-Time Computations

Recent treads in computer science regard random computing steps as feasible. Following this
approach, we consider computations which can be carried out by Probabilistic polynomial-time
algorithms as modeling efficient computations. A probabilistic algorithm (or a ”coin-tossing” al-
gorithm) is one which (based on its current configuration) chooses its next move at random (with
uniform probability distribution) among all possibilities. (In a deterministic algorithm, the next
move is determined by the current configuration.) Without loss of generality, we assume that
the number of possibilities (for the next configuration) is either 1 or 2. Omne can then view the
algorithm as tossing an unbiased coin before each move and determining the next move using the
outcome of the coin. On input x, the output of a probabilistic algorithm A is a random variable
defined over the probability space of all possible internal coin tosses. Equivalently, probabilistic
algorithms can be viewed as deterministic algorithms with two inputs: the ordinary input, and
an auxiliary "random input”. One then considers the probability distributions defined by fixing
the first input and letting the auxiliary input assume all possible values with equal probabil-
ity. In particular, the complexity class BPP (BPP stands for Bounded-away-error Probabilistic
Polynomial-time) is defined as the set of languages such that for every L € BPP there exists a
probabilistic polynomial-time algorithm A satisfying the following two conditions:

1) If € L then Prob(A(z) = 1)

v

2
5
2) If ¢ L then Prob(A(z) = 0) >

2
3-

It should be stressed that this definition is robust under substitution of % by either % + m

or 1 — 277U=D where p(-) is an arbitrary positive polynomial. The following thesis captures the
association of "efficient computation” with probabilistic polynomial-time computations.

Thesis: BPP correspond to the set of computational problems which can be solved “effi-
ciently”.

2.3. One-way Functions

It is generally believed that there exists (natural) problems, which demonstrate a gap between
the complexity of finding a solution and the complexity of verifying its validity. For the results
in this article we need to assume than there are problems which are hard on most (or at least on
a "non-negligible” portion) of the instances. Furthermore, we assume that it is easy to generate
hard instances together with a solution. This is formulated in terms of the infeasibility of inverting
functions, which are easy to evaluate (in the forward direction).

Definition 1: A function f:{0,1}* — {0,1}* is called one-way if the following two conditions
hold:

1) There exist a (deterministic) polynomial-time algorithm that on input z outputs f(z).

2) For any probabilistic polynomial-time algorithm A’, any constant ¢ > 0, and sufficiently

large n
Prob (A'(f(x).1%) € [(J(2))) <

c

where the probability is taken over all 2’s of length n and the internal coin tosses of A’,
with uniform probability distribution.

Remark: The role of 1* in the above definition is to allow machine A’ to run in time polynomial
in the length of the preimage it is supposed to find. (Otherwise, any function which shrinks the
input more than by a polynomial amount will be considered one-way.)

Motivation to the notion of a negligible fraction: In the definition above, we have required
that any machine trying to invert the function will succeed only on a "negligible” fraction of the
inputs. We call negligible any function p(-) that remains smaller than 1 when multiplied by any
polynomial (i.e., for every polynomial p(-) the limit of p(n) - p(n), when n grows to infinity, is
0). We ignore events which occur with negligible probability (as a function of the input length)
since they are unlikely to occur even when repeating the experiment polynomially many times.
On the other hand, events which occur with non-negligible (i.e., 1/p(n) for some polynomail p)
probability will occur with almost certainty when repeating the experiment for a reasonable (i.e.
polynomial) number of times. Thus, our notion of an "experiment” with a negligible success
probability is robust (under polynomial number of repetitions of the experiment).

Motivation for considering infinitely many input lengths: The notion of a polynomial-
time algorithm is meaningful only when considering infinitely many input lengths. (Otherwise
one can always choose a polynomial which bounds the running time of a machine that halts on
all inputs in some finite set.) Furthermore, for any instance length [, there exists a algorithm
A; which successfully inverts the function on all instances z of length [within |z| + |f(z)| steps
(algorithm A; just incorporates in its transition function the inverses for all instances in this
finite set). The same happens whenever we consider the inversion task for a finite set of instance
lengths. Both technical difficulties are resolved when considering an infinite set of input lengths.

Assumption: There exist one-way functions. Furthermore, there exist one-way 1-1 and onto
functions.

The following three number theoretic 1-1 and onto functions are widely believed to be one-way:

Ex1) Modular Exponentiation: In particular, let p be a prime and g be a primitive element
of Z* (the multiplicative group modulo p). Define M E(p,g,z) = (p,g,y), where y is the
result of reducing ¢ modulo p. Inverting M F is known as the Discrete Logarithm Problem.

Ex2) RSA: Let p and ¢ be primes, N = p-¢ and e be relatively prime to ¢(N)=(p—1)-(¢—1).
Define RSA(N,e,z) = (N,e,y), where y equals 2° mod N.

Ex3) Modular Squaring: In particular, let p and ¢ be primes both congruent to 3 mod 4,
and N = p-gq. Define MS(N,z) = (N,y), where y equals z* mod N. (To make this
function one-to-one, restrict z to be a quadratic residue modulo N.) Inverting MS(N,-)
is computationally equivalent to factoring N; that is, the problems are reducible to one
another through probabilistic polynomial-time transformations.

The formulation of the above examples does not exactly fit the Definition 1, but things can be
modified easily so they do. Alternatively, one may modify the constructions and theorems below.

3. DEFINITION OF PSEUDORANDOM DISTRIBUTIONS

A key definition in this approach is that of the infeasibility of distinguishing between two proba-
bility distributions. This behaviouristic definition, views distributions as equal if they cannot be
told apart by any probabilistic polynomial-time test. Such a test receives as input a single string
and outputs some statistics of the input. With no loss of generality, we may assume that the
test outputs a single bit, which may be interpreted as a guess of the distribution from which the
input was chosen. One considers the probability that, on input taken from the first distribution
(resp. second distribution), the test outputs 1. If these two probabilities only differ by a negligible
amount then the corresponding distributions are regarded as indistinguishable by this test.

Preliminaries (Probability Ensembles): A probability distribution is a function, 7, from strings
to non-negative reals such that 3° ., y.m(e) = 1. A probability ensemble indexed by I is a
sequence, Il = {m;};c;, of probability distributions. Throughout the entire article, we adopt the
convention that the probability distributions in an ensemble assign non-zero probability only to
strings of length polynomial in the length of the index of the distribution. Also, it suflices to
consider I = {1}*.

Motivation to defining ensembles: Probability ensembles are defined so that we can con-
sider the asymptotic behaviour of arbitrary polynomial-time algorithms on inputs taken from a
probability distribution.

Definition 2 (Polynomial Indistinguishability): Let II; = {7 ,;};er and II, = {75,};er be two
probability ensembles each indexed by elements of 1. Let T be a probabilistic polynomial-time
algorithm (hereafter called a test). The test gets two inputs: an index ¢ and a string a. Denote
by p! (i) the probability that, on input index ¢ and a string a chosen according to the distribution
71 ;, the test T outputs 1 (i.e., pT' (1) = 3, 7 (a) - Prob(T(i,«) = 1)). Similarly, pI'(7) denotes
the probability that, on input ¢ and a string chosen according to the distribution m;, the test
T outputs 1. We say that II; and I, are polynomially indistinguishable if for all probabilistic
polynomial-time tests 7', all constants ¢ > 0 and all sufficiently large ¢ € I

P (0) = p2 (] il

Motivation to having the index as an auxiliary input to the test: In the above definition,
when [= {1}*, giving the index as auxiliary input to the test is not essential. We adopted this
convention to make it consistent with other material (omitted here...).

An important special case of indistinguishable ensembles is that of probability ensembles
which are polynomially indistinguishable from a uniform probability emsemble. These ensembles
are called pseudorandom since, for all practical purposes, they are as good as truly unbiased coin
tosses. This is clearly a behaviouristic point of view.

Definition 3 (Pseudorandom Distributions): Let [: {0,1}* — N be a (length) function (mapping
strings to integers), Féyi denote the uniform probability distribution on the set {0,1}?, and
I = {ﬂ'éyi}iej. Let II; = {m1,}ier be a probability ensemble indexed by I. We say that II; is
pseudorandom if it is polynomially indistinguishable from =}, for some length function /.

Having defined pseudorandom ensembles, it is natural to ask whether such ensembles do
exist. The answer is trivially affirmative, since the uniform ensemble is pseudorandom (being
indistinguishable from itself!). However, this answer is of no interest. We would like to know
whether ensembles which are not uniform, and furthermore are not statistically close to uniform,
can be pseudorandom. Furthermore, can such ensembles be constructed using less coin tosses
than the length of the strings in their support? The answer to both questions is affirmative.
Namely,

Theorem 1: There exist pseudorandom ensembles which are not statistically close to a uniform
ensemble. In particular, there exists a pseudorandom ensemble II = {7; };c; such that the support
of m; consists of 2/l strings, each of length 2 - |i|. Furthermore, there exists an (exponential-time)
probabilistic algorithm that on input ¢ tosses |i| coins and outputs strings with distribution ;.

Proof’s Idea: By a counting argument. [

4. ON THE EXPANDABILITY OF PSEUDORANDOM DISTRIBUTIONS

We have concluded the previous section by arguing that pseudorandom sequences which are very
sparse can be constructed using less coin tosses than their length. However, this construction was
not computational efficient and thus could not be applied in practice. The real question is whether
such an expansion of randomness can be carried out efficiently. A key definition capturing this
question follows.

Definition 4 (Pseudorandom Generator): Let p(-) be a polynomial satisfying p(n) > n + 1. Let
G be a deterministic polynomial-time algorithm that on input any n-bit string, outputs a string of
length p(n). Let n denote the unary encoding of the integer n. We say that G is a pseudorandom

generator if the probability ensemble defined by it is pseudorandom. Here, the ensemble defined
by G'is {G,} where a string y has probability m - 27" in the distribution G, if there are exactly
m seeds of length n such that feeding each of them to G yields the output .

Motivation to the unary encoding of the length: The length of the seed to G (i.e. n) is
encoded in unary so that the strings in the support of ¢, have length polynomial in n (= |n|).
Now, we can formally state the fundamental question of whether pseudorandom generators do
exist. We will see that, under the assumption that one-way 1-1 and onto functions exist, the
answer is yes. The following definitions and results are used in order to prove this implication.
In particular, the equivalence of Definition 3 and Definition 5 plays an important role in proving
the pseudorandomness of the construction presented below. Definition 5 concerns the feasibility
of predicting the next bit in a string, which is taken from some distribution. The predictor is
given only a prefix of the string. The question is whether there exists an efficient predictor which
1

succeeds with probability non-negligibly greater than -.

Definition 5 (Unpredictability): Let II; = {7 ;};cs be a probability ensemble indexed by I. Let
A be a probabilistic polynomial-time algorithm that on inputs 7 and y outputs a single bit (called
the guess). Let bit(a,r) denote the r-th bit of the string a, and pref(a,r) denote the prefix
consisting of the first 7 bits of the string o (i.e. pref(a,r) = bit(a, 1)bit(a,2)---bit(a,r)). We
say that the algorithm A predicts the next bit of 11, if for some ¢ > 0 and infinitely many #’s

Prob (M(i,pref(a,r)) = bit(a,r+1)) > 1 + |i[7°,

where the probability space is that of the string a chosen according to p, ;, the integer r chosen at
random with uniform distribution in {0,1,...,|a| — 1} and the internal coin tosses of M. We say
that Il is unpredictable if there exist no probabilistic polynomial-time algorithm A which predicts
the next bit of II;. Definition 5 can be viewed as a special case of Definition 3. Any predictor
can be easily converted into a test which outputs 1 if and only if the guess of the predictor is
correct. The resulting test will distinguish an ensemble from the uniform ensemble if and only if
the original predictor’s guesses are non-negligibly better than "random”. Interestingly, the special
case is not less powerful. Namely, each successful distinguisher can be converted into a successful
predictor.

Theorem 2: Let 11, be a probability ensemble. Then 11, is pseudorandom if and only if it is
unpredictable.

Proof’s Idea: Assume that 7" is a test which distinguishes 7 ; from the uniform distribution.
We consider the behaviour of T" when fed with strings taken from the hybrid distributions HZ»(j),
where HZ»(j) is defined as the distribution resulting by taking the first j bits of a string chosen from
71,; and letting the other bits be uniformly distributed. There must be two adjacent hybrids, HZ»(j)
and HZ»(j+1), which are distinguishable by T'. The j + 1st bit is predicted using this "gap”. W

The notion of a hard-core predicate (presented below) plays a central role in the construction
of pseudorandom generators. Intuitively, a hard-core of a function f is a predicate (b(x)) which is

easy to evaluate (on input z) but hard to even approximate when given the value of the function
(f(2)). Recall that f is one-way if it is easy to evaluate (i.e. compute f(z) from z) but hard
to invert (i.e. compute z from f(z)). Thus, the hard-core maintains in a strong sense both the
easyness (in the forward direction) and the hardness (in the backward direction) of the function.

Definition 6 (Hard-core Predicate): Let f: {0,1}* — {0,1}* and b : {0,1}* — {0,1}. The
predicate b is said to be a hard-core of the function f if the following two conditions hold

1) There is a deterministic polynomial-time algorithm that on input & returns b(z).

2) There is no probabilistic polynomial-time algorithm A’ such that for some ¢ > 0 and
infinitely many n

Prob(A'(f(z)) = b(z)) > 1/2 + n™°,

where the probability is taken over all possible choices of z € {0,1}" and the internal coin
tosses of A’ with uniform probability distribution.

Clearly, if the predicate b is a hard-core of the 1-1 and onto function f then f is hard to invert.
Assuming that either of the functions presented in subsection 2.4 is one-way, predicates which
constitutes corresponding hard-core can be presented. For example, the least significant bit is a
hard-core of RS A (i.e., given RSA(N,e,z) one cannot efficiently predict the least significant bit
of). In fact, every one-way function f can be ”transformed” into a one-way function f’ with
a corresponding hard-core predicate &’. Thus, unpredictability and computational difficulty play
dual roles.

Theorem 3: If there exist one-way functions (resp. one-way 1-1 and onto functions) then there
exist one-way functions (resp. one-way 1-1 and onto functions) with a hard-core predicate.

Proof’s Idea: The proof uses the observation that if f is one-way then there must be a bit in its
argument z that cannot be efficiently predicted from f(z) with success probability greater than
1 —1/]z|. (Otherwise, with constant probability, all the bits of the argument can be predicted
correctly and the argument can be retrieved.) Let b(¢,2) denote the ith bit of . For |z,| =
|xs| = -+ = |a,s| = n, define

f/(xlv Loy eeny $n3) = f($21)f($2) te 'f(xna)v
V(21,025 ey 00) = (S4oy T2y b 211y nos ymod 2).

It can be shown that the predicate §’ is a hard-core of f’. The proof does not reduce to showing
that a (sufficiently long) sequence of biased and independent 0-1 random variables has sum mod
2 which is almost unbiased (since the prediction errors on the various predicates are not random
variables)! Reproducing the actual proof is beyond the scope of this article. W

Having a one-way 1-1 and onto function with a hard-core predicate suffices for the following
construction of pseudorandom generators.

Construction 1: Let f be a one-way 1-1 and onto function and & a hard-core predicate of f.
We define the following polynomial-time algorithm G. On input ., algorithm G computes the
bits b; = b(f)(z)), where 1 < i < 2|z| and f) denotes the function f iteratively applied i times.
Machine GG outputs bojy) - - -b20;.

Lemma 1: Let f, b and G be as in Construction 1. Then {G,} defined as in Definition 4 is
unpredictable.

Proof’s Idea: An efficient predictor of the sequence defined above can be easily converted into
a algorithm M that on input f(z) guesses b(x) with success probability greater than 1/2. On
input f(x), algorithm M computes the sequence b(f*)(z)),...,b(f(2)),b(f(z)) and obtains a
prediction for b(z). W

Combining Theorem 3, Lemma 1 and Theorem 2, we get

Theorem 4: If there exist one-way 1-1 and onto functions then there exist pseudorandom gen-
erators.

We conclude that feeding a pseudorandom generators with seeds taken from a uniform dis-
tribution (over {0,1}"), yields a pseudorandom distribution. The following theorem states that
feeding a pseudorandom generator with seeds taken from a pseudorandom distribution also yields
a pseudorandom distribution over longer strings.

Theorem 5: Suppose that II; = {7}, is a pseudorandom ensemble, and G is a pseudorandom
generator. Then the ensemble I, = {ms,};cs, where 75, is defined by feeding G with inputs
according to the distribution 7 ;, is also pseudorandom.

Proof’s Idea: Assume to the contrary that there exists a (polynomial-time) test 7" distinguishing
between II, and the uniform distribution. Then at least one of the following two statements hold:

1) The test T also distinguishes {G,} from the uniform distribution (in contradiction to G
being a pseudorandom generator).

2) The test 1" can be modified into a test 7" (which first applies G to the tested string and
then runs 7" on the result) so that 7" distinguish II; from the uniform distribution (thus
contradicting the hypothesis that II; is pseudorandom). [l

5. DISCUSSION

Before presenting further extensions and applications of the above approach to randomness, let
us discuss several conceptual aspects.

Behavioristic versus Ontologic

The behaviouristic nature of the above approach to randomness is best demonstrated by con-
fronting this approach with the Kolmogorov-Chaitin approach to randomness. Loosely speaking,
a string is Kolmogorov-random if its length equals the length of the shortest program producing
it. This shortest program may be considered the ”true explanation” to the phenomenon described
by the string. A Kolmogorov-random string is thus a string which does not have a substantially
simpler (i.e. shorter) explanation than itself. Considering the simplest explanation of a phe-
nomenon is certainly an ontologic approach. In contrast, considering the effect of phenomena
on certain objects, as underlying the definition of pseudorandomness (above), is a behaviouristic
approach. Furthermore, assuming the existence of one-way 1-1 and onto functions, there exist
probability distributions which are not uniform (and are not even statistically close to a uniform
distribution) that nevertheless are indistinguishable from a uniform distribution (by any efficient
method). Thus, distributions which are ontologically very different, are considered equivalent by
the behaviouristic point of view taken in the definitions above.

A Relativistic View of Randomness

Pseudorandomness is defined above in terms of its observer. It is a distribution which cannot
be told apart from a uniform distribution by any efficient (i.e. polynomial-time) observer. Thus,
pseudorandomness is subjective to the abilities of the observer. To illustrate this point consider
the following mental experiment.

Alice and Bob want to play "head or tail” in one of the following four ways. In all of them
Alice flips an unbiased coin and Bob is asked to guess its outcome before the coin rests on the
floor. The alternative ways differ by the knowledge Bob has before making his guess. In the
first way, Bob has to announce his guess before Alice flips the coin. Clearly, in this way Bob
wins with probability 1/2. In the second way, Bob has to announce his guess while the coin
is spinning in the air. Although the outcome is determined in principle by the motion of the
coin, Bob does not have accurate information on the motion and thus we believe that also in
this case Bob wins with probability 1/2. The third way is similar to the second, except that
Bob has at his disposal sophisticated equipment capable of providing accurate information
on the coin’s motion as well as on the environment effecting the outcome. However, Bob
cannot process this information in time to improve his guess. In the fourth way, Bob’s
recording equipment is directly connected to a powerful computer programmed to solve the
motion equations and output a prediction. It is conceivable that in such a case Bob can
improve his guess of the outcome of the coin substantially.

We conclude that the randomness of an event is relative to the information and computing re-
sources at our disposal. Pseudorandom ensembles are unpredictable by probabilistic polynomial-
time algorithms (associated with feasible computations), but may be predictable by infinitely
powerful machines (not at our disposal!).

Effectiveness and Applicability

Another interesting property of the above approach to randomness is that it is effective in the
following two senses: First, one may construct an efficient (universal) test that distinguishes
pseudorandom distributions from ones which are not pseudorandom. In contrast, the problem
of determining whether a string is Kolmogorov-random is undecidable. Second, assuming the
existence of one-way 1-1 and onto functions, long pseudorandom strings can be efficiently and
deterministically generated from much shorter pseudorandom strings. Clearly, this cannot be the
case with Kolmogorov-random strings. The existence of pseudorandom generators has applica-
tions to the construction of efficient probabilistic algorithms. Such algorithms maintain the same
performance when substituting their internal coin tosses by pseudorandom sequences. Thus, for
every constant € > 0, the number of truly random bits required in a polynomial-time computation
on input & can be decreased (from poly(|z|)) to |z|°.

Randomness and Computational Difficulty

Randomness and computational difficulty play dual roles. This was pointed out already when
discussing one-way functions and hard-core predicates. The relationship between pseudorandom
generators and one-way computations is even a better illustration of this point. We have shown
above that the existence of one-way 1-1 and onto functions implies the existence of pseudoran-
dom generators. On the other hand, one can readily verify that any pseudorandom generator
constitutes a one-way function.

6. FURTHER EXTENSIONS AND APPLICATIONS

6.1. Pseudorandom Functions or Experimenting with the Random Source

In the previous subsection we have (implicitly) modelled phenomena as single events (bit strings).
This model suffices for describing phenomena in which the observer is passive: he can only record
the events which occur. A more powerful model allows the observer to conduct experiments.
Namely, "feed” the phenomenon with some values and measure the events which correspond to
these values. Modelling a phenomenon as a function from events to events (or as a function from

environment values to actions) is thus natural and useful. As in the previous subsections, we will
present definitions for a pair of indistinguishable phenomena, a pseudorandom phenomenon and
a generator of the latter. In other words, we will present definitions for indistinguishability of
functions, pseudorandom functions, and pseudorandom function generators. For our definition of
indistinguishable function ensembles we consider Turing machines (i.e. algorithms) with oracles.
These machines are able, in addition to the traditional computing steps, to make oracle queries:
place a string on a special tape and read an ”answer” in the next step. Loosely speaking, we
will say that two function ensembles are indistinguishable if any polynomial-time oracle Turing
machine cannot distinguish the case that its oracle is a function taken from the first ensemble and
the case that the oracle is a function taken from the second.

Definition 7 (Indistinguishability of Functions): Let Fy = {F} ;}ies and Fy = {F5;}ier be two
function ensembles, where F}; is a probability distribution on the functions f : {0, 1} — {0,1}.
We say that I} and F; are polynomially indistinguishable if for every probabilistic polynomial-time
oracle machine M, every constant ¢ > 0 and all sufficiently large ¢ € I

Ipy" (1) — " ()] < |i] 77,

where pj”(z) is the probability that M outputs 1 on input ¢ when querying an oracle randomly
chosen from the distribution £ ;.

Definition 8 (Pseudorandom Functions and Function Generators): The function ensemble F' =
{F;}icr is pseudorandom if it is polynomially indistinguishable from the ensemble H = {H,};¢;,
where H; is the uniform probability distribution on the set of functions f : {0, 1} — {0, 1}.

We say that F' = {F,} is a pseudorandom function generator if the following three conditions

hold:

1) There exists a probabilistic polynomial-time machine M, that, on input n, randomly selects
a function f from the distribution F,, and outputs a (succinct) description of f (denoted

)

2) There exists a (deterministic) polynomial-time machine M, that, on input f (a description

of f :{0,1}" — {0,1}) and a string = (€ {0,1}"), outputs f(z). That is, Mz(f,x) = f(=).

3) The ensemble }' is pseudorandom.

Similar definitions apply to function ensembles consisting of distributions F; on functions mapping
{0, 1} to {0, 1}!!l. Furthermore, one can easily transform ensembles of the first kind to ones of
the second type, and vice versa. As in subsection 3.2, we now ask whether there exist non-trivial
ensembles of pseudorandom functions, and furthermore whether such ensembles can be efficiently
generated. It turns out that this question reduces to the question handled in subsection 3.2.
Namely,

Theorem 6: Psecudorandom function generators exist if and only if pseudorandom generators
exist.

Proof’s Idea: The "only if” direction of Theorem 6 is easy. The generator first uses M; to
get an f and next uses M, to evaluate f(1), f(2),... The 7if” direction of the Theorem also
has a constructive proof. The construction proceeds in two steps: First one uses an arbitrary
pseudorandom generator to construct a pseudorandom generator GG that doubles the length of its
input. Next, GG is used to construct a pseudorandom function in the following manner. Let Gy(x)
denote the first |z| bits output by G on input z, and G/y(2) denote the last |z| bits output by G on
input 2. Extend the above notation so that for every bit ¢ and bit string o, Gor(2) = Go(G,(2)).
Now, let f.(y) = Gy(2), and F, is the distribution obtained by picking « uniformly among all n bit
strings and using the resulting function f,. It can be shown that F’ so defined is a pseudorandom
function generator. (It is interesting to note that this is not the case if we let f.(y) = G.(y).)

Further Discussion [t is interesting to point out the analogy between the above definition of
pseudorandom functions and Turing’s famous "test of intelligence”. (In Turing’s test of intelli-
gence, one is interacting arbitrarily with an unknown entity which is either a human or a machine.
The machine is said to be (pseudo)intelligent if the tester cannot distinguish the two cases.) In
both settings one interacts with an unknown function in order to latter determine the "nature” of
this function. Failure to determine the "true nature” is interpreted as a proof that the difference
in nature is of no importance (as far as functionality goes...). Pseudorandom functions can not be
predicted, even not in the following weak sense: any probabilistic polynomial-time oracle Turing
machine cannot predict the value of the oracle on an unasked query better than 50-50, when the
oracle is a pseudorandom function. This resembles the following quotation of Turing;:

I have set up on a Manchester computer a small programme using only 1000 units of storage,
whereby the machine supplied with one sizteen figure number replies with another within two
seconds. I would defy anyone to learn from these replies sufficient about the programme to
be able to predict any replies to untried values.

6.2. Applications to Cryptography

The most obvious application of pseudorandomness to cryptography is making one-time pads a
feasible and secure encryption method. One-time pads are the simplest and safest private-key
cryptosystem. A cleartext is encrypted by XORing its bits with the currently initial segment of
the (randomly selected) key, and the resulting ciphertext is decrypted by XORing its bits with the
very segment of the key. Each segment of the key is deleted after use, and thus no information
about the cleartext can be extracted from the ciphertext. The drawback of one-time pads is that
the length of the key in use must equals or even exceed the length of the messages sent. Namely, in
order to secretly pass a message of length [one must exchange secretly another message of length

[. This is not satisfactory both from a theoretical and practical point of view, since the aim is
to achieve high level of security in a much lower "cost”. In practice, "pseudorandom sequences”
are used instead of the randomly selected key of the one-time pad, but security can no longer
be asserted. Assuming the existence of pseudorandom bit generators (in the sense discussed
in section 3.2), one can replace the key of the one-way pad by a pseudorandom sequence and
prove that the resulting cryptosystem is secure in the following sense: whatever can be efficiently
computed from the ciphertext can be efficiently computed without it. In other words, as far as
polynomial-time computations are concerned, no information about the cleartext is revealed from
the ciphertext. Other applications of pseudorandomness to Cryptography use the construction
of pseudorandom functions (Theorem 6, section 3.4). For example, it is possible to produce
unforgeable message authentication tags and time-stamps. Assume two parties A and B, sharing
a secret key, communicate over a channel tampered by an adversary C'. The adversary may inject
messages on the channel. The parties would like to be able to verify that a message has arrived
from their counterpart, and not from the adversary. It is suggested that in order to authenticate
a message M, party A just applies the pseudorandom function f to M, and sends f(M) as the
authentication tag of M. Party B may then verify the validity of this authentication tag, being
confident that the message has been sent by A (and not injected by C'). We stress that if f is a
pseudorandom function then the above scheme is provably secure in the following sense: even
if C' gets polynomially many authentication tags to messages of his choice he cannot produce in
polynomial-time an authentication tag to any other message.

6.3. Necessary and Sufficient Conditions of the Existence of Pseudorandom
Generators

The condition in Theorem 4 can be relaxed so to derive a necessary and sufficient condition for
the existence of pseudorandom generators. Essentially, one requires a function f which is "one-
way on its iterates”; namely, that f is hard to invert on the distribution obtained by applying
the function iteratively k! times, where k is the length of the argument. Clearly, any one-way
permutation is one-way on its iterates.

Theorem 4': Functions which are one-way on their iterates exist if and only if pseudorandom
generators exist.

Proof’s Idea: For the — direction one should carefully modify the proof of Theorem 4. The «
direction follows by slightly modifying the pseudorandom generator. [

We believe that the reader will not find the above Theorem 4’ satisfactory, and urge him to

prove our conjecture that the above two conditions are in fact equivalent to the mere existence of
arbitrary one-way functions. Partial progress is reported in [GKL].

7. CONCLUSIONS

The fact that pseudorandom generators and functions exist under a reasonable complexity the-
oretic assumption (i.e. the existence of one-way 1-1 and onto functions), must be considered at
least a plausibility argument. Thus, every reasoning overruling the existence of such generators
must incorporate a demonstration that one-way 1-1 and onto functions do not exist. The possible
existence of pseudorandom generators does not allow us to consider "unbounded” random be-
haviour as necessarily arising from an "unbounded” source of randomness, since a pseudorandom
generator may expand a ”bounded” amount of randomness to an unbounded” amount of pseudo-
randomness. Furthermore, the possible existence of pseudorandom functions implies that a small
amount of randomness suffices in order to effliciently determine a random mapping from huge sets
into huge sets. All the above was discovered through a behaviouristic approach to the notion
of randomness. We believe that a behaviouristic approach is justified when studying computing
devices, as much as it is unjustified when studying ”thinking beings”.

ACKNOWLEDGEMENTS

First of all, I would like to thank two remarkable people who had a tremendous influence on
my professional development. Shimon Even introduced me into theoretical computer science and
closely guided me in my first steps. Silvio Micali led my way in the evolving foundations of
cryptography and shared with me his efforts of further developing them. Next, I would like to
thank Benny Chor for his indispensable contribution to our joint research, and for the excitement
and pleasure I had when collaborating with him. Special thanks to Leonid Levin for many
interesting discussions. Finally, I would like to thank Hugo Krawczyk for carefully reading an
earlier version of the manuscript, pointing out some errors, and suggesting several improvements.

BIBLIOGRAPHIC NOTES

For background on Computational Complexity consult an appropriate textbook such as [HU, ch.
12-13] and [GJ]. The notion of one-way functions was first suggested in [DH], and the most famous
candidate is due to [RSA]. A 1-1 function which is one-way, unless factoring is easy appears in [R].
Definition 1 (one-way functions), however, is a weaker form and is due to [Y]. A special case of
Definition 2 (indistinguishability) first appeared in [GM], the general case is from [Y]. Definitions
3 and 4 (pseudorandomness) are due to [Y], while Definition 5 (unpredictability) appears in [BM].
Theorem 2 (equivalence of Def’s 3 and 5) is implicit in [Y]. Definition 6 (hard-core predicate),
Construction 1 (pseudorandom generator based on a hard-core predicate) and Lemma 1 appear in
[BM]. Theorem 3 (ezistence of hard-core predicates assuming one-way 1-1 functions) is implicit
in [Y], where a sketch of the proof of Theorem 4 (pseudorandom generator based on one-way
1-1 functions) appears. A finer analysis, which leads to Theorem 4’ (a necessary and sufficient
condition for the existence of pseudorandom generators, appears in [L]. Predicates which are hard-
core of the particular number theoretic functions mentioned in section 2.4, appear in [BM] and
[ACGS]. Definitions 7 and 8 (pseudorandom functions) and Theorem 6 (pseudorandom generators
imply pseudorandom function generators) appear in [GGM]. Further developments appear in [LR].

REFERENCES

[ACGS] Alexi, W., B. Chor, O. Goldreich and C.P. Schnorr, ”RSA and Rabin Functions: Certain
Parts Are As Hard As the Whole”, Proc. 25th IEFFE Symp. on Foundation of Computer
Science, 1984, pp. 449-457, (to appear in SIAM J. Computing).

[BM] Blum, M., and Micali, S., ”How to Generate Cryptographically Strong Sequences of Pseudo-
Random Bits”, SIAM Jour. on Computing, Vol. 13, 1984, pp. 850-864.

[DH] Diffie, W., and M. E. Hellman, "New Directions in Cryptography”, IFFFE transactions on
Info. Theory, IT-22 (Nov. 1976), pp. 644-654

[GJ] Garey, M.R., and D.S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, W.H. Freeman and Company, New York, 1979.

[GGM] Goldreich, O., S. Goldwasser, and S. Micali, "How to Construct Random Functions”, Jour.
of ACM, Vol. 33, No. 4, 1986, pp. 792-807.

[GKL] Goldreich, O., H. Krawczyk, and M. Luby, ”7On the Existence of Pseudorandom Generators”,
priprint, 1987.

[GM] Goldwasser, S., and S. Micali, ”Probabilistic Encryption”, JCSS, Vol. 28, No. 2, 1984, pp.
270-299.

[HU] Hopcroft, J.E., and J.D. Ullman, Introduction to Automata Theory, Languages, and Com-
putation, Addison-Wesley Publishing Co., 1979.

[L] Levin, L.A. ”One-Way Function and Pseudorandom Generators”, Proc. 17th ACM Symp.
on Theory of Computing, 1985, pp. 363-365.

[LR] Luby, M., and C. Rackoff, ”Pseudo Random Permutation Generators and DES”, Proc. 18th
ACM Symp. on Theory of Computing, 1986, pp. 356-363.

[R] Rabin, M.O. "Digitalized Signatures and Public Key Functions as Intractable as Factoring”,
MIT/LCS/TR-212, 1979.

[RSA] Rivest, R., A. Shamir, and L. Adleman, "A Method for Obtaining Digital Signatures and
Public Key Cryptosystems”, Comm. ACM, Vol. 21, Feb. 1978, pp. 120-126

[Y] Yao, A.C., "Theory and Applications of Trapdoor Functions”, Proc. of the 23rd IEEE
Symp. on Foundation of Computer Science, 1982, pp. 80-91.

APPENDIX: ALTERNATIVE PRESENTATION FOR SECTION 4

Technically speaking, the proof of Theorem 3 can be simplified by replacing Yao’s XOR Lemma
with an alternative (and efficient) construction of Goldreich and Levin [2]: For every one-way func-
tion f, the inner-product mod 2 of # and r is a hardcore of the function f'(z,r) = (f(x),r). (By
the way, an accessible exposition of the proof of Yao’s XOR Lemma are now available (cf., [3]).)
Furthermore, I currently prefer an alternative presentation, as in [1], which proceeds as follows:
First, one shows (directly) that, for any one-way 1-1 onto function f and hardcore b, the function
G(s) = f(s)b(s)is a pseudorandom generator. Next, one shows how to transform any pseudoran-
dom generator into one which doubles the length of its input. Finally, we comment that it has
been shown that the existence of any one-way function implies the existence of a pseudorandom
generator [4].

References
[1] O. Goldreich. Foundation of Cryptography — Fragments of a Book. February 1995. Available
from http : //theory.lcs.mit.edu/ ~ oded/frag.html.

[2] O. Goldreich and L.A. Levin. Hard-core Predicates for any One-Way Function. In 21st STOC,
pages 25-32, 1989.

[3] O. Goldreich, N. Nisan and A. Wigderson. On Yao’s XOR-Lemma. FCCC, TR95-050, 1995.

[4] J. Hastad, R. Impagliazzo, L.A. Levin and M. Luby. Construction of Pseudorandom Gener-
ator from any One-Way Function. To appear in SICOMP. Preliminary versions by Impagli-
azzo et. al. in 21st STOC (1989) and Hastad in 22nd STOC (1990).

