
Studies inSecure Multiparty Computationand ApplicationsThesis for the Degree ofDOCTOR of PHILOSOPHYbyRan CanettiDepartment of Computer Science and Applied MathematicsThe Weizmann Institute of ScienceSubmitted to the Scienti�c Council ofThe Weizmann Institute of ScienceRehovot 76100, IsraelJune 1995Revised: March 1996

.

iAcknowledgementsFirst, a very special thanks is due to Oded Goldreich, my advisor. On top of being anexpert on experts, and a dear friend, he is a devoted advisor, far beyond the ordinary.Oded has the special property of always searching for the crux of any matter, anddisgustedly ridding himself of the rest. Once he sets his mind to a particular goal, he isthoroughly and uncompromisingly dedicated. This, together with his sharpness, his peculiarsense of humor, and his natural good-heartedness, make him a remarkable person indeed.My interaction with Oded deeply a�ected my approach to research, and to life in general.Time and again, his unconventional approach �rst looks odd, and after some thought itbecomes clear that his is the direct, simple and natural approach. It also becomes totallyunclear how I ever thought otherwise.His colorful and creative feedback on my writing style has made each one of my draftsa museum piece. His feedback also spiced up my fearful anticipation of their return (whichhas happened at an amazing speed). I am also thankful for the practical training I receivedin the art of dodging
ying shoes.During my years of study, I have made some special acquaintances from whom I havelearned a lot. Among these let me mention Benny Chor, Amir Herzberg (who is the mostpractical person I know), Hugo Krawzcyk, and Yishay Mansour.I have also enjoyed working with, and learned a lot from many many people. A verypartial list includes Amotz Bar-Noy, Amos Beimel, Mihir Bellare, Cynthia Dwork, GuyEven, Uri Feige, Sha� Goldwasser, Sandy Irani, Yoram Moses, Moni Naor, Tal Rabin,Baruch Schieber, and Moti Yung.Next I wish to thank my collaborators on the results that make up this thesis. I haveenjoyed, and learned a lot from interacting with them. The chapter on adaptive security inthe computational setting (Chapter 3) describes joint work with Uri Feige, Oded Goldreichand Moni Naor. The chapter on asynchronous secure computation (Chapter 4) describesjoint work with Oded Goldreich and Michael Ben-Or. The chapter on asynchronous Byzan-tine agreement (Chapter 5) describes joint work with Tal Rabin. The chapter on ProactiveSecurity (Chapter 6) describes joint work with Amir Herzberg.I have not found an appropriate list for Dana Ron, but I still thank her for her company,and for sharing a bottle of wine in countless dinners...A �nal thanks is to Ronitt, who besides being my source of happiness and sound support,has taught me more than a couple of things about research and life.

ii.

iiiAbstractConsider a set of parties who do not trust each other, nor the channels by which theycommunicate. Still, the parties wish to correctly compute some common function of theirlocal inputs, while keeping their local data as private as possible. This, in a nutshell, is theproblem of secure multiparty computation. This problem is fundamental in cryptographyand in the study of distributed computations. It takes many di�erent forms, depending onthe underlying network, on the function to be computed, and on the amount of distrust theparties have in each other and in the network.We study several aspects of secure multiparty computation. We �rst present new def-initions of this problem in various settings. Our de�nitions draw from previous ideas andformalizations, and incorporate aspects that were previously overlooked.Next we study the problem of dealing with adaptive adversaries. (Adaptive adversariesare adversaries that corrupt parties during the course of the computation, based on theinformation gathered so far.) We investigate the power of adaptive adversaries in severalsettings. In particular, we show how to construct adaptively secure protocols for computingany function in a computational setting, where the communication channels can be tappedby the adversary, and secure communication is achieved by cryptographic primitives basedon the computational limitations of the adversary. We remark that the problem of dealingwith adaptive adversaries in a computational setting was considered to be a hard openproblem.Next, we initiate a study of secure multiparty computation in asynchronous networks.We consider a completely asynchronous network where the parties are connected via securechannels. In this setting, we present appropriate de�nitions and construct protocols forsecurely computing any function. We present a detailed proof of security of our protocols.In the same asynchronous setting, we apply ideas and techniques of secure multipartycomputation to a classical problem in the �eld of distributed computing, namely the problemof reaching agreement in the presence of Byzantine faults. We present the �rst asynchronousByzantine Agreement protocol with optimal resilience (i.e., an adversary may corrupt up todn3 e � 1 of the n parties) and polynomial complexity.Finally we address the problem of maintaining the security of computer systems in thepresence of repeated, however transient break-ins. We present a new approach for dealingwith this problem. Using our approach, we show how systems can automatically recoverfrom transient break-ins. We introduce mechanisms for maintaining the security of internaldata of parties. We use secure multiparty computation as a formal setting for developingand analyzing our mechanisms.

Table of Contents
1 Introduction 11.1 Some prior and related work : 41.2 De�ning secure multiparty computation : 51.2.1 On semi-honest parties : 61.3 Adaptively secure computation : 71.4 Asynchronous secure computation : 91.5 Asynchronous Byzantine Agreement : 101.6 Proactive security: Maintaining security in the presence of transient faults : 121.6.1 Reconstructability and an application to secure sign-on : : : : : : : 142 De�ning secure multiparty computation 162.1 Non-adaptively secure computation : 172.2 Semi-honest parties : 202.3 Adaptively secure computation in the secure channels setting : : : : : : : : 212.4 Adaptively secure computation in the computational setting : : : : : : : : : 253 Adaptively secure computation in the computational setting 273.1 The problems in proving adaptive security: informal presentation : : : : : : 273.1.1 The secure channels setting : 273.1.2 Adaptive security in the computational setting : : : : : : : : : : : : 293.2 De�ning non-committing encryption : 313.3 A solution for non-erasing parties : 323.3.1 Adaptively secure computation given non-committing encryption : : 323.3.2 Constructing non-committing encryption : : : : : : : : : : : : : : : 343.3.3 Alternative implementations of non-committing encryption : : : : : 463.4 Honest-looking parties : 474 Asynchronous secure computation 494.1 Preliminaries : 494.1.1 The asynchronous model : 49iv

Table of Contents v4.1.2 De�ning secure asynchronous computation : : : : : : : : : : : : : : 504.1.3 Writing asynchronous protocols : 534.2 Primitives : 544.2.1 Byzantine Agreement : 544.2.2 Broadcast : 554.2.3 Agreement on a Core Set : 564.3 Fail-Stop faults : 594.3.1 Global-Share and Reconstruct : 594.3.2 Evaluating a linear gate : 604.3.3 Evaluating a multiplication gate : 614.3.4 The main protocol : 634.3.5 Proof of correctness | non-adaptive case : : : : : : : : : : : : : : : 654.3.6 Proof of correctness | adaptive case : : : : : : : : : : : : : : : : : : 704.4 Asynchronous veri�able secret sharing : 734.4.1 A de�nition : 734.4.2 An AVSS scheme : 744.4.3 E�ciently �nding a star : 764.4.4 On-line error correcting : 804.4.5 Correctness of the AVSS scheme : 814.5 Byzantine adversaries : 834.5.1 Global Veri�able Share : 844.5.2 Computing a multiplication gate : 844.5.3 The Byzantine protocol : 904.6 Lower bounds : 934.6.1 Fail-Stop adversaries : 944.6.2 Byzantine adversaries : 964-A Expected running times : 984-B Proofs of technical lemmas : 985 Asynchronous Byzantine agreement 1025.1 De�nitions : 1025.2 Overview of the protocols : 1035.3 Tools : 1045.3.1 Information Checking Protocol- ICP : : : : : : : : : : : : : : : : : : 1045.3.2 Broadcast : 1065.4 Asynchronous Recoverable Sharing | A-RS : : : : : : : : : : : : : : : : : : 1065.5 Asynchronous Weak Secret Sharing | AWSS : : : : : : : : : : : : : : : : : 1095.5.1 Two&Sum-AWSS : 1155.6 Asynchronous Veri�able Secret Sharing | AVSS : : : : : : : : : : : : : : : 1175.7 Common Coin : 1215.8 Byzantine Agreement : 1255.8.1 The Voting Protocol : 1255.8.2 The Byzantine Agreement protocol : : : : : : : : : : : : : : : : : : : 127

Table of Contents vi6 Proactive security 1316.1 De�nitions : 1316.2 The Protocol : 1336.3 Analysis : 1346.3.1 Insecure Links : 1366.4 On the Application to Secure Sign-On : 1366.5 An alternative de�nition of PP : 1377 Conclusion 139Bibliography 141

C h a p t e r 1Introduction
Consider a set of parties who do not trust each other, nor the channels by which theycommunicate. Still, the parties wish to correctly compute some common function of theirlocal inputs, while keeping their local data as private as possible. This, in a nutshell, isthe problem of secure multiparty computation. This problem takes many di�erent formsdepending on the underlying network, on the function to be computed, and on the amountof distrust the parties have in each other and in the network.The problem of secure multiparty computation is fundamental in cryptography, as wellas relevant to practical cryptographic applications (as demonstrated in the sequel). Inparticular, almost any known cryptographic setting and problem can be viewed as a specialcase of this general problem (e.g., encryption, authentication, commitment, signatures, zero-knowledge, and many others). Thus, secure multiparty computation may serve as a general,uniform paradigm for the study of most of cryptography. Furthermore, understanding securemultiparty computation is fundamental in the study of distributed systems in general.The parties' distrust in each other and in the network is usually modelled via an ad-versary that has control over some of the parties, and perhaps also over the communicationmedia, or channels. (We call parties controlled by the adversary corrupted.) Many di�erentadversary types (or adversary models) may be considered, each modelling di�erent problems,or addressing a di�erent setting. The requirements from solutions to secure computationproblems, as well as the techniques used, di�er considerably with the adversary models. Inorder to be able to present the work done in this �eld (and, in particular, our work), webrie
y sketch some prominent parameters de�ning adversary models.Computational power: We distinguish between adversaries that are computationally un-bounded and adversaries restricted to probabilistic polynomial time (PPT). We re-mark that throughout this work we assume that the uncorrupted parties are restrictedto PPT.Control over the communication: We distinguish three levels of control over the chan-nels (or, alternatively, three levels of abstraction of the channel security). In the mostabstract setting the adversary has no access to the channels. That is, each two uncor-rupted parties communicate securely without the adversary hearing or a�ecting the1

Introduction 2communication. This is the secure channels assumption. Alternatively, we may as-sume that the adversary can hear all the communication among all parties. Still, theadversary cannot alter the communication. This is the insecure channels assumption.Lastly, if the channels are unauthenticated then the adversary has full control overthe communication. That is, on top of hearing the communication the adversary candelete, generate and modify messages at wish. (We sometimes call insecure channelsauthenticated.)Synchrony: In a synchronous network all parties have a common, global clock. All mes-sages are sent on a clock `tick', and are received at the next `tick'. In an asynchronousnetwork no global clock exists. Furthermore, arbitrary (however �nite) time maylapse between the sending and receipt of a message. (In particular messages may bereceived in an order di�erent than the order of sending.) We remark that, althoughoften taken as a parameter of the network, synchrony may be considered as a param-eter of the adversary. In particular, setting the actual delays of the messages may benaturally considered as an additional power given to the adversary.Number of corrupted parties: We limit the number of corrupted parties at any giventime. An adversary is t-limited if at any given time at most t parties are corrupted. Aprotocol is t-resilient if it meets it speci�cations in the presence of t-limited adversaries.t-resilient protocols for secure computation are also called t-secure.Control over corrupted parties: We distinguish between eavesdropping adversaries thatonly gather information and do not alter the behavior of corrupted parties, and Byzan-tine adversaries that may alter the behavior of the corrupted parties in an arbitrary andcoordinated way. In asynchronous networks it makes sense to consider also Fail-Stopadversaries. Here the only diversion from the protocol allowed to the corrupted partiesis to \crash", that is to stop sending message at some time during the computation.(A crushed party may not resume sending messages.) For security considerations, weassume that faulty parties continue receiving messages and have an output.Adaptivity: By adaptivity we mean the way in which the corrupted parties are chosen. Itis simplest to assume that the set of corrupted parties is arbitrary but �xed (ofcourse,the uncorrupted parties do not know the identity of the corrupted parties). We callsuch adversaries non-adaptive. Alternatively, we may let the adversary choose whichparties to corrupt as the computation proceeds, based on the information gathered sofar. Once a party is corrupted it remains so for the rest of the computation. We callsuch adversaries adaptive.Lastly, we may let the adversary corrupt, in an adaptive way, a di�erent set of partiesat di�erent times during the computations. (Here, parties that were once corruptedmay become uncorrupted again, and there is no limit on the total number of par-ties that were corrupted at some time or another during the computation.) Suchadversaries are called mobile.In the sequel we often use the following terminology. A secure channels setting refers tocomputationally unbounded adversaries with secure channels. A computational setting refersto adversaries restricted to PPT, and insecure channels. Other parameters (e.g., synchrony,adaptivity) may vary.

Introduction 3A great deal of work has been done studying secure multiparty computation. Thisbody of work may be divided to three major e�orts as follows. First, ingenious protocolshave been devised for securely computing, in several adversary models out of the onescharacterized above, any function whose inputs are distributed among the parties. Next,ideas and techniques from multiparty computation have been successfully applied to otherproblems in cryptography and in computer science in general. Another e�ort aims at �nding\good" de�nitions for secure multiparty computation in di�erent adversary models. By\good" we mean de�nitions that correctly capture our intuitive notions, and are coherentand usable. Surprisingly, such de�nitions have proved to be very evasive. In particular,in spite of considerable e�orts (and some appreciable results), published de�nitions haveseveral shortcomings, described in the sequel.We remark that the current state of knowledge regarding secure multiparty computationis somewhat paradoxical: Constructions solving `any protocol problem' exist, accompaniedby neither a proof nor a good de�nition. The value and validity of most of these construc-tions is intuitively obvious. However, precise de�nitions and proofs are essential. To thebest of our knowledge, the �rst work that contains a de�nition, a protocol and a full prooffor a secure multiparty computation problem is the asynchronous secure computation workpresented here. In another part of our work we demonstrate a fundamental problem, namelythe adaptive security problem, where precise de�nition and analysis result in pinpointingthe di�culties and lead to a long-sought solution (for some important special cases).In this work we address several di�erent aspects of secure multiparty computation,ranging over the above e�orts. In the rest of the introduction we motivate and overview ourcontributions, as follows. We �rst brie
y overview, in Section 1.1, some of the prior workin this area that is directly relevant to our work. Next, for n 2 f2; : : : ; 6g, Section 1:n inthe introduction motivates Chapter n in the sequel.In Chapter 2 we address the problem of de�ning secure multiparty computation. Wepresent new formulations of de�nitions of secure multiparty computation in di�erent adver-sary models. In Section 1.2 we brie
y and roughly sketch our new ideas, as well as overviewsome prior de�nitions on which we base ours.In Chapter 3 we investigate the extra power of adaptive adversaries over non-adaptiveadversaries. We consider two cases: the secure channels setting and the computationalsetting. (In the secure channels setting, we distinguish two very di�erent variants.) We shednew light on this problem and re-evaluate some common beliefs. In particular, we showhow to construct adaptively secure protocols for computing any function in a computationalsetting.Next we study security in asynchronous networks. In Chapter 4 we de�ne a notion ofsecure multiparty computation in asynchronous networks. We also show how any functionscan be securely computed in our setting. We present detailed proofs of security of ourconstructions. In Chapter 5 we apply ideas and techniques of secure multiparty compu-tation to the classical Byzantine agreement problem. We present the �rst asynchronousByzantine Agreement protocol with optimal resilience (our protocol is (dn3e � 1)-resilient)and polynomial complexity.The notion of asynchronous veri�able secret sharing (AVSS) plays a key role in bothChapters 4 and 5. In each of the two chapters we present a very di�erent constructionof AVSS. The two constructions have di�erent resilience properties. We elaborate on the

1.1 Some prior and related work 4di�erences in the sequel.In Chapter 6 we address the problem of maintaining the security of computer systems inthe presence of repeated, however transient break-ins. We present a new approach, calledthe proactive approach, for dealing with this problem. Using our approach, we show howsystems can automatically recover from transient break-ins. We use secure multipartycomputation as a formal setting for developing and analyzing our mechanisms.We conclude by presenting, in Chapter 7, a brief personal view of the work and itsmerits. We also propose some directions for further research.1.1 Some prior and related workWe brie
y overview three works that are immediately relevant to our work. We also mentionsome other prominent works in secure multiparty computation. (We present other relevantworks in the sequel.)The problem of secure computation was �rst formulated by Yao for the two-party casein 1982 [Y1]. Five years later, Goldreich, Micali and Wigderson showed how to securelycompute any function whose inputs are divided among the parties, in a computational setting[GMW]. That is, in [GMW] a synchronous network of n parties is considered, where thecommunication channels are insecure, and the parties, as well as the adversary, are restrictedto PPT. In this model they showed, under the assumption that one-way functions withtrapdoor exist, how to construct n-secure protocols for computing any function, in thepresence of eavesdropping adversaries. In the case of Byzantine adversaries they show(dn2e�1)-secure protocols for computing any function. Their protocols can be shown securein the presence of non-adaptive adversaries.Ben-Or, Goldwasser and Wigderson [BGW] (and, independently, Chaum, Crepeau andDamgard [CCD]) study secure multiparty computation in the secure channels setting. Theyshow that: (a) If the adversary is eavesdropping then there exist (dn2 e� 1)-secure protocolsfor computing any function. (b) if the adversary is Byzantine, then any function can be(dn3e � 1)-securely computed. Furthermore, they show that these bounds on the number ofcorruptions are tight. These protocols can be shown secure in the presence of non-adaptiveadversaries. Adaptive security (i.e., security in the presence of adaptive adversaries) isprovable in certain variants of this setting. We elaborate on this point in Chapter 3.Goldwasser and Levin build on a long sequence of works studying the case of Byzantineadversaries limited to PPT, where a majority of the parties may be corrupted [GwL].Chor and Kushilevitz study secure multiparty computation with corrupted majority ofthe parties in the secure channels setting [CK]. Goldreich, Goldwasser and Linial studysecure multiparty computation in the presence of insecure channels and computationallyunlimited adversaries [GGL]. Ostrovsky and Yung study secure multiparty computation inthe presence of secure channels and mobile adversaries [OY]. Micali and Rogaway [MR],and also Beaver [Be], propose de�nitions for secure multiparty computation in the securechannels setting, in the presence of adaptive adversaries.

1.2 De�ning secure multiparty computation 51.2 De�ning secure multiparty computationWe attempt at formulating coherent, lean, and usable de�nitions, that adequately captureour intuitive notion of security of protocols for multiparty computation in di�erent adversarymodels. In the sequel we make extensive use of our de�nitions, when proving security of ourprotocols. Our de�nitions build on previously known ideas. We �rst present these ideas, aswell as a brief critique and comparison of relevant works. Next we present our interpretationand new ideas.Micali and Rogaway [MR], and independently Beaver [Be] introduced the followingmethodology for de�ning secure multiparty computation (or, more speci�cally, secure eval-uation of a function whose inputs are distributed among the parties). First an ideal model forsecure multiparty computation is formulated. A computation in this ideal model, describedbelow, captures \the highest level of security we can expect from multiparty function eval-uation". Next we require that executing a secure protocol � for evaluating some function ofthe parties' inputs in the actual, real-life setting is \equivalent" to evaluating the functionin the ideal model.A computation in this ideal model proceeds as follows. First an ideal-model adversarychooses to corrupt a set of parties (either adaptively or non-adaptively), learns their inputs,and possibly modi�es it. Next all parties hand their (possibly modi�ed) inputs to anincorruptible trusted party. Next the trusted party computes the expected output (i.e., thefunction value) and hands it to all parties. The uncorrupted parties output whatever theyreceive from the trusted party. The corrupted parties output some arbitrary function oftheir joint inputs, random inputs, and the value received from the trusted party. Looselyspeaking, executing � in the real-life setting is said to be \equivalent" to evaluating thefunction in the ideal model, if the same e�ect on the computation achieved by a real-lifeadversary can be also achieved by an ideal-mode adversary.The de�nitions in [MR] and [Be] di�er in the notion of equivalence of computations. In[MR] the ideal-model adversary is required to very closely mimic the operation of the real-life adversary, down to precise details. In particular, the ideal-model adversary is limited tocreating a simulated environment for the real-life adversary (that looks the same as a realenvironment), via a special type of black-box simulation. In [Be] a di�erent approach ispursued. First a general notion of comparing security of protocols is formulated, as follows.Consider two protocols � and � for computing the same function. Essentially, protocol � isat least as secure as protocol � if an adversary attacking � cannot a�ect the outputs of theparties more than an adversary attacking �. (Here some technical \interface" algorithms areused when � and � operate in di�erent adversary models.) Next, a protocol for evaluatinga function is secure if it at least as secure as the trivial protocol for evaluating the functionin the ideal model. We remark that, although their approach is general, both Micali andRogaway and Beaver formalize their de�nitions only in the secure channels setting.Our de�nitions use ideas from both works. We �rst de�ne an ideal-model adversary,based on the above description. Next we require that for any real-life adversary B attackinga secure protocol � there exists an ideal-model adversary A that has the same e�ect on thecomputation as B, even though A operates in the ideal model. That is, on any inputs forthe parties, the random variable describing the outputs of all parties in the ideal model isdistributed \similarly" to the random variable describing the outputs of all parties in thereal-life model. (The particular notion of similarity, e.g. perfect equality or computational

1.2 De�ning secure multiparty computation 6indistinguishability, depends on the speci�c adversary model.) We emphasize that thecomplexity of the ideal-model adversary A should be comparable to the complexity ofthe real-life adversary B. We elaborate on this point in Chapters 2 and 3. Our de�nitionsincorporate an important additional concern that was left unnoticed by previous de�nitions.We present this concern in Section 1.2.1 below.We believe that our simple and straightforward notion of equivalence of computations,which does not restrict the operation of the ideal-model adversary, su�ces for de�ningsecurity. In the sequel we also use a more restrictive and technical notion of equivalence ofa real-life computation to a computation in the ideal model. Here we limit the ideal-modeladversary A to black-box simulation of the real-life adversary. (A more precise de�nition ofthis simulation is presented in the sequel.) We note that our notion of black-box simulationis less restrictive than the [MR] notion.We remark that Goldwasser and Levin take a slightly di�erent approach at de�ningsecure multiparty computation [GwL]. First they extract the `inevitable advantages' ofthe adversary in the ideal model (we brie
y sketch these `inevitable advantages' below).Next they say that a protocol is robust if for any adversary, there exists an \equivalent"adversary that is limited to these `inevitable privileges', and that has the same e�ect onthe computation. Their notion of robustness of protocols has the advantage that it isindependent of the speci�c function to be computed (except for some technical subtletiesignored in this presentation).The `inevitable privileges' of the adversary, extracted from the ideal model, can besketched as follows. First, the adversary may choose to corrupt parties (either adaptivelyor non-adaptively). Next, if the adversary is Byzantine then the inputs of the corruptedparties may be modi�ed. (However, this is done without knowledge of the inputs of theuncorrupted parties). Next, the adversary may learn the speci�ed outputs of the corruptedparties. This may inevitably reveal some information on the inputs of the uncorruptedparties. Furthermore, if the adversary is adaptive then it can corrupt parties, after thecomputation is completed, based on the output of the computation.11.2.1 On semi-honest partiesThe problem of secure computation in the presence of adaptive adversaries is intimatelyrelated to the following concern. In a distributed scenario where no party is thoroughlytrusted, there is no reason to believe that even uncorrupted parties follow their protocolsto the dot. Honest parties internally deviate from their protocol in many real-life scenarios,such as users that keep record of their passwords, stock-market brokers that keep recordsof their clients' orders, operating systems that \free" old memory instead of erasing ortake periodic snapshots of the memory (for error recovery purposes), and computers thatuse pseudorandom generators as their source of randomness instead of truly random bits.Consider for example a protocol in which party A is instructed to choose a random numberr for party B, hand r to B, and then to erase r from its own memory. Can B be certain1It turns out that if a majority of the parties are corrupted then, in addition to the privileges describedabove, the adversary cannot be prevented from \quitting early", i.e. disrupting the computation at anytime. However, this is done without knowing the output with more certainty than the uncorrupted parties.We do not discuss situations of corrupted majority in this work.

1.3 Adaptively secure computation 7that A no longer knows r? Furthermore, can A now convince a third party (or an adversarythat decides to corrupt A) that he no longer knows r?For this purpose we introduce the notion of a semi-honest party.2 Such a party \appearsas honest" (i.e., seems to be following its protocol) from the point of view of an outsideobserver; however, internally it may somewhat deviate from his protocol. For instance, asemi-honest party may fail to erase some internal data, or use randomness not as instructed.(However, semi-honest parties do not collaborate.) We wish to have protocols that are secureeven when parties are not thoroughly trusted, or in other words when the uncorruptedparties are semi-honest rather than honest. That is, say that a protocol �0 is a semi-honestprotocol for a protocol � if a party running �0 \appears as" an honest party running �.(We de�ne this notion more precisely in Chapter 2.) When the parties are not thoroughlytrusted we want the requirements from � to be satis�ed even if the uncorrupted partiesare running some semi-honest protocol for �. In the sequel, we consider several alternativenotions of semi-honest parties, di�ering in the \amount of allowed internal deviation" fromthe protocol.We distinguish three types of semi-honest behaviour. The most `benign' (and hardest toprevent) is simply not erasing internal data. We call such parties non-erasing. Alternatively,one may consider parties that internally deviate from the protocol in an arbitrary way, aslong as the deviation is undetectable by any external test (that represents a collaborationof the other parties). We call such parties honest-looking. Finally, we consider partiesthat deviate from their protocols in a way that is undetectable only by parties running theprotocol. Such parties are called weakly honest. We elaborate on (and present de�nitionsof) the three types of semi-honest parties in Chapter 2.We remark that the di�erence between computations in the presence of totally honestparties and computations in the presence of semi-honest parties becomes evident only inthe presence of adaptive adversaries.1.3 Adaptively secure computationWe investigate adaptively secure multiparty computation (that is, computation secure in thepresence of adversaries that choose which parties to corrupt as the computation proceeds,based on the information gathered so far). Unlike the case of non-adaptive adversaries,which is pretty well understood, the case of adaptive adversaries contains various aspectsthat were previously overlooked. In particular, unlike folklore belief, proving adaptivesecurity of protocols in both the secure channels and computational settings encountersfundamental di�culties. We investigate these di�culties and provide solutions for someimportant special cases.The di�erence between adaptive and non-adaptive adversaries may be best demonstratedvia an example. Consider the following secret sharing protocol, run in the presence of anadversary that may corrupt t = O(n) out of the n parties: A dealer D chooses at randoma small set S of m = pt parties, and shares its secret among these parties using an m-out-of-m sharing scheme. In addition D publicizes the set S. Intuitively, this scheme lacks insecurity since S is public and jSj � t. Indeed, an adaptive adversary can easily �nd D's2We borrow the name from an earlier version of [GMW], where it is used for di�erent purposes.

1.3 Adaptively secure computation 8secret, without corrupting D, by corrupting the parties in S. However, any non-adaptiveadversary that does not corrupt D learns D's secret only if S happens to be identical to thepre-de�ned set of corrupted parties. This happens only with exponentially small probability.Consequently, this protocol is secure in the presence of non-adaptive adversaries.It turns out that the power of an adaptive adversary depends, in a crucial way, on theamount in which uncorrupted parties internally deviate from their protocols. Consider aparty just corrupted by the adversary, during the course of the computation. If the partyis totally honest, then the adversary will see exactly the data speci�ed in the protocol;in particular, any data that was supposed to be erased will be indeed erased. In this caseadaptively secure computation can be carried out, using known primitives, in all the settingsdiscussed below [BH]. If, however, the party did not erase old data (or more generally ifthe party is semi-honest, as informally de�ned in Section 1.2), then the adversary may seea great deal of other data, such as all the past random choices of the party and all themessages ever received and sent by the party. (The adversary may also see other, moreproblematic types of internal data. We elaborate on this point in the sequel.) Therefore,the adversary is much more powerful in the presence of semi-honest parties. The moreallowed \internal deviation" from the protocol, the stronger the adversary becomes.We �rst consider the secure channels setting. Here the [BGW, CCD] protocols can beproven adaptively secure in the presence of non-erasing parties (see Section 1.2.1). Funda-mental problems arise when trying to prove adaptive security of protocols in the presenceof more general types of semi-honest parties. We sketch these problems.Finally we concentrate on the computational setting, and on non-erasing parties. Isadaptively secure computation possible in this scenario? This question has remained opensince the result of [GMW].We answer this question in the a�rmative. The problems encountered, and our solution,are presented via the following transformation. It is a folklore belief that any secure protocolin the secure channels setting can be transformed into a secure protocol in the computa-tional setting, by encrypting each message using a standard (semantically) secure encryptionscheme. This belief can indeed be turned into a proof, provided that only non-adaptive ad-versaries are considered. Major di�culties are encountered when trying to prove this beliefin the presence of adaptive adversaries. We show how these di�culties are overcome if anovel protocol for transmission of encrypted data is used, instead of standard encryption.We call such encryption protocols non-committing. (Standard encryption schemes are notnon-committing.) We also construct a non-committing encryption protocol, based on theexistence of a primitive called common domain trapdoor systems. This primitive exists underthe RSA assumption.Non-committing encryption can be roughly described as follows. Traditional encryptionschemes have the extra property that the ciphertext may serve as a commitment of thesender to the encrypted data. That is, suppose that after seeing the ciphertext, a thirdparty requests the sender to reveal the encrypted data, and show how it was encrypted anddecrypted. Using traditional encryption schemes it may be infeasible (or even impossible)for the sender to demonstrate that the encrypted data was any di�erent than what wasindeed transmitted. (In fact, many times encryption is explicitly or implicitly used forcommitment.) In a non-committing encryption scheme the ciphertext cannot be used tocommit the sender (or the receiver) to the transmitted data. That is, a non-committing

1.4 Asynchronous secure computation 9encryption protocol allows a simulator to generate dummy ciphertexts that look like genuineones, and can be later \opened" as encryptions of either 1 or 0, at wish. We note thatcommunication over absolutely secure channels is trivially non-committing, since the thirdparty sees no \ciphertext".Our construction of non-committing data transmission requires all parties to participatein the secure transmission of information between two parties. For bene�t of other possibleapplications, we note that our construction can be carried out in two stages; the �rst stage,which requires the participation of all parties, does not depend on the data to be delivered(which may even be undetermined at this stage), whereas the second stage consists of asingle message transmission from the data-sender to the receiver. Our scheme is resilient aslong as at least one party remains uncorrupted.1.4 Asynchronous secure computationWe initiate a study of security in asynchronous networks. We consider a completely asyn-chronous network of n parties connected by private channels. There is no global clock,and messages can be arbitrarily delayed on the channels (however, each message sent iseventually received). Furthermore, the order of the messages on a channel need not bepreserved.If the adversary is eavesdropping, then any synchronous secure protocol can be run inan asynchronous network using any synchronizer (e.g. [Aw]). It can be seen that in thiscase, the security (in the synchronous sense, as de�ned in Chapter 2) of the protocol ismaintained. However, asynchrony combined with the possibility of faults has devastatingconsequences on the computational capabilities of a network. Fischer, Lynch and Paterson[FLP] showed that deterministic protocols cannot achieve even the basic goal of Consensusin an asynchronous network in the presence of even one Fail-Stop fault. Consequently, every(randomized) protocol reaching Consensus must have some in�nite runs (on every input).Chor and Moscovici [CM] characterized the possible \tasks" in the presence of t Fail-Stopfaults: roughly speaking, the output of any computation, in the presence of t potentialfaults, cannot be based on more than n � t of the inputs (since up to t parties may neverjoin the computation).We de�ne secure computation in this asynchronous setting. Following the methodologyof synchronous de�nitions (see Section 1.2), we �rst envision an ideal model for secure com-putation in our asynchronous setting. This ideal model is di�erent than the `synchronous'ideal model. We then say that a real-life computation is secure if it is \equivalent" to acomputation in the ideal model. A computation in the ideal model proceeds as follows. Alsohere , an incorruptible trusted party is added to the network. Essentially, in the presence of tpotential faults (or corruptions), the trusted party cannot wait to hear from more than n� tparties in the network (since up to t may never join the computation). Instead, the trustedparty outputs an \estimation" to the function value, based on the inputs of the parties insome \core" set of size at least n � t. This \core" set, chosen by the adversary, should beindependent of the inputs of the uncorrupted parties. Furthermore, this \core" set shouldappear explicitly in the output of the uncorrupted parties (otherwise, the output may haveno sense). The corrupted parties should learn nothing from the computation, other thanthe estimated function value, and the agreed \core" set.

1.5 Asynchronous Byzantine Agreement 10We show that whatever can be computed in this asynchronous setting can be computedin a secure manner. We consider two types of adversaries. First, we show how to t-securelycompute any function (in the asynchronous sense), provided that the adversary is Fail-Stop,and n � 3t+ 1. Next, we show how to t-securely compute any function in the presence ofByzantine adversaries, provided that n � 4t + 1. In our protocols, there is no probabilityof error in the output of the uncorrupted parties. Although in�nite runs of our protocolsmust exist, they occur with probability (or measure) zero.The resilience of our construction to Fail-Stop adversaries is optimal. That is, we demon-strate functions which cannot be n=3-securely computed (or even approximated better thanguessing at random) in the presence of Fail-Stop adversaries. The resilience of our construc-tion for Byzantine adversaries is optimal with respect to errorless protocols. That is, wedemonstrate functions that cannot be dn4 e-securely computed in the presence of Byzantineadversaries, if no errors are allowed. Subsequent to our work Ben-Or, Kelmer and Rabinshowed, using very di�erent constructions, how any function can be (dn3e�1)-securely com-puted in the presence of Byzantine adversaries, and with exponentially small probability oferror [BKR].Our constructions adapt the [BGW] synchronous constructions to an asynchronous envi-ronment. Furthermore, we develop several new tools which may be of separate interest. Wedescribe a constant time, errorless Asynchronous Veri�able Secret Sharing (AVSS) schemefor n � 4t+1. (di�erent constructions [Fe, CR] have a small probability of error.) Our AVSSscheme employs a method for `on-line' error correcting of Generalized Reed Solomon codes,as well as a `specially tailored' approximation scheme for the maximum-clique problem ina graph.Another tool is a protocol for agreement on a common \core" set of parties. At theonset of this protocol, each party knows of a di�erent set of parties that have completedsome stage (e.g., the sharing of their inputs has been successfully completed). The protocolenables the uncorrupted parties to agree on a large enough \core" set of parties, such thatall the parties in this core set have indeed completed the speci�ed stage.We present a full proof of security of our constructions. For clarity of presentation, we�rst prove that our protocols are secure against non-adaptive adversaries. Next we modifythe proofs to deal with adaptive adversaries.1.5 Asynchronous Byzantine AgreementThe problem of reaching agreement in the presence of faults is one of the most fundamentalproblems in the �eld of distributed computing. A particularly interesting variant of thisproblem, introduced by Pease, Shostak and Lamport [PSL], allows Byzantine adversaries.A standard formulation of this problem, called the Byzantine agreement (BA) problem,follows: design a protocol that allows the uncorrupted parties to agree on a common value.The agreed value should be the input value of one of the uncorrupted parties. We remarkthat Byzantine agreement is a very limited special case of secure multiparty computation,where privacy of the inputs of the parties need not be kept. Still, privacy-maintainingprimitives will play a key role in our construction.The BA problem was extensively investigated in various adversary models (out of theones characterized at the beginning of the introduction). We refer the interested reader to

1.5 Asynchronous Byzantine Agreement 11the surveys of Fischer [F] and Chor and Dwork [CD]. However, despite extensive researcha few important questions have remained open. One of these questions is the focus of thiswork.Bounds on the resilience of BA protocols were proved in [PSL]. There, it was showedthat agreement cannot be reached by a deterministic protocol in an n-party synchronousnetwork with dn3 e Byzantine faults. Karlin and Yao [KY] generalized this result to ran-domized protocols. These results apply also to asynchronous networks. Furthermore, theimpossibility result of Fischer, Lynch and Paterson for deterministic protocols [FLP] impliesthat any (randomized) protocol reaching BA must have non-terminating runs. Bracha de-scribes an (dn3e � 1)-resilient asynchronous BA protocol which runs in 2�(n) expected time[Br]. Feldman and Micali describe a synchronous (dn3e � 1)-resilient BA protocol, whichruns in constant expected time [FM]. Feldman [Fe] generalizes the [FM] construction to anasynchronous setting, yielding a constant expected time, (dn4e � 1)-resilient asynchronousBA protocol. All of these works allow computationally unbounded adversaries ([FM, Fe]assume secure channels).A long standing open question (cf. [FM, CD]) is whether there exists an (dn3 e � 1)-resilient asynchronous BA protocol with polynomial (time and message) complexity.We answer this question in the a�rmative. We consider a completely asynchronousnetwork of n parties with secure channels, and computationally unlimited, adaptive ad-versaries. In this setting, we describe a BA protocol that is (dn3 e � 1)-resilient. Withoverwhelming probability all the uncorrupted parties complete our protocol. Given that allthe uncorrupted parties have completed the protocol, they do so in constant expected time.The constructions we use in our protocol are of independent interest.Let us overview the chain of results leading to our result, and sketch the techniques used.Rabin [MRa2] describes an (dn8e � 1)-resilient BA protocol that runs in constant expectedtime, provided that all the parties have access to a `global coin' (namely, a common sourceof randomness). Rabin's construction can be used in synchronous as well as asynchronousnetworks. Bracha [Br] improved the resilience of Rabin's protocol to dn3 e� 1. Furthermore,He proposed a very simple (however ine�cient) scheme for implementing `global coin'. (Thisine�ciency results in exponential running time.) The essence of the [FM] (dn3 e�1)-resilientsynchronous BA protocol is an e�cient scheme for generating such a `global coin'; once thisglobal coin is generated, the parties proceed in a similar manner to Rabin's and Bracha'sprotocols. The [FM] protocol for generating this `global coin' relies heavily on a Veri�ableSecret Sharing (VSS) scheme. (The notion of VSS was introduced in [CGMA].) Feldman[Fe] describes an asynchronous construction for `global coin' and BA, given an r-resilientAsynchronous VSS (AVSS) scheme. This construction is min(r; dn3 e�1)-resilient. (dn4 e�1)-resilient AVSS schemes are presented in [Fe, BCG]. (The [BCG] scheme is presented inSection 4.4.) Up to now, no known AVSS scheme has been more than (dn4e � 1)-resilient.In this chapter, we construct an (dn3e � 1)-resilient AVSS scheme. We also present aconsiderably modi�ed version of Feldman's construction for reaching BA given an AVSSscheme. Put together, these constructions constitute an asynchronous (dn3 e � 1)-resilientBA protocol. We note that our (dn3 e � 1)-resilient AVSS scheme has applications in othercontexts as well (for instance, in [BE, BKR]).We o�er an intuitive exposition of the di�culties encountered in trying to devise an(dn3e � 1)-resilient AVSS scheme. Generally, in an asynchronous network of n parties with

1.6 Proactive security: Maintaining security in the presence of transient faults 12t potential faults, a party can never wait to communicate with more than n � t otherparties, because the corrupted parties may not cooperate. An AVSS scheme is composedof two phases: (1) a sharing phase, in which a dealer shares a secret among the parties,and each party veri�es for himself that a unique secret is de�ned by the shares, and (2) areconstruction phase in which the parties reconstruct the secret from its shares. A party Pmust be able to complete the execution of the sharing phase even if he has communicatedwith only n� t of the parties. This means that he has veri�ed the existence of a well de�nedsecret only with this subset of the parties, denoted C1. When P proceeds to carry out thereconstruction phase he again can communicate with at most n � t of the parties. Denotethis set C2. The set C2 might include parties with whom P has not communicated in thesharing phase, hence P does not know whether their shares are in accordance with thesecret de�ned by the shares of the parties in C1. (Possibly, the parties that are not in C1did not receive shares at all.) Thus, P can depend only on the parties in the intersection,C, of the two sets. Still, t out of the parties in C may be corrupted. As long as n � 4t+ 1,it holds that jCj � 2t+1; thus, the majority of the parties in C are uncorrupted. However,when n = 3t + 1, it is possible that jCj = t + 1. In this case, there might be only a singleuncorrupted party in C.We overcome these di�culties by devising a tool, called Asynchronous Recoverable Shar-ing (A-RS), assuring that, with overwhelming probability, the shares of all the parties inthe set C1 (de�ned above) will be available in the reconstruction phase. The A-RS protocoluses a tool presented in [TRa, RB], called Information Checking Protocol. Using A-RS as aprimitive, we construct a secret sharing scheme, called Asynchronous Weak Secret Sharing(AWSS). Using AWSS, we construct our AVSS scheme. (Both the AWSS and the AVSSschemes generalize synchronous constructs introduced in [TRa, RB].)1.6 Proactive security: Maintaining security in the presenceof transient faultsTraditionally, cryptography is focused on protecting interacting parties (i.e., computers)against external malicious entities. Such cryptographic tasks include private communica-tion over insecure channels, authentication of parties, unforgeable signatures, and generalmultiparty secure computation. An inherent property of all these scenarios is that once aparty is corrupted it remains this way.As computer systems become more complex, internal attacks on systems (i.e., attacksthat corrupt components within a system) become an even more important security threat(e.g., [LE, St]). Such attacks may be performed, for instance, by internal (human) fraud, op-erating system weaknesses, or Trojan horse software (e.g. viruses). We use the generic termbreak-ins for all these attacks. Security administrators often �nd break-ins more alarmingthan external attacks, such as line tappings.Break-ins are often temporary, or transient (e.g., [ER]). Thus the paradigm of \bad oncemeans bad forever" does not hold here. Still, known solutions to break-ins do not includemechanisms for taking advantage of possible automatic recovery of a component, in casethat the fault is transient. This approach is contrasted with the traditional approach offault-tolerance, which relies heavily on the fact that faults are transient, and on the reuse ofrecovered components. We believe that the idea of recovering and reusing components that

1.6 Proactive security: Maintaining security in the presence of transient faults 13have once been corrupted can be extremely useful also for cryptographic purposes. Thisidea, and in particular the recovery process, is the focus of this work.We propose a new approach to designing security systems in the presence of perpetual,however transient break-ins. This approach, which we call the proactive approach, may beoutlined as follows.(a). Distribute the tasks and responsibilities among several components ofthesystem. Design the system so that the overall security remains intact as long asat any instance the security of only some fraction of the components is compro-mised.(b). Design a mechanism for automatic recovery of a given component from abreak-in, possibly with the help of other components. Recovery will be guaran-teed only if the component is no longer corrupted (i.e., controlled by an adver-sary).(c). Apply the automatic recovery mechanism periodically to all components inthe system.This way, the overall security provided by the system remains intact in the presence ofbreak-ins, as long as no large fraction of the components are broken into all at once (thatis, between two consecutive applications of the recovery mechanism).The automatic recovery process is at the heart of proactive security. The goal of therecovery process is to ensure that once a component is recovered, it will again contributeto the overall security of the system. This goal is somewhat tricky. Even after the attackerloses control of a component, it still knows the internal data of the component (e.g., theprivate cryptographic keys). Thus, a �rst step in the recovery process must be to somehowhand the recovering component some new secrets unknown to the attacker. These secretscan then be used to, say, choose new keys. The obvious way to generate such secrets is touse some source of \fresh", physical randomness. However, such a source may not be readilyavailable. (In the sequel we demonstrate other reasons for not using fresh randomness ineach round, even when it is available.) In this paper we show how, using the non-corruptedcomponents in the system, new \pseudorandom" secrets can be generated without freshrandomness. In Section 1.6.1 we describe an important application of our PP protocol tosecure sign-on mechanisms.We use multiparty secure computation as a formal setting for our work, as follows. Weconsider a system (network) of components (parties) where every two parties are connectedvia a communication channel. (We elaborate below on the security requirements from thechannels.) Parties may be temporarily corrupted by a mobile adversary. That is, theadversary may choose to corrupt di�erent parties at di�erent times (i.e., communicationrounds), as long as at any given time the number of infected parties is limited. We stressthat there may be no party that has never been infected! Secure multiparty computationin the presence of mobile adversaries was previously studied by Ostrovsky and Yung [OY].We remark that here the notion of semi-honest parties (discussed in Section 1.2) isirrelevant, since all components are programmed and run by the same entity. In fact,erasing old data plays a key role in our constructions.We assume that, even if the faults are Byzantine, once the adversary has left the partyresumes executing its original protocol (while its memory may be corrupted). This assump-

1.6 Proactive security: Maintaining security in the presence of transient faults 14tion is explained as follows. If the adversary can control the protocol after it leaves, thenthere is little meaning to recovery, and regaining security would be impossible. Further-more, in practice there are reasonable ways to ensure that the code is not modi�ed, such asphysical read-only storage or comparison against backup copies. These techniques are usedregularly in many systems.In this work, we describe a scheme in which the parties use randomness only at thebeginning of the computation. At each round, the scheme supplies each uncorrupted partywith a \fresh" pseudorandom number, unpredictable by the adversary, even if this partywas corrupted in previous rounds, and if the adversary knows all the other pseudorandomnumbers supplied to any party at any round. In particular, these pseudorandom numberscan be used by a recovering party just as fresh random numbers (e.g., for regaining security).We call such a scheme a proactive pseudorandomness (PP) protocol.We require the following weak conditions. First, we assume that the adversary is limitedto probabilistic polynomial time. Next, we require that in each round of computation thereis at least one secure party. A party is secure at a given round if it is uncorrupted at thisround, and it has a secure channel to a party that was secure in the previous round. Thischannel has to be secure only during this round.Our construction is simple, using pseudorandom functions [GGM2, GGM1]. A standardcryptographic tool which is believed to behave as a pseudorandom function family is theData Encryption Standard (DES). Our construction requires each server to apply DES onceper user at each round.1.6.1 Reconstructability and an application to secure sign-onWe describe an important application of our PP protocol to secure sign-on mechanisms.Reconstructability. Pseudorandom generators, being deterministic functions applied toa random seed, have the following advantage over truly random sources. A pseudorandomsequence is reconstructible, in the sense that it is possible to generate exactly the samesequence again by using the same seed. This property is very useful for several purposes,such as repeatable simulations and debugging. Our application to secure sign-on also makesuse of this property.In our setting, we say that a PP protocol is reconstructible if the value generated withineach party at each round depends only on the seeds chosen by the parties at the beginningof the computation. In particular, these values should not depend on the adversary.Reconstructability is not easily achieved for proactive pseudorandomness protocols. Inparticular, the basic protocol described here is reconstructible only if the adversary is eaves-dropping. Fail-Stop adversaries (and also Byzantine adversaries, at the price of slightlycompromising the security) could be tolerated by simple modi�cations.An application to Secure Sign-On. Unix and other operating systems provide securityfor the passwords by storing only a one-way function of the passwords on disk [MT]. Thistechnique allows authentication of the users, secure against eavesdropping the password �le.Session security is not provided if the communication channels are not secure.When constructing secure LAN systems, it is not realistic to assume that the under-lying communication channels are secure. Security mechanisms, therefore, avoid sending

1.6 Proactive security: Maintaining security in the presence of transient faults 15the password \on the clear". Instead, they use the user's password to derive a sessionkey, with which they secure the communication. In both Kerberos [MNSS] and NetSP /KryptoKnight[BGH+1], this is done by using the password as a key for exchanging a ran-dom session key; this method also allows NetSP / KryptoKnight to authenticate the userautomatically to additional systems (`single sign on').However, this mechanism implies that some server must be able to compute the sessionkey itself, using some secret (e.g. the password). This in turn implies that the server has tomaintain the password �le secret. This secrecy requirement is a major `Achilles heel' of anysecurity system. (Indeed, NetWare 4.0 provides a more complicated and computationallyintensive solution, where the server keeps, for each user, an RSA private key encryptedusing the user's password. The encrypted private key is sent to the workstation, whichdecrypts it using the password, and then uses it to derive a session key. This solution onlyrequires the password �le remains unmodi�ed, rather than secret.)We show how a reconstructible proactive pseudorandomness protocol can be used toovercome this weakness, without compromising e�ciency. Our solution uses several proac-tive sign-on servers. The servers run a di�erent copy of our PP protocol for each user. Theinitial seed of each server Pi is a pseudorandom value derived from the user's password in astraightforward way. Each server sets its key for each time period to be the current outputof the PP protocol. The user, knowing all the servers' inputs of this reconstructible com-putation, can simulate the computation and compute each server's key at any time periodwithout need for any communication. Thus, a user can always interact with the server ofhis choice. The security of our PP protocol makes sure that a mobile adversary does notknow the key currently used by a secure server, as long as in each round there exists atleast one secure server.Our solution does not require public key mechanisms. Furthermore, it is valid even ifthe attacker can modify the login �les kept by the servers.

C h a p t e r 2De�ning secure multipartycomputation
We present de�nitions of secure multiparty computation in di�erent adversary models.Good de�nitions of secure multiparty computation are notoriously hard to formulate, andmay become very complex in some settings. (See Section 1.2 for an introductory discus-sion.) We therefore start with a simple setting: non-adaptive, computationally unboundedadversaries with secure channels, in a synchronous network. (We later distinguish two verydi�erent variants of this setting.) Although we do not use this de�nition in the sequel, itspresentation captures many of the ideas needed for de�ning multiparty secure computation.Next we concentrate on adaptive adversaries. Here the notion of semi-honest parties,introduced in Section 1.2, is central to our de�nitions. (The notion of semi-honest partiesis irrelevant in the presence of non-adaptive adversaries.) We �rst de�ne several variantsof semi-honest parties, di�ering in the amount of internal deviation from the protocol.Next we present our de�nition of adaptively secure computation. We also consider thecomputational setting, where the channels are insecure and the adversary is restricted toprobabilistic polynomial time (PPT). Both settings are synchronous. De�nitions of securemultiparty computation in other settings can be formulated, using the same methodology.In particular, in Chapter 4 we de�ne secure multiparty computation in an asynchronoussetting.Let us recall the standard de�nition of computational indistinguishability of distribu-tions.De�nition 2.1 Let A = fAngn2N and B = fBngn2N be two ensembles of probability dis-tributions. We say that A and B are computationally indistinguishable if for every constantc > 0, for every polytime distinguisher D and for all large enough n,jProb(D(An) = 1)� Prob(D(Bn) = 1)j < 1nc :We colloquially say that \An and Bn are computationally indistinguishable", or \An c� Bn".16

2.1 Non-adaptively secure computation 172.1 Non-adaptively secure computationWe de�ne non-adaptively secure multiparty computation in the secure channels setting.That is, we consider a synchronous network where every two parties are connected viaan absolutely secure communication channel (i.e., the adversary cannot hear, nor alter,messages sent between uncorrupted parties).1 The adversary is computationally unlimited.We use the standard methodology presented in Section 1.2. Recall that executing a protocolfor computing some function is compared to evaluating the function in an ideal model,where a trusted party is used. We substantiate the de�nition in three steps. First, wegive an exact de�nition of this ideal model. Next, we formulate our (high level) notion of`real-life' protocol execution. Finally, we describe and formalize our method of comparingcomputations.Let f : Dn ! D0 be a function, for some domains D and D0. The parties have inputs~x = x1 : : :xn 2 Dn (party Pi has input xi) and wish to compute f(x1; : : : ; xn).2 The ideal-model-adversary S has a �xed set, B, of up to t corrupted parties, and has the inputs ofthe parties in B. The computation in the ideal model proceeds as follows.Input substitution stage: The ideal-model-adversary S may alter the inputs of the cor-rupted parties; however, this is done without any knowledge of the inputs of the goodparties. Let ~b be the jBj-vector of the altered inputs of the corrupted parties, andlet ~y be the n-vector constructed from the input ~x by substituting the entries of thecorrupted parties by the corresponding entries in ~b.Computation stage: The parties hand ~y to the trusted party (party Pi hands yi), andreceive f(~y) from the trusted party.3Output stage: The uncorrupted parties output f(~y), and the corrupted parties outputsome arbitrary function, computed by the adversary, of the information gathered dur-ing the computation in the ideal model. This information consists only of their inputs,their joint random input (and, consequently, the altered input vector~b), and the result-ing function value f(~y). We let the n-vector idealf;S(~x) = idealf;S(~x)1 : : : idealf;S(~x)ndenote the outputs of the parties on input ~x and adversary S (party Pi outputsidealf;S(~x)i).In De�nitions 2.2 and 2.3 we formally de�ne the output of the parties in the ideal1An immediate interpretation of this model is that of a closed system: there is a �xed number of parties, allof which know each others identity. This is a conceptually simple, however somewhat limiting interpretation.A more general and realistic interpretation is that of an open system: there is an unbounded number ofparties in the network, each with a unique identity. The parties need not be aware of each other a-priori.Still, only a limited number of parties actually join the computation. (In most cases, a limit on the numberof parties that may join needs to be known in advance.)The distinction between these two interpretations of the model is merely conceptual, and is not re
ectedin the de�nitions in any way. In particular, in both cases the number of parties is taken to be the numberof parties that actually join the computation.2 A more general formulation allows di�erent parties to compute a di�erent functions of the input.Speci�cally, in this case the range of f is a n-fold Cartesian product and the interpretation is that the ithparty should get the ith component of f(~x).3 In the case where each party computes a di�erent function of the inputs, as discussed in the previousfootnote, the trusted party will hand each party its speci�ed output.

2.1 Non-adaptively secure computation 18model. (These de�nitions capture the above description, and can be skipped in a �rstreading.) First, we need two technical notations.� For a vector ~x = x1 : : : xn and a set B � [n], let ~xB denote the vector ~x, projected onthe indices in B.� For an n-vector ~x = x1 : : : xn, a set B � [n], and a jBj-vector ~b = b1 : : : bjBj, let ~x=(B;~b)denote the vector constructed from vector ~x by substituting the entries in B by thecorresponding entries from ~b.De�nition 2.2 Let S be the domain of possible inputs of the parties, and let R be the do-main of possible random inputs. A t-limited ideal-model-adversary is a triplet S = (B; h;O),where:� B is the set of corrupted parties.� h : [n]� � S� �R! S� is the input substitution function� O : S� �R! f0; 1g� is an output function for the bad parties.De�nition 2.3 Let f : Dn ! D0 for some domains D and D0 be the computed function,and let ~x 2 Dn be an input vector. The output of computing function f in the ideal modelwith adversary S = (B; h;O), on input ~x and random input r, is an n-vector idealf;S(~x) =idealf;S(~x)1 : : : idealf;S(~x)n of random variables, satisfying for every 1 � i � n:idealf;S(~x)i = (f(~y) if i =2 BO(~xB; f(~y); r) if i 2 Bwhere r is the random input of S, and ~y = ~x=(B;h(B;~xB;r)) is the substituted input vector forthe trusted party.Next we describe the execution of a protocol � in the real-life scenario. The partiesengage in a synchronous computation in the secure channels setting, running protocol �. Acomputationally unbounded (non-adaptive) t-limited real-life adversary controls a �xed set Bof corrupted parties. Once the computation is completed, each uncorrupted party outputswhatever it has computed to be the function value. Without loss of generality, we assumethat the corrupted parties output their entire view on the computation. The view consists ofall the information gathered by the adversary during the computation. Speci�cally, the viewincludes the inputs and random inputs of the corrupted parties, and the communicationseen by the corrupted parties.We use the following notation. Let view�;A(~x;~r) denote the view of the adversaryA when interacting with parties running protocol � on input ~x and random input ~r (xiand ri for party Pi), as described above. Let view�;A(~x) denote the random variable de-scribing the distribution of view�;A(~x;~r) when ~r is randomly chosen. Let exec�;A(~x;~r)idenote the output of party Pi after running protocol � on input ~x = x1 : : : xn and ran-dom input ~r = r1 : : : rn, and with a real life adversary A. Let exec�;A(~x)i denote therandom variable describing exec�;A(~x;~r)i where ~r is uniformly chosen. Let exec�;A(~x) =exec�;A(~x)1 : : :exec�;A(~x)n. (We have exec�;A(~x)i = view�;A(~x;~r) for corrupted partiesPi.)

2.1 Non-adaptively secure computation 19Finally we require that executing a secure protocol � for evaluating a function f beequivalent to evaluating f in the ideal model, in the following sense. For any real-lifeadversary A there should exist an ideal-model adversary S, such that for every input vector~x, the output vectors idealf;S(~x) and exec�;A(~x) are identically distributed.We require that the complexity of the ideal-model adversary S be comparable to thecomplexity of the real-life adversary A. This requirement can be motivated as follows. Theideal-model adversary is an imaginary concept whose purpose is to formalize the followingstatement: \whatever the adversary learns from interacting with parties running �, hecould have also learned in the ideal model in roughly the same computational e�ort." Ifwe do not limit the computational power of the ideal-model adversary, we end up with amuch weaker notion of security, detached from realistic computations. We remark that,in the presence of adaptive adversaries, bounding the computational power of the ideal-model adversary introduces several previously overlooked problems. We elaborate on theseproblems in Chapter 3.In the sequel, whenever we refer to the secure channels setting, we assume that thecomplexity of the ideal-model adversary is polynomial in the complexity of the real-lifeadversary. We let the unbounded secure channels setting denote the case where the ideal-model adversary is computationally unbounded.De�nition 2.4 Let f : Dn ! D for some domains D and D, and let � be a protocol forn parties. We say that � (non-adaptively) t-securely computes f in unbounded the securechannels setting, if for any (non-adaptive) t-limited real-life adversary A, there exists a(non-adaptive) t-limited ideal-model-adversary S, whose running time is polynomial in therunning time of A, such that for every input vector ~x,idealf;S(~x) d= exec�;A(~x):If the running time of S is polynomial in the running time of A, then we say that �(non-adaptively) t-securely computes f in the bounded secure channels setting.Remarks:� For measuring complexity, we assume that the protocol �, the simulator S and theadversary A are Turing machines that have n, the number of parties, as part of theirinput. We measure the complexity of �, S and A with respect to n. (The function fis now a family of functions, where a function corresponds to each value of n.)� We stress that the two whole output n-vectors must be identically distributed. Someprevious de�nitions of secure computation (e.g., [GMW]) partitioned the Securityrequirement into two separate requirements: (a) the output of the corrupted partiesbe equal in both scenarios, and (b) the output of the uncorrupted parties be equalin both scenarios. However, as pointed out in [MR], requiring (a) and (b) does notguarantee secure computation.

2.2 Semi-honest parties 202.2 Semi-honest partiesWe de�ne semi-honest parties (or, equivalently, semi-honest protocols). We consider threealternative notions of semi-honesty. First we take a minimalist approach, in which semi-honest parties deviate from the protocol only by not erasing old data. We call such partieshonest-but-non-erasing, or in short non-erasing. More precisely, say that a memory tape iswrite-once if it consists of memory locations that can be modi�ed only once (from theirinitial default contents). Non erasing protocols are de�ned as follows.De�nition 2.5 Let � and �0 be n-party protocols. We say that �0 is a non-erasing protocolfor � if �0 is identical to � with the exception that, in addition to the instructions of �,protocol �0 copies the contents of each memory location accessed by � to a special write oncememory tape.Alternatively, one may consider semi-honest parties that execute some arbitrary protocolother than the speci�ed one, with the only restriction that no external test (representing thecombination of all other parties) can distinguish between such a behaviour and a truly honestbehaviour. We call such parties honest-looking. We consider two variants of honest-lookingparties: In the secure channels setting the external distinguishing test is computationallyunbounded. In the computational setting the external distinguishing test is computationallybounded. More formally, let com�(~x;~r) denote the communication among n parties running� on input ~x and random input ~r (xi and ri for party Pi). Let com�(~x) denote the randomvariable describing com�(~x;~r) when ~r is uniformly chosen. For n-party protocols � and �and an index i 2 [n], let �=(i;�) denote the protocol where party Pi executes � and all theother parties execute �.De�nition 2.6 Let � and �0 be n-party protocols. We say that �0 is a perfectly honest-looking protocol for � if for any input ~x, for any n-party \test" protocol �, and for anyindex i 2 [n], com�=(i;�)(~x) d= com�=(i;�0)(~x):If the test protocol � is restricted to probabilistic polynomial time, and com�=(i;�)(~x) c�com�=(i;�0)(~x), then we say that �0 is a computationally honest-looking protocol for �.We stress that here the \test" protocol � represents a collaboration of all parties for testingwhether Pi is honest.Remark: Note that both the perfect and the computational variants of honest-lookingparties can do other \harmful" things, on top of not erasing data. For instance, assume thatsome one-way permutation f , de�ned on some domain D, is known to all parties. Wheninstructed to choose a value x at random from D, an honest-looking party can insteadchoose y at random from D and let x = f(y). Thus, the party cannot be trusted to notknow f�1(x). Also, let f0; f1 be a claw-free pair of permutations over D. Then, wheninstructed to choose a random input r 2 D for use in its protocol, the party can, on input� 2 f0; 1g, use f�(r) for random input instead of r. (This particular example is very`disturbing', as will become clear in the Chapter 3.)

2.3 Adaptively secure computation in the secure channels setting 21An even more permissive approach allows a semi-honest party to deviate arbitrarilyfrom the protocol, as long as his behaviour appears honest to parties executing the protocol.We stress that other external tests, not speci�ed in the protocol, may be able to detectsuch a party as cheating. We call such semi-honest parties weakly-honest. More precisely,here we require that De�nition 2.6 is satis�ed only with respect to the original protocol �,rather than with respect to any test protocol �.De�nition 2.7 Let � and �0 be n-party protocols. We say that �0 is an perfectly weakly-honest protocol for � if for any input ~x and for any index i 2 [n],com�(~x) d= com�=(i;�0)(~x):If � is restricted to probabilistic polynomial time, and if com�(~x) c� com�=(i;�0)(~x), thenwe say that �0 is a computationally weakly-honest protocol for �.The choice of these particular notions of semi-honest parties can be motivated as follows.Non-erasing behaviour is a very simple deviation from the protocol, that is very hard toprevent. Even if the protocol (say, given to parties as a piece of software) is protectedagainst modi�cations, it is always possible to add an external device that copies all memorylocations accessed by the protocol to a \safe" memory where the data is kept. Such anexternal device requires no understanding in the internal structure or in the behaviourof the protocol. Honest-looking parties represent \sophisticated" parties that internallydeviate from the protocol in an arbitrary way, but are willing to take no chance that theywill ever be uncovered (say, by an unexpected audit). Weakly-honest parties represent themost general internal deviation from the protocol that may remain undetected by otherparties running the protocol.2.3 Adaptively secure computation in the secure channelssettingWe de�ne adaptively secure multiparty computation in the the secure channels setting.We use the same \ideal model methodology" as in Section 2.1, with respect to adaptiveadversaries. Here, however, we require that the computation be secure even if the partiesrun any semi-honest protocol for a given protocol �.We start by re-de�ning how a function is evaluated in the ideal model. Let f : Dn ! Dbe a function, for some domains D and D0. The parties have inputs ~x = x1 : : : xn 2 Dn(party Pi has input xi) and wish to compute f(x1; : : : ; xn). The ideal-model-adversary S hasno initial input, and is parameterized by t, the maximum number of parties it may corrupt.In the sequel we limit the computational power of the adversary. The di�erence from thenon-adaptive ideal-model adversary (Section 2.1) are the two extra adaptive corruptionstages.First corruption stage: First, S proceeds in up to t iterations. In each iteration S maydecide to corrupt some party, based on S's random input and the information gatheredso far. Once a party is corrupted its internal data (that is, its input and randominput) become known to S. A corrupted party remains corrupted for the rest of thecomputation. Let B denote the set of corrupted parties at the end of this stage.

2.3 Adaptively secure computation in the secure channels setting 22Input substitution stage: S may alter the inputs of the corrupted parties; however,this is done without any knowledge of the inputs of the good parties. Let ~b be thejBj-vector of the altered inputs of the corrupted parties, and let ~y be the n-vectorconstructed from the input ~x by substituting the entries of the corrupted parties bythe corresponding entries in ~b.Computation stage: The parties hand ~y to the trusted party (party Pi hands yi), andreceive f(~y) from the trusted party.Second corruption stage: Now that the output of the computation is known, S proceedsin another sequence of up to t � jBj iterations, where in each iteration S may decideto corrupt some additional party, based on S's random input and the informationgathered so far (this information now includes the value received from the trustedparty). We stress that S may corrupt at most t parties in the entire computation.Output stage: The uncorrupted parties output f(~y), and the corrupted parties outputsome arbitrary function, computed by the adversary, of the information gathered dur-ing the computation in the ideal model. This information consists only of their inputs,their joint random input (and, consequently, the altered input vector~b), and the result-ing function value f(~y). We let the n-vector idealf;S(~x) = idealf;S(~x)1 : : : idealf;S(~x)ndenote the outputs of the parties on input ~x and adversary S (party Pi outputsidealf;S(~x)i).In De�nitions 2.8 through 2.10 we formally de�ne the output of the parties in the idealmodel. These de�nitions capture the above description, and can be skipped in a �rstreading. We use the notations ~xB and ~x=(B;~b) as in Section 2.1.De�nition 2.8 Let D be the domain of possible inputs of the parties, and let R be thedomain of possible random inputs. A t-limited ideal-model-adversary is a quadruple S =(t; b; h; O), where:� t is the maximum number of corrupted parties.� b : [n]��D��R ! [n][f?g is the selection function for corrupting parties (the value? is interpreted as \no more parties to corrupt at this stage")� h : [n]� �D� �R ! D� is the input substitution function� O : D� �R! f0; 1g� is an output function for the bad parties.The sets of corrupted parties are now de�ned as follows.De�nition 2.9 Let D be the domain of possible inputs of the parties, and let S = (t; b; h; O)be a t-limited ideal-model-adversary. Let ~x 2 Dn be an input vector, and let r 2 R be arandom input for S. The ith set of corrupted parties in the ideal model B(i)(~x; r), is de�nedas follows.� B(0)(~x; r) = �

2.3 Adaptively secure computation in the secure channels setting 23� Let bi 4= b(B(i)(~x; r); ~xB(i)(~x;r); r). For 0 � i < t, and as long as bi 6=?, letB(i+1)(~x; r) 4= B(i)(~x; r)[fbig� Let i� be the minimum between t and the �rst i such that bi =?. Let bfi 4= b(B(i)(~x; r); ~xB(i)(~x;r); f(~y); r),where ~y is the substituted input vector for the trusted party.That is, ~y 4= ~x=(B(i�)(~x;r);h(B(i�)(~x;r);~xB(i�)(~x;r);r)).For i� � i < t, let B(i+1)(~x; r) 4= B(i)(~x; r) [bfi :In De�nition 2.10 we use B(i) instead of B(i)(~x; r).De�nition 2.10 Let f : Dn ! D0 for some domains D and D be the computed function,and let ~x 2 Dn be an input vector. The output of computing function f in the ideal model withadversary S = (t; b; h; O), on input ~x and random input r, is an n-vector idealf;S(~x) =idealf;S(~x)1 : : : idealf;S(~x)n of random variables, satisfying for every 1 � i � n:idealf;S(~x)i = (f(~y) if i =2 B(t)O(~xB(t) ; f(~y); r) if i 2 B(t)where B(t) is the tth set of corrupted parties, r is the random input of S, and ~y = ~x=(B(t);h(B(t);~xB(t) ;r))is the substituted input vector for the trusted party.Next we describe the execution of a protocol � in an (adaptive) real-life scenario. Theparties engage in a synchronous computation in the secure channels setting, running somesemi-honest protocol �0 for � (according to any one of the notions of semi-honesty de�nedabove). A computationally unbounded (adaptive) t-limited real-life adversary may chooseto corrupt parties at any point during the computation, based on the information knownto the previously corrupted parties, and as long as at most t parties are corrupted alto-gether. Once a party is corrupted the current contents of its memory (as determined by thesemi-honest protocol �0) becomes available to the adversary. From this point on, the cor-rupted party follows the instructions of the adversary. Once the computation is completed,each uncorrupted party outputs whatever it has computed to be the function value. Alsohere, we assume that the corrupted parties output their entire view on the computation.The view consists of all the information gathered by the adversary during the computa-tion. Speci�cally, the view includes the inputs and random inputs of the corrupted parties,the communication seen by the corrupted parties, and the internal data of parties uponcorruption.We let view�;A(~x) and exec�;A(~x;~r) have an analogous meaning to Section 2.1 in thepresence of adaptive adversaries.De�nition 2.11 Let f : Dn ! D0 for some domains D and D0, and let � be a protocol forn parties. We say that � t-securely computes f in the unbounded secure channels setting, iffor any semi-honest protocol �0 for � (according to any of the De�nitions 2.5 through 2.7),and for any t-limited real-life adversary A, there exists a t-limited ideal-model-adversary S,

2.3 Adaptively secure computation in the secure channels setting 24whose running time is polynomial in the running time of A, such that for every input vector~x, idealf;S (~x) d= exec�0 ;A(~x):If the running time of S is polynomial in the running time of A, then we say that �t-securely computes f in the bounded secure channels setting.Black-box simulation. In the sequel we use a more restricted notion of equivalenceof computations, where the ideal-model adversary is limited to black-box simulation ofthe real-life setting. That is, for any semi-honest protocol �0 for � there should exist aideal-model adversary S with oracle (or black-box) access to a real-life adversary. Thisblack-box represents the input-output relations of the real-life adversary described above.For concreteness, we present the following description of the \mechanics" of this black-box,representing a real-life adversary. The black-box has a random tape, where the black-boxexpects to �nd its random input, and an input-output tape. Once a special start input isgiven on the input-output tape, the interaction on this tape proceeds in iterations, as follows.Initially, no party is corrupted. In each iteration l, �rst the black-box expects to receivethe information gathered in the lth round. (In the secure channels setting this informationconsists of the messages sent by the uncorrupted parties to the corrupted parties.) Nextblack-box outputs the messages to be sent by the corrupted parties in the lth round. Next,the black-box may issue several `corrupt Pi' requests. Such a request should be answeredby the internal data of Pi, according to protocol �0. Also, from this point on Pi is corrupted.At the end of the interaction, the output of the real-life adversary is de�ned as the contents ofthe random tape succeeded by the history of the contents of the input-output tape duringthe entire interaction. We let SA denote the ideal-model adversary S with black-box accessto a real-life adversary A.The simulator is restricted to probabilistic polynomial time (where each invocation ofthe black-box is counted as one operation).4 Furthermore, we limit the operation of thesimulator as follows. We require that the start message is sent only once, and that noparty is corrupted in the ideal model unless a request to corrupt this party is issued by theblack-box.If De�nition 2.11 is satis�ed by an ideal-model adversary limited to black-box simulationas described above, then we say that � t-securely computes f in a simulatable way. In thiscase we call the ideal-model adversary a black-box simulator, or in short a simulator.We remark that the only purpose of the technical restrictions imposed on the operationof the simulator is to facilitate proving composition theorems (such as Theorem 3.4). Inparticular, black-box simulation is the only proof method currently known in the contextof secure multiparty computation. The [BGW] protocols for computing any function canbe proven secure, in the presence of non-erasing parties, using black-box simulators inprobabilistic polynomial time.4For simplicity, we assume that the computed function is polynomially computable. Alternatively, thesimulator is polynomial in the complexity of the function.

2.4 Adaptively secure computation in the computational setting 252.4 Adaptively secure computation in the computational set-tingWe de�ne adaptively secure multiparty computation in the computational setting. That is,we consider a synchronous network where the channels are insecure; the adversary sees allmessages sent on all channels. (For simplicity we assume that the channels are authenticated,namely the adversary cannot alter the communication. Authenticity can be achieved viastandard primitives.) All parties, as well as the adversary, are restricted to probabilisticpolynomial time.5 Furthermore, we introduce a security parameter, determining `how close' areal-life computation is to a computation in the ideal model. All parties are polynomial alsoin the security parameter. For simplicity of presentation, we identify the security parameterwith n, the number of parties.The framework of de�ning adaptively secure multiparty computation in this setting isthe same as in the secure channels setting (Section 2.3). That is, we compare the real lifecomputation with a computation in the same ideal model, with the exception that herewe restrict the ideal-model adversary to probabilistic polynomial time. The execution ofa protocol � in the real-life scenario, as well as the notations exec�;A(~x) and view�;A(~x),are also the same as in the secure channels setting, with the exceptions that the real-lifeadversary is polynomially bounded and sees all the communication between the uncorruptedparties.We de�ne equivalence of a real-life computation to an ideal-model computation as in thesecure channel setting, with the exception that here we use computational indistinguisha-bility as our notion of similarity of distributions. Black-box simulation is de�ned as in thesecure channels setting, with the exception that the information gathered by the adversaryin each rounds includes the communication between all parties.De�nition 2.12 Let f : Dn ! D0 for some domains D and D0, and let � be a protocolfor n parties. We say that � t-securely computes f in the computational scenario, if forany semi-honest protocol �0 for � (according to any of the De�nitions 2.5 through 2.7),and for any t-limited real-life adversary A, there exists a polynomially bounded t-limitedideal-model-adversary S, such that for every input vector ~x,idealf;S (~x) c� exec�0 ;A(~x):If S is restricted to black-box simulation of real-life adversaries then we say that � t-simulatably computes f in the computational scenario.Remark: Our convention that the real-life adversary outputs its entire view is importantfor clarifying how the following di�culty, pointed out in [MR], is settled. Assume that thecorrupted parties do not output their inputs and random inputs, and that the functionf to be computed is pseudorandom. Then an insecure protocol that allows a uniformlydistributed output vector exec�;A(~x), regardless of the parties' inputs, could be considered5For simplicity, we assume that the computed function is polynomially computable. Alternatively, all par-ties, as well as the real-life adversary and the ideal-model-adversary, should be polynomial in the complexityof the function.

2.4 Adaptively secure computation in the computational setting 26secure since it generates outputs indistinguishable from the parties' outputs in the idealmodel (i.e., idealf;S(~x)). We stress that no generality is lost by using our convention, sinceDe�nition 2.12 quanti�es over all real-life adversaries.

C h a p t e r 3Adaptively secure computation inthe computational setting
We study secure multiparty computation in the presence of adaptive adversaries (see Sec-tion 1.3 for an introductory discussion). Although the emphasis of this chapter is on thecomputational setting, we also sketch the state of a�airs in the secure channels setting. Webelieve that understanding adaptively secure computation in the computational setting iseasier if the secure channels setting is �rst considered.We �rst present, in Section 3.1, an overview of the problems encountered when tryingto prove adaptive security of protocols, �rst in the secure channels setting, and then in thecomputational settings. We also sketch our solution for the computational setting. Next,in Section 3.2 we de�ne a tool, called non-committing encryption, that is central in oursolution for the computational setting. In Section 3.3 we present our construction for thecase of non-erasing parties. We �rst show how, given a non-committing encryption scheme,any adaptively secure protocol in the secure channels setting can be transformed into anadaptively secure protocol in the computational setting. Next we describe our constructionof a non-committing encryption scheme. In Section 3.4 we suggest a construction for thecase of honest-looking parties.3.1 The problems in proving adaptive security: informal pre-sentation3.1.1 The secure channels settingThe state-of-the-art with respect to adaptive computation in the secure channels setting canbe brie
y summarized as follows. Adaptively secure protocols for computing any functionexist in the presence of non-erasing parties (e.g., [BGW, CCD]). However, in contrastwith popular belief, not every non-adaptively secure protocol is also adaptively secure in thepresence of non-erasing parties. Furthermore, current techniques are insu�cient for provingadaptive security of any protocol for computing a non-trivial function in the presence ofhonest-looking parties. 27

3.1 The problems in proving adaptive security: informal presentation 28A standard construction of an ideal-model-adversary, S, operates via black-box interac-tion with the real-life adversary A. (The exact \mechanics" of the black-box representing Aare speci�ed in Section 2.3.) More speci�cally, let �0 be a semi-honest protocol for �. S runsthe black-box representing A on a simulated interaction with a set of parties running �0. Scorrupts (in the ideal model) the same parties that A corrupts in the simulated interaction,and outputs whatever A outputs. From the point of view of A, the interaction simulated byS should be distributed identically to an authentic interaction with parties running �0. It iscrucial that S be able to run a successful simulation based only on the information availableto it in the ideal model, and in particular without knowing the inputs of uncorrupted parties.We restrict our presentation to this methodology of proving security of protocols, where Sis restricted to probabilistic polynomial time. We remark that no other proof method isknown in this context. In the sequel we often call the ideal-model-adversary S a simulator.Following the above methodology, the simulator that we construct has to generate sim-ulated messages from the uncorrupted parties to the corrupted parties. In the non-adaptivecase the set of corrupted parties is �xed and known to the simulator. Thus the simulatorcan corrupt these parties, in the ideal model, before the simulation starts. In the adaptivecase the corrupted parties are chosen by the simulated adversary A as the computationunfolds. Here the simulator corrupts a party, in the ideal model, only when the simulatedadversary decides on corrupting that party. Thus the following extra problem is encoun-tered. Consider a currently uncorrupted party P . Since S does not know the input of P ,it may not know which messages should be sent by P to the corrupted parties. Still, Shas to generate some dummy messages to be sent by the simulated P to corrupted parties.When the simulated adversary A later corrupts P it expects to see P 's internal data. Thesimulator should now be able to present internal data for P that is consistent with P 'snewly-learned input and with the messages previously sent by P , according to the partic-ular semi-honest protocol �0 run by P . It turns out that this can be done for the [BGW]protocols for computing any function in the presence of non-erasing parties. Thus, the[BGW] protocols are adaptively secure in the presence of non-erasing parties. We stress,however, that not every protocol which is secure against non-adaptive adversaries is alsosecure against adaptive adversaries.1In face of honest-looking parties. Even more severe problems are encountered whenhonest-looking parties are allowed, as demonstrated by the following example. Consider aprotocol � that instructs each party, on private input �, to just publicize a uniformly andindependently chosen value r in some domain D and terminate. Let f0; f1 be a claw-free pairof permutations over D. Then, on input � 2 f0; 1g, an honest-looking party can `commit'to its input by publicizing f�(r) instead of publicizing r. Now, if this honest-looking variantof � is shown secure via an e�cient black-box simulation as described above, then theconstructed simulator can be used to �nd claws between f0 and f1. Similar honest-lookingprotocols can be constructed for the [BGW, CCD] protocols. Consequently, if claw-freepairs of permutations exist then adaptive security of the [BGW, CCD] protocols, in thepresence of honest-looking parties, cannot be proven via black-box simulation.1 See example in the third paragraph of the Introduction.

3.1 The problems in proving adaptive security: informal presentation 293.1.2 Adaptive security in the computational settingIn this subsection we sketch the extra di�culty encountered in constructing adaptively se-cure protocols in the computational setting, and outline our solution for non-erasing parties.Consider the following folklore methodology for constructing secure protocols in the com-putational setting. Start with an adaptively secure protocol � resilient against non-erasingparties in the secure channels setting, and construct a protocol ~� by encrypting each messageusing a standard encryption scheme. We investigate the security of ~� in the computationalsetting.Proving that ~� is non-adaptively secure. We �rst sketch how ~� can be shown non-adaptively secure in the computational setting, assuming that � is non-adaptively secure inthe secure channels setting. Let S be the ideal-model-adversary (simulator) associated with� in the secure channels setting. (We assume that S operates via \black-box simulation" ofthe real-life adversary A as described above.) We wish to construct, in the computationalsetting, a simulator ~S for ~�. The simulator ~S operates just like S, with the following excep-tion. In the computational setting the real-life adversary expects to see the ciphertexts sentbetween uncorrupted parties. (In the secure channels setting the adversary does not see thecommunication between uncorrupted parties.) Furthermore, the real-life adversary expectsthat the messages sent to corrupted parties be encrypted. ~S will imitate this situationas follows. First each message sent to a corrupted party will be appropriately encrypted.Next, the simulated uncorrupted parties will exchange dummy ciphertexts. (These dummyciphertexts can be generated as, say, encryptions of the value `0'.) The validity of simulator~S can be shown to follow, in a straightforward way, from the validity of S and the securityof the encryption scheme in use.Problems with proving adaptive security. When adaptive adversaries are considered,the construction of a simulator ~S in the computational setting encounters the followingproblem which is a more severe version of the problem encountered in the secure channelssetting. Consider an uncorrupted party P . Since ~S does not know the input of P , it doesnot know which messages should be sent by P to other uncorrupted parties.2 Still, ~S has togenerate dummy ciphertexts to be sent by the simulated P to uncorrupted parties. Thesedummy ciphertexts are seen by the simulated adaptive adversary. When the simulatedadversary later corrupts P , it expects to see all of P 's internal data, as speci�ed by the semi-honest protocol �0. Certainly, this data may include the cleartexts of all the ciphertexts sentand received by P in the past, including the random bits used for encryption and decryption,respectively. Thus, it may be the case that some speci�c dummy ciphertext c was generatedas an encryption of `0', and the simulated P now needs to \convince" the adversary that c isin fact an encryption of `1' (or vice versa). This task is impossible if a standard encryptionscheme (i.e., an encryption scheme where no ciphertext can be a legal encryption of both`1' and `0') is used.2 There is also the easier problem of generating the messages sent by P to corrupted parties. This wasthe problem discussed in the previous subsection. However, our hypothesis that S is a simulator for thesecure channel model means that S is able to generate these cleartext messages. Thus, all that ~S needs todo is encrypt the messages it has obtained from S.

3.1 The problems in proving adaptive security: informal presentation 30We remark that Beaver and Haber [BH] have suggested to solve this problem as follows.Instruct each party to erase (say, at the end of each round) all the information involvedwith encrypting and decrypting of messages. If the parties indeed erase this data, then theadversary will no longer see, upon corrupting a party, how past messages were encryptedand decrypted. Thus the problem of convincing the adversary in the authenticity of pastciphertexts no longer exists. Consequently, such \erasing" protocols can be shown adap-tively secure in the computational setting. However, this approach is clearly not valid in thepresence of semi-honest parties. In particular, it is not known whether the [BH] protocols(or any other previous protocols) are secure in the presence of non-erasing parties.Sketch of our solution. We solve this problem by constructing, in the multi-party com-putational setting, an encryption protocol that serves as an alternative to standard en-cryption schemes, and enjoys an additional property roughly described as follows. Theadditional property is that one can e�ciently generate dummy ciphertexts that can laterbe \opened" as encryptions of either `0' or `1', at wish. (Here the word `ciphertext' is usedto denote all the information seen by the adversary during the execution of the protocol.)These dummy ciphertexts are di�erent and yet computationally indistinguishable from thevalid encryptions of `0' (or `1') produced in a real communication. We call such encryptionprotocols non-committing.3Let E (0) (resp., E (1)) denote the distribution of encryptions of the value 0 (resp., 1) ina public-key encryption scheme. For simplicity, suppose that each of these distributions isgenerated by applying an e�cient deterministic algorithm, denoted A(0) (resp., A(1)), to auniformly selected n-bit string.4 In a traditional encryption scheme (with no decryptionerrors) the supports of E (0) and E (1) are disjoint (alas E (0) and E (1) are computationallyindistinguishable). In a non-committing encryption scheme, the supports of E (0) and E (1)are not disjoint but the probability that an encryption (of either `0' or `1') resides in theirintersection, denoted I , is negligible. Thus, decryption errors occur only with negligibleprobability. However, it is possible to e�ciently generate a distribution Eamb which assumesvalues in I so that this distribution is computational indistinguishable from both E (0) andE (1).5 Furthermore, each \ambiguous ciphertext" c 2 I is generated together with tworandom looking n-bit strings, denoted r0 and r1, so that A(0)(r0) = A(1)(r1) = c. That is,the string r0 (resp., r1) may serve as a witness to the claim that c is an encryption of `0'(resp., `1').Using a non-committing encryption protocol, we resolve the simulation problems whichwere described above. Firstly, when transforming � into ~�, we replace every bit transmissionof � by an invocation of the non-committing encryption protocol. This allows us to generatedummy ciphertexts for messages sent between uncorrupted parties so that at a later stagewe can substantiate for each such ciphertext both the claim that it is an encryption of `0' andthe claim that it is an encryption of `1'. We stress that although dummy ciphertexts appear3 This \non-committing property" is reminiscent of the \Chameleon blobs" of [Br]. Those are commitmentschemes where the recipient of a commitment c can generate by himself de-commitments of c to both 0 and1. Here we consider encryption schemes where an adversary can generate by himself ciphertexts which canbe opened both as encryptions of 1 and as encryptions of 0.4 This is an over simpli�cation. Actually, each of these algorithms is also given an n-bit encryption key.5 Consequently, it must be that E(0) and E(1) are computationally indistinguishable. Thus, a non-committing encryption scheme is also a secure encryption scheme in the traditional sense.

3.2 De�ning non-committing encryption 31with negligible probability in a real execution, they are computationally indistinguishablefrom a uniformly generated encryption of either `0' or `1'. Thus, using a non-committingencryption protocol we construct adaptively secure protocols for computing any (recursive)function in the computational model in the presence of non-erasing parties. Finally, weconstruct a non-committing encryption protocol based on the intractability of inverting theRSA, or more generally based on the existence of common-domain trapdoor systems (seeDe�nition 3.5). Thus, we getTheorem 3.1 If common-domain trapdoor systems exist, then there exist secure protocolsfor computing any (recursive) function in the computational setting, in the presence of non-erasing parties and adaptive adversaries that corrupt less than a third of the parties.We remark that, using standard constructs (e.g., [RB]), our protocols can be modi�ed towithstand adversaries that corrupt less than half of the parties.Dealing with honest-looking parties. We also sketch a solution for the case of honest-looking parties, assuming, in addition to the above, also the existence of a \trusted dealer"at a pre-computation stage. The dealer hands each party P a truly random string rP , tobe used as random input. Next, the dealer hands the other parties shares of rP , so that acoalition of all parties other than P can reconstruct rP . These shares enable us to \force"each party to send messages according to the speci�cation of the protocol. We stress thatthis result does not hold if an initial (trusted) set-up is not allowed.3.2 De�ning non-committing encryptionWe present a concise de�nition of a non-committing encryption protocol in our multi-partyscenario. First de�ne the bit transmission function btr : f0; 1;?gn ! f0; 1;?gn. Thisfunction is parameterized by two identities of parties (i.e., indices s; r 2 [n]), with thefollowing interpretation. btrs;r describes the secure transmission of a bit from party Ps(the sender) to party Pr (the receiver). That is, for ~x = x1; : : : ; xn 2 f0; 1;?gn letbtrs;r(~x)i = (xs if i = r? otherwisewhere btrs;r(~x)i is the ith component of the vector btrs;r(~x). We are interested in inputvectors ~x where xs (i.e., the senders input) is in f0; 1g. All other inputs are assumed to be?.De�nition 3.2 Let s; r 2 [n] and s 6= r. A protocol " is a t-resilient (in the presence ofT -semi-honest parties and adaptive adversaries), non-committing encryption protocol (fromPs to Pr) if " t-securely computes btrs;r, in a simulatable way, in the computational model,in the presence T -semi-honest parties and an adaptive adversary.It may not be immediately evident how De�nition 3.2 corresponds to the informal de-scription of non-committing encryptions, presented in Section 3.1.2. A closer look, how-ever, will show that the requirements from the simulator associated with a non-committing

3.3 A solution for non-erasing parties 32encryption protocol (according to De�nition 3.2) imply these informal descriptions. In par-ticular, in the case where the simulated adversary corrupts the sender and receiver onlyafter the last communication round, the simulator has to �rst generate some simulatedcommunication between the parties, without knowing the transmitted bit. (This communi-cation serves as the \dummy ciphertext".) When the sender and/or the receiver are latercorrupted, the simulator has to generate internal data that correspond to any value of thetransmitted bit.3.3 A solution for non-erasing partiesWe show that any function can be securely computed in the computational setting, inthe presence of adaptive adversaries and non-erasing parties. In Subsection 3.3.1 we showhow, using a non-committing encryption protocol, a simulatable protocol for computingsome function f in the computational setting can be constructed from any simulatableprotocol for computing f in the secure channels setting. In Subsection 3.3.2 we presentour construction of non-committing encryption. We use the following result, attributed to[BGW, CCD], as our starting point:6Theorem 3.3 The [BGW, CCD] protocols for computing any function of n inputs are(dn3e � 1)-securely computable in a simulatable way, in the secure channels setting, in thepresence of non-erasing parties and adaptive adversaries.3.3.1 Adaptively secure computation given non-committing encryptionTheorem 3.4 Let f be an n-ary function, t < n and � be a protocol that t-securely com-putes f in a simulatable way in the secure channels setting, in the presence of non-erasingparties and adaptive adversaries. Suppose that "s;r is a t-resilient non-committing encryp-tion protocol, resilient to non-erasing parties and adaptive adversaries, for transmissionfrom Ps to Pr. Let ~� be the protocol constructed from � as follows. For each bit � trans-mitted by � from party Ps to party Pr, protocol ~� invokes a copy of a "s;r for transmitting�. Then ~� t-securely computes f , in a simulatable way in the computational setting, in thepresence of non-erasing parties and adaptive adversaries.Proof (sketch): Let �0 be a non-erasing protocol for � and let S be a simulator for �0in the secure channels setting. For simplicity we assume that in protocol �, as well as inthe interaction generated by S, each party sends on bit to each other party in each round.Let � be the (computational-model) simulator that corresponds to the non-erasing protocol"0 for the non-committing encryption protocol ". Given these two di�erent simulators, weconstruct a simulator ~S for protocol ~� in the computational setting. The simulator ~S willbe a modi�cation of S and will use several copies of � as subroutines.Recall that S is supposed to interact with a black-box representing a real-life adversaryin the secure channels setting. That is, at each round S generates all the messages sent fromuncorrupted parties to corrupted parties. Furthermore, whenever the black-box decides to6 A proof of this result can be extracted from Chapter 4, which deals with the more involved asynchronousmodel.

3.3 A solution for non-erasing parties 33corrupt some party P , machine S generates internal data for P which is consistent with P 'sinput and with the messages previously sent by P to corrupted parties.The simulator ~S, interacts with a black box representing an arbitrary real-life adversaryin the computational setting, denoted ~A. The simulator ~S is identical to S with the exceptionthat for each bit sent in the interaction simulated by S, the simulator ~S invokes a copy of� and ~S incorporates the outputs of the various copies of � in its (i.e., ~S's) communicationwith ~A. Likewise, ~S extracts the transmitted bits from the invocations of � correspondingto message transmissions from corrupted parties to uncoruppted ones. (The way ~S handlesthese invocation will be discussed below.) At this point we stress that ~A is the only adversarythat ~S needs to simulate and to this end it \emulates" real-life adversaries of its choice forthe copies of �. In particular, when S asks to corrupt some party P , the simulator ~Scorrupts the same party P . When S generates P 's view in the secure channel setting, ~S willcomplete this view into P 's view in the computational setting by using the various copies of�. We describe how ~S handles the various copies of �. As stated above, ~S emulates areal-life adversary for each copy of � using the communication tapes by which this copyis supposed to interact with its black-box/adversary. The information that � expects toreceive form its black box is extracted, in the obvious manner, from the information that~S receives from ~A. That is, ~S hands � the messages, sent by the corrupted parties, thatare relevant to the corresponding invocation of "0. Furthermore, all the past and currentrequests for corrupting parties (issued by ~A) are handed over to �. The partial view receivedfrom each copy of � is used in the emulation of the corresponding black-box (of this �-copy)as well as incorporated in the information handed by ~S to ~A. When ~A asks to corrupt someparty P , the simulator ~S emulates a `corrupt P ' request to each copy of � and obtains theinternal data of P in the corresponding sub-protocol " which it (i.e., ~S) hands to ~A (alongwith the information obtained by S { the secure channel simulator). Finally, observe that� = �s;r (where Ps and Pr are the designated sender and receiver) also expects to interactwith parties in the ideal-model. This interaction consists of issuing `corrupt' requests andobtaining the internal data (of the ideal model). This interaction is (also) emulated by ~S asfollows. Whenever � wishes to corrupt a party P which is either Ps or Pr , the simulator ~S�nds out which bit, �, was supposed to be sent in this invocation of "0r;s and passes � to �r;s.We stress that � is available to ~S since at this point in time P has already been corruptedand furthermore ~S (which mimics S) has already obtained P 's view in the secure channelsetting. (Here we use De�nitions 2.12 and 3.2 which guarantee that � corrupts a party onlyif this party is already corrupted by �'s black box. We also use the fact that ~S is playing�'s black box and is issuing a `corrupt P ' request only after receiving such a request from~A and having simulated this corruption as S.) In case P is neither Ps not Pr the simulator~S passes ? (as P 's input) to �.Let ~�0 be a non-erasing protocol for ~� and ~A be as above (i.e., an arbitrary real-lifeadversary in the computational setting). We claim that ~S ~A (i.e., the ideal-model adversary~S with black-box access to ~A) properly simulates the execution of ~�0. We need to show thatfor any adversary ~A and for any input ~x we haveidealf; ~S ~A(~x) c� exec~�0; ~A(~x):

3.3 A solution for non-erasing parties 34Here we present only a rough sketch of the proof of this claim. The plan is to constructa real-life adversary A in the secure channels setting, and prove the following sequence ofequalities by which the above claim follows:idealf; ~S ~A (~x) d= idealf;SA (~x) d= exec�0 ;A(~x) c� exec~�0; ~A(~x) (3.1)Regardless of what A is, the second equality follows immediately from the hypothesis thatS is a simulator for �0 (the non-erasing protocol for �) in the secure channels setting. Itremains to construct A so that the other two equalities hold.The real-life adversary A of the secure channel setting will operate via a simulation of ~A(the real-life adversary of the computational setting), imitating the simulation carried outby ~S. That is, for each bit communicated by �, machine A will invoke a copy of � whileemulating an adversary in accordance with ~A. In particular, ~A will be given all ciphertextssent in the open as well as all internal data of corrupted parties (regardless if these partieswere corrupted before, during or after the `real' transmission). Furthermore, when ~A cor-rupts a party P , machine A corrupts P and hands ~A the internal data of P , along with theoutputs of the relevant copies �, just as ~S does. At the end of the computation A outputswhatever ~A outputs (that is, A outputs ~A's view of the computation). It follows from thede�nition of A that the execution of S, with black-box access to A, is in fact identical tothe execution of ~S with black-box access to ~A. Thus, idealf; ~S ~A (~x) d= idealf;SA(~x) whichestablishes the �rst equality in Eq. (3.1).It remains to show that exec�0;A(~x) c� exec~�0; ~A(~x). Essentially the di�erence betweenthese two executions is that exec�0 ;A(~x) is a real-life execution in the secure channel set-ting which is augmented by invocations of � (performed by A), whereas exec~�0; ~A(~x) is areal-life execution in the computational setting in which honest parties use the encryptionprotocol "0. However, the security of " means that invocations of � are indistinguishablefrom executions by "0 (both in presence of adaptive adversaries). Using induction on thenumber of rounds, one thus establishes the last equality of Eq. (3.1). 23.3.2 Constructing non-committing encryptionBefore describing our non-committing encryption protocol, let us note that one-time-pad isa valid non-committing encryption protocol.7 The drawback of this trivial solution is thatit requires an initial set-up in which each pair of parties share a random string of length atleast the number of bits they need to exchange. Such an initial set-up is not desirable inpractice and does not resolve the theoretically important problem of dealing with a settingin which no secret information is shared a-priori.Our scheme uses a collection of trapdoor permutations together with a correspondinghard-core predicate [BM, Y2, GrL]. Actually, we need a collection of trapdoor permutationwith the additional property that they are many permutations over the same domain.7 Assume that each pair of parties share a su�ciently long secret random string, and each message isencrypted by bitwise xor-ing it with a new segment of the shared random string. Then De�nition 3.2 issatis�ed in a straightforward way. Speci�cally, the simulated message from the sender to the receiver (i.e.,the dummy ciphertext), denoted c, can be uniformly chosen in f0; 1g. When either the sender or the receiverare corrupted, and the simulator has to demonstrate that c is an encryption of a bit �, the simulator claimsthat the corresponding shared random bit was r = c� �. Clearly r is uniformly distributed, regardless ofthe value of �.

3.3 A solution for non-erasing parties 35Furthermore, we assume that given a permutation f over a domainD (but not f 's trapdoor),one can e�ciently generate at random another permutation f 0 over D together with thetrapdoor of f 0. Such a collection is called a common-domain trapdoor system.De�nition 3.5 A common-domain trapdoor system is an in�nite set of �nite permutationsff�;� :D� 1-17!Dag(�;�)2P , where P �f0; 1g��f0; 1g�, so that� domain selection: There exists a probabilistic polynomial-time algorithm G1 so that oninput 1n, algorithm G1 outputs a description � 2 f0; 1gn of domain D�.� function selection: There exists a probabilistic polynomial-time algorithm G2 so that oninput �, algorithm G2 outputs a pair (�; t(�)) so that (�; �) 2 P . (� is a descriptionof a permutation over D� and t(�) is the corresponding trapdoor.)� domain sampling: There exists a probabilistic polynomial-time algorithm S that oninput �, uniformly selects an element of Da.� function evaluation: There exists a polynomial-time algorithm F that on inputs(�; �) 2 P and x 2 D� returns f�;�(x).� function inversion: There exists a polynomial-time algorithm I that on inputs (�; t(�))and y 2 D�, where (�; �) 2 P , returns f�1�;�(y).� one-wayness: For any probabilistic polynomial-time algorithm A, the probability thaton input (�; �) 2 P and y = f�;�(x), algorithm A outputs x is negligible (in n), wherethe probability distribution is over the random choices of � = G1(1n), � = G2(�),x = S(�) and the coin tosses of algorithm A.Remarks:� The standard de�nition of trapdoor permutations can be derived from the aboveby replacing the two selection algorithms, G1 and G2, by a single algorithm G thaton input 1n generates a pair (�; t(�)) so that � speci�es a domain D� as well as apermutation f� over this domain (and t(�) is f�'s trapdoor). Thus, the standardde�nition does not guarantee any structural resemblance among domains of di�erentpermutations. Furthermore, it does not allow to generate a new permutation withcorresponding trapdoor for a given domain (or given permutation). Nevertheless somepopular trapdoor permutations can be formulated in a way which essentially meetsthe requirements of a common-domain trapdoor system.� Common-domain trapdoor systems can be constructed based on an arbitrary familyof trapdoor permutations, ff� :D� 1-17!D�g, with the extra property that the domain ofany permutation, generated on input 1n, has non-negligible density inside f0; 1gn (i.e.,jD�j � 1poly(j�j) � 2j�j). We construct a common-domain family where the domain isf0; 1gn and the permutations are natural extensions of the given permutations. Thatis, we let G1(1n) = 1n, G2(1n) = G(1n) and extend f� into g� so that g�(x) = f�(x)if x 2 D� and g�(x) = x otherwise. This yields a collection of \common-domain"permutations, fg� : f0; 1gj�j 1-17! f0; 1gj�jg, which are weakly one-way. Employing am-pli�cation techniques (e.g., [Y2, GILVZ]) we obtain a proper common-domain system.

3.3 A solution for non-erasing parties 36In the sequel we refer to common-domain trapdoor systems in a less formal way. Wesay that two one-way permutations, fa and fb, are a pair if they are both permutations overthe same domain (i.e., a = (�; �1) and b = (�; �2), where the domain is D�). We associatethe permutations with their descriptions (and the corresponding inverse permutations withtheir trapdoors). Finally, as stated above, we augment any common-domain trapdoorsystem with a hard-core predicate, denoted B. (That is, B is polynomial-time computable,but given (fa and) fa(x) is it infeasible to predict B(x) with non-negligible advantage over1=2.)Outline of our scheme. The scheme consists of two stages. In the �rst stage, called thekey generation stage, the parties arrive at a situation where the sender has two trapdoorpermutations fa; fb of a common-domain system, the trapdoor of only one of which isknown to the receiver. Furthermore, the simulator will be able to generate, in a simulatedexecution of the protocol, two trapdoor permutations with the same distribution as in a realexecution and such that the trapdoors of both permutations are known. (The simulatorwill later open dummy ciphertexts as either `0' or `1' by claiming that the decryption keyheld by the receiver is either f�1a or f�1b . The correspondence between f0; 1g and fa; bgwill be chosen at random by the simulator and never revealed). The key generation stageis independent of the bit to be transmitted (and can be performed before this bit is evendetermined).Our most general implementation of this stage, based on any common-domain system,requires participation of all parties. It is described in Section 3.3.2. In the implementationsbased on the RSA and DH assumptions (see Section 3.3.3) the key-generation stage consistsof only one message sent from the receiver to the sender.The second stage, in which the actual transmission takes place, consists of only onemessage sent from the sender to the receiver. This stage consists of encryption and decryptionalgorithms, invoked by the sender and the receiver respectively.We �rst present, in Section 3.3.2, the encryption and decryption algorithms as wellas observations that will be instrumental for the simulation. In Section 3.3.2 we presentthe key generation protocol. (A reader that is satis�ed with a construction based on spe-ci�c number theoretic assumptions may, for simplicity, skip Section 3.3.2 and read Section3.3.3 instead.) Finally we show that these together constitute the desired non-committingencryption protocol.Encryption and decryptionLet fa and fb be two randomly selected permutations over the domain D, and let B be ahard-core predicate associated with them. The scheme uses a security parameter, k, whichcan be thought to equal log2 jDj.Encryption: to encrypt a bit � 2 f0; 1g with encryption key (fa; fb), the sender proceedsas follows. First it chooses x1; : : : ; x8k at random from D, so that B(xi) = � for i = 1; :::; 5kand B(xi) = 1�� otherwise (i.e., for i = 5k+1; :::; 8k). For each xi it computes yi = fa(xi).These xi's (and yi's) are associated with fa (or with a). Next, it repeats the process withrespect to fb. That is, x8k+1; : : : ; x16k are chosen at random from D, so that B(xi) = � fori = 8k+ 1; :::; 13k and B(xi) = 1� � otherwise, and yi = fb(xi) for i = 8k+ 1; :::; 16k. The

3.3 A solution for non-erasing parties 37latter xi's (and yi's) are associated with fb (or with b). Finally, the sender applies a randomre-ordering (i.e., permutation) � : [16k]! [16k] to y1; : : : ; y16k and send the resulting vector,y�(1); : : : ; y�(16k), to the receiver.Decryption: upon receiving the ciphertext y1; : : : ; y16k, when having private key f�1r(where r 2 fa; bg), the receiver computes B(f�1r (y1)); : : : ; B(f�1r (y16k)), and outputs themajority value among these bits.Correctness of decryption. Let us �rst state a simple technical claim.Claim 3.6 For all but a negligible fraction of the �'s and all but a negligible fraction ofpermutation pairs fa and fb over D�,jProb(B(f�1b (fa(x))) = B(x))� 12 j is negligible (3.2)where the probability is taken uniformly over the choices of x 2 D�.Proof: Assume for contradiction that the claim does not hold. Then, without loss ofgenerality, there exists a positive polynomial p so that for in�nitely many n's, we haveProb�jfy 2 D� : B(f�1b (y)) = B(f�1a (y))gj > (12 + 1p(n)) � jD�j� > 1p(n)when fa and fb are independently generated from � = G1(1n). This means that for these(�; a; b)'s B(f�1a (y)) gives a non-trivial prediction for B(f�1b (y)). Intuitively this cannot bethe case and indeed this lead to contradiction as follows.Given a = (�; �) 2 P and y 2 D� we may predict B(f�1a (y)) as follows. First werandomly generate a new permutation. fb, over D�, together with its trapdoor. Nextwe test to see if indeed B(f�1a (z)) is correlated with B(f�1b (z)). (The testing is done byuniformly selecting polynomially many xi's in D�, computing zi = fa(xi), and comparingB(f�1a (zi)) = B(xi) with B(f�1b (zi)).) If a non-negligible correlation is detected then weoutput B(f�1b (y) (as our prediction for B(f�1a (y))). Otherwise we output a uniformlyselected bit. (Note that jProb(B(x) = 1) � 12 j must be negligible otherwise a constantfunction contradicts the hard-core hypothesis.) 2From this point on, we assume that the pair (fa; fb) satis�es Eq. (3.2).Lemma 3.7 Let ~y = y1; : : : ; y16k be a random encryption of a bit �. Then with probability1� 2�
(k) the bit decrypted from ~y is �.Proof: Assume without loss of generality that the private key is f�1a . Then, the receiveroutputs the majority value of the bits B(f�1a (y1)); : : : ; B(f�1a (y16k)). Recall that 8k of theyi's are associated with fa. Out of them, 5k (of the yi's) satisfy B(f�1a (yi)) = B(xi) = �,and 3k satisfy B(f�1a (yi)) = B(xi) = 1��. Thus, the receiver outputs 1�� only if at least5k out of the rest of the yi's (that is, the yi's associated with fb) satisfy B(f�1a (yi)) = 1��.However, Eq. (3.2) implies that jProb(B(f�1a (yi) = �)� 12 j is negligible for each yi associatedwith fb. Thus only an expected 4k of the yi's associated with fb satisfy B(f�1a (yi)) = 1��.Using a large deviation bound, it follows that decryption errors occur with probability2�
(k). 2

3.3 A solution for non-erasing parties 38Simulation assuming knowledge of both trapdoors. In Lemma 3.9 (below) we showhow the simulator, knowing the trapdoors of both fa and fb, can generate \dummy cipher-texts" ~z = z1; : : : ; z16k that can be later \opened" as encryptions of both 0 and 1. Essentially,the values B(f�1a (zi)) and B(f�1b (zi)) for each zi are carefully chosen so that this \cheating"is possible. We use the following notations. Fix an encryption key (fa; fb). Let the randomvariable �� = (�; ~x; �; ~y; r; f�1r) describe a legal encryption and decryption process of the bit�. That is:� ~x = x1; : : : ; x16k is a vector of domain elements chosen at random as speci�ed in theencryption algorithm.� � is a random permutation on [16k].� ~y = y1; : : : ; y16k is generated from ~x and � as speci�ed in the encryption algorithm.� r is uniformly chosen in fa; bg and f�1r is the inverse of fr. (Note that the decryptedbit is de�ned by the majority of the bits B(f�1r (yi).)We remark that the information seen by the adversary, after the sender and receiver arecorrupted, includes either �0 or �1 (but not both).Let us �rst prove a simple technical claim, that will help us in proving Lemma 3.9. Letbinm denote the binomial distribution over [m].Claim 3.8 There exists an e�ciently samplable distribution � over f0; 1; :::; 4kg so that thedistribution ~� constructed by sampling an integer from � and adding 2k is statistically closeto bin8k. That is, the statistical distance between ~� and bin8k is 2�
(k).Proof: Let bin8k(i) denote the probability of i under bin8k (i.e., bin8k(i) = �8ki ��2�8k). Weconstruct the distribution � (over f0; 1; :::; 4kg) so that Prob(�= i) = bin8k(i+ 2k) for i =1; :::; 4n and Prob(�=0) equals the remaining mass of bin8k (i.e., it equals P2ki=0 bin8k(i) +P8ki=6k+1 bin8k(i)).It can be easily seen that each i 2 f2k+1; :::; 6kg occurs under ~� with exactly the sameprobability as under bin8k. Integers i such that i < 2k or i > 6k have probability 0 under~� (whereas 2k is more likely to occur under ~� than under bin8k). Thus, the statisticaldistance between ~� and bin8k equals the probability, under bin8k, that i is smaller than 2kor larger than 6k. This probability is bounded by 2�
(k). 2Lemma 3.9 Let (fa; fb) be the public key, and assume that both f�1a and f�1b are known.Then it is possible to e�ciently generate ~z; ~x(0); ~x(1); �(0); �(1); r(0); r(1), such that:1. (0; ~x(0); �(0); ~z; r(0); f�1r(0)) c� �0.2. (1; ~x(1); �(1); ~z; r(1); f�1r(1)) c� �1.Here c� stands for `computationally indistinguishable'. We stress that the same dummyciphertext, ~z, appears in both (1) and (2).Proof: Before describing how the dummy ciphertext ~z and the rest of the data are con-structed, we summarize, in Figure 3-1, the distribution of the hard-core bits, B(f�1a (Y1)); :::; b(F�1a (y16k))andB(f�1b (y1)); :::;B(f�1b (y16k)), with respect to a real encryption y�(1); : : : ; y�(16k) of the bit� = 0. Here ~bin8k denotes the distribution of the number of `1's in B(f�1b (yi)) for

3.3 A solution for non-erasing parties 39I = f1; :::; 8kg I = f8k + 1; :::; 16kg8i 2 I yi = fa(xi) yi = fb(xi)Pi2I B(f�1a (yi)) = 3k ~bin8kPi2I B(f�1b (yi)) = ~bin8k 3kFigure 3-1: The distribution of the B(f�1s (yi))'s with respect to �0, where s 2 fa; bg. (Thecase of �1 is similar, with the exception that 5k is replaced for 3k.)i = 1; :::; 8k. Eq. (3.2) implies that the statistical di�erence between bin8k and ~bin8k isnegligible. The distribution of B(f�1a (yi)) for i = 8k+1; :::; 16k is similar. Given only �0 (oronly �1), only three-quarters of the B(f�1s (yi))'s, i 2 [16k] and s 2 fa; bg, are known. Specif-ically, consider �� = (�; ~x; �; ~y; r; f�1r), and suppose that r = a. Then all the B(f�1a (yi))'scan be computed using f�1a . In addition, for i = 8k + 1; :::; 16k, B(f�1b (yi)) = B(xi) isknown too. However, for i 2 [8k], B(f�1b (yi)) = B(f�1b fa(xi))) is not known and in fact it is(computationally) unpredictable (from ��). A similar analysis holds for r = b; in this casethe unpredictable bits are B(f�1a (yi)) = B(f�1a fb(xi))) for i = 8k + 1; :::; 16k.Initial construction and conditions: Keeping the structure of �� in mind, we con-struct ~z, along with ~x(0), ~x(1), �(0), �(1), r(0) and r(1), as follows. First, we select uniformlya bijection, �, of f0; 1g to fa; bg (i.e., either �(0) = a and �(1) = b or the other way around)and set r(0) = �(0) and r(1) = �(1). Next, we choose, in the way described below, twobinary vectors ~
(0) =
(0)1 ; : : : ;
(0)16k and ~
(1) =
(1)1 ; : : : ;
(1)16k. We choose random valuesv1; : : : ; v16k such that
(0)i = B(f�1�(0)(vi)) and
(1)i = B(f�1�(1)(vi)), for each i 2 [16k]. We uni-formly select a permutation over [16k] and let the permuted vector v (1); : : : ; v (16k) bethe dummy ciphertext ~z = (z1; :::; z16k). It remains to determine �(0) and �(1), which in turndetermine ~x(0) and ~x(1) so that x(�)i = f�1a (z(�(�))�1(i)) for i 2 [8k] and x(�)i = f�1b (z�(�)(i))otherwise. This should be done so that both permutations �(0) and �(1) are uniformly (butnot necessarily independently) distributed and so that the known B(f�1s (y(�)i))'s match thedistribution seen in a legitimate encryption of �. We stress that (�; ~x(�); �(�); ~z; r(�); f�1r(�))should appear as a valid encryption of �. In particular, for each � 2 f0; 1g there shouldexist a permutation (�) (= (�(�))�1 � �) over [16k] so that81.
(��1(a)) (�)(i) = B(f�1a (v (�)(i))) = B(f�1a (z�(�)(i))) = B(x(�)i) = �, for i = 1; :::; 5k.(E.g., if �(0) = a this means
(0) (�)(i) = �.)2.
(��1(a)) (�)(i) = B(f�1a (v (�)(i))) = B(f�1a (z�(�)(i))) = B(x(�)i) = 1� �, for i = 5k+ 1; :::; 8k.(E.g., if �(0) = a this means
(0) (�)(i) = 1� �.)8 In each of the following �ve conditions, the �rst equality is by the construction of the vi's, the secondequality is by the de�nition of the zi's, and the third equality represents the relation between ~x(�), ~z and �(�)that holds in a valid encryption (of �). In conditions (1) through (4), the last equality represents the relationbetween ~x(�) and � that holds in a valid encryption of �. In condition (5), the last equality represents theinformation computable from ~z using (the trapdoor) f�1r(�) . Here we refer to the inverses of the zi's whichare not x(�)i 's. The hard-core value of these inverses should be uniformly distributed.

3.3 A solution for non-erasing parties 403.
(��1(b)) (�)(i) = B(f�1b (v (�)(i))) = B(f�1b (z�(�)(i))) = B(x(�)i) = �, for i = 8k + 1; :::; 13k.(E.g., if �(0) = a this means
(1) (�)(i) = �.)4.
(��1(b)) (�)(i) =B(f�1b (v (�)(i))) = B(f�1b (z�(�)(i))) = B(x(�)i) = 1��, for i = 13k+1; :::; 16k.(E.g., if �(0) = a this means
(1) (�)(i) = 1� �.)5. Let I = [8k] if �(�) = b and I = f8k + 1; :::; 16kg otherwise. Then,
(�) (�)(i) =B(f�1�(�)(v (�)(i))) = B(f�1�(�)(z�(�)(i))) = B(f�1�(�)(f�(1��)(x(�)i))) equals � with probabil-ity negligibly close to 12 , for i 2 I .(E.g., for �(0) = a and � = 0 we have Prob(
(0) (�)(i) = 1) � 12 for i = 8k + 1; :::; 16k,whereas for �(0) = a and � = 1 we have Prob(
(1) (�)(i) = 1) � 12 for i = 1; :::; 8k.)This allows setting �(�) = �((�))�1 so that x(�)�(�)(i) is \mapped" to zi while �(�) is uniformlydistributed (i.e., x(�)i = f�1a (v (�)(i)) = f�1a (z �1(�(�)(i))) = f�1a (z(�(�))�1(i)) for i 2 [8k] andx(�)i = f�1b (z�(�)(i)) otherwise).Initial setting of ~
(0), ~
(1), (0) and (1): The key issue is how to select ~
(0) and ~
(1)so that the �ve condition stated above hold (for both � = 0 and � = 1). As a �rst steptowards this goal we consider the four sumsS�1 def= 8kXi=1
(��1(a)) (�)(i) ; S�2 def= 16kXi=8k+1
(��1(b)) (�)(i) ; S�3 def= 8kXi=1
(��1(b)) (�)(i) ; S�4 def= 16kXi=8k+1
(��1(a)) (�)(i)The above conditions imply S�1 = S�2 = 5k ��+3k � (1��) = 3k+2k� as well as S�3 d= ~bin8kif �(�) = b and S�4 d= ~bin8k otherwise. (Note that S�3 ; S�4 and ~bin8k are random variables.)To satisfy the above summation conditions we partition [16k] into 4 equal sized subsetsdenoted I1; I2; I3; I4 (e.g., I1 = [4k], I2 = f4k + 1; :::; 8kg, I3 = f8k + 1; :::; 12kg and I4 =f12k + 1; :::; 16kg). This partition induces a similar partition on the
(0)i 's and the
(1)i 's.The
(0)i 's and the
(1)i 's in each set are chosen using four di�erent distributions whichsatisfy the conditions summarized in Figure 3-2. Suppose �(0) = a. Then, we may setI = I1 I = I2 I = I3 I = I4Pi2I
(0)i d= 3k 0 2k �Pi2I
(1)i d= � 4k 2k kFigure 3-2: The distribution of the
(0)'s and
(1)'s. (� is as in Claim 3.8.) (0)([8k]) = I1 [I2 and (0)(f8k + 1; :::; 16kg) = I3 [I4, and (1)([8k]) = I1 [I3 and (1)(f8k + 1; :::; 16kg) = I2 [I4, where �(I) = J means that the permutation � maps theelements of the set I onto the set J . (It would have been more natural but less convenientto write ((1))�1(I1 [I3) = [8k] and ((1))�1(I2 [I4) = f8k + 1; 16kg.) We claim that,for each � 2 f0; 1g, the above setting satis�es the three relevant summation conditions.Consider, for example, the case � = 0 (depicted in Figure 3-3). Then, S01 =P8ki=1
(0)i = 3kand S02 = P16ki=8k+1
(1)i = 3k as required. Considering S04 = P16ki=8k+1
(0)i we observe that itis distributed as 2k + � = ~� (of Claim 3.8) which in turn is statistically close to ~bin8k. We

3.3 A solution for non-erasing parties 41I = f1; :::; 8kg= ((0))�1(I1 [I2) I = f8k + 1; :::; 16kg= ((0))�1(I3 [I4)Pi2I
(0)i = S01 = 3k + 0 = 3k S04 = 2k + � d= ~bin8kPi2I
(1)i = no condition S02 = 2k + k = 3kFigure 3-3: Using (0) the
(0)i 's and
(1)i 's satisfy the summation conditions S01 , S02 and S04 .stress that the above argument holds for any way of setting the (�)'s as long as they obeythe equalities speci�ed (e.g., for any bijection � : I1 [I2 1-17! I1 [I3, we are allowed to set (1)(i) = �(i) for all i 2 I1[I2). The case � = 1 follows similarly; here S11 =Pi2I1[I3
(0)i =5k, S12 = Pi2I2[I4
(1)i = 5k and S13 = Pi2I1[I3
(1)i = � + 2k (see Figure 3-4). In caseI = f1; :::; 8kg= ((1))�1(I1 [I3) I = f8k + 1; :::; 16kg= ((1))�1(I2 [I4)Pi2I
(0)i = S11 = 3k + 2k = 5k no conditionPi2I
(1)i = S13 = � + 2k d= ~bin8k S12 = 4k + k = 5kFigure 3-4: Using (1) the
(0)i 's and
(1)i 's satisfy the summation conditions S11 , S12 and S13 .�(0) = b we set (0)([8k]) = I3 [I4, (0)(f8k + 1; :::; 16kg) = I1 [I2, (1)([8k]) = I2 [I4and (1)(f8k+ 1; :::; 16kg) = I1 [I3. The claim that, for each � 2 f0; 1g, the above settingsatis�es the three relevant summation conditions, is shown analogously.Refinement of ~
(0), ~
(1), (0) and (1): However, the above summation conditions donot guarantee satisfaction of all the �ve conditions. In particular, we must use permutations (�) which guarantee the correct positioning visible bits within the 8k-bit long block. Thatis, we must have (
(��1(a)) (�)(1) ; :::;
(��1(a)) (�)(8k)) = (�5k; (1� �)3k)(
(��1(a)) (�)(8k+1); :::;
(��1(a)) (�)(16k)) = (�5k; (1� �)3k)that is, equality between the sequences and not merely equality in the number of 1's. Clearlythere is no problem to set the (�)'s so that these equalities hold and thus Conditions (1)through (4) are satis�ed. It is left to satisfy Condition (5).Suppose that �(�) = a. In this case the third summation requirement guaranteesP16ki=8k+1
(�) (�)(i) d= ~bin8k. This is indeed consistent with the requirement that these
(�) (�)(i)'sare almost uniformly and independently distributed. But this is not su�cient. In particular,we also need Pi2J
(�) (�)(i) d= ~bin3k, where J = f8k < i � 16k :
(1��) (�)(i) = 1 � �g andfurthermore the above sum needs to be independent of Pi2f8k+1;:::;16kg�J
(�) (�)(i) (which inturn should be statistically close to bin5k). Let us start with the case � = 0. In this casewe need Xi2J
(0)i d= ~bin3k; (3.3)where J = fi 2 I3 [I4 :
(1)i = 1g, and this sum needs to be independent of Pi2I3[I4�J
(0)i .By Figure 3-2 we have jJ \ I3j = 2k. We further restrict the distributions
(0)i 's and
(1)i 's

3.3 A solution for non-erasing parties 42so that in part I3 the four possible outcomes of the pairs (
(0)i ;
(1)i) are equally likely (e.g.,for exactly k integers i 2 I3 we have (
(0)i ;
(1)i) = (0; 0)). Consider J 0 = J \ I4 (notejJ 0j = k). To satisfy Eq. (3.3) we construct a random variable �0 2 f0; 1; :::; kg (analogouslyto Claim 3.8) so that pj def= Prob(�0 = j) = bin3k(k + j) for j 2 [k] (with the rest of themass on �0 = 0) and constrain the
(0)i 's to satisfy Prob(Pi2J 0
(0)i = j) = pj. We getPi2J
(0)i = k + �0 d= ~bin3k (analogously to Claim 3.8). A minor problem occurs: the newrestriction on the
(0)i 's conditions Pi2I4�J 0
(0)i which we want to be distributed as some�00 d= bin5k�2k and independently of �0 (the reason being that �0+�00 should be distributedequally to �). However this condition has a negligible e�ect since we can sample �0 and �and set the
(0)i 's accordingly, getting into trouble only in case � < �0 which happens withnegligible probability (since Prob(� < �0) < Prob(� < k) = 2�
(k)).The case � = 1 gives rise to the requirementXi2J
(1)i d= ~bin3k; (3.4)where J = fi 2 I1 [I3 :
(0)i = 0g, and this sum needs to be independent of Pi2I1[I3�J
(1)i .To satisfy Eq. (3.4) we restrict the
(1)i 's in J 0 def= J\I1 analogously to satisfyPi2J 0
(1)i = �0.Finally, we observe that generating the
(0)i 's and
(1)i 's at random so that they satisfy theabove requirements makes them satisfy Condition (5).Beyond the five conditions. In the above construction we have explicitly dealt withconditions which obviously have to hold for the construction to be valid. We now show thatindeed this su�ces. Namely, we claim that(�; ~x(�); �(�); ~z; r(�); f�1r(�)) c� �� = (�; ~x; �; ~y; r; f�1r): (3.5)Consider the case � = 0. Both r(0) and r are uniformly chosen in fa; bg and so we consider,w.l.o.g., r = r(0) = a. Furthermore, �(0) is a random permutation and fa(x(0)i) = z�(0) fori = 1; :::; 8k, and fb(x(0)i) = z�(0) for i = 8k+ 1; :::; 16k, which matches the situation w.r.t �,~x and ~y. It remains to compare the distributions of B(f�1s (�))'s, s 2 fa; bg, with respect to~x(0) and with respect to ~x. By the above analysis we know that the entries correspondingto s = a and to (s = b)^ (i � 8k) are distributed similarly in the two cases. Thus, we needto compare B(f�1b (fa(x(0)1))); :::;B(f�1b (fa(x(0)8k))) and B(f�1b (fa(x1))); :::; B(f�1b (fa(x8k))).Recall that the xi's are selected at random subject to B(xi) = 0 for i = 1; :::; 5k andB(xi) = 1 for i = 5k + 1; :::; 8k. An analogous condition is imposed on the x(0)i 's but inaddition we also haveB(f�1b (fa(x(0)i))) = 1 for i = 1; :::; 4k, and some complicated conditionson B(f�1b (fa(x(0)i))) = 1, for i = 4k + 1; :::; 8k (i.e., the distribution of 1's here is governedby � and furthermore in the �rst k elements the number of 1's is distributed identically to�0). Thus, distinguishing ~x from ~x(0) amounts to distinguishing, given fa; fb : D 7! D andthe trapdoor for fa (but not for fb), between the two distributions1. (u1; :::; u8k), where the ui's are independently selected so that B(ui) = 0 if i 2 [5k]and B(ui) = 1 otherwise; and2. (w1; :::; w8k), where the wi's are uniformly selected under the conditions� B(wi) = 0 if i 2 [5k] and B(ui) = 1 otherwise,

3.3 A solution for non-erasing parties 43� B(f�1b (fa(wi))) = 1 for i 2 [4k],� P5ki=4k+1B(f�1b (fa(wi))) = �0, and� P8ki=5k+1B(f�1b (fa(wi))) = �00, for some �00 d= � � �0.We claim that distinguishing these two distributions yields a contradiction to the securityof the hard-core predicate B. Suppose, on the contrary that an e�cient algorithm A candistinguish these two distributions. Using a hybrid argument we construct an algorithmA0 which distinguishes the the uniform distribution over D0 def= fx 2 D : B(x) = �g anda distribution over D0 that is uniform over both D00 def= fx 2 D0 : B(f�1b (fa(x))) = 0g andD01 def= fx 2 D0 : B(f�1b (fa(x))) = 1g, where � is a bit which can be e�ciently determined.(We stress that the latter distribution is not uniform on D0 but rather uniform on eachof its two parts.) Without loss of generality, we assume � = 0. It follows that A0 mustdistinguish inputs uniformly distributed in D00 from inputs uniformly distributed in D01.We now transform A0 into an algorithm, A00, that distinguishes a uniform distribution overfy 2 D : B(f�1b (y)) = 0g from a uniform distribution over fy 2 D : B(f�1b (y)) = 1g. Oninput y 2 D� and fb : D 7! D, algorithm A00 �rst generates another permutation fa, overD, together with the trapdoor for fa. Next, it computes x = f�1a (y) and stop (outputting0) if B(x) = 1 (i.e., x 62 D0). Otherwise, A00, invokes A0 on x and outputs A0(x). In this caseB(f�1b (fa(x))) = B(f�1b (y)) (and B(x) = 0) so the output will be signi�cantly di�erent incase B(f�1b (y))) = 0 and in case B(f�1b (y))) = 1. We observe that Prob(B(x) = 0) � 12(otherwise a constant function violates the security of B), and conclude that one can arandom y with B(f�1b (y)) = 0 from a random y with B(f�1b (y)) = 1 (which contradicts thesecurity of B). 2Key generationWe describe how the keys are generated, based on any common-domain trapdoor system.We use Oblivious Transfer [MRa1, EGL] in our constructions. Oblivious Transfer (OT) isa protocol executed by a sender S with inputs s1 and s2, and by a receiver R with input� 2 f1; 2g. After executing an OT protocol, the receiver should know s� , and learn nothingelse. The sender S should learn nothing from participating in the protocol. In particular Sshould not know whether R learns s1 or s2. We are only concerned with the case where Ris uncorrupted and non-erasing.We use the implementation of OT described in [GMW] (which in turn originates in[EGL]). This implementation has an additional property, discussed below, that is useful inour construction. For self containment we sketch, in Figure 3-5, the [GMW] protocol forOT of one bit.It can be easily veri�ed that the receiver outputs the correct value of �� in Step 4. Also,if the receiver is semi-honest in the non-erasing sense, then it cannot predict �3�� with morethan negligible advantage over 12 . 9 The sender view of the interaction is uncorrelated withthe value of � 2 f1; 2g. Thus it learns nothing from participating in the protocol.The important additional property of this protocol is that, in a simulated execution ofthe protocol, the simulator can learn both �1 and �2 by uniformly selecting z1; z2 2 D, and9This statement does not hold if R is semi-honest only in the honest-looking sense. Ironically, this `
aw'is related to the useful (non-committing) feature discussed below.

3.3 A solution for non-erasing parties 44Oblivious Transfer (OT)The parties proceed as follows, using a trapdoor-permutations generator and the associatedhard-core predicate B().1. On input �1; �2 2 f0; 1g, the sender generates a one-way trapdoor permutation f :D ! D with its trapdoor f�1, and sends f to the receiver.2. On input � 2 f1; 2g, the receiver uniformly selects x1; x2 2 D, computes y� = f(x�),sets y3�� = x3�� , and sends (y1; y2) to the sender.3. Upon receiving (y1; y2), the sender sends the pair (�1�B(f�1(y1)); �2�B(f�1(y2)))to the receiver.4. Having received (b1; b2), the receiver outputs s� = b� � B(x�) (as the message re-ceived). Figure 3-5: The [GMW] Oblivious Transfer protocolhaving the receiver R send f(z1); f(z2) (in Step 2). Furthermore, if R is later corrupted,then the simulator can \convince" the adversary that R received either �1 or �2, at wish, byclaiming that in Step 2 party R chose either (x1; x2) = (z1; f(z2)) or (x1; x2) = (f(z1); z2),respectively.In Figure 3-6 we describe our key generation protocol. This protocol is valid as long asat least one party remains uncorrupted.Simulation (Adaptive security of the encryption protocol)Let " denote the combined encryption and decryption protocols, preceded by the key gen-eration protocol.Theorem 3.10 Protocol " is an (n� 1)-resilient non-committing encryption protocol for nparties, in the presence of non-erasing parties.Proof (sketch): Let Pr be the sender and let Ps be the receiver. Recall that a non-committing encryption protocol is a protocol that securely computes the bit transmissionfunction, btrs;r, in a simulatable way. Let "0 be a non-erasing protocol for ". We constructa simulator S such that idealbtrs;r;SA(�) d= exec"0;A(�), for any (n�1)-limited adversaryA and for any input � 2 f0; 1g of Ps.The simulator S proceeds as follows. First an invocation of the key generation protocol"G is simulated, in such a way that S knows both trapdoors f�1a and f�1b . (This can bedone using the additional property of the [GMW] Oblivious Transfer protocol, as describedabove.) For each party P that A corrupts during this stage, S hands A the internal dataheld by P in the simulated interaction. We stress that as long as at least one party remainsuncorrupted, the adversary knows at most one of f�1a ; f�1b . Furthermore, as long as Prremains uncorrupted, the adversary view of the computation is independent of whether Prhas f�1a or f�1b .Once the simulation of the key generation protocol is completed, S instructs the trustedparty in the ideal model to notify Pr of the function value. (This value is Ps's input, �.) If

3.3 A solution for non-erasing parties 45
key-generation ("G)For generating an encryption key (fa; fb) known to the sender, and a decryption key f�1rknown only to the receiver (R), where r is uniformly distributed in fa; bg.1. The receiver generates a common domain D� and sends � to all parties.2. Each party Pi generates two trapdoor permutations over D�, denoted fai and fbi ,and sends (fai ; fbi) to R. The trapdoors of fai and fbi are kept secret by Pi.3. The receiver R chooses uniformly � 2 f1; 2g and invokes the OT protocol with eachparty Pi for a number of times equal to the length of the description of the trapdoorof a permutation over �. In all invocations the receiver uses input � . In the jthinvocation of OT, party Pi acting as sender uses input (�1; �2), where �1 (resp., �2) isthe jth bit of the trapdoor of fai (resp., fbi). (Here we use the convention by which,without loss of generality, the trapdoor may contain all random choices made by G2when generating the permutation. This allows R to verify the validity of the datareceived from Pi.)4. Let H be the set of parties with which all the OT's were completed successfully. Letfa be the composition of the permutations fai 's for Pi 2 H, in some canonical order,and let fb be de�ned analogously (e.g., a is the concatenation of the ai with i 2 H).Let r = a if � = 1 and r = b otherwise. The trapdoor to fr is known only to R (it isthe concatenation of the trapdoors obtained in Step 3).5. R now sends the public key (fa; fb) to the sender.Figure 3-6: The key generation protocol

3.3 A solution for non-erasing parties 46at this point either Ps or Pr is corrupted, then S gets to know the encrypted bit. In thiscase S generates a true encryption of the bit �, according to the protocol. If neither Ps norPr are corrupted, then S generates the values ~z; ~x(0); ~x(1)�(0); �(1); r(0); r(1) as in Lemma 3.9,and lets ~z be the ciphertext that Ps sends to Pr in the simulated interaction.If at this stage A corrupts some party P which is not the sender or the receiver, then Shands A the internal data held by P in the simulated interaction. If A corrupts Ps, then Scorrupts Ps in the ideal model and learns �. Next S hands A the values ~x(�); �(�) for Ps'sinternal data. If A corrupts Pr , then S corrupts Pr in the ideal model, learns �, and handsA the value f�1r(�) for Ps's internal data.The validity of the simulation follows from Lemma 3.9 and from the properties of the[GMW] Oblivious Transfer protocol. 23.3.3 Alternative implementations of non-committing encryptionWe describe two alternative implementations of our non-committing encryption scheme,based on the RSA and DH assumptions, respectively. These implementations have theadvantage that the key generation stage can be simpli�ed to consist of a single messagesent from the receiver to the sender.An implementation based on RSA. We �rst construct the following common-domaintrapdoor system. The common domain, given security parameter n, is f0; 1gn. A per-mutation over f0; 1gn is chosen as follows. First choose a number N uniformly from[2n�1 : : :2n], together with its factorization (via Bach's algorithm [Ba]). Next choose aprime 2n < e < 2n+1. (This way, we are assured that gcd(e; �(N)) = 1, where �() is Euler'stotient function, even if the factorization of N is not known.) Let fN (x) = xe(modN) ifx < N and fN(x) = x otherwise. With non-negligible probability N is a product of twolarge primes. Thus, this construction yields a collection of common-domain permutationswhich are weakly one-way. Employing an ampli�cation procedure (e.g., [Y2, GILVZ]) weobtain a proper common-domain system.This common-domain trapdoor system can be used as described in Section 3.3.2. How-ever, here the key-generation stage can be simpli�ed considerably. Observe that it is possibleto choose a permutation from the above distribution without knowing its trapdoor. Speci�-cally, this is done by choosing the numbers N of the di�erent instances of fN in the directway, without knowing their factorization. Thus, the receiver will choose two trapdoor per-mutations fa; fb, where only the trapdoor to fr (i.e., f�1r) is known, r 2R fa; bg. Both fa; fbare now sent to the sender, who proceeds as in Section 3.3.2. In a simulated execution thesimulator will choose both fa and fb together with their trapdoors.10An implementation based on DH. Consider the following construction. Although itfails to satisfy De�nition 3.5, it will be `just as good' for our needs. The common domain,given security parameter n, is a prime 2n�1 < p < 2n where the factorization of p � 1 isknown. Also, a generator g of Z�p is �xed. p and g are publicly known. All computationsare done modulo p. To choose a permutation over Z�p , choose an element v 2R Z�p�1 and letfv(x) = xv. The public description of fv is y 4= gv. The `trapdoor' is u 4= v�1(modp� 1).10A similar idea was used in [DP].

3.4 Honest-looking parties 47This construction has the following properties:� Although it is hard to compute fv if only p; g; y are known, it is easy to generaterandom elements x 2R Z�p together with fv(x): choose z 2R Z�p , and set x = gz andfv(x) = yz. (This holds since fv(x) = xv = gzv = yz.)� If u is known then it is easy to compute f�1v (x) = xu.� An algorithmA that inverts fv given only p; g; y can be easily transformed into an algo-rithm A0 that given p; g; g�; g� outputs g�� (that is, into an algorithm that contradictsthe Di�e-Hellman (DH) assumption). Speci�cally, Assume that A(p; g; gv; xv) = x.Then, on input p; g; g�; g�, algorithm A0 will run A(p; g�; g; g�) to obtain g��.� It is possible to choose a permutation from the above distribution without knowingits trapdoor. Speci�cally, this is done by uniformly choosing numbers y 2R Z�p until agenerator is found. (It is easy to decide whether a given y is a generator of Z�p whenthe factorization of p� 1 is known.)Note that both in the encryption process and in the simulation it is not necessary tocompute the permutations f on arbitrary inputs. It su�ces to be able to generate randomelements x in the domain together with their function value f(x). Thus, this constructionis used in a similar way to the previous one.A concluding remark to Section 3.3. Our solutions for non-erasing parties may ap-pear somewhat unsatisfactory since they are based on `trusting' the receiver to choose trap-door permutations without knowing the trapdoor, whereas the permutation can be chosentogether with its trapdoor by simple `honest-looking' behavior. Recall, however, that ifhonest-looking parties are allowed then no (non-trivial) protocol can be proven adaptivelysecure (via black-box simulation if claw-free pairs exist). We do not see a meaningful way todistinguish between the `honest-looking behavior' that foils the security of our constructionsand the `honest-looking behavior', described in Section 3.1.1, that foils provability of theadaptive security of any protocol.3.4 Honest-looking partiesOur construction for honest-looking parties assumes the existence of a \trusted dealer" ata pre-computation stage. The dealer chooses, for each party P , a truly random string rP ,and hands rP to P , to be used as random input. (We call rP a certi�ed random input forP .) Next, the dealer generates n� 1 shares of rP , so that rP can be reconstructed from alln� 1 shares, but any subset of n� 2 shares are independent of rP . Finally the dealer handsone share to each party other than P .Now, all parties are able to jointly reconstruct rP , and thus verify whether P followsits protocol. Consequently, if party P is honest-looking (i.e., P does not take any chanceof being caught cheating), then it is forced to use rP exactly as instructed in the protocol.Party P is now limited to non-erasing behavior, and the construction of Section 3.3 applies.(We note that the use of certi�ed random inputs does not limit the simulator. That is,upon corruption of party P , the simulator can still compute some convenient value r0P to

3.4 Honest-looking parties 48be used as P 's random input, and then \convince" the adversary that the certi�ed randominput of P was r0P . The adversary will not notice anything wrong since it will never haveall the shares of the certi�ed random input.)

C h a p t e r 4Asynchronous secure computation
We study secure multiparty computation in asynchronous networks. (See an introductorypresentation in Section 1.4.) We �rst present, in Section 4.1, our de�nition of asynchronoussecure multiparty computation. We consider the bounded variant of the secure channelssetting, in the presence of adaptive adversaries and non-erasing parties. Here we alsodescribe our conventions for presenting asynchronous protocols. Next we present, in Section4.2, asynchronous primitives used in our protocols. In Sections 4.3 and 4.5 we describe ourconstruction of the cases of Fail-Stop and Byzantine adversaries, respectively. In Section4.4 we de�ne and construct an Asynchronous Veri�able Secret Sharing (AVSS) scheme, thatis a key tool in our construction for Byzantine adversaries. In Section 4.6 we demonstratethe optimality of our constructions.4.1 Preliminaries4.1.1 The asynchronous modelConsider an asynchronous network of n parties, where every two parties are connected via areliable and private communication channel. Messages sent on a channel can be arbitrarilydelayed; however, each message sent is eventually received. Furthermore, the order in whichmessages are received on a channel may be di�erent from the order in which they were sent1.It is convenient to regard a computation in our model as a sequence of steps. In eachstep a single party is active. The party is activated by receiving a message; it then per-forms an internal computation, and possibly sends messages on its outgoing channels. Weconsider the order of the steps as controlled by an adversarial entity, called a scheduler. Weallow computationally unbounded schedulers. The privacy of the channels is modelled byconsidering only oblivious schedulers. The only information known to these schedulers isthe origin and destination (and, possibly, the length) of each message sent2. More formally,1For simplicity, we assume that messages are not duplicated. Duplication can be prevented by standardmethods, e.g., using counters2Private channels are useless in the presence of schedulers that have access to the contents of the messages:49

4.1 Preliminaries 50an oblivious scheduler is a functionD : (N � [n]2)� ! N, with the following interpretation.Given the list of flength, source, destinationg of the i �rst messages sent in an execution, insome standard global ordering, function D speci�es the serial number of the next messageto be delivered. (The scheduler must deliver every message exactly once, and cannot deliverunsent messages.) In the sequel we incorporate the scheduler within the adversary.We distinguish two types of adversaries: Fail-Stop and Byzantine. If the adversary isFail-stop, then the corrupted parties may stop sending messages at some time during thecomputation; however, we assume that the corrupted parties continue to receive messagesand have an output. If the adversary is Byzantine, then the corrupted parties may deviatefrom their protocols in any way. We consider adaptive adversaries.4.1.2 De�ning secure asynchronous computationWe use the `ideal model methodology', described in Section 1.2 and Chapter 2, for de�ningasynchronous secure computation. The `asynchronous version' of the ideal model should re-
ect the special properties of the asynchronous setting. In particular, the following propertyof the asynchronous setting remains unchanged, even in the presence of a trusted party. Inan asynchronous network with t potential corruptions, the uncorrupted parties (as well asthe trusted party) cannot wait to communicate with more than n� t parties before decidingon the output of a computation, since up to t parties may never join the computation. Con-sequently, unlike synchronous computations, the output of an asynchronous computationcan be based only on some `core' subset, of size at least n� t, of the inputs. Furthermore,the t inputs that were left out are not necessarily inputs of corrupted parties: they can beinputs of slow, however uncorrupted parties.3 4Therefore, we suggest the following asynchronous ideal model. Evaluating a function fin this model proceeds in the same way as in the synchronous ideal model (see Section 2.3on page 21), with the only exception that the computation stage is modi�ed as follows.Computation stage (asynchronous version): The adversary chooses an arbitrary `core'set of size at least n � t; this subset, denoted C, is independent of the inputs of theuncorrupted parties. A `scheduler' delivers only the messages of the parties in C tothe trusted party.Upon receiving the (possibly substituted) inputs of the parties in subset C, the trustedparty computes some prede�ned \approximation" to the function value, based on Cand the inputs of the parties in C. (For concreteness, we use the following \approxi-mation": set the inputs of the parties in �C to 0, and compute the original function.)In order for the output to make more sense, the trusted party outputs the subset Cas well as the approximated function value.for instance, such a scheduler can set the delivery order of the messages so that the �rst bit in the �rst messagereceived by party P1 will be the same as the �fth bit in the �rst message that party P2 sent on its privatechannel to P3... thus `breaking' the privacy of this channel.3Chor and Moscovici describe this property of the asynchronous model in more detail [CM]. Furthermore,they give an exact characterization of the achievable `tasks' in the presence of a given number of Fail-Stopcorruptions, when the privacy of the inputs is disregarded.4A consequence of this phenomenon is that no asynchronous computation can be \equivalent" to acomputation in the synchronous trusted party scenario.

4.1 Preliminaries 51Consequently, the output of the parties in this ideal model is as follows. On input~x = x1; : : : ; xn of the parties (input xi to party Pi), let C be the set described above, andlet ~y denote the (possibly modi�ed) inputs of the parties in C. Let fC denote the \approxi-mation" of the function f , made by the trusted party. Then, the uncorrupted parties output(C; fC(~y)). The corrupted parties output an arbitrary function of the information gatheredby the adversary in the computation; this information consists of the identity and inputsof the corrupted parties, their random inputs, and the resulting approximation fC(~y). Alsohere, we let the n-vector idealf;S(~x) = idealf;S(~x)1 : : : idealf;S (~x)n denote the outputs ofthe parties on input ~x and ideal-model adversary S (party Pi outputs idealf;S(~x)i).In De�nitions 4.1 through 4.3 we present notations for the output of the parties in theasynchronous ideal model. (These notations capture the above description in an analogousway to De�nitions 2.8 through 2.10 in the synchronous setting, and can be skipped in a�rst reading.) We use the same technical notations as in Section 2.3:� For a vector ~x = x1 : : : xn and a set C � [n], let ~xC denote the vector ~x, projected onthe indices in C.� For an n-vector ~x = x1 : : : xn, a set B � [n], and a jBj-vector ~b = b1 : : : bjBj, let ~x=(B;~b)denote the vector constructed from vector ~x by substituting the entries in B by thecorresponding entries from ~b.Using these notations, the approximation of function f based on a subset C � [n] isde�ned by fC(~x) = f(~x=(�C;~0)).De�nition 4.1 Let D be the domain of possible inputs of the parties, and let R be the do-main of possible random inputs. A t-limited asynchronous ideal-model-adversary is a quintupleS = (t; b; h; c;O), where:� t is the maximum number of corrupted parties.� b : [n]��D��R ! [n][f?g is the selection function for corrupting parties (the value? is interpreted as \no more parties to corrupt at this stage")� h : [n]� �D� �R ! D� is the input substitution function� c : A� �R! fC � [n]j jCj � n � tg is a core set selection function,� O : D� �R! f0; 1g� is an output function for the bad parties.The sets of corrupted parties are now de�ned as follows.De�nition 4.2 LetD be the domain of possible inputs of the parties, and let S = (t; b; h; c;O)be a t-limited ideal-model-adversary. Let ~x 2 Dn be an input vector, and let r 2 R be arandom input for S. The ith set of corrupted parties in the ideal model, denoted B(i)(~x; r),is de�ned as follows.� B(0)(~x; r) = �� Let bi 4= b(B(i)(~x; r); ~xB(i)(~x;r); r). For 0 � i < t, and as long as bi 6=?, letB(i+1)(~x; r) 4= B(i)(~x; r)[fbig

4.1 Preliminaries 52� Let i� be the minimum between t and the �rst i such that bi =?. Let bfi 4= b(B(i)(~x; r); ~xB(i)(~x;r); fC(~y); r),where ~y is the substituted input vector for the trusted party, and C is the selected coresubset. That is, ~y 4= ~x=(B(i�)(~x;r);h(B(i�)(~x;r);~xB(i�)(~x;r);r)), and C 4= c(~xB(i�)(~x;r); r).For i� � i < t, let B(i+1)(~x; r) 4= B(i)(~x; r) [bfi :In De�nition 4.3 we use B(i) instead of B(i)(~x; r).De�nition 4.3 Let f : Dn ! D0 for some domains D and D0 be the computed function,and let ~x 2 Dn be an input vector. The output of computing function f in the asynchronousideal model with adversary S = (t; b; h; c;O), on input ~x and random input r, is an n-vector idealf;S(~x) = idealf;S(~x)1 : : : idealf;S(~x)n of random variables, satisfying for every1 � i � n: idealf;S(~x)i = ((C; fC(~y)) if i =2 B(t)O(~xB(t) ; fC(~y); r) if i 2 B(t)where r is the random input of S, B(t) is the tth set of corrupted parties, ~y = ~x=(B(t);h(B(t) ;~xB(t);r))is the substituted input vector for the trusted party, and C 4= c(~x(B(t) ; r) is the selected coresubset.Next we describe the execution of a protocol � in the asynchronous real-life scenario,where the uncorrupted parties run some semi-honest protocol �0 for �, and in the presenceof a computationally unbounded, adaptive t-limited asynchronous real-life adversary A. (Weincorporate the scheduler, described in Section 4.1.1, in A.) The computation proceeds asfollows. Initially, and upon the receipt of a message, each party sends messages accordingto �0. The adversary (playing the scheduler) sees the sender, receiver and length of eachmessage sent. It also sees the contents of the messages sent to corrupted parties. After thesending of each message, the adversary may decide to deliver one of the messages that weresent and not yet delivered. It may also decide to corrupt some parties. Upon corruptionof a party P , the adversary sees all the data kept by P according to �0. As in Section 2.3,we assume that the corrupted parties output the adversary view of the comutation (i.e.,all the information gathered by the adversary during the computation). We let view�;A(~x)and exec�;A(~x) have an analogous meaning to that of Section 2.3, with respect to theasynchronous setting.In De�nition 4.4 below we concentrate on the bounded variant of the (asynchronous)secure channels setting. (See Section 2.1 for a presentation of the variants.)De�nition 4.4 Let f : Dn ! D0 for some domains D and D0, and let � be a protocol for nparties that runs in PPT.We say that � asynchronously t-securely computes f in the boundedsecure channels setting, if the following requirements hold for any semi-honest protocol �0 for� (according to one of the De�nitions 2.5 through 2.7), and for any asynchronous t-limitedreal-life adversary A:Termination: On all inputs, all the uncorrupted parties complete execution of the protocolwith probability 1.

4.1 Preliminaries 53Security: there exists an asynchronous t-limited ideal-model-adversary S, whose complex-ity is polynomial in the complexity of A, such that for every input vector ~x,idealf;S(~x) d= exec�0;A(~x):Remarks:� We remark that the Termination property is implicit in the security property (partiesthat did not complete the protocols do not have an output). We explicitly requireTermination to stress the importance and delicacy of this requirement in an asyn-chronous setting. In particular, we note that Consensus is a (very limited) specialcase of secure computation. The [FLP] impossibility result for deterministic protocolsimplies that in an asynchronous network with potential faults there must exist non-terminating runs of any (randomized) protocol reaching Consensus. Thus, we onlyrequire a secure protocol to terminate with probability (or measure) 1.� If only Fail-Stop adversaries are allowed, then the real-life adversary A only speci�es:(a) the conditions upon which the corrupted parties should stop sending messages,and (b) the output of the corrupted parties. Consequently, the input substitutionfunction h of the trusted-party adversary are the identity function.4.1.3 Writing asynchronous protocolsWe review the way in which an asynchronous computation is carried out, and describesome useful writing conventions for asynchronous protocols. In Section 4.1.1 we describedan asynchronous computation as a sequence of steps. This is a global, `external' view of thecomputation. From the point of view of a party, a computation is a sequence of cycles. Acycle is initiated upon receiving a message; it consists of executing an internal computation,and possibly sending messages to other parties. Once a cycle is completed, the party waitsfor the next message. The set of instructions to be executed upon the receipt of a messageis called an asynchronous protocol. These instructions may depend on the internal state ofthe party, and on the contents of the message received.However, for clarity of presentation and analysis, our description of an asynchronousprotocol is somewhat di�erent: we partition the protocol into several modules, called sub-protocols. Each sub-protocol is �rst presented, and sometimes analyzed, as if it were theonly protocol run by the party. Sub-protocols are combined by letting one sub-protocols`call' other sub-protocols during its execution. We present our interpretation of this writingstyle of asynchronous protocols.The party keeps track of the sub-protocols that are currently `in execution': initially,only one prede�ned sub-protocol is `in execution'; when some sub-protocol is called byanother sub-protocol, it is added to the sub-protocols `in execution'.We assume that each message applies to one sub-protocol only. Thus, Upon the receiptof a message, the party invokes a cycle of the relevant sub-protocol. If the received messagerefers to a sub-protocol which is not `in execution', then the party keeps the message; oncethe sub-protocol has started, a cycle is invoked for each one of the kept messages.We associate input and output values with each sub-protocol; furthermore, the output ofone sub-protocol may be the input of another sub-protocol. However, the latter sub-protocol

4.2 Primitives 54may be in execution before the former sub-protocol has completed updating its output;consequently, the input of the latter sub-protocol may be changed during its execution. Wecall such input a dynamic input; namely, unlike regular input, dynamic input variables mayhave di�erent input values in di�erent cycles in the same run of a sub-protocol.The variables we use for dynamic input will only have items added to them. It isconvenient to regard such variables as monotonically increasing sets. Namely, let U be sucha variable, and let U (c) denote the set held in U when this set is of size c for the �rst time;then, if c < d we have U (c) � U (d). We call these variables accumulative sets. (In the sequel,we will use calligraphic letters (e.g., U) to denote accumulative sets.)Using the above conventions, the shorthand \Set a = �(b)" stands for: \(a) call sub-protocol �, with b for input; (b) Let a denote its output". Note that b may be a dynamicinput of �; similarly, the output a may be updated as long as sub-protocol � is in execution.Another shorthand used is as follows. Let condition denote some relation (e.g. `thereare at least k elements in the accumulative set'). We use \Wait until condition" to denote\If condition holds, continue to the next instruction. Else, end this cycle." In the sequel wedo not distinguish between protocols and sub-protocols.4.2 PrimitivesIn this section we describe primitives used in our constructions, in both the Fail-Stop andthe Byzantine cases. We �rst de�ne the requirements of each primitive, and then describe(or give a reference to) an implementation.4.2.1 Byzantine AgreementWe present the standard de�nition of asynchronous Byzantine Agreement. (When theadversary is Fail-Stop, this primitive is sometimes called Consensus.)De�nition 4.5 Let � be an n-party protocol where each party has binary input. Protocol� is a t-resilient Byzantine Agreement protocol if the following hold, for every input, everyscheduler, and every coalition of up to t corrupted parties.� Termination. With probability 1, all the uncorrupted parties eventually complete theprotocol (i.e., terminate locally).� Correctness. All the uncorrupted parties that complete the protocol have an identicaloutput. Furthermore, if all the uncorrupted parties have the same input, denoted �,then all the uncorrupted parties output �.Feldman [Fe] describes an (dn4 e � 1)-resilient asynchronous BA protocol, running inconstant expected time5. (dn3e � 1)-resilient Consensus can be reached by substituting theAVSS scheme in Chapter 5 by a simple secret sharing scheme. (For instance, use the schemedescribed in Section 4.3.)5We de�ne the running time of an asynchronous protocol in Section 4-A.

4.2 Primitives 554.2.2 BroadcastWe present a de�nition of a broadcast protocol.De�nition 4.6 Let � be an n-party protocol initialized by a special party (called the sender),having input m (the message to be broadcast). Protocol � is a t-resilient Broadcast protocolif the following hold, for every input, scheduler, and coalition of up to t corrupted parties.� Termination. 1. If the sender is uncorrupted, then all the uncorrupted parties even-tually complete the protocol.2. If any uncorrupted party completes the protocol, then all the uncorrupted partieseventually complete the protocol.� Correctness. If the uncorrupted parties complete the protocol, then they do so with acommon output m�. Furthermore, if the sender is uncorrupted then m� = m.We stress that the Termination property of Broadcast is much weaker than the Ter-mination property of Byzantine Agreement: for Broadcast, we do not require that theuncorrupted parties complete the protocol, in case that the sender is corrupted.In Figure 4-1 we describe a simple Broadcast protocol for the Fail-Stop model.Protocol BCCode for the sender (on input m):1. Send (MSG;m) to all the parties, and complete the protocol with output m.Code for the other parties:2. Upon receiving the �rst (MSG;m) or (ECHO;m) message, send (ECHO;m) to allthe parties and complete the protocol with output m.Figure 4-1: A simple broadcast protocol for Fail-stop adversariesProposition 4.7 Protocol BC is an n-resilient Broadcast protocol for Fail-stop adversaries.Proof: If the sender is uncorrupted, then all uncorrupted parties receive a (MSG; m)message and thus complete the protocol with output m. If a uncorrupted party completedthe protocol, with output m, then it has sent an (ECHO; m) message to all the parties, thusevery uncorrupted party will complete the protocol with output m. 2Bracha [Br] describes an (dn3e�1)-resilient Broadcast protocol for the Byzantine setting.For self-containment, we present Bracha's Byzantine Broadcast (BB) protocol in Figure 4-2.Convention: in the sequel, we use \party P received an m broadcast" to shorthand\party P completed a Broadcast protocol with output m". We assume that the identity ofthe sender appears in m.

4.2 Primitives 56Protocol BBCode for the sender (on input m):1. send message (MSG;m) to all the parties.Code for party Pi:2. Upon receiving a message (MSG;m), send (ECHO;m) to all the parties.3. Upon receiving n� t messages (ECHO;m0) that agree on the value of m0,send (READY;m0) to all the parties.4. Upon receiving t+ 1 messages (READY;m0) that agree on the value of m0,send (READY;m0) to all the parties.5. Upon receiving n� t messages (READY;m0) that agree on the value of m0,send (OK;m0) to all the parties and accept message m0 as a broadcast message.Figure 4-2: Bracha's Broadcast protocol4.2.3 Agreement on a Core SetWe �rst illustrate a setting in which an Agreement on a Core Set (ACS) primitive is needed.Assume each party initiates a Broadcast of some value; next, the parties wish to agree on acommon `core' set of at least n� t parties whose Broadcast has been successfully completed.Clearly, each uncorrupted party can wait to (locally) complete n � t Broadcasts, and keepthe senders of these Broadcasts. However, if more than n�t Broadcasts have been (globally)completed, then we cannot be sure that all the uncorrupted parties keep the same set ofparties. For this purpose, the parties use the Agreement on a Core Set (ACS) primitive:the parties' output of this primitive, when used in this context, is a common set of at leastn� t parties whose Broadcast has been completed.We proceed to formally de�ne the properties required of an ACS primitive. Recall thede�nition of an accumulative set (described in Section 4.1.3, on page 53): we let U (c) denotethe value of variable U in cycle c of the protocol; An accumulative set U is a variable holdinga set, such that for every two cycles c and d, if c precedes d then U (c) � U (d).De�nition 4.8 Let m;M 2 N (in out context, we use m = n � t and M = n), and letU1 : : :Un � [M] be a collection of accumulative sets, so that party Pi has Ui. We say thatthe collection is (m; t)-uniform, if the following hold, for every scheduler and every coalitionof up to t corrupted parties.� For every uncorrupted party Pi there exists a cycle c such that jU (c)i j � m.� For every two uncorrupted parties Pi and Pj, if k 2 U (a)i for some cycle a within partyPi, then there exists a cycle b within party Pj so that k 2 U (b)j (namely, Pi and Pj willeventually have Ui = Uj).De�nition 4.9 Let m �M , and let � be an n-party protocol with parameters m;M , wherethe input of every uncorrupted party Pi is an accumulative set Ui. Protocol � is a t-resilient

4.2 Primitives 57protocol for Agreement on a Core Set (with parameters m;M), if the following hold, for everycoalition of up to t corrupted parties, and every scheduler.� Termination. If the collection U1 : : :Un is (m; t)-uniform, then with probability 1 allthe uncorrupted parties eventually complete the protocol.� Correctness. All the uncorrupted parties complete the protocol with a common outputC � [M] so that jCj � m. Furthermore, every uncorrupted party has C � U�i , whereU�i is the value of Ui upon the completion of protocol �.Before presenting our construction, let us remark that in [BKR] a simpler constructionof an (dn3 e � 1)-reslient protocol for agreement on a core set is described. Furthermore, the[BKR] protocol runs in constant expected time. Let n � 3t + 1. Our construction, withparameters m and M , consists of two phases:Phase I: In the �rst phase, each party �rst waits until its dynamic input is of size m; then,it performs log2 n iterations. In each iteration, the party sends the current contents of itsdynamic input to all the other parties; then, the party collects the sets sent by the otherparties in this iteration, and waits until its dynamic input contains n � t such sets; then,the party continues to the next iteration. It will be shown below that the intersection ofthe dynamic inputs of all the uncorrupted parties that have completed this phase is of sizeat least m. 6Phase II: In the second phase, the parties concurrently run M Byzantine Agreementprotocols; in the cth Byzantine Agreement, the parties decide whether element c 2 [M] willbe in the agreed set C. Namely, each party's input to the cth Byzantine Agreement is 1 i� cbelongs to the party's dynamic input; the element c belongs to the set C, i� the (common)output of the cth Byzantine Agreement is 1. The properties of Byzantine Agreement assureus that the set C contains the intersection of the dynamic inputs of all the parties that havecompleted the �rst step; therefore, the set C is large enough.Remark: Our construction applies to both the Fail-Stop and the Byzantine cases, usingthe appropriate agreement primitive (either BA or Consensus).Protocol ACS is described in Figure 4-3.Proposition 4.10 Protocol ACS[m;M] is a min(r; dn3 e�1)-resilient protocol for Agreementon a Core Set in a network of n parties, where r is the resilience of the agreement protocolused.Proof: We �rst assert the Termination condition. Assume that the accumulative setsU1 : : :Un de�ne an (m; t)-uniform collection. We show that every uncorrupted party Pi willeventually complete the protocol.Clearly, Step 1 will be completed. It can be seen, by induction on the number ofiterations, that every iteration in Step 2 will be completed: in each iteration r, party Pi willeventually receive the (r; Sj) message from every uncorrupted party. Furthermore, for every6This problem of assuring a large intersection of the sets of a uniform collection was previously addressedby [Fe], as well as [BE]. Both works present partial solutions to this problem: let m = n � t; Feldman[Fe] made sure that the intersection of the sets held by all the uncorrupted parties is of size �(n) (butnot necessarily m); Ben-Or and El-Yaniv [BE] made sure that the intersection of the sets held by n � 2tuncorrupted parties is of size at least m.

4.2 Primitives 58Protocol ACS[m;M](Ui)Party Pi acts as follows, on inputs m;M and accumulative set Ui.1. Wait until jUij � m.2. For 0 � r � blognc do(a) Send (r;Ui) to all the parties.(b) Let F ri = fPjj an (r; Sj) message was received from Pjg.Wait until Sj � Ui for at least n� t parties Pj 2 F ri .(Note that sets Sj that were not contained in Ui when they were received, maylater be contained in Ui if elements are added to it.)3. RunM Byzantine Agreement protocols BA1 : : :BAM , with input 1 to BAj i� j 2 Ui.4. Set Ci = fjjthe output of BAj is 1g. Wait until Ci � Ui.5. Output Ci.Figure 4-3: ACS - A protocol for Agreement on a Core Setuncorrupted party Pj, party Pi will eventually have Sj � Ui (since the collection U1 : : :Unis uniform).Step 3 will be completed with probability 1, since all the Byzantine Agreement protocolsare completed with probability 1. To see that Step 4 will be completed, we note that if aByzantine Agreement protocol BAj has output 1, then there exists a uncorrupted party Pkthat started BAj with j 2 Uk; thus, party Pi will eventually have j 2 Ui.We assert the Correctness property. The unanimity of the outputs of the parties followsdirectly from the de�nition of Byzantine Agreement. Step 4 of the protocol assures us thatC � U�i , within each uncorrupted party Pi. It is left to show that jCj � m.Let U ri denote the value of accumulative set Ui upon completion of iteration r of Step 2by party Pi. We show by induction on r that every set D of at most 2r uncorrupted parties,all of which have completed iteration r, satis�es j \j2D U rj j � m.The base of induction (r = 0) is immediate from Step 1 of the protocol. For the inductionstep, consider a set D of up to 2r uncorrupted parties. We �rst observe that for every twoparties Pj ; Pk 2 D, we have jF rj \ F rk j � t+ 1, since n � 3t+ 1 and jF rj j � n� t for each j.Therefore, there exists at least one uncorrupted party Pl 2 F rj \ F rk ; we call Pl an arbiter ofPj and Pk. Party Pj (resp. Pk) has received the (r; Sl) message; furthermore, U r�1l � Sl.Thus, U r�1l � U rj (resp. U r�1l � U rk).Consider an arbitrary partition of the set D to pairs of parties, choose an arbiter for eachpair, and let D0 be the set of these arbiters; thus, jD0j � 2r�1. By the induction hypothesis,we havem � j\j2D0U r�1j j. Every party in D has an arbiter in D0, thus \j2D0U r�1j � \j2DU rj .Therefore, we have m � j \j2D U rj j.Let D be the set of uncorrupted parties that start Step 3 of the protocol, and letĈ = \j2DU lognj ; by the above induction, we have jĈj � m. For every j 2 Ĉ, the inputsof all the uncorrupted parties to the BAj protocol is 1. Therefore, by the de�nition ofByzantine Agreement, the output of every BAj protocol is 1. Thus, Ĉ � C and jCj � m.

4.3 Fail-Stop faults 5924.3 Fail-Stop faultsWe show how to securely t-compute any function whose input is partitioned among n parties,when n � 3t + 1 and the faults are Fail-Stop. Our costruction follows the outline of the�rst [BGW] construction (namely, the construction resilient against corrupted parties whichonly try to gather information but otherwise follow the protocol).Let F be a �nite �eld known to the parties with jF j > n, and let f : Fn ! F be thecomputed function. (Namely, we restrict our discussion to functions where the input ofeach party, as well as the function value, are �eld elements. We note that no generality islost in this restriction: if the range of the computed function does not `�t into' F , then thefunction can be partitioned into several functions whose range is F . Furthermore, a partycan have more than one �eld element for input; in this case, it executes a di�erent copy ofthe protocol for each �eld element.)We assume that the parties have an arithmetic circuit computing f ; the circuit consistsof addition and multiplication gates of in-degree 2 (we regard adding a constant as a specialcase of addition). All the computations in the sequel are done in F .An outline of the protocol follows. Let xi be the input of Pi. As a �rst step, each partyshares its input among the parties, using a technique similar to Shamir's secret sharingscheme [Sh]. (Namely, for each party Pi that successfully shared its input, a random poly-nomial pi(�) of degree t is generated, so that each party Pj has pi(j) and pi(0) is Pi's inputvalue. We say that pi(j) is Pj 's share of pi(0).) Next, the parties agree, using protocol ACS,on a core set C of parties that have successfully shared their input. Once C is computed,the parties proceed to compute fC(~x), in the following way. First, the input values of theparties not in C are set to a default value, say 0; then, the parties evaluate the given circuit,gate by gate, in a way described below. Note that the output of the protocol is �xed oncethe set C is �xed.For each gate, the parties use their shares of the input lines to jointly and securely`generate' a random polynomial p(�) of degree t such that every party Pi computes p(i),and p(0) is the output value of this gate. (Namely, p(i) is Pi's share of the output line ofthis gate.) Once enough parties have computed their shares of the output line of the entirecircuit, the parties reveal their shares of the output line, and interpolate the output value.In the rest of this section, we describe our construction in more detail. First, we describethe Global-Share and Reconstruct protocols. Next, we describe the evaluation of a lineargate and of a multiplication gate. Finally, we put all the pieces together to describe themain protocol, and prove its correctness.When presenting each protocol, we describe the uncorrupted parties' outputs of theprotocol. We postpone the formal proof of security to Section 4.3.5.4.3.1 Global-Share and ReconstructThe Global-Share protocol, denoted GShare, consists of two phases. First, each party sharesa secret among the parties; next, the parties use an ACS protocol in order to agree on a set,of size at least n� t, of parties that have successfully shared their secret. Party Pi's output

4.3 Fail-Stop faults 60of the GShare protocol is the set of parties that have successfully shared their inputs, alongwith the ith share of the input of each of the parties in this set.This protocol is applied once at the beginning of the protocol (where each party sharesits input of the main protocol), and twice in each invocation of the protocol for computinga multiplication gate (see Section 4.3.3). Protocol GShare has a `security parameter', d.This parameter will be set to either t or 2t, according to the context in which the protocolis activated. Protocol GShare is presented in Figure 4-4.Protocol GShare[d](xi)Party Pi acts as follows, on inputs xi; d.1. \Share xi":(a) Choose a random polynomial hi(�) of degree d, such that hi(0) = xi.For each 1 � j � n, send hi(j) to party Pj.(b) Broadcast `Party Pi completed sharing'.2. Upon receiving the share si;j of Pj's secret and the `Party Pj completed sharing'broadcast, add j to a set Ci of parties that have successfully shared their secret.Set C =ACS[n� t; n](Ci).3. Output C, and fsi;jjj 2 Cg.Figure 4-4: GShare - The global sharing protocolWe note that the accumulative sets C1 : : :Cn of Step 2 de�ne an (n � t; t)-uniformcollection. Thus, all the uncorrupted parties complete protocol ACS (and, hence, the entireGShare protocol) with the desired output. Furthermore, the corrupted parties have noinformation about the values shared by the uncorrupted parties.In the Reconstruct protocol, described in Figure 4-5, the parties reconstruct a secretfrom its shares. The parameters of this protocol are the `security parameter' d, and a set Rof the parties to which the secret is to be revealed. Party Pi's input is the i-th share of thesecret, denoted si. The Reconstruct protocol is invoked once for every multiplication gate,and once at the end of the protocol. (Parameter R is necessary in the multiplication gateinvocation. In the other invocation it is set to R = [n].)We note that if d+ 1 � n� t then a Reconstruct protocol that is run by all the partieswill be completed. Furthermore, if there exists a polynomial, p(�), of degree d such that theshare of each active party Pj is sj = p(j), then all the uncorrupted parties in R will outputp(0).4.3.2 Evaluating a linear gateWe describe the evaluation of a linear gate, instead of a simple addition gate; this more gen-eral formulation will be convenient in presenting the protocol for computing a multiplicationgate.Evaluating a linear gate is easy and requires no communication. Let c =Pkj=1 �j �aj bea linear gate, where a1 : : : ak are the input lines of the gate, �1 : : :�k are �xed coe�cients,

4.3 Fail-Stop faults 61Protocol Reconstruct[d;R](si)Party Pi acts as follows, on input si, and parameters d 2 ft; 2tg and R � fP1; : : : ; Png.1. Send si to all the parties in R.2. If Pi =2 R, output 0.Otherwise, upon receiving d + 1 values (value vj from party Pj), interpolate a poly-nomial pi(�) of degree d such that p(j) = vj for each received value vj .Output pi(0).Figure 4-5: Reconstruct - The reconstruction protocoland c is the output line. Let Aj(�) be the polynomial associated with the jth input line;namely, party Pi's share of this line is ai;j = Aj(i).Each party Pi locally sets its share of the output line to ci = Pkj=1 �j � ai;j. It can beeasily seen that the shares c1 : : : cn de�ne a random polynomial C(�) of degree t with thecorrect free coe�cient, and with C(i) = ci for all i.4.3.3 Evaluating a multiplication gateLet c = a � b be a multiplication gate, and let A(�); B(�) be the polynomials associated withthe input lines; namely, each party Pi's shares of these lines are A(i) and B(i), respectively.The parties will jointly compute their shares of a random polynomial C(�) of degree t,satisfying C(0) = A(0) �B(0); namely, each uncorrupted party Pi's share of the output linewill be C(i).Initially, each party locally computes its share of the polynomial E(�) = A(�) � B(�), bysetting E(i) = A(i) �B(i). Clearly, E(�) has the required free coe�cient. However, E(�) is ofdegree 2t; moreover, it is not uniformly distributed. The parties use their shares of E(�) tocompute their shares of the desired polynomial C(�), in a secure manner. The computationproceeds in two steps: �rst, the parties jointly generate a random polynomial, D(�), ofdegree 2t, so that D(0) = E(0) (namely, each party Pi will have D(i)). Next, the partieswill use their shares of D(�) in order to jointly compute their shares of polynomial C(�).These steps are described below.Randomization. We describe how polynomial D(�) is generated. First, the parties gen-erate a random polynomial H(�) of degree 2t and with H(0) = 0; namely, each party Pi willhave H(i).We �rst describe how the polynomial H(�) is shared in a synchronous setting [BGW].Each party Pi selects a random polynomial Hi(�) of degree 2t with Hi(0) = 0, and sharesit among the parties; namely, each party Pj receives Hi(j). Polynomial H(�) is set toH(�) =Pnj=1Hj(�); namely, each party Pi computes H(i) =Pnj=1Hj(i).In our asynchronous setting, a party cannot wait to receive its share from all the otherparties. Instead, the parties agree, using protocol ACS, on a set C of parties that havesuccessfully shared their Hi polynomials; next, polynomial H(�) will be set to H(�) =

4.3 Fail-Stop faults 62Pj2CHj(�). In other words, the parties run protocol GShare[2t](0); on output (C; fHj(i)jj 2Cg) of the GShare protocol, party Pi computes H(i) =Pj2CHj(i).Polynomial D(�) is now de�ned as D(�) = E(�) +H(�); namely each party Pi computesD(i) = E(i) +H(i). Clearly, D(0) = A(0) �B(0), and all the other coe�cients of D(�) areuniformly and independently distributed over F .Degree-reduction. In the degree-reduction step, the parties use their shares of D(�) inorder to jointly and securely compute their shares of a random polynomial C(�) of degreet, with C(0) = D(0). Polynomial C(�) will be set to the `truncation' of polynomial D(�) todegree t; namely, the t+1 coe�cients of C(�) are the coe�cients of the t+1 lower degrees ofD(�). An important observation is that the information gathered by the corrupted parties(namely, t shares of polynomial D(�), along with t shares of the truncation polynomial C(�)),is independent of C(0). This statement is formalized in Lemma 4.16 on page 70, and usedin proving the security of the entire protocol.Let ~d = D(1) : : :D(n), and let ~c = C(1) : : :C(n). [BGW] noted that there exists a �xedn � n matrix M such that ~c = ~dM . It follows that the desired output of each party Piis a linear combination of the inputs of the parties: C(i) = [~dM]i = Pnj=1D(i) �Mj;i. Wecolloquially call such an operation `multiplying the inputs by a �xed matrix'. (In this case,the parties' inputs are their shares of the polynomial D(�).)In a synchronous setting, `multiplying the inputs by a �xed matrix' can be done bysecurely computing the appropriate n �xed linear combinations of the inputs, so that thevalue of the ith linear combination is revealed to party Pi only. Linear combinations aresecurely computed as follows. First, each party shares its input; next, each party computesthe linear combination of its shares (as in Section 4.3.2), and reveals this linear combinationto the speci�ed party; �nally, the speci�ed party computes the output value by interpolatinga degree t polynomial from the received combinations. 7Linear combinations of all the inputs cannot be computed in an asynchronous setting.Thus, the synchronous method described above cannot be used. We outline our solution forthe asynchronous setting. First, we describe a technique for multiplying inputs by a �xedmatrix in an asynchronous setting, for the case where the matrix and the set of inputs arerelated in a special way described below. Next, we note that the matrix M and the set ofpossible inputs of the degree-reduction step are related in this special way.De�nition 4.11 Let A be an n � n matrix, and let S � Fn be a set of input vectors. wesay that S is t-multipliable by A, if for every set G � [n] with jGj � n � t, there exists an(easily computable) matrix AG, of size jGj � n, such that for every input ~x 2 S, we have~xG �AG = ~x �A.Let S be t-multipliable by A. Then, the protocol described in Figure 4-6 `multipliesinputs in S by the matrix A'. Let ~x 2 S. The parties �rst execute a GShare protocol(applied on the input vector ~x); once the common set G is computed, each party locallycomputes AG. Next, the parties run n Reconstruct protocols; in the ith Reconstruct, the7Note that computing a linear combination of input values is harder than computing a linear combinationof already-shared values (i.e., the problem addressed in section 4.3.2): the former computation involvessharing of all the inputs.

4.3 Fail-Stop faults 63parties let Pi compute [~xG �AG]i, by sending him the appropriate linear combination of theirshares. Protocol MAT(xi; A)Party Pi acts as follows, on input xi, and matrix A.1. Set (G; fsi;jjj 2 Gg) =GShare[t](xi).Enumerate G = g1; : : : ; gjGj, and let ~si = si;g1 : : : si;gjGj.2. Compute AG.3. For 1 � k � n, set yk =Reconstruct([~si �AG]k; t; fkg).Output yi.Figure 4-6: MAT - A protocol for multiplying the input by a �xed matrixWe say that an input vector ~x is d-generated if there exists a polynomial P (�) of degreed satisfying xi = P (i) for every i; the set of possible inputs of the degree-reduction step isthe set of 2t-generated vectors.Proposition 4.12 Let M be the n � n matrix introduced in [BGW]. Then, the set of2t-generated n-vectors is t-multipliable by M , when n � 3t+ 1.Proof: Recall that matrix M used in [BGW] is constructed as M = V �1TV , where Vis a (Vandermonde) n � n matrix de�ned by Vi;j = ij, and T is constructed by setting allbut the �rst t + 1 rows of a Unit matrix to 0. (Let ~d;~c be as de�ned above. To see that~d �M = ~c, note that ~d � V �1 is the coe�cients vector of the polynomial D(�); thus ~d � V �1Tis the coe�cients vector of C(�), and ~d � V �1TV = ~c.)Let G � [n] with jGj � n � t, and let G = g1 : : : gjGj. Matrix MG is constructed asfollows. Let the jGj�jGjmatrix V G be the matrix V projected on the indices in G; namely,V Gi;j = (gi)j. Next, construct the jGj � n matrix V̂ by appending n � jGj zero columns to(V G)�1. Finally, set MG = V̂ TV , where T is de�ned above.Since n � 3t + 1, we have jGj � 2t + 1; it can be veri�ed that in this case, ~xG � V̂ is,once again, the coe�cients vector of D(�) (namely, ~xG � V̂ = ~x � V �1). Thus, ~xGV̂ TV =~x � V �1TV = ~x �M as required. 2Combining the Randomization and Degree-reduction steps, we derive a protocol forcomputing a multiplication gate. This protocol, denoted MUL, is presented in Figure 4-7.4.3.4 The main protocolLet f : Fn ! F be given by an arithmetic circuit A. Our protocol for securely t-computingf is described in Figure 4-8.Theorem 4.13 Let f : Fn ! F , for some �eld F with jF j > n, and let A be a circuitcomputing f . Then, protocol FScompute[A] asynchronously (dn3e�1)-securely computes f inthe bounded secure channels setting with n non-erasing parties, provided that only Fail-Stopadversaries are considered.

4.3 Fail-Stop faults 64Protocol MUL(ai; bi)Party Pi acts as follows, on inputs ai; bi.1. Set (C0; fhi;jjj 2 C0g) =GShare[2t](0).Let di = ai � bi +Pj2C0 hi;j.2. Let Mn�n be the matrix introduced in [BGW].Set ci =MAT(di;M).Output ci.Figure 4-7: MUL - A protocol for computing a multiplication gate
Protocol FScompute[A](xi)Party Pi acts as follows, on local input xi, and given circuit A.1. Set (C; fsi;jjj 2 Cg) =GShare[t](xi).For a line l in the circuit, let l(i) denote the share of party Pi in the value of thisline. If l is the jth input line of the circuit, then set l(i) = si;j if j 2 C, and l(i) = 0otherwise.2. For each gate g in the circuit, wait until the ith shares of all the input lines of g arecomputed. Then, do the following.(a) If g is an addition gate with output line l and input lines l1 and l2, then setl(i) = l(i)1 + l(i)2 .(b) If g is a multiplication gate l = l1 � l2, then set l(i) =MUL(l(i)1 ; l(i)2).3. Let lout be the output line of the circuit.Once l(i)out is computed, send `Ready' to all the parties.(The only role of the `Ready' messages is simplifying the proof of correctness, below.)4. Wait to receive n� t `Ready' messages.Set y =Reconstruct[t; [n]](l(i)out).5. Output (C; y).Figure 4-8: FScompute - The protocol for Fail-Stop faults

4.3 Fail-Stop faults 65We present the proof of Theorem 4.13 in two steps. First, we show security of theprotocol in the presence of non-adaptive adversaries. (When the adversary is non-adaptivethere is no di�erence between the cases where the uncorrupted parties are semi-honest orhonest. We thus assume that the uncorrupted parties are honest.) We do not present ade�nition of non-adaptively, secure computation in asynchronous networks. However, sucha de�nition can be easily assembled from the de�nition of adaptive security in asynchronousnetworks (De�nition 4.4), and de�nition of non-adaptive security in synchronous networks(De�nition 2.4).Next we show adaptive security of protocol FScompute in the presence of non-erasingparties. We remark that protocol FScompute can be shown adaptively secure also in thepresence of honest-looking parties, using similar constructs to those described in Section3.4.4.3.5 Proof of correctness | non-adaptive caselet A be a non-adaptive Fail-stop adversary, and let B be the set of corrupted parties (weincorporate the scheduler in A).TerminationWe use FS to shorthand protocol FScompute[A]. We show that for every input ~x, withprobability 1 all the uncorrupted parties terminate protocol FS.Protocol FS consists of several invocations of protocols GShare and Reconstruct; if auncorrupted party terminates all these invocations, then this party terminates the entireprotocol as well. We have seen that a Reconstruct protocol always terminates, providedthat n � 3t + 1. If all the Consensus protocols invoked in a GShare protocol terminate,then the GShare protocol terminates as well.Each one of these Consensus protocols terminates with probability 1, by the de�nitionof Consensus. Thus, with probability 1, all the Consensus protocols invoked in the entireprotocol terminate; therefore, with probability 1, all the GShare protocols terminate as well.SecurityFor any real-life non-adaptive (dn3 e � 1)-limited real-life adversary A, we construct a ideal-model adversary S, so that for every input ~x, we have idealf;S(~x) = execFS;A(~x). (Thenotations S and idealf;S(�), as well as exec�;A(�) for a protocol � (here � =FS), are de�nedin Section 4.1.2, on page 23.) Here the set of corrupted parties, denoted B, is �xed. Werepresent the ideal-model adversary S as a quadruple A = (B; h; c; O).Construction of the ideal-model adversary. We remark that adversary S operatesvia black-box simulation of the real-life adversary. (Black-box simulation was described,for the synchronous setting, in Section 2.3. The asynchronous version is analogous.) Herethe set B of parties corrupted by the real-life adversary A is �xed. Adversary S corruptsthe parties in B. The input substitution function h, the core set selection function c andthe output function O are computed via the following simulated interaction between thereal-life adversary A and parties executing protocol FS.On input ~xB and random input r, S extends ~xB to an n-vector ~x0 by �lling the extraentries with, say, zeros. Partition r into n sections r1 : : :rn, and let ~r = r1 : : :rn. Simulate

4.3 Fail-Stop faults 66an execution of protocol FS with adversary A, and with x0i as input and ri as random inputof each party Pi. (In the sequel we incorporate D in A). Let C be the core set decided uponin the GShare invocation in Step 1 of the protocol. For each Pi 2 C, let yi be the valueshared by Pi (namely, yi = xi); for Pi =2 C, let yi = 0. Let ~y = y1 : : : yn. Set h(~xB ; r) = ~yB,and c(~xB; r) = C. 8Our next step is computing the output function O of the corrupted parties in the idealmodel. The inputs to this function are ~xB , r, and fC(~y). (Recall that fC(~y) is the valuereceived from the trusted party). We continue the above simulation of protocol FS, with thefollowing modi�cation. Step 3 of the protocol assures us that by the time the �rst uncor-rupted party starts executing the Reconstruct protocol of Step 4, at least t+1 uncorruptedparties have computed their shares of the output line. In the proof of Lemma 4.15 below,we show that these shares determine a unique polynomial of degree t; let p(�) denote thispolynomial.9 Once the �rst uncorrupted party reaches the �nal Reconstruct protocol, thesimulator computes the above polynomial p(�), and chooses a random polynomial, p0(�), ofdegree t, such that p0(0) = fC(~y), and p0(i) = p(i) for every corrupted party Pi. In the sim-ulated run, every uncorrupted party Pj executes the last Reconstruct protocol with inputp0(j), instead of p(j). Let w denote the output of the corrupted parties after this simulatedrun of protocol FS. Set O(~xB ; r; fC(~y)) = w. 10Validity of the ideal-model adversary. It is left to show that for every input vector~x, the output vector execFS;A(~x) of the parties in the `real' computation has the samedistribution as the output vector idealf;S(~x) of the parties in the ideal model. An outline ofour proof follows. Recall the de�nition of the adversary view of the computation (we re-de�nethis notion in more detail below). This notion captures the information gathered by theadversary during the computation, combined with the information seen by the scheduler. InLemma 4.14 below, we show that the adversary view of the real computation is distributedequally to the adversary view in the interaction simulated by the ideal-model adversary.We complete our proof by showing that whenever the adversary view of the real executionequals the adversary view of the simulated execution, the output vector of all the partiesin the real-life model equals the output vector of all the parties in the ideal model.We proceed to re-de�ne the adversary view. First, de�ne the transcript of a computation.The transcript U consists of the inputs ~x of all the parties, their random inputs ~r, and theentire communication among the parties. The communication is organized in events; eachevent, e, consists of a message received by a party, and its corresponding responses. Theorder of events is induced by the order of delivery of the messages. Namely, we haveU = ~x;~r; e1; : : : ; ek:We partition each message in protocol FS to its contents and its frame. The contents of8Since the faults are Fail-Stop, we could let the input substitution function h be the identity function.However, this formulation is valid for the proof of Theorem 4.30 (Security of the Byzantine protocol) as well.Note that f(~y) = fC(~y); in the sequel, we leave the subscript C for clarity.9Step 3 of the algorithm is a technical step whose purpose is making the fact that p(�) is �xed at thisstage more obvious. It can be seen that, even without Step 3, by the time the �rst uncorrupted party startsexecuting the last Reconstruct protocol, at least n � 2t uncorrupted parties have computed their shares ofthe output line.10The output of the corrupted parties is de�ned as the contents of their output tapes after all the messagessent by the uncorrupted parties have been received.

4.3 Fail-Stop faults 67a message consists of the elements of the �eld F , appearing in this message. The frame of amessage is the message itself where each �eld element is replaced by a `blank'. In particular,the frame contains the type of the message, the name of the protocol and invocation thatthe message belongs to, and the identity of the sender and the receiver. Messages that donot contain any �eld elements have empty contents. (Informally, the scheduler sees onlythe frame of each message sent, while the receiver sees the entire message.) 11Let S be a set of parties, and let U = ~x;~r; e1; : : : ; ek be a transcript of some com-putation. The view of the computation, as seen by the parties in S, is the sequenceUS = ~xS ; ~rS; ê1; : : : ; êk, where ~xS is the inputs of the parties in S and ~rS is their ran-dom inputs. Each êi is a semi-event; namely, if the recipient party of event ei is in S, then êiconsists of the full received message and the subsequent responses. Otherwise, êi consists ofonly the frame of the received message and responses. The adversary view is the view of theset B of corrupted parties. We note that the adversary view contains all the informationgathered by the adversary during the relevant computation. Without loss of generality, weassume that the corrupted parties' output of a computation is the adversary view. Let Ôdenote this function.Fix an input vector ~x. De�ne the random variable �: for each random input ~r, set� to be the corrupted parties' view of the execution of protocol FS on input ~x, randominput ~r, and adversary A. Let the random variable �0 be similarly de�ned, with respect tothe simulated protocol described above. In Lemma 4.14 below we show that � and �0 areidentically distributed.Lemma 4.14 The random variables � and �0 are identically distributed.(The proof of Lemma 4.14 is given at the end of this section.)It is left to show that the following two quantities are equal, with respect to everypossible view, V , of the corrupted parties (i.e., every view V in the support set of � and�0):12(a) The output of all the parties in the ideal model with the adversary S described above,when the corrupted parties' view of the simulated execution is V .(b) The output of all the parties after an execution of protocol FS, when the view of thecorrupted parties is V .Equality is proven by showing that in both cases, the output of the corrupted partiesis Ô(V), and the output of the uncorrupted parties is (C; fC(~y)), where C is the core setappearing in V and ~y is the substituted input vector de�ned above. (Note that both C and~y are uniquely determined by ~x and V).Case (a) (the ideal model): By the de�nition of the output of the parties in the idealmodel (De�nition 2.10 on page 23), the uncorrupted parties output (C; fC(~y)), and thecorrupted parties output O(~xB; r; fC(~y)); in the above construction of S, we have setO(~xB; r; fC(~y)) = Ô(V).11Note that this partitioning of a message to its contents and frame is speci�c to protocol FS. A moregeneral de�nition may let the frame of a message be its length only. However, the present de�nition of aframe is more natural for our protocol; furthermore, it simpli�es our proof of Lemma 4.14 below.12We use V to shorthand UB.

4.3 Fail-Stop faults 68Case (b) (an execution of protocol FS): The corrupted parties output Ô(V), by thede�nition of function Ô. In Lemma 4.15 below, we show that the uncorrupted partiesoutput fC(~y). 2Lemma 4.15 Consider an execution of protocol FS on input ~x with adversary B, and let Cand ~y be the quantities de�ned above, with respect to this execution. Then, the uncorruptedparties' output of this execution is fC(~y).Proof: For each line l in the computed circuit, let vl be the value of this line when theinput of the circuit is ~y. Let lout denote the output line of the computed circuit; since thecircuit computes the function f , we have vlout = f(~y) = fC(~y).Consider an execution of protocol FS as in the Lemma. For each line, l, let pl(�) be thelowest degree polynomial such that the share of each uncorrupted party Pi in this line, inthis execution, is pl(i). It can be seen, by induction on the structure of the circuit, thatevery pl(�) is of degree at most t and that pl(0) = vl: each line is either an input line,an output of a linear gate, or an output of a multiplication gate. These cases were dealtwith in the sections describing the initial commit, the linear gate, and the multiplicationgate protocol, respectively. Thus, in the �nal Reconstruct protocol, the uncorrupted partiesretrieve (and output) plout(0) = vlout = fC(~y). 2Proof of Lemma 4.14. We show, by induction on the number of communication events,that every pre�x of � has the same distribution as the corresponding pre�x of �0 with thesame number of events.We use the following notations. For every i � 0, let �i denote the pre�x of � that endsafter the ith semi-event. Let �0i be similarly de�ned with respect to �0. Fix an instance,Vi, of �i, and let �i+1 be the random variable describing the distribution of the (i + 1)thsemi-event in �, given that the corresponding pre�x of � is Vi. Namely, for each semi-eventê, Prob(�i+1 = ê) = Prob(�i+1 = (Vi; ê) j �i = Vi):Recall that each semi-event consists of a received message and the subsequent responsemessages. Let �i+1 and �i+1 be the random variables having the distributions of the receivedmessage and the response messages in �i+1, respectively. Let �0i+1, �0i+1, and � 0i+1 be similarlyde�ned with respect to �0.For the base of induction, we note that ~xB = ~x0B , and both random inputs ~rB and ~r0Bare uniformly distributed; thus, (~xB; ~rB) and (~x0B; ~r 0) are identically distributed.For the induction step, we show that for every i � 0 and for every instance Vi, therandom variables �i+1 and �0i+1 are identically distributed.First, note that Vi contains all the information seen by the scheduler when deliveringthe (i+ 1)st message. Therefore, the frame of the (i+ 1)st message is uniquely determinedby Vi. In particular, the sender (resp. the recipient) of the (i + 1)st message is the sameparty in both computations. We distinguish two cases:(a) The recipient party is uncorrupted. In this case, it is left to show that the framesof the response messages sent in this event are identically distributed. However, it can beseen, by observing the protocol, that the frames of the messages sent by a uncorruptedparty are uniquely determined by the frames of the messages received by this party so far;these frames are part of the common instance Vi of the pre�xes �i and �0i.

4.3 Fail-Stop faults 69(b) The recipient party is corrupted. Clearly, if the received messages �i+1 and �0i+1 areidentically distributed, then the response messages �i+1 and � 0i+1 are identically distributedas well. If the sender is corrupted, then entire received message is explicitly written in theinstance Vi, which is the same in both computations. It remains to consider the case inwhich the sender is uncorrupted. We have that the frames of �i and �0i are equal. We showthat the contents of �i and �0i are identically distributed.Every message in protocol FS belongs either to some invocation of protocol GShare, orto some invocation of protocol Reconstruct. We consider these two cases separately. Inthe sequel, we say that a random variable is a semi-random polynomial of degree d, if itsinstances are polynomials of degree at most d, such that all the coe�cients other than thefree coe�cient are uniformly and independently distributed. (The free coe�cient may haveany distribution.)GShare messages. The only messages of a GShare protocol having non-empty contentsare shares of some secret. However, the corrupted parties receive only up to t sharesof each secret shared by a uncorrupted party, namely up to t shares of a semi-randompolynomial of degree t. Consequently, both in � and in �0 the contents is distributeduniformly and independently over the �eld F , regardless of the shared values.In an invocation of Reconstruct, the corrupted parties receive n shares of a semi-randompolynomial p(�) of degree t. Thus, the contents of the �rst t messages are uniformly dis-tributed, both in � and in �0. The contents of the other messages are uniquely determinedby the t shares known to the corrupted parties (namely, the contents of the �rst t messagesof the same invocation), and the free coe�cient of p(�). Thus, it su�ces to show that thefree coe�cient of p(�) (namely, the output of this invocation of Reconstruct) is identicallydistributed in � and �0. We distinguish two types of invocations of Reconstruct: a Recon-struct within a multiplication step (namely, a Reconstruct invoked in Step 3 of protocolMAT), and the �nal invocation of Reconstruct, in Step 4 of protocol FS.Reconstruct as a part of a multiplication step. Consider an invocation of protocolMUL (see Figure 4-7 on page 64). We show that the corrupted parties' outputs ofthe t invocations of Reconstruct, along with the contents of the other messages ofthis invocation of MUL, received by the corrupted parties, are uniformly and inde-pendently distributed, regardless of the values of the input lines of the correspondingmultiplication gate.The polynomial H(�) generated by the parties in the Randomization phase (Step 1 ofprotocol MUL) is a semi-random polynomial of degree 2t, with zero free coe�cient.The contents of the GShare messages of Step 1 received by the corrupted partiesadd up to t shares of the polynomial H(�). Fix some arbitrary polynomials A(�) andB(�) associated with the input lines of the corresponding multiplication gate, and letD(�) = H(�)+A(�) �B(�). Then, both in � and in �0, D(�) is a semi-random polynomialof degree 2t with some �xed free coe�cient.The data gathered by the corrupted parties during the entire invocation of MULconsists of t shares of the semi-random polynomial D(�), along with t shares of thetruncation polynomial C(�) (namely, the outputs of the t invocations of Reconstruct).Let s = A(0) � B(0). Lemma 4.16 below shows that there exists a unique instance

4.3 Fail-Stop faults 70of D(�) (namely, a unique polynomial of degree 2t whose free coe�cient is s), thatcorresponds to each sequence of 2t �eld elements gathered by the corrupted parties.Consequently, the sequence of 2t �eld-elements gathered by the corrupted parties isuniformly distributed, both in � and in �0. 13Final Reconstruct. Let C be the core set determined by Vi, and let ~y be the substi-tuted input vector described above. By Lemma 4.15, the parties' output of the �nalReconstruct in a computation of protocol FS is fC(~y). By the construction of theideal-model adversary S, the parties' output of the �nal Reconstruct in the simulatedexecution is also fC(~y).This concludes our proof that � and �0 have the same distribution. 2Lemma 4.16 (technical lemma). Let F be a �nite �eld with jF j > d, and let s 2 F . Thenfor every sequence v1; : : : ; vd; u1; : : : ; ud of �eld-elements, there exists a unique polynomialp(�) of degree 2d with p(0) = s, such that:1. For 1 � i � d, we have p(i) = vi.2. For 1 � i � d, we have q(i) = ui, where q(�) is the truncation of p(�) to degree d.(Namely, the coe�cients of q(�) are the coe�cients of the d+1 lower degrees of p(�).)Proof: See Section 4-B. 24.3.6 Proof of correctness | adaptive caseLet A be a t-limited adaptive Fail-stop adversary, where n � 3t + 1 (we incorporate thescheduler within the adversary). Termination is shown as in the non-adaptive case, pro-vided that the Consensus protocol in use is resilient against adaptive adversaries. To showSecurity, we construct an ideal-model adversary S = (t; b; h; c;O), as in De�nition 4.1. Weremark that our construction of S uses only with black-box access to A. Here we assumenon-erasing parties. That is, each party keeps all the information gathered during thecomputation. This information consists of the party's input and random input, and themessages received from other parties.Construction of the ideal-model adversary. The functions b; h; c; O are determinedvia a simulated execution of protocol FS with adversary A. That is, S hands A informationon the computation, in an interactive process that simulates a real-life computation. (Weuse the description of a real-life computation presented immediately above De�nition 4.4on page 52.)Recall the de�nition of the contents and frame of a message (presented on page 66). Theinformation handed to A in the simulated interaction is as follows.1. S hands A the frame of each message sent by each party according to protocol FS.(This is the information seen by the scheduler. We note that protocol FS has thefollowing property. At any point during the computation, the frames of the messages13In Lemma 4.16 we assume, without loss of generality, that the corrupted parties are P1; : : : ; Pt.

4.3 Fail-Stop faults 71received by a party so far determine the frame of the next message sent by this party.Thus, the frames of the messages sent by the uncorrupted parties are predictable bythe adversary.)2. Up to the decision point, de�ned below, The contents of each message sent from anuncorrupted party to a corrupted party is set to uniformly chosen random elementsin the �eld F .3. Up to the decision point, whenever the adversary decides to corrupt a party P , thesimulator S proceeds as follows.First, S hands A simulated contents of all the messages previously received by Pi. Thesimulated contents of the messages sent by corrupted parties, including parties thatwere uncorrupted at the time of sending but became corrupted since, are consistentwith the contents already known to the adversary. The simulated contents of messagessent by still uncorrupted parties are chosen uniformly from F .Next S decides to corrupt Pi in the ideal-model (in the �rst corruption stage). Uponlearning xi, the input of Pi, the simulator chooses, in a way described below, a simu-lated random input ri for Pi that is consistent with input xi, with the contents of themessages previously received by Pi (as chosen above), and with the messages previ-ously sent by P to corrupted parties. Note that ri determines also the messages thatwere supposedly sent by Pi to uncorrupted parties. Finally S hands A the input xiand the simulated random input ri.Functions b; c; h are determined as follows. Let the decision point be the time wherethe �rst uncorrupted party invokes the �nal Reconstruct (i.e., the Reconstruct of Step 4 ofprotocol FS, see Figure 4-8). The selection function b() of corrupted parties is determinedas described in Step 3 above. Let B be the set of corrupted parties at the decision point.Let C be the core set decided upon in the initial GShare (i.e., in the GShare of Step 1 of theprotocol). For each Pi 2 C, let yi be the value shared by Pi (namely, yi = xi); for Pi =2 C,let yi = 0. Let ~y = y1 : : : yn. Set h(~xB; r) = ~yB, and c(~xB; r) = C.The output function O of S is determined as follows. At the decidion point S asksthe trusted party for the computed function value. S continues the above simulation ofprotocol FS, with the following modi�cations. At the decision point, S computes eachcorrupted party's share of the output line of the circuit. (This can be e�ciently done basedon S's information on the computation.) Next, S chooses a random polynomial p0(�) suchthat p0(0) = fC(~y) and for each corrupted party Pj, the value p0(j) equals Pj's share ofthe output line. (The polynomial p0(�) plays a similar role as in the non-adaptive case.)In the simulated run, each uncorrupted party Pi executes the �nal Reconstruct protocolwith input p0(i). If the adversary decides to corrupt Pi after the decision point, then Sproceeds as in Step 3 above, with the exception that the chosen random input ri should beconsistent also with Pi having p0(i) as input to the �nal Reconstruct. (In the ideal modelthese corruptions are part of the second corruption stage.) Let w denote the output of thecorrupted parties after this simulated run of protocol FS, and let B0 be the set of faultyparties in this run. Set O(~xB0 ; r; fC(~y)) = w.It remains to describe how the random input ri is chosen, upon the corruption of aparty Pi. Assume �rst that Pi is corrupted before the decision point. We distinguish thefollowing cases.

4.3 Fail-Stop faults 72Random input for the initial invocation of GShare: Here the relevant informationknown to the adversary consists of up to t � 1 uniformly chosen elements in F , sentby Pi to corrupted parties. S chooses a random polynomial q() of degree t, such thatq(0) = xi (where xi is Pi's input), and for each corrupted party Pj , the value of q() atpoint j equals the value sent by Pi to Pj. We note that q() can be chosen e�ciently.Furthermore, q() has the distribution of a semi-random polynomial of degree t withq(0) = xi. (This is so since the values sent by the simulated Pi to corrupted partieswere uniformly chosen from F .) S sets the random input of Pi for the initial invocationof GShare so that the polynomial chosen in Step 1(a) of GShare (See Figure 4-4) isq().We remark that the messages received by Pi from other parties during this invocationof GShare are irrelevant to Pi's random choices.Random input for an invocation of MULT: The relevant information gathered by Aon Pi in an invocation of MULT is as follows.� Pi's shares of the input lines of the corresponding gate. These shares are deter-mined by the simulated invocations of the procedures for evaluating the inputlines of this gate.� Up to t� 1 shares of the degree-2t polynomial chosen by Pi in the invocation ofGShare in the Randomization Step (Step 1 of MULT, see Figure 4-7). These arethe shares sent by Pi to corrupted parties.� Pi's shares of the polynomials shared by other parties in this invocation ofGShare. (S hands A these uniformly chosen shares upon the corruption of Pi,as described in Step 2 above.)� Up to t�1 shares of the degree-t polynomial chosen by Pi in the Degree-ReductionStep (Step 1 ofMAT, see Figure 4-6). These are the shares sent by Pi to corruptedparties.Let the �ngerprint of an invocation of MULT within Pi consist of this informationseen by A. Each �ngerprint is consistent with an equal number of random inputsof this invocation of MULT (i.e., with an equal number of polynomials chosen by Piin Steps 1 of MULT and MAT). This can be seen in a similar way to Lemma 4.16:Each �ngerprint can be completed, in the same number of ways, to a sequence thatuniquely determines the polynomials chosen by Pi. Furthermore, as remarked in theproof of Lemma 4.16, sampling these polynomials with the appropriate probability,given a �ngerprint, can be done e�ciently.If Pi is corrupted after the decision point, then it may be the case that Pi has alreadystarted the �nal Reconstruct, and has sent p0(i) to corrupted parties. In this case, Pi'ssimulated random input should be consistent with Pi having p0(i) for its share of the outputline of the circuit. Such random input can be e�ciently sampled, in a similar way to theprevious case (i.e., the case where Pi is corrupted before the decision point.)We note that randomness is used also in the various invocations of Consensus. S uses,and hands A upon corruption of Pi, uniformly chosen random inputs for the use of Pi inthe simulated invocations of Consensus.

4.4 Asynchronous veri�able secret sharing 73Validity of the ideal-model adversary. The validity of the simulation is shown in asimilar way to the non-adaptive case, with the exception that an additional type of event isadded to the adversary view of the computation: corruption of some party. Consequently,the case of corruption of a party has to be considered in the inductive proof of Lemma 4.14.In Lemma 4.17 we state the inductive claim of Lemma 4.14, for the case of a corruptionevent. A full proof of this lemma is omitted.Lemma 4.17 Consider n parties running protocol FS on some input ~x. Let �i consist ofthe �rst i events in some instance � of the adversary view of this computation, such thatthe (i+1)th event in � is the corruption of party Pl. Let c(l) (resp., c0(l)) denote the randomvariable having the distribution of the information gathered by the adversary in the (i+1)thevent in an authentic (resp., simulated) computation, given that the adversary view up tothe ith event is �i. Then, c(l) and c0(l) are equally distributed. 24.4 Asynchronous veri�able secret sharingWe de�ne Veri�able Secret Sharing in an asynchronous setting (AVSS), and describe anAVSS scheme. Our AVSS scheme is resilient against t-limited (Byzantine) adversaries in anetwork of n parties, as long as n � 4t + 1.Our construction uses ideas appearing in [BGW, FM, Fe]. In particular, [Fe] and [CR]describe di�erent AVSS schemes, for n � 4t + 1 and n � 3t + 1, respectively (the [CR]scheme is presented in Chapter 5). However, in those schemes the parties have a smallprobability of error in reconstructing the secret (and in [CR] also a small probability of notterminating), whereas our scheme has no probability of error.We describe our AVSS scheme as a preamble for our construction for Byzantine adver-saries. In our construction we do not use the AVSS scheme as such: in an AVSS scheme,the dealer shares a secret among the parties; later, the parties reconstruct the secret fromits shares. In our protocol, the parties' shares of the secret are further processed, and thereconstructed secret is di�erent than the shared secret (much as in the Fail-Stop case).Nevertheless, for clarity and completeness, we �rst de�ne AVSS and describe a stand-aloneAVSS scheme; the components of this scheme will be used in the Byzantine protocol.In Section 4.4.1 we de�ne AVSS. In Sections 4.4.2 through 4.4.4 we describe our AVSSscheme. In Section 4.4.5 we prove the correctness of our scheme.4.4.1 A de�nitionA Veri�able Secret Sharing scheme (either synchronous or asynchronous) consists of twoprotocols: a sharing protocol, in which a dealer shares a secret among the other parties,and a reconstruction protocol, in which the parties reconstruct the secret from its shares.An AVSS scheme should have the following properties: �rst, a uncorrupted dealer shouldbe able to share a secret in a reconstructible way. Furthermore, if one uncorrupted partyaccepts a sharing of a secret, then all the uncorrupted parties accept this sharing, and aunique secret will be reconstructed (even if the dealer is corrupted). Finally, if the dealeris uncorrupted, then the shared secret should remain unknown to the corrupted parties,as long as no uncorrupted party has started the reconstruction protocol. The followingde�nition formalizes these requirements in our asynchronous setting.

4.4 Asynchronous veri�able secret sharing 74De�nition 4.18 Let (S;R) be a pair of protocols such that each uncorrupted party thatcompletes protocol S subsequently invokes protocol R with its local output of protocol S aslocal input. We say that (S;R) is a t-resilient AVSS scheme for n parties if the followingholds, for every t-limited adversary.� Termination. 1. If the dealer is uncorrupted, then every uncorrupted player will even-tually complete protocol S.2. If some uncorrupted party has completed protocol S, then all the uncorruptedparties will eventually complete protocol S.3. If a uncorrupted party has completed protocol S, then it will complete protocol R.� Correctness. Once the �rst uncorrupted party has completed protocol S, a unique value,r, is �xed, such that:1. r is each uncorrupted party's output of prtocol R.2. If the dealer is uncorrupted, sharing a secret s, then r = s.� Secrecy. If the dealer is uncorrupted and as long as no uncorrupted party has invokedprotocol R, then the adversary view of the computation is distributed independently ofthe shared secret.Remark. We stress that a uncorrupted party is not required to complete protocol Sin case that the dealer is corrupted. (We do not distinguish between the case where auncorrupted party did not complete protocol S, and the case where a uncorrupted partyhas completed S unsuccessfully.)4.4.2 An AVSS schemeWe present an outline of our scheme. Roughly speaking, the sharing protocol (denotedV-Share) consists of three stages: �rst, each party waits to receive its share of the secretfrom the dealer. Next, the parties jointly try to verify that their shares de�ne a uniquesecret. Once a party is convinced that a unique secret is de�ned, it locally computes andoutputs a `corrected share' of the secret (using the information gathered in the veri�cationstage).Our AVSS scheme has the following additional property. There exists a polynomial p(�)of degree t such that each uncorrupted party Pi's output of protocol V-Share is p(i), andp(0) is the shared secret. This property is at the heart of our construction for Byzantineadversaries.In the reconstruction protocol (denoted V-Recon), each party sends its share to theparties in some prede�ned set R (the set R is an external parameter with the same role asin the Fail-Stop case). Next, each party in R waits to receive enough shares to uniquelydetermine a secret, and outputs the reconstructed secret. In order to deal with possiblyerroneous shares, we use a procedure for error correcting of Generalized Reed-Solomon(GRS) codes in an `on-line' fashion. This procedure is presented in Section 4.4.4 below.

4.4 Asynchronous veri�able secret sharing 75We turn to describing the V-Share protocol in more detail. To share a secret, s, the dealerchooses at random a polynomial h(�; �) of degree t in two variables such that h(0; 0) = s,14and sends each party Pi the t-degree polynomials fi(�) 4= h(i; �) and gi(�) 4= h(�; i). Eachparty Pi now sends a veri�cation message vi;j = fi(j) to each party Pj. If the veri�cationmessage sent from Pi to Pj is correct, then party Pj has vi;j = fi(j) = h(i; j) = gj(i); inthis case Pj `con�rms party Pi' by Broadcasting (OK; j; i). Party Pi accepts the sharedsecret when it �nds a large enough set of parties that have con�rmed each other in a `dense'enough manner, described below.We describe each party's view of the `OK' Broadcasts in terms of a graph. Namely, letthe OKi graph be the (undirected) graph over the nodes [n], where an edge (j; k) existsif party Pi completed both the (OK; j; k) Broadcast (initiated by Pj), and the (OK; k; j)Broadcast (initiated by Pj). De�ne an (n; t)-star in a graph:15De�nition 4.19 Let G be a graph over the nodes [n]. We say that a pair (C;D) of setssuch that C � D � [n] is an (n; t)-star in G, if the following hold:� jCj � n � 2t� jDj � n � t� for every j 2 C and every k 2 D the edge (j; k) exists in G.In the sequel, we use star to shorthand (n; t)-star. Party Pi accepts a shared secret whenit �nds a star in its OKi graph. Lemma 4.26 on page 82 below implies that, provided thatn � 4t+1, the shares of the uncorrupted parties in a star in the OKi graph de�ne a uniquepolynomial of degree t in two variables; Lemma 4.27 implies that the polynomials de�nedby the stars of every two parties are equal. Thus, once a uncorrupted party �nds a star, aunique secret is de�ned.Remark: conceptually, we could have let a party wait to have a clique of size n�t (insteadof a star) in its OK graph, before accepting a shared secret: if the dealer is uncorrupted,then the OK graph will eventually contain such a clique. However, �nding a maximum sizeclique in a graph is an NP-complete problem. Instead, the party will try to �nd a star. InSection 4.4.3 we describe an e�cient procedure for �nding a (n; t)-star in a graph, providedthat the graph contains a clique of size n� t.We want to make sure that if a uncorrupted party �nds a star in its OK graph, thenall the uncorrupted parties will �nd a star, even when the dealer is corrupted and the OKgraph does not contain a clique. For this purpose, upon �nding a star, the party sends itto all the other parties. Upon receiving an (OK; �; �) Broadcast, a party that has not founda star checks whether any of the suggested stars is indeed a star in its OK graph. Notethat an edge in the OK graph of a uncorrupted party will eventually be an edge in the OKgraph of every uncorrupted party (since all the (OK; �; �) messages are Broadcasted); thus, astar in the OK graph of some uncorrupted party will eventually be a star in the OK graphof every other uncorrupted party.14That is, h(x; y) = Pti=0Ptj=0 hi;jxiyj , where h0;0 = s, and all the other coe�cients h0;1; : : : ; ht;t arechosen uniformly and independently over F .15Our de�nition of an (n; t)-star is di�erent than the \standard" de�nition.

4.4 Asynchronous veri�able secret sharing 76Party Pi's output of protocol V-Share will be hi(0; i), where hi(�; �) is the (unique)polynomial de�ned by the star found by Pi. If Pi is a member of its own star, then thepolynomial gi(�) that Pi received from the dealer satis�es gi(�) = hi(�; i), and Pi outputsgi(0). If Pi is not a member of its own star, then gi(�) may be erroneous (possibly, Pi didn'teven receive gi(�).) Therefore, upon �nding a star (Ci; Di), and if Pi =2 Di, then Pi computeshi(0; i) using the veri�cation messages vj;i it has received (or still expects to receive) fromthe parties Pj 2 Di. (For the 2t + 1 uncorrupted parties Pj 2 Di, we have vj;i = hi(j; i).Therefore, the values received from the parties in Di uniquely determine the polynomialhi(�; i).) In Section 4.4.4 we describe how this computation is carried out.The code of the V-Share and V-Recon protocols is described in Figures 4-9 and 4-10,respectively. protocol V-ShareCode for the dealer (on input s):1. choose a random polynomial h(�; �) of degree t in two variables, such that h(0; 0) = s.For every 1 � i � n, send the polynomials fi(�) = h(�; i) and gi(�) = h(i; �) to partyPi.Code for party Pi:2. Upon receiving fi(�) and gi(�) from the dealer, and for each 1 � j � n,send fi(j) to party Pj .3. Upon receiving vi;j from party Pj: if vi;j = gi(j), then broadcast (OK; i; j).4. Upon receiving a broadcast (OK; j; k), check for the existence of a star in OKi, usingprocedure STAR described in Section 4.4.3 below. If a star (Ci; Di) is found, go toStep 6 and send (Ci; Di) to all the parties.5. Upon receiving a message (Cj; Dj) add (Cj; Dj) to the set of `suggested stars'. Aslong as a star is not yet found, then whenever an (OK; k; l) Broadcast is received,check whether (Cj ; Dj) form a star in the OKi graph.6. Upon �nding a star (Ci; Di), and if i =2 Di, correct polynomial gi(�), based on theveri�cation messages received from the parties in Di, and using the error correctingprocedure OEC described in Section 4.4.4.Namely: let Vi = f(j; vi;j)jj 2 Dig; set gi(�) =OEC[t; t](Vi).7. Once gi(�) is corrected, (locally) output gi(0).Figure 4-9: V-Share - The veri�able sharing protocol4.4.3 E�ciently �nding a starWe describe an e�cient procedure for �nding a (n; t)-star in a graph of n nodes (see De�ni-tion 4.19 on page 75), provided that the graph contains a clique of size n� t. Namely, ourprocedure outputs either a star in the graph, or a message `star not found'; whenever theinput graph contains a clique of size n� t, then the procedure outputs a star in the graph.We follow an idea of Gabril, appearing in [GJ] p. 134. There, the following approxi-

4.4 Asynchronous veri�able secret sharing 77Protocol V-Recon[R](ai)Code for party Pi (on input ai, and with parameter R � fP1; : : : ; Png):7. Send ai to the parties in R.8. Let Si = f(j; aj)j aj has been received from Pjg.If Pi 2 R, terminate without output.Otherwise, set zi(�) =OEC[t; t](Si), and output zi(0).Figure 4-10: V-Recon - The veri�able reconstruction protocolmation algorithm is described: if the input graph contains a clique of size n � k, then aclique of size n � 2k is found. The algorithm is simple: �nd a maximal matching16 in thecomplementary graph17 and output the set of unmatched nodes. Clearly, the output is anindependent set in the complementary graph; thus, it forms a clique in the original graph.Furthermore, if a graph contains a clique of size n � k, then any maximal matching in thecomplementary graph involves at most k edges and 2k nodes.We �rst restate our problem in terms of the complementary graph: if the input graphhas an independent set of size n � t, �nd sets C � D of nodes, such that jCj � n � 2t,jDj � n � t, and no edges exist between nodes in C and nodes in C [D. We call such apair of sets an (n; t)-star. In the rest of this section, we refer to the complementary graphonly.In our procedure, we �nd a maximum matching in the graph (say, using [Ed] or [MV]).18 Based on this matching, we compute sets C;D of nodes, and check whether (C;D) forman (n; t)-star in the graph. If the input graph contains an independent set of size n � t,then the computed sets C;D form an (n; t)-star in the input graph.We describe how sets C and D are computed. Consider a matching; we say that anode is a triangle-head if it is unmatched, and two of its neighbours are a matched pair(namely, the edge between these two neighbours is in the matching). Let C denote the setof unmatched nodes that are not triangle-heads. Let B be the set of matched nodes thathave neighbours in C, and let D 4= [n]�B.Our procedure is described in Figure 4-11. Figure 4-12 illustrates the relations amongthe di�erent subsets of nodes.Proposition 4.20 Assume procedure STAR outputs (C;D), on input graph G. Then,(C;D) form a t-star in G.Proof: Clearly, if algorithm STAR outputs (C;D) then jCj � n � 2t and jDj � n � t,and C � D. We show that for every i 2 C and every j 2 D, the nodes i and j are notneighbours in G.16A matching in a graph is a set M of edges such that no two edges in M have a common endpoint. Amatching is maximal if every edge added to it has a common endpoint with an edge in the matching.17The complementary graph is the graph in which an edge exists i� it does not exist in the original graph.18In fact, we only need that the matching cannot be improved by augmenting paths of length at most 3.

4.4 Asynchronous veri�able secret sharing 78Procedure STAR[t](G)input: an undirected graph G (over the nodes [n]), a parameter t.output: a t-star in the graph G, or a message: `star not found'.1. Find a maximummatching M in G.Let N be the set of matched nodes (namely, the endpoints of the edges in M), andlet �N 4= [n]�N .2. Verify that the matching, M , has property P:(a) Let T be the set of triangle-heads; namely, setT 4= fi 2 �N j 9j; k s.t (j; k) 2M and (i; j); (i; k) 2 Gg.Let C 4= �N � T .(b) Let B be the set of matched nodes that have neighbours in C;namely, let B 4= fj 2 N j 9i 2 C s.t. (i; j) 2 Gg.Let D 4= [n]�B.(c) If jCj � n � 2t and jDj � n � t, output (C;D). Otherwise, output `star notfound'.Figure 4-11: STAR - A procedure for �nding a star in a graph
Figure 4-12: Partition of the graph G

4.4 Asynchronous veri�able secret sharing 79Assume that i 2 C and j 2 D, and that (i; j) is an edge in G. As j 2 D, we musthave j =2 B. By The de�nition of B, we have j =2 N (if i 2 C and j 2 N , then j 2 B).Furthermore, i 2 C � �N . Thus, both i and j are unmatched. Consequently, the edge(i; j) can be added to the matching to create a larger matching, and the matching is notmaximum (in this case, it is not even maximal). 2Proposition 4.21 Let G be a graph over n nodes containing an independent set of sizen� t. Then procedure STAR outputs a t-star in G.Proof: We show that if the input graph G contains an independent set of size n� t, thenthe sets C and D determined in Steps 2(a) and 2(b) of procedure STAR are large enough(i.e., jCj � 2t+ 1 and jDj � n� t). Consequently, the procedure outputs (C;D) in Step 4;Proposition 4.20 assures us that (C;D) form a star in G.First, we show that jCj � n� 2t. Let I � [n] be an independent set of size n� t in G,and let �I = [n]� I . We adopt the de�nitions of N , T , and C in the procedure (see Figure4-12).Let F 4= I�C. We show below that jF j � j�Ij. However, j�Ij � t. Consequently, we havejCj � jI j � jF j � n � 2t.To see that jF j � j�Ij, we show a one-to-one correspondence � : F ! �I . Let i 2 F ; sincei =2 C, we have either i 2 N or i 2 T .Case 1: i 2 N . Then, let �(i) be the node matched to i inM . Clearly, �(i) 2 �I : otherwise,we had an edge (i; �(i)) where both i and �(i) are in an independent set.Case 2: i 2 T . By the de�nition of T , node i has two neighbours j; k such that (j; k) 2M .Arbitrarily set �(i) = j. Clearly, both j and k are in �I.Wo show that � is one-to-one. Consider two distinct nodes l;m 2 F ; we distinguishthree case:Case 1: l;m 2 N . In this case, �(l) 6= �(m) since M is a matching.Case 2: l 2 N and m 2 T . Since m 2 T , there exists an edge between m and thenode matched to �(m). Since l 2 N , the node matched to �(l) is l. Now, assumethat �(l) = �(m). Thus, (l;m) is an edge in G. However, both l and m are in theindependent set I : a contradiction.Case 3: l;m 2 T . Assume �(l) = �(m). Let a be the node matched to �(m) in M ; then,both l and m are neighbours of both �(m) and a. However, in this case the matchingM is not maximum since, for instance,M�f(�(m); a)g[f(�(m); l); (a;m)g is a largermatching.It remains to show that jDj � n � t. Recall that D = [n] � B. We show below thatjBj � jM j; since G contains an independent set of size n � t, we have jM j � t. Thus,jDj = n� jBj � n � jM j � n� t.To see that jBj � jM j, we show that at most one of the endpoints of every edge(a; b) 2 M is in B. Suppose on the contrary that both a and b have neighbours in C, andlet c; d 2 C be the neighbours of a and b, respectively. Surely, c 6= d (otherwise, c was atriangle-head, and we had c =2 C). However, in this case the matching M is not maximum,since, for instance, M � f(a; b)g[f(a; c); (b; d)g is a larger matching. 2

4.4 Asynchronous veri�able secret sharing 804.4.4 On-line error correctingConsider the following scenario. A party expects to receive messages from m parties (mes-sage aj from party Pj), so that there exists a polynomial p(�) of degree d, satisfying p(j) = ajfor every message aj. The messages arrive one by one, in some arbitrary order; further-more, up to t of the messages may be wrong or missing. (In our context, we have m = n� tand d = t.) We describe an e�cient procedure that enables the party to compute thispolynomial `on-line'; namely, the party will recognize when the received messages de�ne aunique `interpolated polynomial' of degree d, and compute this polynomial. The followingde�nitions provide tools for precisely stating this problem.De�nition 4.22 Let � and � be integers, and let S � [n] � F such that for every twoelements (i; a) and (i0; a0) in S we have i 6= i0. We say that S is (�; �)-interpolated if thereexists a polynomial p(�) of degree �, so that at most � elements (i; a) 2 S do not satisfyp(a) = e. We say that p(�) is a (�; �)-interpolated polynomial of S.(Remark: A d-interpolated vector, de�ned in Section 4.3.3 on page 61, is a di�erentformulation of a (d; 0)-interpolated set.) Note that the (�; �)-interpolated polynomial of a(�; �)-interpolated set S is unique, provided that jSj � � + 2� + 1. (Proof: assume S hastwo (�; �)-interpolated polynomials p(�); q(�). Then, for at least jSj� 2� elements (a; e) 2 Swe have p(a) = e = q(a). However, jSj � 2� � � + 1; thus, p(�) = q(�).)De�nition 4.23 Let I be an accumulative set 19. We say that I is eventually (�; �)-interpolated, if for every � -limited adversary, and every run, there exists an integer 0 �� � � , such that I will eventually hold a (�; �)-interpolated set of size at least �+ � + �+1.Let I be an eventually (�; �)-interpolated accumulative set. Using a similar argumentto the one used above, it can be seen that all the (�; �)-interpolated sets of size at least�+ � + �+ 1 held in I have the same interpolated polynomial. We call this polynomial the(�; �)-interpolated polynomial of I.Using these notations, the (dynamic) input of the procedure described in this section isan eventually (d; t)-interpolated accumulative set I. The required output of this procedureis the (d; t)-interpolated polynomial of I. (De�nition 4.23 assures us that at least d+ t+ 1values in I will `sit on a polynomial' of degree t. At least t+1 of thus values originate withuncorrupted parties. Consequently, the (d; t)-interpolated polynomial of I is bound to bethe `correct' polynomial, namely the polynomial de�ned by the values of the uncorruptedparties.)Our procedure, denoted OEC (for On-line Error Correcting), consists of up to t it-erations. In iteration r, the party waits until the accumulative set I is of size at leastd+ t + r + 1; then, the party uses a procedure, described below, that determines whetherthis set is (d; r)-interpolated, and computes the corresponding interpolated polynomial. Ifa (d; r)-interpolated polynomial is found, then we output this polynomial and terminate.Otherwise, we proceed to iteration r+1 (since I is (d; t)-eventually interpolated, it is boundto have at least one more element; thus, iteration r + 1 will be completed).19Accumulative sets are de�ned in Section 4.1.3 on page 53.

4.4 Asynchronous veri�able secret sharing 81It is left to describe how to determine if a given set is (d; r)-interpolated, and how tocompute the interpolated polynomial. We use a result from Coding theory. Consider thefollowing code: a word W = (i1; a1) : : :(il; al) is a code-word i� there exists a polynomialp(�) of degree d such that p(ij) = aj for every 1 � j � l. This is a Generalized Reed-Solomon (GRS) code; GRS codes have an e�cient error correcting procedure that detectsand corrects up to r errors in an input word, W , provided that jW j � d + 2r + 1 (see,for instance, [MS pp. 294-315]). Let EC denote such a procedure. Namely, let S be a(d; r)-interpolated set of size at least d + 2r + 1; then, procedure EC, on input (d; r; S),outputs the (d; r)-interpolated polynomial of S.Procedure OEC is described in Figure 4-13.Procedure OEC[d; t](I)For 0 � r � t do:1. Let Ir denote the contents of accumulative set I, when I contains d + t + r + 1elements.Wait until jIj � d + t + r + 1. Then, run EC(d; r; Ir), and let p(�) be the outputpolynomial.If p(�) is a (d; r)-interpolated polynomial of Ir (namely, if for d + t + 1 elements(i; a) 2 Ir we have p(i) = a), output p(�). Otherwise, proceed to the next iteration.Figure 4-13: OEC - A procedure for on-line error correctingProposition 4.24 Let I be an eventually (d; t)-interpolated accumulative set. Then, pro-cedure OEC[d; t](I) halts and outputs the (d; t)-interpolated polynomial of I.Proof: Let r̂ be the smallest r such that Ir̂ is (d; r̂)-interpolated; since I is eventually(d; t)-interpolated, we have r̂ � t. All the iterations up to iteration r̂ will be completed(unsuccessfully). The (d; t)-interpolated polynomial of I will be found in iteration r̂. 24.4.5 Correctness of the AVSS schemeTheorem 4.25 The pair (V-Share,V-Recon) is a t-resilient AVSS scheme in a network ofn parties, provided that n � 4t+ 1.Proof: We assert the Correctness, Termination and Secrecy requirements of De�nition4.18 on page 74.Correctness. We associate with every uncorrupted party Pi that completed protocol V-Share a unique polynomial hi(�; �) of degree t in two variables, and show that every twouncorrupted parties Pi and Pj have hi(�; �) = hj(�; �). Next, we show that Conditions 1 and2 of the Correctness requirement are met, with respect to r = hi(0; 0) (for some uncorruptedparty Pi). Moreover, we show that party Pi's output of protocol V-Share is hi(i; 0).We use two technical lemmas.

4.4 Asynchronous veri�able secret sharing 82Lemma 4.26 Let m � d + 1, and let f1(�) : : :fm(�) and g1(�) : : :gm(�) be polynomials ofdegree d over a �eld F with jF j � m, such that for every 1 � i � d+1 and every 1 � j � mwe have fi(j) = gj(i) and gi(j) = fj(i). Then, there exists a unique polynomial h(�; �) ofdegree d in two variables so that for every 1 � i � m we have h(�; i) = fi(�) and h(i; �) = gi(�).Proof: See Appendix B. 2Lemma 4.27 Let h(�; �), h0(�; �) be two polynomials of degree d in two variables over a�eld F with jF j > d, and let v1 : : : vd+1 be distinct elements in F . Assume that for every1 � i; j � d+ 1 we have h(vi; vj) = h0(vi; vj). Then, h(�; �) = h0(�; �).Proof: See Appendix B. 2Let Pi be a uncorrupted party that completed protocol V-Share, and let (Ci; Di) be thestar found by Pi. Let D0i be the set of uncorrupted parties in Di, and let C0i be the set ofuncorrupted parties in Ci; thus, jD0ij � jDj � t � n� 2t and jC 0ij � jCj � t � n� 3t � t+ 1(since n � 4t + 1). Applying Lemma 4.26, we get that the polynomials fj(�); gj(�) of theparties j 2 D0i determine a unique polynomial of degree t in two variables. Let hi(�; �) denotethis polynomial. (Namely, hi(�; �) is the polynomial associated with Pi.) Note that hi(�; �)is �xed once Pi has completed protocol V-Share.For every other uncorrupted party Pj, let Ii;j be the set of uncorrupted parties in Di\Dj.Since n � 4t + 1, we have jDi \ Djj � n � 2t � 2t + 1, thus jIi;jj � t + 1. For every twoparties k; l 2 Ii;j we have hi(k; l) = vk;l = hj(k; l), where vk;l is the veri�cation piece sentby Pk to Pl in Step 2 of protocol V-Share. Applying Lemma 4.27, we have hi(�; �) = hj(�; �).The value r required in the Correctness condition is r = hi(0; 0).We assert Condition 1 (namely, that if the dealer is uncorrupted and has shared a values, then r = s). If the dealer is uncorrupted and has chosen a polynomial h(�; �) in Step 1,then for every two parties Pk; Pl 2 D0i we have hi(k; l) = h(k; l). Applying Lemma 4.27again, we get hi(�; �) = h(�; �). In the sequel, we omit the subscript from the polynomialh(�; �).Next, we show that each uncorrupted party Pi's output of protocol V-Share is h(i; 0).Polynomial h(i; �) is the (only) interpolated polynomial of Pi's accumulative set Vi in Step6. Therefore, the output of the error correcting procedure OEC in Step 6 will be h(i; �),and the output of protocol V-Share will be h(i; 0).It remains to assert Condition 2 (namely, that Pi's output of V-Recon is r). Everyuncorrupted party Pj will Broadcast h(j; 0) in Step 7; thus, h(�; 0) is the (only) interpolatedpolynomial of Pi's accumulative set Si in Step 8. Therefore, the output of the error cor-recting procedure OEC in Step 8 will be h(�; 0), and the output of protocol V-Recon willbe h(0; 0) = r.Termination. Condition 1. If the dealer is uncorrupted, then for every two uncorruptedparties Pj and Pk, both (OK; j; k) and (OK; k; j) will be broadcasted, since fj(k) = h(k; j) =gk(j) and gj(k) = h(j; k) = fk(j). Thus, every uncorrupted party Pi will eventually havea clique of size n � t in its OKi graph. Therefore, procedure STAR will �nd a star inOKi and Step 4 will be completed. Step 6 will be completed since the input of procedureOEC (namely, the accumulative set Vi which is based on the star found in Steps 4 or 5) iseventually (t; t)-interpolated.Condition 2. Let Pi be a uncorrupted party that completed protocol V-Share, andlet (Ci; Di) be the star found by Pi. Then, (Ci; Di) will eventually be a star in the OKj

4.5 Byzantine adversaries 83graph of every uncorrupted party Pj , unless Pj has already completed protocol V-Share.Furthermore, party Pj will receive the (Ci; Di) message (sent by Pi in Step 4), and willverify, in Step 5, that the sets (Ci; Di) form a star in OKj. Upon �nding a star, Pj willexecute Step 6 and complete protocol V-Share.Condition 3. If all the uncorrupted parties have started protocol V-Recon, then theaccumulative set Si of Step 8 of each uncorrupted party Pi is eventually (t; t)-interpolated.Thus, all the uncorrupted parties will complete procedures OEC and V-Recon.Secrecy. We use the following notations.� For a value v, let Hv denote the set of polynomials of degree t in two variables, withfree coe�cient v.� We say that a sequence f1(�); : : : ; ft(�); g1(�); : : : ; gt(�) of polynomials is interleaved iffor every 1 � i; j � t we have fi(j) = gj(i). Let I denote the set of interleavedsequences of 2t polynomials of degree t.Lemma 4.28 Let F be a �eld with jF j > d, and let s 2 F . Then, for every interleavedsequence f1(�); : : : ; fd(�); g1(�); : : : ; gd(�) in I, there exists a unique polynomial h(�; �) 2 Hs,so that for every 1 � i � d we have h(�; i) = fi(�) and h(i; �) = gi(�).Proof: See Appendix B. 2Assume a uncorrupted dealer, and let s be the shared value. Then, the dealer haschosen, in Step 1 of protocol V-Share, a polynomial h(�; �) with uniform distribution overHs. Furthermore, all the relevant information a set of t parties received during an executionof protocol V-Share, is an interleaved sequence f1(�); : : : ; ft(�); g1(�); : : : ; gt(�) in I , so thatfor every 1 � i � t we have h(�; i) = fi(�) and h(i; �) = gi(�).Lemma 4.28 implies that for every shared value s 2 F , this correspondence betweenpolynomials in Hs and interleaved sequences in I is one to one and onto. Therefore, auniform distribution over the polynomials in Hs induces a uniform distribution over theinterleaved sequences in I .Thus, all the corrupted parties have after executing protocol V-Share is a sequence ofinterleaved polynomials of degree t, chosen with uniform distribution over I , regardless ofthe shared value. 24.5 Byzantine adversariesAs in the Fail-Stop case, let the computed function be f : Fn ! F , and assume that theparties have an arithmetic circuit computing f . We describe an n party protocol for securelyt-computing f in an asynchronous network with arbitrary (i.e., Byzantine) adversaries,provided that n � 4t + 1.We follow the outline of the Fail-Stop protocol, modifying its components to the Byzan-tine setting. First, we extend Shamir's Secret Sharing scheme (used for Fail-Stop adver-saries) to an Asynchronous Veri�able Secret Sharing (AVSS) scheme. Next, The multipli-cation step is adapted to a Byzantine setting.In our protocol we do not use the AVSS scheme as such: in an AVSS scheme, the dealershares a secret among the parties; later, the parties reconstruct the secret from its shares.In our protocol, the parties' shares of the secret are further processed, and the reconstructed

4.5 Byzantine adversaries 84secret is di�erent than the shared secret (much as in the Fail-Stop case). Nevertheless, forclarity and completeness, we �rst de�ne AVSS and describe a stand-alone AVSS scheme;the components of this scheme will be used in the Byzantine protocol.Our AVSS scheme, as well as the multiplication step protocol, makes use of error correct-ing techniques for Generalized Reed-Solomon (GRS) codes. In the AVSS scheme we describea procedure, run locally by each party, that enables the party to locate and correct, in an`on-line' fashion, erroneous or missing messages in a sequence of received messages. In themultiplication step, a GRS code-word is generated, so that each party holds a piece of thiscode-word. Each party shares its piece, using AVSS; then, the parties agree, without learn-ing further information, on a set of parties whose shared pieces are indeed the pieces of theoriginal code-word.4.5.1 Global Veri�able ShareThe Global Veri�able Share (GV-Share) protocol, described in Figure 4-14, is the Byzantinecounterpart of the Fail-Stop GShare protocol (described in Figure 4-4 on page 60). Itconsists of two phases: �rst, each party shares its input, using the V-Share protocol of theAVSS scheme (Figure 4-9 on page 76); next, the parties use protocol ACS (Section 4.2.3 onpage 56) to agree on a set C of at least n� t parties who properly shared their inputs. PartyPi's output of protocol GV-Share is this set C, and the ith share of each secret shared bya party in C. (Recall that protocol GShare had an additional security parameter, d; here,the security parameter is �xed to d = t.)Protocol GV-Share(xi)Code for Party Pi, on input xi:1. Initiate V-Sharei(xi) (with Pi as the dealer).For 1 � j � n, participate in V-Sharej .Let vj be the output of V-Sharej .2. Let Ui = fjj V-Sharej has been completedg. Set C =ACS[n� t; n](Ui).3. Once the set C is computed, output (C; fvjjj 2 Cg).Figure 4-14: GV-Share - The global veri�able sharing protocol4.5.2 Computing a multiplication gateLet c = a � b be a multiplication gate, and let A(�); B(�) be the polynomials associated withthe input lines. Namely, each uncorrupted party Pi's shares of these lines are A(i) and B(i)respectively, and A(0) = a and B(0) = b. As in the Fail-Stop case, the parties will jointlycompute their shares of a random polynomial C(�) of degree t with C(0) = A(0) �B(0), sothat each uncorrupted party Pi's share of the output line will be C(i).The Byzantine multiplication procedure follows the outline of its Fail-Stop counterpart.Namely, the parties �rst generate a random polynomial D(�) of degree 2t with free coe�cient

4.5 Byzantine adversaries 85D(0) = A(0) �B(0). Then, the parties compute their shares of the truncation polynomialof D(�) to degree t; this truncation polynomial is the output polynomial C(�).We proceed to describe the Byzantine implementations of these two steps.RandomizationThe Byzantine randomization step follows the outline of its Fail-Stop counterpart. Namely,each party Pi �rst shares (in a way described below) a random polynomial Hi(�) of degree2t with Hi(0) = 0. Next, the parties use protocol ACS to agree on a set C of partiesthat have successfully shared their polynomial. Finally, each party Pi locally computesH(i) =Pj2CHj(i), and D(i) = A(i) �B(i) +H(i).It remains to describe how each party Pi shares its polynomial Hi(�). We use the [BGW]method. This method `has the e�ect' of sharing polynomial Hi(�) in the `straightforward'way. Namely, on one hand, each party Pj will haveHi(j); on the other hand, the informationgathered by the corrupted parties will be `equivalent' to each corrupted party knowing onlyits share of Hi(�). Consequently, the information gathered by the corrupted parties in theentire multiplication step will be independent of the computed value (i.e., A(0) �B(0)).We describe this sharing method. Each party Pi shares t uniformly chosen values, usingt invocations of V-Share. Let zi;j;k be party Pk's output of the jth invocation of V-Sharewhere Pi is the dealer. Upon completing all the t invocations of V-Share, each party Pklocally computes Hi(k) =Ptj=1 kj � zi;j;k.Let us reason this slightly unintuitive sharing method (for a formal proof, see the proofof Theorem 4.30 on page 90). Let Si;j(�) be the polynomial of degree t de�ned by the jth V-Share initiated by Pi (namely, Si;j(k) = zi;j;k for every uncorrupted party Pk). PolynomialHi(�) is now de�ned as Hi(x) = Ptj=1 xj � Si;j(x): each party Pk locally computes Hi(k) =Ptj=1 kj � Si;j(k) = Ptj=1 kj � zi;j;k. Let si;j;l be the coe�cient of xl in Si;j(x); it might behelpful to visualizeHi(x) =si;1;0x + si;1;1x2 + : : : + si;1;t�1xt + si;1;txt+1 +si;2;0x2 + : : : + s1;2;t�2xt + si;2;t�1xt+1 + si;2;txt+2 +: : : si;t;0xt + si;t;1xt+1 + : : : + si;t;tx2tThe free coe�cient of Hi(�) is 0; thus, Hi(0) = 0. Each polynomial Si;j(�) is of degreet; thus, Hi(x) is of degree 2t. Furthermore, it can be seen that the coe�cients of themonomials x; : : : ; xt in Hi(x) (and, thus, the same coe�cients of the sum polynomial H(�)and in polynomial D(�)) are uniformly distributed over F . Consequently, the coe�cients ofall the non-zero powers of the truncation polynomial C(�)) are uniformly distributed overF . Clearly, the corrupted parties gather some extra information on top of the t shares ofHi(�). However, it is plausible that this information is independent of A(0) �B(0): party Pichooses t2 + t random coe�cients, and the corrupted parties receive only t2 values. (In theproof of Lemma 4.31 on page 91 we show that the information gathered by the corruptedparties during the whole multiplication protocol is independent of A(0) �B(0).)

4.5 Byzantine adversaries 86Degree-reductionNext, the parties use their shares of polynomial D(�) in order to jointly and securely computetheir shares of the `truncation' ofD(�) to degree t; namely, the t+1 coe�cients of the outputpolynomial C(�) are the coe�cients of the t + 1 lower degrees of D(�).In the Fail-Stop protocol, the parties computed their shares of C(�) by invoking a pro-tocol for `multiplying the inputs vector by a �xed matrix'; we shortly review this protocol.Let ~d = D(1); : : : ; D(n), let ~c = C(1); : : : ; C(n), and let M be the n � n matrix such that~d �M = ~c. First, each party Pi shared its `input' D(i); next, the parties agreed on a setof parties that have successfully shared their inputs. Once this set, G, was agreed upon,each party locally computed the appropriate matrixMG, and the products of his shares byMG. Finally the parties invoked n Reconstruct protocols, so that in the ith invocation ofReconstruct, party Pi computed C(i) =Pj2G dj �MGj;i.In the Byzantine setting, the parties will use V-Share and V-Recon instead of the simplesharing scheme of the Fail-Stop case. Still, a major problem remains: the agreed set G maycontain (corrupted) parties Pi that have shared some value di�erent than the expectedvalue D(i); in this case, the parties will not have the expected outputs. In the rest of thissection, we describe how the parties make sure that the value associated with each partyPi in the agreed set (namely, the free coe�cient of the t-degree polynomial de�ned by theuncorrupted parties' shares of Pi's input) is indeed D(i).For a party Pi, let si be the value associated with Pi (recall that si is �xed once the �rstuncorrupted party has completed Pi's V-Share); for a set A of parties, let SA = f(i; si)jPi 2Ag. We �rst note that it is enough to agree on a set G of at least 3t + 1 parties, suchthat SG is (2t; 0)-interpolated 20 (namely, all the values shared by the parties in G `sit on apolynomial of degree 2t'). This is so, since the set G, being of size 3t+ 1, contains at least2t+ 1 uncorrupted parties; thus, the interpolated polynomial of SG is bound to be D(�).We describe a protocol for agreement on a set A of parties, such that SA is (2t; 0)-interpolated. This protocol, denoted AIS (for Agreement on an Interpolated Set), is a`distributed implementation' of procedure OEC (described in Section 4.4.4 on page 80).Protocol AIS consists of up to t iterations. In iteration r (0 � r � t), the parties �rst useprotocol ACS (Figure 4-3 on page 58) to agree on a set, Gr, of at least 3t+1+r parties thathave successfully shares their inputs. Next, the parties perform a computation, describedbelow, to check whether SGr is (2t; r)-interpolated. If SGr is (2t; r)-interpolated, then thereexists a set G0r � Gr, of size at least 3t+1, such that SG0r is (2t; 0)-interpolated; the partieswill compute and output G0r . Otherwise (i.e., SGr is not (2t; r)-interpolated), the partieswill proceed to the next iteration. We stress that the parties will not know the interpolatedpolynomial of each SGr . They will only know whether such a polynomial exists.It remains to describe how to check, given a set G of size 3t+1+r, whether SG is (2t; r)-interpolated, and how to compute the corresponding set G0 (i.e., G0 � G, jG0j � 3t+1, andSG0 is (2t; 0)-interpolated). As in procedure OEC, we use error correcting for GeneralizedReed-Solomon codes. However, in procedure OEC, the `word', SG, was a (dynamic) inputof one party. Thus, each party could locally run an error correcting procedure. In oursetting, each party has only one share of each element of SG; the parties will invoke a jointcomputation implementing a speci�c error correcting procedure, and use it to check whether20Interpolated sets and interpolated polynomials were de�ned in Section 4.4.4 on page 80.

4.5 Byzantine adversaries 87G is (2t; r)-interpolated and to compute G0.Let us �rst outline the particular error correcting procedure we will be implementing.The inputs to this procedure are (d; r;W). If jW j � d+2r+1 and W is (d; r)-interpolated,then the output is the interpolated polynomial of W . (Otherwise, an appropriate messageis output). The procedure consists of three steps:Computing the syndrome. For an input word W = (i1; s1) : : :(il; sl), let Vl�l be the(Vandermonde) matrix de�ned by Vj;k = (ik)j. Let ~a = s1 : : : sl. The syndrome of Wis the l� (d+ 1) right most elements of the l-vector product ~a � V �1.First, compute the syndrome of W .Remark. Let Q(�) be the polynomial so that for every (i; a) 2W we have Q(i) = a. Then, thevector ~a �V �1 is the vector of the coe�cients of Q(�); the syndrome consists of the coe�cientsof the monomials xd+1; : : : ; xl of Q(x). In particular, if Q(�) is of degree d (namely, W is acode-word), then the syndrome is the zero vector.Computing the error-vector. The error-vector is the l-vector ~e = e1 : : : el, where ej isthe `displacement of sj from the correct value'. Namely, assume that W is (d; r)-interpolated, and let P (�) be the (d; r)-interpolated polynomial of W ; then ej =P (ij) � sj , for every element (ij; sj) 2 W . The error-vector is unique, since theinterpolated polynomial P (�) is unique.Compute the error-vector, using the syndrome. A widely used implementation of thisstep is the Berlkamp-Massey algorithm (see [MS pp. 365-368]).Remark. We stress that the error-vector can be computed based on the syndrome only. If theinput word, W , is not (d; r)-interpolated, then the computed error-vector may be erroneous.Computing the output polynomial. Choose 2t+ 1 correct elements in W (namely, el-ements (ij; aj) such that ej = 0), and use them to interpolate P (�). (This step willnot be implemented.)An important observation is that the syndrome can be represented as a function of theerror vector only; thus, it holds no information on the (d; r)-interpolated polynomial, P (�),ofW . Namely, let ~P (resp. ~Q) be the coe�cients vector of the polynomial P (�) (resp. Q(�)),completed to length l. (Polynomial Q(�) is the polynomial satisfying Q(i) = a for every pair(i; a) 2 W .) Then, ~Q = ~a � V �1 = (~P � V + ~e) � V �1 = ~P + ~e � V �1:The last l � (d + 1) elements in ~P are zero. Therefore, for l � (d + 1) < i � l, we haveQi = [~e � V]i. Consequently, the last l � (d+ 1) elements in ~Q (namely, the syndrome) area linear combination of the elements of ~e only.Let us now describe how we implement and use this error correcting procedure in oursetting. Each element of the syndrome is a linear combination of the inputs; thus, theparties can jointly compute the syndrome. That is, given an agreed set, G, each elementof the syndrome of SG is computed as follows. Each party computes the appropriate linearcombination of its shares, and invokes a V-Recon protocol with the result of this linearcombination as input. Once all these V-Recon protocols are completed, each party has thefull syndrome of SG.

4.5 Byzantine adversaries 88Once the syndrome is computed, each party uses the Berlkamp-Massey algorithm inorder to locally compute the error vector. If, in iteration r, SGr is (2t; r)-interpolated, thenthe computed error vector is the `true' error vector of SGr ; however, if SGr is not (2t; r)-interpolated, then the computed error vector may be incorrect. Consequently, the partiesdraw the following conclusions. (Each party draws these conclusions locally; still, all theuncorrupted parties draw the same conclusions.) If the computed error vector, denoted ~e0,contains more than r non-zero elements, then surely SGr is not (2t; r)-interpolated, and theparties proceed to the next iteration. If ~e0 contains up to r non-zero elements, then theparties still have to verify that ~e0 is the correct error vector: let G0r be the set of partiesPi such that e0i = 0; the parties will recompute the syndrome, based on G0r alone. If therecomputed syndrome is all zeros, then SG0r is (2t; 0)-interpolated, and the parties outputG0r and terminate. If the recomputed syndrome is non-zero, the parties conclude that SGris not (2t; r)-interpolated, and proceed to the next iteration. 21Protocol AIS is described in Figure 4-15. Let zi;j be Pi's share of the value shared by Pj.The (dynamic) input of each party Pi is the following accumulative set, denoted Zi: oncePi has successfully completed Pj 's V-Share, the pair (j; zi;j) is added to Zi. The parties'common output is a set G of at least 3t + 1 parties, such that each uncorrupted party Pihas completed the V-Share of every party in G (namely, G � fPjj(j; zi;j) 2 Zig), and SG is(2t; 0)-interpolated.Claim 4.29 Assume that protocol AIS is run with dynamic inputs Z1; : : : ;Zn as describedabove. Then all the uncorrupted parties terminate protocol AIS with a common set G of atleast 3t + 1 parties, such that SG is (2t; 0)-interpolated.Proof: First, assume that the ACS protocol of Step 1 of some iteration is completed bythe uncorrupted parties. Then, all the uncorrupted parties compute the same syndrome inStep 2 of this iteration; thus, all the uncorrupted parties make the same decisions in Step3. Consequently, all the uncorrupted parties complete this iteration; furthermore, either allthe parties output a (2t; 0)-interpolated set of size at least 3t+ 1, or all the parties proceedto the next iteration.Next, we show, by induction on the number of iterations, that as long as the requiredset is not found, all the uncorrupted parties will complete each invocation of ACS. For thebase of induction, we note that the sequence Ui; : : : ;Un of the accumulative sets de�ned inStep 1 of the �rst iteration is (3t + 1; n)-uniform (see De�nition 3.6 on page 37). Thus,all the uncorrupted parties will complete the ACS invocation of the �rst iteration. For theinduction step, assume that the uncorrupted parties have completed the ACS protocol ofiteration r. Consequently, the sequence U1; : : : ;Un is (3t+r+1; t)-uniform. Assume furtherthat the set agreed upon in iteration r is not (2t; r)-interpolated; let Gr denote this set.Then, Gr contain at most 3t uncorrupted parties. Thus, there exists at least one uncorruptedparty in [n]�Gr. This uncorrupted party will eventually be in the accumulative sets of allthe uncorrupted parties; thus the collection U1 : : :Un is (3t+r+2; t)-uniform. Consequently,all the uncorrupted parties will complete the ACS invocation of iteration r + 1.21A more \time-e�cient" version of this protocol lets the parties execute all the t iterations `in parallel';consequently, the running time of the protocol is the running time of the slowest iteration. (In this `parallel'version, di�erent parties may complete the `iterations' in di�erent order. Thus, the parties need to executean additional simple protocol to agree on the iteration whose output is adopted.)

4.5 Byzantine adversaries 89
Protocol AIS(Zi)Code for party Pi, on dynamic input Zi.for 0 � r � t do1. Let Ui = fPjj(j; zi;j) 2 Zig.Set G =ACS[3t+ 1 + r; n](Ui).2. Once G is computed, compute the syndrome of SG:Let V be the Vandermonde matrix of the indices in G. Namely, let G = k1 : : :kjGj;then, Vi;j = (kj)i.Let ~zi = zi;k1 ; : : : ; zi;kjGj.For 2t+ 1 < j � jGj set �j =V-Recon([~zi � V �1]j; [n]).Let ~� = �1 : : : �t+r. (~� is the syndrome of SG).3. Run the Berlkamp-Massey algorithm on ~�, and let ~e0 be the output.(a) If ~e0 has more than r non-zero elements, continue to the next iteration (SG isnot (2t; r)-interpolated).(b) If ~e0 has up to r non-zero elements, verify that ~e0 is correct:Let G0 be the set of parties in G whose corresponding entry in ~e0 is zero. Repeatstep 2 with respect to G0.If the syndrome of SG0 is the zero vector, output G0 and halt.Otherwise, proceed to the next iteration (SG is not (2t; r)-interpolated).Figure 4-15: AIS - The agreement on an interpolated set protocol

4.5 Byzantine adversaries 90Finally, we note that Gt (namely, the set [n]) is (2t; t)-interpolated; thus, the requiredset will be found in iteration t, unless it was found beforehand. 2The multiplication protocolCombining the Randomization and the Degree-Reduction steps, we derive a protocol forcomputing a multiplication gate. The code is presented in Figure 4-16.Protocol BMULCode for party Pi, on inputs ai and bi.Randomization1. For 1 � k � t, execute V-Sharei;k(rk), where rk 2R F and Pi is the dealer.For 1 � j � n, for 1 � k � t, participate in V-Sharej;k.Let hi;j;k be Pi's output of V-Sharej;k.2. Let Ui = fPjj V-Sharej;k has completed, for all 1 � k � ng.Set G =ACS[n� t; n](Ui).Set hi =Pj2GPtk=1 ik � hi;j;k, and di = ai � bi + hi.Degree-Reduction3. Once di is computed, execute V-Sharei(di), where Pi is the dealer.For 1 � j � n, participate in V-Sharej .4. Let zi;j be Pi's share of Pj's shared secret,and let Z0i = f(j; zi;j)j V-Sharej has been completedg.Set G0 =AIS(Z0i).5. Let V Ĝ0 be the matrix used in the Fail-Stopmultiplication step, as described in section4.3.3 on page 61, and let ~zi = zi;j1 : : : zi;jjG0j , where j1 : : : jjG0j are the indices of theparties in G0.For 1 � j � n, Set cj =V-Recon([~z îG � (V Ĝ0]j; fjg).6. Once ci is computed, output ci.Figure 4-16: BMUL - The Byzantine multiplication gate protocol4.5.3 The Byzantine protocolThe overall structure of the Byzantine protocol is the same as that of the Fail-Stop protocol.Namely, in the Byzantine protocol, denoted Bcompute, the parties execute the code ofprotocol FStop, with the exception that protocols GShare, MUL, and Reconstruct arereplaced by protocols GV-Share, BMUL, and V-Recon, respectively.Theorem 4.30 Let f : Fn ! F for some �eld F with jF j > n, and let A be a circuitcomputing f . Then, protocol Bcompute[A] asynchronously (dn4e� 1)-securely computes f inthe bounded secure channels setting in the presence of adaptive adversaries and non-erasingparties.

4.5 Byzantine adversaries 91Proof: Here we consider only the case of non-adaptive adversaries. The case of adaptiveadversaries is proven in the same way as in Section 4.3.6.The proof of the Termination property, as well as the construction of the ideal-modeladversary is the same as in the proof of Theorem 4.13 on page 63 (security of protocolFS-Compute). We stress that our construction of the ideal-model adversary for Fail-Stopadversaries is valid even for corrupted parties that change their inputs, although in theFail-Stop case the inputs of the corrupted parties are not changed.The validity of this construction in the Byzantine setting is shown in the same wayas in the Fail-Stop case, with the exception that lemmas analogous to Lemmas 4.15 and4.14 (on pages 68 and 67, respectively) need to be proven. The proof of the Byzantineanalogue of Lemma 4.15 is similar to the proof of Lemma 4.15, with the exception thatnow, the correctness of the uncorrupted parties' outputs of the Byzantine implementationsof the di�erent protocols (namely, GV-Share, V-Recon, and BMUL) need to be proven.Correctness of the GV-Share and V-Recon protocols is implied by the correctness of theAVSS scheme; correctness of protocol BMUL is discussed in Section 4.5.2.In order to state the Byzantine analogue of Lemma 4.14, let us rede�ne some notations.The view of a set of parties is de�ned as in the proof of Theorem 4.13. Fix an adversary andan input vector ~x. The random variables � (resp. �0) take the distribution of the corruptedparties' view of protocol Bcompute, run on input ~x (resp. the corrupted parties' view ofa simulated computation). Lemma 4.31 below is the Byzantine analogue of Lemma 4.14.Our proof of Theorem 4.30 is thus completed. 2Lemma 4.31 Fix an adversay and an input vector. Then, the corresponding random vari-ables � and �0 are identically distributed.Proof: We use the notations of Lemma 4.14. Namely, �x a pre�x, Vi, of length i of a view(namely, Vi is a pre�x of an instance of either � or �0). The random variable ŝi+1 (resp.ŝ0i+1) describes the distribution of the (i+1)th delivered message in � (resp. �0), given thatVi is the corresponding pre�x of the view.As in the proof of Lemma 4.14, it is enough to show that the contents of ŝi+1 and ŝ0i+1 areidentically distributed, for the case that the sender of ŝi+1 is uncorrupted and the recipientis corrupted. Each message of protocol Bcompute falls into one of the following cases.Messages of some invocation of V-Share. We distinguish two cases: if the dealer ofthe relevant invocation of V-Share is uncorrupted, then equality of the distributionsof ŝi+1 and ŝ0i+1 is implied by the proof of the privacy property of the AVSS scheme(Theorem 4.25 on page 81). If the dealer is corrupted, then the contents of ŝi+1 andŝ0i+1 can be inferred from the common pre�x Vi (and are, thus, equal).Messages of some invocation of ACS. This case is trivial, since messages of protocolACS have empty contents.The last three cases are di�erent types of invocations of protocol V-Recon. We notethat, as in the Fail-Stop case, in order to show that the contents of all the messages ofsome invocation of V-Recon are identically distributed in the two computations, it su�cesto show that the output of this invocation of V-Recon is identically distributed in the twocomputations.

4.5 Byzantine adversaries 92Messages of the �nal invocation of V-Recon. (Namely, Step 4 of protocol Bcompute.See �gure 4-8 on page 64.) This case is shown using similar considerations to those ofthe Fail-Stop case.Messages of an invocation of V-Recons within protocol AIS. (Namely, Step 2 ofthe AIS.) See Figure 4-15 on page 89.) We have seen in Section 4.5.2 that the outputsof the V-Recons of the AIS protocol are the di�erent syndromes computed by theparties; furthermore, we have seen that the syndromes are uniquely determined bythe errors introduced by the corrupted parties. However, these errors can be inferredfrom the common pre�x Vi: the values associated with each corrupted party, Pi, ineach set Gr can be inferred from the messages sent by Pi in the corresponding invo-cation of V-Share (these messages appear in the common pre�x Vi). Thus, the errorsintroduced by the corrupted parties, as well as the di�erent syndromes, are identicalin the two computations.Messages of an invocation of V-Recon within protocol BMUL. (Namely, Step 5 ofBMUL. See Figure 4-16 on page 90.) As in the Fail-Stop case, we show that the cor-rupted parties' outputs of the t invocations of V-Recon, along with the contents ofthe other messages of this invocation of BMUL, received by the corrupted parties, areuniformly and independently distributed, regardless of the values of the input lines ofthe corresponding multiplication gate.The polynomial H(x) interpolated by the parties in Step 2 (Randomization) of pro-tocol BMUL is H(x) = Pi2GPtj=1 xj � Si;j(x). (The set G is the output of the cor-responding invocation of ACS, and each polynomial Si;j(�) is the polynomial de�nedby the uncorrupted parties' outputs of Pi's jth invocation of V-Share. See Section4.5.2 on page 85 for more details.) Let us �rst regard this polynomial in a moreconvenient way: reversing the order of summation, we have H(x) = Ptj=1 xj � Ŝj(x),where Ŝj(�) = Pi2G Si;j(�). All the coe�cients of each polynomial Ŝj(�) are uni-formly distributed, since the set G contains uncorrupted parties. The contents of therandomization-phase messages received by the corrupted parties constitute t sharesof each polynomial Ŝj(�). Consequently, the data gathered by the corrupted partiesduring the entire BMUL protocol adds up to t shares of each one of the t polynomialsŜ1(�); : : : ; Ŝt(�), along with the outputs of the t invocations of V-Recon (namely, tshares of the truncation polynomial C(�)).Fix some arbitrary input polynomials A(�) and B(�) of the multiplication step. Lemma4.32 below shows that for each sequence of t2 + t �eld elements gathered by thecorrupted parties there exists a unique choice of the polynomials Ŝ1(�) : : :Ŝt(�) thatyield this sequence. However, the polynomials Ŝ1(�) : : :Ŝt(�) are uniformly distributed;thus, the sequence of �eld-elements gathered by the corrupted parties is uniformlydistributed, both in � and in �0. 22 222In Lemma 4.32 we assume, without loss of generality, that the corrupted parties are P1; : : : ; Pt.

4.6 Lower bounds 93Lemma 4.32 Let F be a �nite �eld with jF j > d, and let A(�) and B(�) be polynomials ofdegree d over F . Then, for every sequence a1;1; : : : ; ad;d; c1; : : : ; cd of elements in F thereexists a unique sequence Ŝ1(�); : : : ; Ŝt(�) of polynomials of degree d such that:1. Fore each 1 � i; j � d, we have Ŝi(j) = ai;j.2. Let C(�) be the truncation to degree d of the polynomialD(x) = A(x) �B(x) + dXj=1 xj � Ŝj(x)Then, for 1 � i � d we have C(i) = ci.Proof: See Section 4-B. 24.6 Lower boundsWe show that our protocols have optimal resilience, both in the Fail-Stop and in the Byzan-tine cases. Firsr we show, in Theorem 4.34, that there exist functions that cannot bedn3 e-securely computed in an asynchronous network of n parties if Fail-Stop adversaries areallowed. We prove this result in two steps. First we reduce the problem of secure com-putation in a synchronous network with n = 2t to the problem of secure computation inan asynchronous network with n = 3t. Next we use the results of [BGW] (and also Chorand Kushilevitz [CK]) that there exist functions that cannot be securely computed (or evenapproximated) when n � 2t. Simple examples of such functions are the OR and ANDfunctions of n boolean inputs. Even though a direct (and conceivably shorter) impossiblityproof for the asynchronous case is possible, we believe that our proof by reduction is cleareras well as more general.Next we show, in Theorem 4.35, that there exist functions that cannot be dn4e-securelycomputed with no probability of error in an asynchronous network if general (Byzantine)adversaries are allowed. This proof is a generalization of a technique used in [BGW]. BothTheorems 4.34 and 4.35 apply even to non-adaptive adversaries.We remark that Ben-Or Kelmer and T. Rabin [BKR] show, using techniques from[BGW, CCD, CR], how any function can be asynchronously (dn3 e � 1)-securely computed,in the presence of Byzantine adversaries, with exponentially small (but positive) probabilityof either not terminating or having wrong outputs.For the proof, we use the following notations. For an asynchronous protocol �, a setG of parties, an adversary A and input ~x, let ��;G;A(~x) be the random variable having thedistribution of the view of the parties in G when running protocol � with adversary A andinput ~x. (Unlike the notion of adversary view de�ned in previous sections, here the view ofa set of parties does not include the information seen by the scheduler.)A party's output of a computation is a function of its view only. Consequently, if��;G;A(~x) and ��;G;A0(~x) are identically distributed (for some protocol �, input ~x, some setG of parties, two adversaries A and A0 and some input ~x), then the output of the parties inG is identically distributed with adversaries A and A0.

4.6 Lower bounds 944.6.1 Fail-Stop adversariesWe use the following result of [CK]. This result refers to synchronous networks where theadversaries are eavesdropping (namely, the corrupted parties only try to gather information,but otherwise follow the protocol). In this model, we say that a protocol approximates aboolean function, if for every input, with probability greater than 12 the uncorrupted partiesoutput the function value. Informally, a protocol is t-private if every adversary gathers noinformation from executing the protocol, other than the output of the uncorrupted parties(namely the computed function value).Theorem 4.33 [BGW, CK]: For every n � 2, there exist boolean functions f such thatthere is no synchronous dn2e-private protocol for n parties that approximates f .Some intuition for the proof of Theorem 4.33 follows. Consider the case where n = 2,and f is the OR function of two boolean inputs. The �rst party, A, should make sure thatif the input of the other party, B, is 0 then the communication between the parties willbe independent of A's input (otherwise B will learn about A's input). Similarly, B shouldmake sure that if the input of A is 0 then the communication between the parties will beindependent of B's input. Now, consider the case where both A and B have input 0. Sincethe communication must be independent of both inputs the parties will never be able todecide on an output.This argument can be generalized in a simple way to deal with three parties in anasynchronous network with one possible Fail-stop fault. Assume that A is good, and thethird party, C, does not respond toA's messages. Then, Amust complete the protocol basedonly on its communication with B, since C may be faulty. Furthermore, the communicationwith B should be independent of A's input (for the case where C is good but slow and Bis faulty with input 0). The argument now continues as in the synchropbous case.To be more precise, we prove the following lower bound based on Theorem 4.33.Theorem 4.34 For every n � 3, there exist boolean functions f , such that no asynchronousprotocol for n parties securely dn3 e-computes f when Fail-Stop adversaries are allowed.Proof: Let n � 3, and let m = n � dn3 e. (Hence, m = b2n3 c and dm2 e � dn3e.) Letf 0 : f0; 1gm ! f0; 1g be a boolean function as in Theorem 4.33 (namely, f 0 cannot beapproximated by any dm2 e-private protocol). Construct the function f : f0; 1gn! f0; 1g sothat for every n-vector ~x, we have f(~x) = f 0(~x[m]). We show that if there exists a protocol,�, that securely dn3 e-computes f in an asynchronous network of n parties with Fail-Stopadversaries, then there exists an dm2 e-private synchronous protocol, �0, for m parties, thatapproximates f 0. The theorem follows.Suppose we have an n-party asynchronous protocol, �, that securely dn3e-computes f .We construct an m-party synchronous protocol, �0, as follows. In protocol �0 each partywill simulate a party executing protocol � in an asynchronous network of n parties. Thesimulation proceeds as follows. Let P 01; : : : ; P 0m be the parties of the actual synchronousnetwork. Let P1; : : :Pn be the `virtual' parties addressed by protocol �. Actual party P 0iwill simulate virtual party Pi; parties Pm+1 : : :Pn are not simulated. Each (actual) partykeeps a queue of incoming messages. In each (synchronous) communication round, theparty invokes a cycle of protocol � for the �rst message in the queue. Whenever protocol

4.6 Lower bounds 95� instructs to send a message to `virtual' party Pi for i 2 [m], the party sends this messageto P 0i . If i > m, the instruction is ignored. Once virtual party Pi terminates, actual partyP 0i terminates with the output of protocol Pi.We note that if the asynchronous protocol, �, doesn't terminate, then the synchronousprotocol �0 doesn't terminate as well. Thus, there may exist executions in which protocol�0 doesn't terminate. We describe how we avoid this phenomenon at the end of the proof.We assert the validity of protocol �0 (namely, we show that it is dm2 e-private and ap-proximates f). An outline of the proof follows. For every synchronous adversary interactingwith protocol �0, we describe three synchronous adversaries, denoted A1, A2 and A3, forprotocol �:� Adversary A1 is the adversary that corresponds to the virtual execution of protocol�, when run by protocol �0. With this adversary, the messages sent by t parties redelayed (these are the parties Pm+1 : : :Pn), and additional t parties are corrupted(these are the parties that correspond to the actual corrupted parties).� Adversary A2 delivers the messages in the same order as adversary A1. However,the parties P1 : : :Pm are uncorrupted, and the parties Pm+1 : : :Pn are corrupted. Thesecurity of protocol � asserts that with this adversary the parties P1 : : :Pm output thecorrect function value.� Adversary A3 delivers the messages sent by the parties P1 : : :Pm in the same orderas adversary A1. The messages of the parties Pm+1 : : :Pn are postponed until thereare no undelivered messages from the parties P1 : : :Pm. The corrupted parties are theparties that correspond to the actual corrupted parties. The security of protocol �asserts that with this adversary the set of corrupted parties gathers no information,other than the output of the uncorrupted parties.We show below that, for any synchronous adversary that interacts with �0, the outputsof the parties P1; : : : ; Pm running protocol � are identically distributed in the presence ofall three (asynchronous) adversaries. It follows that, for every (synchronous) adversary theuncorrupted parties output the correct function value, and the corrupted parties gatherno information other than the computed function value. Consequently, the synchronousprotocol, �0, is t-private and approximates f .We now describe adversaries A1, A2, and A3 in more detail. We partition the set ofparties of protocol � (namely, P1; : : : ; Pn) as follows. Let B be the set of parties thatcorrespond to the corrupted parties the synchronous network (namely, Pi 2 B i� P 0i iscorrupted). Let G be the set of parties that correspond to uncorrupted parties in thesynchronous network (i.e.,, G = fP1 : : :Pmg � B). Let L be the set of \silent" parties(namely, L = fPm+1; : : : ; Png).Adversary A1. Corrupted parties: the corrupted parties are the parties in B; they followsthe protocol without fail-stopping.Scheduler: messages sent from the parties in P1; : : : ; Pm are delivered in a `roundrobin'; messages sent from the parties in L are not delivered.Adversary A2. Corrupted parties: the corrupted parties are the parties in L; they do notsend any messages.Scheduler: messages sent from the parties P1; : : : ; Pm are delivered in a `round robin'.

4.6 Lower bounds 96By the de�nition of asynchronous secure computation (De�nition 4.4 on page 52), thefollowing property holds with adversary A2: on every input, ~x, the parties in G [B mustcomplete protocol � with output fC(~x), for some core set, C, of size at least m = n� dn3e.The only inputs available are the inputs of the parties P1; : : : ; Pm. Thus, with adversaryA2, the parties in G[B output f[m](~x). (In the sequel, we use this observation only for theparties in G.)Furthermore, it can be seen, by induction on the number of communication events, thatthe following relation holds for every asynchronous protocol, �, and for every input vector,~x: Every pre�x of a view of the parties P1; : : : ; Pm when running protocol � on input ~x isidentically distributed with adversaries A1 and A2. Thus, ��;[m];A1 (~x) and ��;[m];A2 (~x) areidentically distributed. Consequently, the outputs of the parties P1; : : : ; Pm are identicallydistributed with adversaries A1 and A2.Adversary A3. Corrupted parties: as with adversary A1.Scheduler: messages sent from the parties P1; : : : ; Pm are delivered in a `round robin';messages sent from the parties in L are delayed until all the messages from parties inP1; : : : ; Pm are delivered.For every input, ~x, let �0�;[m];A3 (~x) denote the longest pre�x of ��;[m];A3(~x) that does notcontain messages sent by parties in L. It can be seen (again, by induction on the numberof events in a pre�x of a view) that the random variables �0�;[m];A3 (~x) and ��;[m];A1 (~x)are identically distributed; in particular, they have the same support set. We have seenabove that in every execution where the view of the parties in G is in the support setof ��;[m];A1 (~x), these parties terminate. Consequently, with adversary A3 the parties inG terminate, deciding on an output, once their view is in the support set of �0�;[m];A3 (~x)(i.e., before any message from a party in L is delivered). Furthermore, the parties in Ghave the same output as with adversary A1, namely f[m](~x). In addition, since protocol �is secure, adversary A3 gathers no information other than the output of the uncorruptedparties (namely, f[m](~x)). Consequently, the corrupted parties gather no information otherthan the computed function value with adversary A1.It remains to �x the termination condition of protocol �0. We use the following provi-sion. If, in the `simulated execution', protocol � doesn't terminate after some prede�nedlarge enough number of rounds, then the party terminates with some default output. Wecompute this limit on the number of rounds: With adversary A1 protocol � terminateswith probability 1. Consequently, there exist an integer, k, such that on every input, withprobability at least 34 all the uncorrupted parties complete protocol � after k communica-tion events. (The limit 34 is arbitrary. Any number in the interval (12 ; 1) would do.) We�x the limit on the number of rounds to k. Thus, protocol �0 always terminates, and withprobability at least 34 the uncorrupted parties output the output of protocol �, namelyf[m](~x) = f 0(~x[m]). (We note that this \truncated" synchronous protocol is dn2 e-private,since the limit, k, is independent of the inputs.) 24.6.2 Byzantine adversariesFor the proof of the lower bound for the Byzantine case we use the following additionalnotation. Fix some adversary and input vector. Let A be a set of parties. Let the conver-sation, CA, among the parties in A, be the random variable having the distribution of the

4.6 Lower bounds 97sequence of all messages sent among the parties in A. (The order of the messages in eachinstance of the conversation is induced by their order in the corresponding view.)Theorem 4.35 For every n � 4, there exist functions f such that no asynchronous protocolfor n parties securely dn4e-computes f , if Byzantine adversaries are allowed.Proof (sketch): First, we note that the straightforward reduction to the synchronous case(used in the previous proof) does not hold in the Byzantine case, for the following reason. Inthe Fail-Stop case, a uncorrupted party has no way of telling whether a party is uncorruptedor corrupted; therefore, each uncorrupted party must terminate whenever any set of n � tparties are ready to terminate. in the presence of Byzantine adversaries, there may existstrategies for the corrupted parties that cause the uncorrupted parties to recognize someparty, P , as corrupted. In this case, the uncorrupted parties can wait for n� t parties otherthan P . Consequently, in the simulation of the previous proof, if some corrupted party isrecognized as corrupted then the uncorrupted parties may never terminate.We prove the Theorem for the case n = 4. The proof can be easily generalized to all n.Let � be a four party protocol that securely 1-computes the following function:f(x1; x2; x3; x4) = (1 if x2 = x3 = 10 otherwiseLet P1, P2, P3 and P4 be the parties (and let xi be the input of Pi).Consider the following setting. Party P1 is corrupted (with a strategy described below),and the adversary delivers the messages of parties P1, P2 and P3 in a `round robin'; messagessent by P4 are delivered only when there are no undelivered messages of the other parties.We show below that, with small but non-zero probability, both P2 and P3 do not recognizeP1 as being corrupted. In this case, both P2 and P3 will terminate before any message of P4is delivered; this can be shown using similar considerations to those of the previous proof.We show that in this case, the output of P2 is di�erent than the output of P3.We �rst observe that the conversation CfP2;P3g is independent of both x2 and x3: consider,for contradiction, the �rst message in CfP2;P3g that depends on the input of its sender (say,P2). Then, P3 can learn x2, regardless of the value of x3. Consequently, it is the combinationof the conversations CfP2;P3g and CfP2;P1g that determines the output of P2. Similarly, it isthe combination of the conversations CfP3;P2g and CfP3;P1g that determines the output of P3.Now, assume the following strategy of P1: send some random string instead of eachmessage expected of P1. Let x2 = x3 = 1. With small but non-zero probability, thecombination of the conversations CfP1;P2g and CfP2;P3g is consistent with input 0 of P3 (andsome input of P1), and at the same time the combination of the conversations CfP1;P3g andCfP3;P2g is consistent with input 1 of P2 (and some input of P1). In this case, both P2 and P3terminate before any message of P4 is delivered. Furthermore, P2 outputs 0, and P3 outputs1. That is, P2 and P3 have di�erent outputs and the protocol is not 1-secure. 2Remark: Using a technique similar to the technique of the above proof, it can be shownthat there exist functions that cannot be securely computed in a synchronous network wherea third of the parties are corrupted. (This result is stated in [BGW].) Moreover, the resultfor the synchronous case is much stronger: consider a secure, synchronous protocol forcomputing the AND function of three variables (i.e., AND(x1; x2; x3) = 1 i� x1 = x2 =x3 = 1) in a network where the parties are fP1; P2; P3g, and one corrupted party, P1, does

4-A Expected running times 98not send any messages. Using the same argument as in the above proof, it can be shownthat the view of party P2 is independent of the input of P3, and the view of party P3 isindependent of the input of P2. Consequently, there must exist inputs for which the outputof the uncorrupted parties is incorrect with probability at least one half (instead of negligibleprobability in the above proof).We note that this `synchronous' strategy for the corrupted party is useless in our asyn-chronous model: if a corrupted party, P , does not send messages (or, alternatively, if thisparty is `caught sending nonsense messages'), then the uncorrupted parties may interactwith n� t parties other than P .4-A Expected running timesWe analyze the running times of protocols FScompute and Bcompute. First, let us infor-mally present the standard de�nition of the running time of an asynchronous protocol.Consider a virtual `external clock' measuring time in the network (of course, the playerscannot read this clock). Let the delay of a message be the time elapsed from its sendingto its receipt. Let the period of a �nite execution of a protocol be the longest delay of amessage in this execution. The duration of a �nite execution is the total time measured bythe global clock divided by the period of this execution. (In�nite executions have in�niteduration.)The expected running time of a protocol, is the maximum over all inputs and applicableadversaries, of the average over the random inputs of the players, of the duration of anexecution of the protocol.Let n be the number of parties, and let d be the depth of the computed circuit. Considerprotocol FScompute. The expected running time of protocol ACS is O(logn); thus, theexpected running time of protocol GShare is also O(logn). Protocol Reconstruct runs inconstant time. Consequently, each invocation of protocol MUL has expected running timeof O(logn), and Protocol FScompute has expected running time of O(d � logn).Consider protocol Bcompute. Protocols V-Share and V-Recon run in constant time.Protocol AIS, as presented in Figure 4-15 on page 89, consists of O(n) iterations, whereeach iteration has expected running time of O(logn). However, as remarked at the end ofSection 4.5.2, we can let all iterations run `in parallel'; in this version, protocol AIS hasexpected running time of O(logn). Consequently, protocol Bcompute runs in O(d � logn)expected time.4-B Proofs of technical lemmasIn the sequel, we let V (k) denote the k � k (Vendermonde) matrix, where (V (k))i;j = ij.Note that V (k) is non-singular. (When the dimension k is obvious, we write V instead ofV (k).)Lemma 4.3 Let F be a �nite �eld with jF j > d, and let s 2 F . Then for every sequencev1; : : : ; vd; u1; : : : ; ud of �eld-elements, there exists a unique polynomial p(�) of degree 2d withp(0) = s, such that:1. For 1 � i � d, we have p(i) = vi.

4-B Proofs of technical lemmas 992. For 1 � i � d, we have q(i) = ui, where q(�) is the truncation of p(�) to degree d (i.e.,the coe�cients of q(�) are the coe�cients of the d+ 1 lower degrees of p(�)).Proof: Let p0; : : : ; p2d be the coe�cients of polynomial p(�) claimed in the Lemma. Then,the following 2d+ 1 equations hold:p010 + : : : + pd1d + pd+11d+1 + : : : + p2d12d = v1: : :p0d0 + : : : + pddd + pd+1dd+1 + : : : + p2dd2d = vdp0 + : : : + 0 + 0 + : : : + 0 = sp010 + : : : + pd1d + 0 + : : : + 0 = u1: : :p0d0 + : : : + pddd + 0 + : : : + 0 = ud (4.1)We show that the equations (4.1) (in the variables p0; : : : ; p2d) are linearly independent.The coe�cients matrix M of the left hand side of (4.1) can be partitioned into:M(2d+1)�(2d+1) = " Ad�(d+1) Bd�dC(d+1)�(d+1) 0 #Matrix C equals V (d+1); thus the last d+ 1 rows of M are linearly independent.We show that matrix B is non-singular: let D be the d � d diagonal matrix, whereDi;i = id; then, B = D �V (d). Matrices V (d) and D are non-singular; thus, B is non-singularas well. Therefore, the �rst d rows of M are linearly independent.Assume that some linear combination c of the �rst t rows ofM equals a linear combina-tion of the last d+ 1 rows. Then, the same linear combination c, restricted to the columnsof B, yields a row of d zeros, in contradiction with the non-singularity of matrix B.We remark that the polynomial p(�) can be e�ciently computed. Furthermore, givena degree t � d, it is possible to e�ciently sample a random polynomial of degree t thatsatis�es conditions (1) and (2) of the lemma. 2Lemma 4.4 Letm � d+1, and let f1(�) : : :fm(�) and g1(�) : : :gm(�) be polynomials of degreed over a �eld F with jF j � m, such that for every 1 � i � d+ 1 and every 1 � j � m wehave fi(j) = gj(i) and gi(j) = fj(i). Then, there exists a unique polynomial h(�; �) of degreed in two variables so that for every 1 � i � m we have h(�; i) = fi(�) and h(i; �) = gi(�).Proof: Let E be the (d+ 1) � (d+ 1) matrix where Ei;j is the coe�cient of xj in fi(x).Then, the (i; j)th entry in E � V is fi(j).Let H 4= (V T)�1 � E, and let h(x; y) be the polynomial of degree d in two variables23where the coe�cient of xiyj is Hi;j. Then, for every 1 � i; j � d+ 1 we haveh(i; j) = V T �H � V = E � V = fi(j) = gj(i):Consequently, for every 1 � i � d+ 1, the polynomials fi(�) and h(i; �) are two polynomialsof degree d that are equal in d+ 1 places. Thus, fi(�) = h(i; �). Similarly, gi(�) = h(�; i).23Namely, h(x; y) =Pdi=0Pdj=0 ai;j � xiyj , where a0;0 ; : : : ; ad;d are �xed coe�cients.

4-B Proofs of technical lemmas 100Now, consider an index d+1 < i � m. For every 1 � j � d+1, we have fi(j) = gj(i); bythe construction of polynomial h(�; �), we also have h(�; j) = gj(i). Namely, fi(�) and h(i; �)are polynomials of degree d that are equal in d + 1 places. Consequently, fi(�) = h(i; �).Similarly, gi(�) = h(�; i). 2Lemma 4.5 Let h(�; �), h0(�; �) be two polynomials of degree d in two variables over a �eldF with jF j > d, and let v1; : : : ; vd+1 be distinct elements in F . Assume that for every1 � i; j � d+ 1 we have h(vi; vj) = h0(vi; vj). Then, h(�; �) = h0(�; �).Proof: Let W denote the (d+1)� (d+1) (Vendermonde) matrix de�ned by Wi;j = (vj)i.Let H be the (d+1)� (d+1) matrix where Hi;j is the coe�cient of xiyj in h(x; y). Let H 0be similarly de�ned with respect to h0(x; y). Using these notations, we haveW T �H �W = W T �H 0 �W:Note that W is non-singular, since v1; : : : ; vd+1 are distinct. Consequently, H = H 0. 2Lemma 4.6 Let F be a �eld with jF j > d, and let s 2 F . Then, for every sequencef1(�); : : : ; ft(�); g1(�); : : : ; gt(�) of polynomials of degree d, such that fi(j) = gj(i) for every1 � i; j � d, there exists a unique polynomial h(�; �) of degree d in two variables withh(0; 0) = s, so that for every 1 � i � d we have h(�; i) = fi(�) and h(i; �) = gi(�).Proof: Let E be the following (d+ 1)� (d+ 1) matrix. For 1 � i; j � d let Ei;j = fi(j) =gj(i); let Ej;0 = gj(0), and E0;i = fi(0). Finally, let E0;0 = s. Let H 4= (V T)�1 � E � V �1,and let h(x; y) be the polynomial of degree d in two variables, such that the coe�cient ofxiyj is Hi;j. Similar arguments to those of the proof of Lemma 4.26 show that h(x; y) isthe required, uniquely de�ned, polynomial. 2Lemma 4.8 Let F be a �nite �eld with jF j > d, and let A(�) and B(�) be polynomials ofdegree d over F . Then, for every sequence a1;1; : : : ; ad;d; c1; : : : ; cd of elements in F thereexists a unique sequence Ŝ1(�); : : : ; Ŝd(�) of polynomials of degree d such that:1. Fore each 1 � i; j � d, we have Ŝi(j) = ai;j.2. Let C(�) be the truncation to degree d of the polynomial D(x) = A(x) �B(x)+Ptj=1 xj �Ŝj(x). Then, for 1 � i � d we have C(i) = ci.Proof: Let a1;1; : : : ; ad;d; c1; : : : ; cd be a sequence of �eld elements, and let si;j be thecoe�cient of xj in the ith polynomial in a sequence Ŝ1(�); : : : ; Ŝd(�) of polynomials satisfyingrequirements 1 and 2 of the Lemma. Then, requirements 1 and 2 translate to d2+d equationsin the d2 + d variables s1;0 : : : sd;d. It remains to show that the (d2 + d) � (d2 + d) matrixM of the coe�cients of these equations is non-singular. Matrix M has the following form:M = 2666666664 W1 0 0 : : : 00 W2 0 : : : 0: : :: : :0 0 : : : 0 WdU1 U1 : : : Ud 3777777775

4-B Proofs of technical lemmas 101where each sub-matrix Wi (of dimensions d � (d + 1)) is constructed by deleting the lastrow from V (d+1), and every matrix Ui (of dimensions d� (d+1)) is constructed by deletingthe i� 1 leftmost columns from a V (d) matrix and appending i zero columns on the right.Clearly, the �rst d2 rows in M are linearly independent, and the last d rows in M arelinearly independent. It remains to show that no non-trivial linear combination of the �rstd2 rows equals a linear combination of the last d rows.Let the (d2 + d)-vector L1 be a linear combination of the �rst d2 rows, let the (d2+ d)-vector L2 be a linear combination of the last d rows, and assume that L1 = L2. We showthat L1 = L2 = 0. Partition L2 to d blocks, where each block contains d+ 1 elements (theith block is a combination of the elements in Ui).The d rightmost columns of Ud are zero, and the d rightmost columns of Wd are linearlyindependent. Thus, L1 = L2 involves no rows of Wd. Consequently, all the last d+1 entries(namely, the dth block) in L2 are zero.However, Ud�1 is a shift-right by one of Ud. Thus, the d rightmost entries in the (d�1)thblock of L2 are zero as well. Using a similar argument to that of the last paragraph, we getthat all the entries in the (d� 1)th block in L2 are zero.Applying this argument d� 2 more times, we get that L1 = L2 = 0. 2

C h a p t e r 5Asynchronous Byzantine agreement
We describe the �rst (dn3 e � 1)-resilient asynchronous Byzantine agreement protocol withpolynomial complexity. We use ideas and techniques that emerge from secure multipartycomputation. See Section 1.5 for an introductory presentation and discussion.In Section 5.1 we recall the asynchronous model and de�nitions of Byzantine Agreementand Asynchronous Veri�able Secret Sharing (AVSS). In Section 5.2 we state our maintheorems, and present an overview of our protocols. In Section 5.3 we describe tools usedin our construction. In Sections 5.4 through 5.6 we describe our (dn3 e � 1)-resilient AVSSscheme. In Sections 5.7 and 5.8 we describe our BA protocol given an AVSS scheme.5.1 De�nitionsWe assume the same model as in Chapter 4 (see Section 4.1 on page 49). We also use thesame conventions for writing asynchronous protocols (see Section 4.1.3), and the same mea-sure of running times of asynchronous protocols (see Section 4-A). We re-de�ne Byzantineagreeement and AVSS. The de�nitions here are identical to the de�nitions in Chapter 4(De�nitions 4.5 and 4.18, respectively), with the exception that here we allow the partiesto not terminate (and in AVSS also to have wrong output) with small probability.De�nition 5.1 Let � be an asynchronous protocol for which each party has binary input.We say that � is a (1��)-terminating, t-resilient Byzantine Agreement protocol if the followingrequirements hold, for every t-adversary and every input.� Termination. With probability 1 � � all the uncorrupted parties complete the protocol(i.e., terminate locally).� Correctness. All the uncorrupted parties who have terminated have identical outputs.Furthermore, if all the uncorrupted parties have the same input, �, then all the uncorruptedparties output �.De�nition 5.2 Let S be a �nite set. Let (S;R) be a pair of protocols in which a dealer,D, shares a secret s 2 S. All parties invoke protocol S, and later invoke protocol R with the102

5.2 Overview of the protocols 103local output of protocol S as local input. We say that (S;R) is a (1� �)-correct, t-resilientAVSS scheme for n parties if the following hold, for every t-adversary.� Termination. With probability 1� � the following requirements hold.1. If the dealer is uncorrupted, then each uncorrupted party will eventually completeprotocol S.2. If some uncorrupted party has completed protocol S, then each uncorrupted party willeventually complete protocol S.3. If all the uncorrupted parties have completed protocol S, then all the uncorruptedparties will complete protocol R.� Correctness. Once the �rst uncorrupted party has completed protocol S, then a value, r,is �xed, such that the following requirements hold with probability 1� �:1. Each uncorrupted party outputs r. (Namely, r is the reconstructed secret.)2. If the dealer is uncorrupted, then r is the shared secret, i.e. r = s.� Secrecy. If the dealer is uncorrupted and no uncorrupted party has begun executing proto-col R, then the information gathered by the adversary during the computation is independentof the shared secret.Remark: We stress that an uncorrupted party is not required to complete protocol Sin case that the dealer is corrupted. We do not distinguish between the case where anuncorrupted party did not complete protocol S, and the case where an uncorrupted partyhas completed S unsuccessfully.5.2 Overview of the protocolsFirst, let us state our main results.Theorem 5.3 (AVSS). Let n � 3t + 1. For every � > 0 there exists a (1 � �)-correct,t-resilient AVSS scheme for n parties. Conditioned on the event that the honest partiesterminate, they do so in constant time. Furthermore, the computational resources requiredof each party are polynomial in n and log 1� .Theorem 5.4 (BA). Let n � 3t + 1. For every � > 0 there exists a (1 � �)-terminating,t-resilient, asynchronous Byzantine Agreement protocol for n parties. Conditioned on theevent that the honest parties terminate, they do so in constant expected time. Furthermore,the computational resources required of each party are polynomial in n and log 1� .Our Byzantine Agreement protocol is complex and involves many layers. To facilitatethe reading we �rst present an overview of our protocol. Let F be a �eld of size greaterthan n. All the computations in the sequel are done in F . The BA protocol employs theidea of using `common coins' to reach agreement, as follows.BA using Common Coin. This part of our protocol follows the constructions of Rabin,Bracha and Feldman [MRa2, Br, Fe]. The protocol proceeds in rounds. In each round, eachparty has a `modi�ed input' value. In the �rst round, the modi�ed input of each party ishis local input. In each round the parties invoke two protocols, called Vote and CommonCoin. Protocol Common Coin has the following property. Each party has a random input,and binary output. For every value � 2 f0; 1g, with probability at least 14 all the honest

5.3 Tools 104parties output �. In protocol Vote each party tries to establish whether there exists a`distinct majority' for some value amongst the parties' modi�ed inputs of this round (wede�ne distinct majority in the sequel). If a party recognizes a `distinct majority' for somevalue he takes this value to be his modi�ed input for the next round. Otherwise, he sets hismodi�ed input for the next round to be the output of protocol Common Coin. We showthat no two honest parties ever recognize a distinct majority for two di�erent values. Thisis used to show that in each round, with probability at least 14 all parties have the samemodi�ed input.If all the honest parties have the same modi�ed input in some round, then all thehonest parties will recognize this and terminate outputting this value. It follows that theBA protocol terminates within a constant expected number of rounds. Given that all thehonest parties complete all Common Coin protocols they invoked, then each round of theByzantine Agreement protocol terminates in constant time.Common Coin using AVSS. Our construction follows Feldman, and Feldman and Micali[Fe, FM]. The protocol proceeds roughly as follows. First, each party shares n randomsecrets using our AVSS scheme. Once a party is assured that enough secrets have beenproperly shared, he starts reconstructing the relevant secrets. Once all these secrets arereconstructed, each party locally computes his output based on the reconstructed secrets.AVSS from scratch. Our AVSS scheme is constructed in three `layers'. Each layer con-sists of a di�erent secret sharing scheme (with an allowed-error parameter, �). The schemeof the lowest layer is called Asynchronous Recoverable Sharing A-RS). The next schemeis called Asynchronous Weak Secret Sharing (AWSS). The last (`top') layer is an AVSSscheme (as in De�nition 5.2). Each scheme is used as a building block for the next. Allthree sharing schemes satisfy the termination and secrecy requirements of De�nition 5.2.In all three schemes, if the dealer is honest then the honest parties always reconstruct thesecret shared by the dealer. The correctness property for the case that the dealer is faultyis upgraded from A-RS to AWSS and �nally to AVSS:A-RS- Once the �rst honest party completes the reconstruction phase, a subset S � F ,of size 2t + 1, is �xed. With probability 1 � �, each honest party will reconstruct a valuer 2 S [fnullg. (We stress that it is not required that all honest parties end up with thesame reconstructed value.)AWSS- Once the �rst honest party completes the sharing phase, a value s is �xed. Withprobability 1� �, each honest party will reconstruct either s or null.AVSS- Once the �rst honest party completes the sharing phase, a value s is �xed. Withprobability 1� �, each honest party will reconstruct s.5.3 Tools5.3.1 Information Checking Protocol- ICPThe Information Checking Protocol (ICP) is a tool for authenticating messages in thepresence of (computationally unbounded) faulty parties. The ICP was introduced by T.

5.3 Tools 105ICPGeneration phase (Gen):1. The dealer D, having a secret s 2 F , chooses random values y1; :::; y2k andb1; :::; b2k uniformly distributed in F. He computes ci 4= bis + yi for 1 � i � 2k.2. D sends s and ~ys 4= y1; :::; y2k to I.3. D sends the check vectors (b1; c1); :::; (b2k; c2k) to R.Veri�cation (Ver):1. I chooses k distinct random indices d1; :::; dk; 1 � di � 2k, and asks R to reveal(bd1 ; cd1); :::; (bdk; cdk).2. R reveals these values. The remaining indices will be the unrevealed indices.3. For each one of the revealed indices di, I tests whether s � bdi +ydi = cdi : If all kindices satisfy this requirement then I sets Ver= 1. Otherwise, he sets Ver= 0.Authentication (Auth):1. I sends s and the rest of the y's to R.2. If k=2 out of the unrevealed indices di satisfy s � bdi + ydi = cdi then R setsAuth= s, otherwise Auth=null.Figure 5-1: The Information Checking Protocol of [TRa, RB]Rabin and Ben-Or [TRa, RB] We �rst state the properties of this protocol. Next we sketchthe [TRa, RB] construction.The protocol is executed by three parties: a dealer D, an intermediary I , and a receiverR. The dealer hands a secret value s over to I . At a later stage, I is required to hand thisvalue over to R, and to convince R that s is indeed the value which I received from D.More precisely, the protocol is carried out in three phases:Generation(s) is initiated by D. In this phase D hands the secret s to I and someauxiliary data to both I and R.Verification is carried out by I and R. In this phase I decides whether to continue orabort the protocol. I bases his decision on the prediction whether, in the Authenticationphase, R will output s, the secret held by I . We denote continuation (resp., abortion) byVer= 1 (resp., 0).Authentication is carried out by I and R. In this phase R receives a value s0 from I ,along with some auxiliary data, and either accepts or rejects it. We denote acceptance of asecret s0, (resp., rejection) by Auth= s0 (resp., null).The ICP has the following properties, given an `allowed-error parameter' �:Correctness:1. If D, holding a secret s, I and R are all honest, then Ver= 1 and Auth= s.2. If I and R are honest, and I has decided, in the Veri�cation phase, to continue the proto-col, with local input s0, then with probability (1� �), R will output s0 in the Authenticationphase.3. If D and R are honest, and R accepted a secret s0 in the Authentication phase, then

5.4 Asynchronous Recoverable Sharing | A-RS 106s0 = s, with probability (1� �).Secrecy:4. If D and I are honest, then as long as I has not joined in the Authentication phase, Rhas no information about the secret s.For self containment we sketch the [TRa, RB] construction in Figure 5-1.15.3.2 BroadcastWe use the same de�nition of Broeadcast as in Chapter 4 (see Section 4.2.2). We also usethe elegant implementation of Bracha [Br], described there.5.4 Asynchronous Recoverable Sharing | A-RSUnlike synchronous systems, in an asynchronous system it is not possible to decide whether aparty fromwhich messages do not arrive is faulty or just slow. As argued in the Introduction,this di�culty causes known techniques for AVSS to fail when n � 4t. We overcome thisdi�culty using the Information Checking Protocol (ICP) described in the previous section.We �rst show how the ICP is used to construct A-RS.An A-RS scheme satis�es the termination and secrecy requirements of AVSS (De�nition5.2). Also, if the dealer is honest then the honest parties always reconstruct the secretshared by the dealer. The di�erence from AVSS lies in the case where the dealer is faulty.For A-RS we only require that:Correctness of A-RS for the case that the dealer is faulty: once the �rst honest partycompletes the reconstruction phase, a subset S � F , of size n � t, is de�ned. Withprobability 1� �, each honest party will reconstruct a value r 2 S [fnullg. (We stressthat it is not required that all honest parties end up with the same reconstructed value.)A-RS has a \synchronizing e�ect" on the network, in the sense that it guarantees abounded wait for receiving values, even from faulty parties. That is, if we have completedthe sharing of a value by some party, then we are guaranteed to eventually reconstruct some(not necessarily valid) value. We use this property in the construction of AWSS in the nextsection.We describe our construction. Basically, we use Shamir's classic secret sharing scheme[Sh] while using ICP to verify the shares. This way, we can make sure that the followingtwo properties hold simultaneously (with overwhelming probability): (a) the shares of atleast t + 1 honest parties will always be available at reconstruction, and (b) if the dealeris honest then all the shares available at reconstruction are the originally dealt shares. Amore detailed description of our construction follows.Remark: Here, as well as in all subsequent secret sharing schemes, we use the conventionthat the dealer, in addition to executing his speci�c code, also participates as one of theparties (and will eventually have a share of the secret).1In fact, the version presented here di�ers from the one in [TRa, RB] in the decision rule for R in theAuthentication stage (in the original construction R accepted the secret if there existed an index di thatsatis�ed the requirement. This modi�cation allows us to tolerate �elds of size only slightly larger than thenumber of parties.

5.4 Asynchronous Recoverable Sharing | A-RS 107Sharing protocol. The dealer, having a secret s, chooses values a1; :::; at 2R F t, andde�nes the polynomial f(x) = atxt + ::: + a1x + s.2 (We call this process choosing arandom polynomial f(x) for s.) Next, for each i, the dealer sends �i 4= f(i) to Pi. Wesay that �i is Pi's share of s. In addition, for each share �i and for each party Pj , thedealer executes the Generation phase of ICP (described in Section 5.3.1), with party Piacting as the intermediary, and party Pj acting as the receiver. The ICP protocol will havethe appropriate allowed error parameter �0 (we set �0 = �n2). We denote this execution ofthe Generation phase by GenD;i;j [�0](�i). (In the sequel, we omit the parameter �0 fromthe notation.) Next, every two parties Pi and Pj execute the Veri�cation phase of ICP,denoted Veri;j[�0]. Success of Veri;j[�0] assures Pi that, with probability 1 � �0, Pj willlater authenticate his share �i. Once Pi successfully (i.e. with output 1) terminates 2t + 1invocations of Ver�[�0], he broadcasts (OK, Pi) . A party completes the sharing protocolupon completing 2t + 1 broadcasts of the form (OK, Pk) . Our protocol, denoted A-RSShare, is presented in Figure 5-2.De�nition 5.5 Let F be a �eld, and let r � t + 1. A set f(i1; �i1); : : : ; (ir; �ir)g where�ij 2 F is said to de�ne a secret s if there exists a (unique) polynomial f(x) of degree atmost t, such that f(0) = s, and f(ij) = �ij , for 1 � j � r. (We shall interchangeably saythat the shares �i1 ; : : : ; �ir de�ne the polynomial f(x).)Using interpolation, one can e�ciently check whether a given set of shares de�ne asecret.Reconstruction protocol. First, each party Pi initiates an broadcast of his share, �i. Hethen executes the Authentication phase of ICP with every other party, Pj. (We denote thisexecution by Authi;j.) For each party Pj , whose share is accepted (namely, Authj;i[�0] =�0j), party Pi broadcasts (Pi authenticates Pj) .Party Pi considers a share, �j, legal, if Pj has been authenticated by at least t+1 parties.Once Pi has t+1 legal shares, he computes the secret which they de�ne, and broadcasts it.If there exists a value which is broadcasted by at least n � 2t parties, then Pi output thisvalue. Otherwise, Pi outputs null. (This extra broadcast is required to limit the size of theset of possible values reconstructed by the di�erent parties.)The reconstruction protocol, denoted A-RS-Rec, is presented in Figure 5-3.Theorem 5.6 Let n � 3t+1. Then for every � > 0, the pair (A-RS-Share[�],A-RS-Rec[�])is a (1� �)-correct, t-resilient A-RS scheme for n parties.Proof: Fix a t-adversary. We show that the Termination and Secrecy requirements ofDe�nition 5.2 (AVSS) are met, as well as the Correctness property for the case that thedealer is honest. The Correctness for the case that the dealer is honest was stated above.Termination (1): When the dealer is honest, the Veri�cation phase of ICP betweenevery two honest parties will terminate with Ver=1 (see the de�nition of ICP on page 104).Therefore, each honest party will have 2t+ 1 successful veri�cations for his share �i. Thus,each honest party Pi will initiate an broadcast of (OK, Pi) . Consequently, each honestparty will complete participation in 2t+1 broadcasts of the form (OK, Pj) , and terminateprotocol A-RS-Share.2We let e 2R D denote an element e chosen uniformly at random from domain D.

5.4 Asynchronous Recoverable Sharing | A-RS 108Protocol A-RS-Share[�]Code for the dealer, with secret s: a1. Choose a random polynomial, f(x), for s.2. Set �i 4= f(i) for 1 � i � n.Let �0 4= �n2 . Execute GenD;i;j[�0](�i) for 1 � i; j � n.Code for party Pi:3. For all j 2 [n]: Wait until GenD;i;j is completed; then, initiate Veri;j.4. If Veri;j = 1 for 2t+ 1 parties Pj, then initiate broadcast (OK, Pi) .5. Upon completing participation in 2t+ 1 di�erent broadcasts of the form (OK, Pk) ,terminate. Figure 5-2: The A-RS sharing protocolaIn this and all subsequent sharing protocols, the dealer also executes the code of a regular party.Protocol A-RS-Rec[�]Code for party Pi:1. Broadcast the share �i.2. For each party Pj for whom the broadcast of his share has been completed (with �0j),initiate Authj;i.If Authj;i = �0j, then initiate the broadcast (Pi authenticates Pj) .3. Consider a share, �0j, legal if at least t+1 broadcasts of the form (Pk authenticatesPj) have been completed. Create a set called ISi (standing for Interpolation Set.Add every legal share to ISi.4. Once jISij = t + 1, compute, using interpolation, the secret s de�ned by the sharesin ISi. Broadcast (Pi suggests secret s) .5. Wait until completing n� t (P� suggests secret s0) broadcasts.If there is a value, s0, which appears in at least n� 2t such broadcasts, then outputs0. Otherwise, output null.Figure 5-3: The A-RS reconstruction protocolTermination (2): If one honest party has completed A-RS-Share, then he has com-pleted participation in 2t+ 1 (OK, Pj) broadcasts. By the properties of broadcast (De�-nition 4.6), every honest party will complete these 2t+1 broadcasts, and will thus completeA-RS-Share.Termination (3): Let E be the event that no errors occur in all the invocations ofICP. (That is, all the requirements listed in Section 5.3 hold with no probability of error.)We know that event E occurs with probability at least 1� n2�0 = 1� �.

5.5 Asynchronous Weak Secret Sharing | AWSS 109If some honest party, Pi, has completed the A-RS-Share protocol, then 2t + 1 partieshave broadcasted (OK, : : :) in Step 3 of A-RS-Share. Out of these broadcasts, at leastt+1 have originated with honest parties. Let Gi be this set of at least t+1 honest parties,relative to party Pi.For each party Pj 2 Gi there exist t+ 1 honest parties who have broadcasted (OK, Pj). Now, assume event E occurs. By the properties of ICP, for each Pj 2 Gi there will bet + 1 parties Pk who broadcast (Pk authenticates Pj) . Thus, the share of each partyPj 2 Gi will be considered legal by each honest party. Therefore every honest party willhave t + 1 legal shares in Step 3 of A-RS-Rec and will suggest some secret. Consequently,each honest party will have n � t suggested secrets, and will complete protocol A-RS-Rec.Correctness (1): If the dealer is honest and event E occurs, then each share �j inthe set ISi of each honest Pi, has originated with D (namely, �j = f(j)). Therefore, theshares in ISi de�ne the secret, s, shared by the dealer, and Pi will broadcast (Pi suggestssecret s) . Consequently, each honest party will complete n � t such broadcasts, out ofwhich at least n� 2t suggest the secret s. Hence, each honest party will output s.Correctness (2): Let Pi be the �rst honest party to complete n � t broadcasts ofthe form (Pk suggests secret : : :) . Let S denote the set of secrets suggested in thesen � t broadcasts. Now, consider another honest party, Pj . At least n � 2t out of the n � tbroadcasts completed by Pj in Step 5 of A-RS-Rec are of values in S. Pj outputs a non-null value r only if this value appears n � 2t times in the broadcasts which he completes.However, in this case it must be that r 2 S.Secrecy: If the dealer is honest and no honest party has initiated protocol A-RS-Rec,then any set of t0 � t parties have only t0 shares of the secret, along with the data receivedduring the ICP Generation and Veri�cation Protocols with respect to the other parties'shares of the secret. The secrecy properties of ICP and Shamir's secret sharing schemeimply that the shared secret is independent of this data. 25.5 Asynchronous Weak Secret Sharing | AWSSWe construct an asynchronous secret sharing scheme called Asynchronous Weak SecretSharing (AWSS). An AWSS scheme satis�es the termination and secrecy requirements ofAVSS (De�nition 5.2 on page 102). The correctness requirement is as follows. If the dealeris honest then the honest parties always reconstruct the secret shared by the dealer, as inAVSS. The di�erence from AVSS lies in the case where the dealer is faulty. For AWSS weonly require that:Correctness of AWSS for the case that the dealer is faulty: Once an honest partycompletes the sharing protocol, a value r 2 F [fnullg is �xed. With probability 1� �,each honest party outputs either r or nullupon completing the reconstruction protocol.Remarks:� We stress that if r 6= null then some of the honest parties may output r and somemay output null. The adversary can decide, during the execution of the reconstructionprotocol, which parties will output null.

5.5 Asynchronous Weak Secret Sharing | AWSS 110� Our construction of A-RS, described in the previous section, does not satisfy therequirements from an AWSS scheme. There, in case that the dealer is faulty, theadversary has the power to decide, at the reconstruction stage, which value each honestparty reconstructs (out of the prede�ned set of size 2t+ 1).Our construction. Our construction follows the synchronous WSS version of [TRa, RB].The idea is to make sure that, at the end of the sharing protocol, each party will have aninterpolation set of parties whose shares will be available in the reconstruction stage. (Theavailability of these shares is guaranteed using A-RS, as described below.) The interpolationsets of every two honest parties Pi and Pj will have an intersection of at least t+ 1 parties.This way, if the shares of the parties in the interpolation sets of Pi and Pj de�ne somesecret, then they de�ne the same secret.In the reconstruction stage the shares of all the parties are jointly reconstructed. Next,each party computes and outputs the secret de�ned by the shares of the parties in hisinterpolation set. If these shares do not de�ne a secret then the party outputs null.Sharing protocol. The dealer, sharing a secret s 2 F , chooses a random polynomialf(x) of degree t for s. For each i, the dealer sets �i 4= f(i). In addition, for each share�i and for each party Pj , the dealer executes the generation phase of ICP with party Piacting as the Intermediary, and party Pj acting as the Receiver. (This part is the same asin A-RS-Share.)Next, each party shares each value received from the dealer (including the values re-ceived in the ICP-Generation Protocol), using A-RS-Share (Figure 5-2). Party Pi createsa dynamic set, Ci. (See Section 4.1.3 on page 53 for a de�nition of dynamic sets). OncePi completes all the A-RS-Shares of Pj 's values, Pj is added to Ci. Next party Pi initiatesthe ICP-Veri�cation Protocol for �i with each party Pj 2 Ci, and with the appropriateallowed-error parameter, �0. (We denote this execution by Veri;j[�0](�i)).Let Ai be Pi's set of parties Pj such thatVeri;j[�0](�i) = 1. Once jAij = 2t+1, party Pibroadcasts Ai. (This acceptance set, Ai, is the set of parties who will later accept �i withhigh probability.)Let Ei be Pi's dynamic set of parties Pj 2 Ci whose broadcast of Aj has been completed,and Aj � Ci. Once jEij � 2t+1, party Pi broadcasts ISi 4= E (2t+1)i . (This eligibility set, Ei, isthe set of parties whose share will be later considered either legal or null. The interpolationset, ISi, is the set of parties whose shares will later de�ne the secret associated with Pi.)Let Fi be Pi's set of parties Pj whose ISj broadcast has been completed, and ISj � Ei.Once jFij = n� t, party Pi completes the sharing protocol. (This �nal set, Fi, is the set ofparties, with whom Pi will later associate a secret.)Reconstruction protocol. (Remark: it will be seen that when party P executes thereconstruction protocol, he essentially doubles up as each other party, i.e. he locally executesthe protocols of the other parties). Initially, each party Pi reconstructs the values shared,using A-RS-Share, by each party Pj 2 Ei, as follows. Recall that each party in Ei shared, inthe sharing protocol, values he received as an intermediary of ICP, and values he receivedas a receiver of ICP. Party Pi �rst invokes A-RS-Rec for all the values that the parties inEi received as intermediaries in ICP. Call these invocations of A-RS-Rec preliminary. Foreach party Pj 2 Ei, once all the preliminary A-RS-Rec have been completed, Pi invokes theA-RS-Rec of (the rest of) the values shared by each Pl 2 Aj. We note that the order inwhich the A-RS-Rec are invoked is crucial for the correctness of the scheme.

5.5 Asynchronous Weak Secret Sharing | AWSS 111For each party Pj 2 Ei and for each party Pl 2 Aj, once all the necessary values arereconstructed, Pi computes Pl's expected result of Authj;l[�0] (by `doubling up' as Pl).Next, Pi associates a value with party Pj as follows. If Pi �nds out that t+ 1 parties in Ajhave outputted Authj;l = �j then Pi associates �j with Pj. (We then say that �j is legal).Otherwise, Pi associates the value \null" with Pj .Now, for each party Pk 2 Fi, once the values associated with all the parties in ISk arecomputed, if all the legal shares in ISk de�ne a secret, s, then Pi considers s to be thesecret suggested by Pk. Otherwise, the secret suggested by Pk is null.Once the values shared by all the parties in Ei are reconstructed, Pi computes the secretssuggested by all the parties in Fi. (Again, this is done by `doubling up' as each party inFi.) If all the parties in Fi suggest the same secret, s, then Pi outputs s. Otherwise, Pioutputs null. (Equivalently, Pi can output the secret de�ned by the reconstructed shares ofthe parties in [Pj2FiISj. If these shares do not de�ne a secret then Pi outputs null.)The AWSS-Share and AWSS-Rec are described in Figures 5-4 and 5-5 respectively.Protocol AWSS-Share[�]Code for the dealer, on parameter � and secret s:1. Choose a random polynomial f(x) for s. Set �0 and �00 to the appropriate values,depending on �.2. Set �i 4= f(i). For each two parties Pi and Pj execute GenD;i;j[�00](�i).Code for party Pi, on parameter �:3. Invoke A-RS-Share[�0] (as a dealer) for each value received from D in Step 2. Partic-ipate in all other invocations of A-RS-Share[�0].Create a dynamic Communication Set, Ci. Add party Pj to Ci if all the A-RS Sharesinitiated by Pj have been completed.4. For each party Pj invoke Veri;j[�00](�i).Create an Acceptance Set, Ai. Add party Pj 2 Ci to Ai if Veri;j[�00](�i) = 1.5. Once jAij = 2t+ 1 broadcast (Acceptance Set,Pi,Ai).Create a dynamic Eligibility Set, Ei, which will contain the parties Pj for whom thebroadcast of the form (Acceptance Set,Pj,Aj) has been completed, and Pj 2 Ciand Aj � Ci.6. De�ne the Interpolation Set ISi 4= E (n�t)i . Broadcast (Interpolation set,Pi,IS i).Create a Final Set, Fi, which will contain the parties Pj for whom the broadcast ofthe form (Interpolation Set,Pj,ISj) has been completed, and ISj � Ei.7. Once jFij = n� t terminate.Figure 5-4: The AWSS Sharing ProtocolTheorem 5.7 Let n � 3t+1. Then for every � > 0, the pair (AWSS-Share[�],AWSS-Rec[�])is a (1� �)-correct, t-resilient AWSS scheme for n parties.

5.5 Asynchronous Weak Secret Sharing | AWSS 112Protocol AWSS-Rec[�]Code for party Pi, on parameter �:1. For each party Pj 2 Ei and for each party Pl 2 Aj :(a) Execute A-RS-Rec[�0] (Figure 5-3) of �j, and of Pj's values needed forAuthj;l[�00]. (These values were shared by Pj in Step 3 of AWSS-Share.)(b) Upon ending the previous step, execute the A-RS-Rec of Pl's values needed forAuthj;l[�00] (These values were shared by Pl in Step 3 of AWSS-Share.)(c) Using the reconstructed values from the two previous steps simulateAuthj;l[�00]acting both as Pj and Pl. If at least t+1 Authj;�[�00] = (�j) then associate theshare �j with party Pj , else associate \null" with Pj.2. Let B = f� j � 6= null; � is associated with partyPl; and Pl 2 ISj ; Pj 2 Fig; If allthe shares of B de�ne a secret s, then output s, else output null.Figure 5-5: The AWSS - Reconstruction ProtocolAs in the proof of Theorem 5.6, let E be the event that no errors occur in all the invoca-tions of ICP. (That is, all the requirements listed in Section 5.3.1 hold with no probabilityof error.) In proving Theorem 5.7 we assume that event E occurs. For convenience andclarity, we partition the proof of Theorem 5.7 to several short lemmas. (The Terminationand Secrecy properties are taken from De�nition 5.2.)Lemma 5.8 If Pi; Pj are honest, then eventually Ci = Cj.Proof: Let us look at some Pl 2 Ci. If party Pi has placed Pl in Ci (Step 3) then Pihas completed Pl's A-RS-Share of Step 3. Due to the Termination property of the A-RSprotocol we know that eventually Pj will also conclude that A-RS-Share has ended and thenPj will add Pl to Cj. 2Lemma 5.9 If Pi; Pj are honest, then eventually Ei = Ej.Proof: Let us look at some Pl 2 Ei. If party Pi placed Pl in Ei then Pi has completedthe broadcast (Acceptance set,Pl,Al) and Pl 2 Ci and Al � Ci. Due to the broadcastproperty Pj will also complete the above broadcast, and eventually we will have (due toLemma 5.8) Pl 2 Ci = Cj, and Al � Ci = Cj . Then, Pj will add Pl to Ej. 2Lemma 5.10 (Termination (1):) If the dealer is honest then each honest party willcomplete protocol AWSS-Share.Proof: All honest parties will eventually be in the sets Ci and Ai of every honest partyPi. Thus Ai will eventually be of size 2t + 1, and every honest party Pi will broadcast(Acceptance Set,Pi,...) in Step 5 of AWSS-Share. Thus all honest parties will even-tually be in the set Ei of every honest party. Consequently, every honest party Pi willbroadcast (Interpolation Set,Pi,ISi) in Step 6. Thus every honest party will eventu-ally have jFij � 2t+ 1 and will complete protocol AWSS-Share. 2

5.5 Asynchronous Weak Secret Sharing | AWSS 113Lemma 5.11 (Termination (2)): If some honest party, Pi, completes protocol AWSS-Share, then each honest party Pj will eventually complete protocol AWSS-Share.Proof: Assume that party Pi has completed AWSS-Share. Thus, jFij = n� t, which meansthat Pi has completed n � t broadcasts of the form (Interpolation set,Pl, ISl), andISl � Ei. Due to the properties of broadcast Pj will eventually complete these invocationsof broadcast. Due to Lemma 5.9, we have that eventually Ej � Ei, hence, the requirementthat ISl � Ej will be satis�ed and Pj will complete AWSS-Share. 2Lemma 5.12 (Termination (3)): If one honest party has completed protocol AWSS-Share, then each honest party will complete protocol AWSS-Rec.Proof: Consider an honest party Pi. For each Pj 2 Fi we have Pj 2 Ci, thus Pi hascompleted all the A-RS-Share where Pj is the dealer. Thus Pi will complete, in Steps 1(a)and 1(b) of AWSS-Rec, the A-RS-Rec of all the values shared by Pj. Consequently, Piwill associate a value, in Step 2 of AWSS-Rec, with each party Pj 2 Fi, and will completeAWSS-Rec. 2The Correctness property is proven in Lemma 5.13 through Lemma 5.16.Lemma 5.13 Let �j be the share that party Pj received from the dealer in Step 2 of AWSS-Share. With overwhelming probability, the value which an honest party Pi associates with aparty Pj 2 Ei in Step 1(c) of AWSS-Rec is as follows:honest dealer faulty dealerPj honest �j �jPj faulty �j or null |Proof: Party Pi will associate a value �0j with party Pj if the following two requirementshold:1. �0j is the value which was reconstructed by the A-RS-Rec of Pj 's share.2. There are at least t+ 1 parties in Aj for whom Authj;� = �0j .Consider �rst the case where Pj is honest. In this case Pj shared the value �j in Step3 of AWSS-Share. From the correctness of A-RS we have that Pi will reconstruct, in Step1(a) of AWSS-Rec, the correct values of �j and of Pj's data needed for executing Authj;lfor each party Pl 2 Aj. Furthermore, at least t+ 1 out of the parties in Aj are honest. Thedata of these t + 1 parties will also be correctly reconstructed, in Step 1(b) of AWSS-Rec.Thus it follows from the properties of ICP that Pi will successfully verify, in Step 1(c), thatAuthj;l = �l for at least t + 1 parties Pl 2 Aj, and will associate �j with Pj .Consider the case where Pj is faulty and the dealer is honest, and assume that the value�0j reconstructed in the A-RS-Rec of Pj 's share is di�erent than �j. Party Pi will, in Step1(c) of AWSS-Rec, asociate a non-null value with Pj only if Pi has Authj;l = �0j for at leastt+1 parties Pl; one of these t+1 parties must be honest. We show that if Pl is honest thenPi computes Authj;l = �0j only with negligible probability.Let ii;j;l (resp., ri;j;l) denote the value that Pi reconstructs, in Step 1(a) (resp., 1(b))of AWSS-Rec, for Pl's (resp., Pj 's) data relevant to Authj;l. (This data was respectively

5.5 Asynchronous Weak Secret Sharing | AWSS 114shared by Pj and Pl, in Step 3 of AWSS-Share. Recall that here Pj acts as the Intermediaryin ICP, and Pl acts as the Receiver.) Since Pl is honest, A-RS ensures that ri;j;l is indeedPl's data in Authj;l. Therefore, if it were true that ii;j;l is determined by the adversaryindependently of ri;j;l, then Property 3 of ICP (see Section 5.3) would imply that Pi setsAuthj;l = �0j with negligible probability. However, since Pj is faulty, A-RS ensures only aweaker requirement on ii;j;l. We show that this property su�ces.A-RS allows ii;j;l to be set by the adversary during the reconstruction stage. However,once the �rst honest party completes A-RS-Rec, a small set S of 2t + 1 possible values forii;j;l is �xed. By the time that S is �xed no honest party has yet started the reconstructionof ri;j;l (i.e., of the data shared by Pl in Step 3 of AWSS-Share). Thus, ri;j;l is unknownto the adversary when S is �xed. It follows that the probability that for a given Pi andPj there exist an honest Pl and a value �0j 6= �j such that Pi computes Authj;l = �0j isexponentially small. 2We de�ne the following value, associated with each party Pi who has completed AWSS-Share. Let Vi = [Pj2Fif(k; �k) j �k is the share of an honest party Pk; Pk 2 ISjg:Let ri = (vi if Vi de�nes a secret vinull otherwiseWe stress that Pi does not know Vi. Still, Vi is a useful tool in our analysis.We set the value r from the Correctness requirement to be the value ri associated withthe �rst honest party Pi who completes AWSS-Share with ri 6=null. Note that jVij � t+ 1,and that Vi (and consequently ri) are de�ned once Pi has completed AWSS-Share.Lemma 5.14 If the values ri and rj of two honest parties Pi and Pj do not equal null, thenri = rj.Proof: Consider a party Pl 2 Fi \ Fj . (Fi \ Fj 6= ; since both Fi and Fj are of size n� t.)In ISl there are at least t+1 honest parties, the shares of which de�ne a single secret. SinceVi and Vj de�ne a secret, it must be the same secret de�ned by the shares in ISl. Hence,ri = rj. 2Lemma 5.15 Every honest party Pi outputs, upon completing AWSS-Rec, either ri or null.Proof: It follows from Lemma 5.13 that the value that Pi associates with each honest partyin Fi is �i, even if the dealer is faulty. Note that Fi contains at least t + 1 honest parties.Thus if the values associated with the parties in Fi de�ne a secret then this secret is ri.Consequently Pi outputs either ri or null. 2Lemma 5.16 If the dealer is honest, sharing a secret s, then every honest party Pi outputss.Proof: It follows from the de�nition of ri that if the dealer is honest then ri = s. Further-more, Lemma 5.13 implies that if the dealer is honest then the values associated with theparties in Fi always de�ne a secret. Since the dealer is honest, Pi does not output null. Itnow follows from Lemma 5.15 that Pi outputs s. 2

5.5 Asynchronous Weak Secret Sharing | AWSS 115Lemma 5.17 (Secrecy): If the dealer is honest then the information gathered by theadversary during AWSS-Share is independent of the shared secret.Proof: The proof is the same as the proof of Secrecy for the A-RS protocol (Theorem5.6). We add that the distribution of the information gathered by the adversary in theinvocations of A-RS-Share during AWSS-Share is independent of the shared secret. 25.5.1 Two&Sum-AWSSIn our AVSS scheme we do not use AWSS as such. Instead, we use a slight variation ofAWSS, called Two&Sum-AWSS. A dealer shares a secret s, together with a set fa1; : : : ; akgof auxiliary secrets, in a way that allows the parties to separately reconstruct the secret, anyone of the auxiliary secrets, and the sum s + ai of the secret with any one of the auxiliarysecrets. (That is, several invocations of the reconstruction protocol will use the sharesobtained in a single invocation of the sharing protocol.) For each i, reconstructing anysingle value out of fs; ai; s+ aig reveals no information on the other two. The correctnessproperty of Two&Sum-AWSS is stated more formally as follows.Correctness of Two&Sum-AWSS:1. If the dealer is honest, sharing s; fa1; : : : ; akg, then, with probability 1� �, whenreconstructing the secret (resp., the ith auxiliary secret, or the sum of the secretand the ith auxiliary secret), each honest party outputs s (resp., ai, or s+ ai).2. Once an honest party completes the sharing protocol, the valuesrs; fra1; : : : ; rakg; frs+a1; : : : ; rs+akg 2 F [fnullgare �xed.(a) With probability 1��, when reconstructing the secret (resp., the ith auxiliarysecret, or the sum of the secret and the ith auxiliary secret), each honestparty outputs either rs (resp., rai, or rs+ai) or null.(b) If rs is null then, for each i, at least one of frai; rs+aig is null. If rs, rai andrs+ai are not null then rs+ai = rs + rai.3. Even if for each i one value out of fai; s + aig are reconstructed, the adversarygathers no information about the secret s.Our construction of Two&Sum-AWSS, presented in Figure 5-6, is a straightforwardgeneralization of our AWSS scheme. (The scheme is based on the synchronous Two&Sum-WSS presented in [TRa].)The reconstruction protocol is identical to AWSS-Rec, with the addition of parametersspecifying which value should be reconstructed. We denote by AWSS-Recs (resp., AWSS-Recai , AWSS-Recs+ai) the invocation for reconstructing the secret (resp., the ith auxiliarysecret, the sum of the secret and the ith auxiliary secret).The correctness of Two&Sum AWSS is proven in a way similar to the proof of correctnessof the AWSS scheme. (Similar proofs appear in [TRa].)

5.5 Asynchronous Weak Secret Sharing | AWSS 116
Protocol Two&Sum AWSS-Share[�; k]Code for the dealer: (on input s; a1; : : : ; ak and �)1. Choose random polynomials f(�) for s and gl(�) for each al. Let �i 4= f(i) and
l;i 4= gl(i) for 0 � l � k and 1 � i � n. Let �l;i 4= �i +
l;i.Send �i; f
1;i : : : ;
k;ig to each party Pi.2. For every two parties Pi; Pj, invoke: GenD;i;j(�i), GenD;i;j(
1;i); : : :GenD;i;j(
k;i),and GenD;i;j(�1;i); : : :GenD;i;j(�k;i).Code for party Pi3. Invoke A-RS-Share (as a dealer) for each value received from the dealer inSteps 1 and 2. Participate in all other invocations of A-RS-Share.Create a dynamic Communication Set, Ci, which is the set of all parties for whom allthe invocations of A-RS Share have been completed.4. For each party Pj invoke VerD;i;j(�i), VerD;i;j(
1;i); : : :VerD;i;j(
k;i), andVerD;i;j(�1;i); : : :VerD;i;j(�k;i).Create an Acceptance Set, Ai. Add party Pj 2 Ci to Ai if all the above invocations ofVerD;i;j(�) were completed successfully.5. Execute the rest of the code of AWSS-Share (i.e., Steps 5 through 7 of Figure 5-4).Figure 5-6: The Two&Sum AWSS Sharing Protocol

5.6 Asynchronous Veri�able Secret Sharing | AVSS 1175.6 Asynchronous Veri�able Secret Sharing | AVSSThe idea of the AVSS scheme is as follows. First, the dealer sends each party a shareof the secret, as in the previous schemes. The parties will then `commit' to their sharesby re-sharing them using AWSS. Next, the parties will make sure, using a cut-and-choosemethod (as in [CCD, Fe]), that enough AWSS-Sharings have been successful and that the`committed upon' shares indeed de�ne a secret. We describe the scheme in some moredetail. Full details appear in Figure 5-7.Sharing protocol. The dealer, sharing a secret s, chooses a random polynomial f(x) fors. For each i, the dealer sends f(i) to Pi. In addition, the dealer chooses k � n � t randompolynomials g1;1;1(x); : : : ; gk;n;t(x) of degree t, where k is an appropriate security parameter(polynomial in log 1=�). For each such polynomial g(x), and for each i, the dealer sendsg(i) to party Pi. Upon receiving all the expected values from the dealer, each Pi re-sharesthe values f(i); fg1;1;1(i); : : : ; gk;n;t(i)g using Two&Sum-AWSS-Share with the appropriateallowed-error parameter (see Section 5.5.1).Next, the dealer proves to the parties that their shares indeed de�ne a secret. Each partyPi is looking for a set ISi of at least n� t parties, such that the Two&Sum-AWSS-Share's ofthese parties have been completed, and the corresponding values de�ne a polynomial. Forthis purpose Pi participates in up to t iterations, as follows.3 Initially, all parties are valid.At the beginning of each iteration Pi waits until he has completed the Two&Sum-AWSS-Share of n � t valid parties. Let ISi;r denote this set of parties, in iteration r. Next Piveri�es, using cut-and-choose as described in the code, that the share of each party in ISi;ris valid (in a sense de�ned in Figure 5-7). Pi removes, from the set of valid parties, all theparties in ISi;r whose validation failed. If the validity of the shares of at least n�t parties inISi;r is con�rmed, then we say that the iteration was successful. In this case, Pi broadcasts(Pi confirms Pj) for each party Pj 2 ISi;r. (Now Pi is assured that the shares of theparties in ISi;r de�ne a polynomial.) When the veri�cation procedure is completed, and Pihas completed the Two&Sum-AWSS-Share of at least one other valid party, Pi proceeds tothe next iteration.Let Fi be Pi's set of parties who were con�rmed by at least t + 1 parties. Party Picompletes the sharing protocol once jFij � 2t+ 1.Reconstruction protocol. The reconstruction protocol is simple: The share of eachparty Pi is reconstructed using Two&Sum-AWSS-Reci;s.4 Once t + 1 shares of parties inFi are reconstructed with a non-null value, party Pi computes the secret de�ned by theseshares, and terminates.Protocols AVSS-Share and AVSS-Rec are presented in Figures 5-7 and 5-8, respectively.Theorem 5.18 Let n � 3t+1. Then for every � > 0, the pair (AVSS-Share[�],AVSS-Rec[�])is a (1� �)-correct, t-resilient AVSS scheme for n parties.3Partitioning the protocol into t iterations is done for clarity of exposition. All these iterations arecompleted in a constant number of asynchronous time steps.4We let Two&Sum-AWSS-Reci;� denote an invocation of Two&Sum-AWSS-Rec� that corresponds to theTwo&Sum-AWSS-Share of Pi.

5.6 Asynchronous Veri�able Secret Sharing | AVSS 118Protocol AVSS-Share[�]Code for the dealer, on parameter � and secret s:1. Choose a random polynomial f(x) for s. Send �i 4= f(i) to each party Pi.2. Set k 4= O(n; log 1�). For 1 � l � k, for 1 � j � n, and for 1 � r � t do:Pick a random polynomial gl;j;r(x) of degree t, and send gl;j;r(i) to each party Pi.3. Upon completing an broadcast(Random vector,b1;j;r; :::; bk;j;r,iteration r,party,Pj) (see Step 6a), broadcast(Polynomials of Pj, iteration r, g1;i;r(�)+ f(�) � b1;i;r; :::; gk;i;r(�)+ f(�) � bk;i;r).Code for party Pi, on parameter �:4. Set �0 = �=2n. Share �i; fg1;1;1(i); : : : ; ; gk;n;t(i)g usingTwo&Sum-AWSS-Share[�0; n � k � t] (see Figure 5-6). Participate in the Two&Sum-AWSS-Share of other parties.5. Create a dynamic set Ci. Add each party whose Two&Sum-AWSS-Share of the pre-vious step has been completed to Ci.Let Vi be the set of valid parties. Initially Vi = f1; : : : ; ng.6. A local variable r is set to 0. Initialize sets ISi;r = Fi = ;.As long as jFij < 2t+ 1, do:(a) Wait until jCi\Vij � n�t and Ci\Vi 6= ISi;r . Set r := r+1. Let ISi;r := Ci\Vi.Choose b1;i;r; : : : ; bk;i;r 2R f0; 1g, and broadcast (Randomvector,b1;i;r; :::; bk;i;r, iteration r,party,Pi).(b) Upon completing an broadcast (Polynomials of Pj,: : :) (see Step 3), for l =1::k, m = 1::n, if bl;j;r = 0 execute Two&Sum-AWSS-Recm;al;j;r. If bl;j;r = 1then execute Two&Sum-AWSS-Recm;s+al;j;r.(c) If any Two&Sum-AWSS-Rec of a share of party Pm terminates with null, or ifany reconstructed share of Pm does not agree with the corresponding polynomialbroadcasted by the dealer, then Pm is removed from Vi and from ISi;r .Once all the relevant invocations of Two&Sum-AWSS-Rec of shares of partiesin ISi;r are completed, if jISi;rj � n � t then for each Pm 2 IS i;r broadcast(Pi,confirms party,Pm). (In this case we say that the iteration was success-ful.)* Once there are t + 1 broadcasts of the form (...,confirms party,Pm) for somePm (see Step 6c) then add Pm to Fi.Figure 5-7: The AVSS Sharing Protocol

5.6 Asynchronous Veri�able Secret Sharing | AVSS 119Protocol AVSS-Rec[�]Code for party Pi, on parameter �:1. For each party Pj execute Two&Sum-AWSS-Recj;s. (Pj's share, �j, was shared byPj in the Two&Sum-AWSS-Share of Step 4 of AVSS-Share.)2. Take any t + 1 reconstructed non-null shares of parties in Fi, and output the secretde�ned by these shares.Figure 5-8: The AVSS Reconstruction ProtocolFor convenience and clarity we partition the proof of Theorem 5.18 to several lemmas.Throughout the proof we assume that the following event E occurs. All invocations ofTwo&Sum-AWSS have been properly completed. That is, if an honest party has completedTwo&Sum-AWSS-Share then all honest parties will complete all corresponding invocationsof AWSS-Rec, outputting either the required value or null. (See the Correctness requirementof Two&Sum-AWSS, on page 115.) EventE occurs with probability at least 1�n�0 = 1��=2.Lemma 5.19 (Termination (1)): If the dealer is honest then each honest party willcomplete protocol AVSS-Share.Proof: Each honest party Pi will complete the Two&Sum-AWSS-Share of the shares ofeach honest party Pj in Step 4. Thus Pj will eventually be in the set ISi;r of Pi for someiteration r. If the dealer is honest then Pj 's reconstructed shares will agree, in Step 6c,with the polynomials broadcasted by the dealer. Thus, Pj will not be removed from ISi;r orVi. Hence there will exist an iteration r where all n � t honest parties are in ISi;r, causingeach honest party Pi to broadcast (Pi,confirms,Pj). Consequently, each honest partywill be in the �nal set Fk of each honest Pk. Thus Pk will have jFkj � 2t + 1 and willcomplete AVSS-Share. We note that all honest parties terminate in a constant number of(asynchronous) rounds. 2Lemma 5.20 (Termination (2)): If some honest party Pi completes protocol AVSS-Share, then each honest party will eventually complete protocol AVSS-Share.Proof: Assume an honest party Pi completed protocol AVSS-Share. Then jFij � 2t + 1.It follows from the correctness properties of broadcast that, for any honest party Pj , anyparty in Fi will eventually be in Fj . Thus Pj will complete AVSS-Share. 2Lemma 5.21 (Termination (3)): If AVSS-Share has been completed by the honest par-ties, then each honest party will complete protocol AVSS-Rec.Proof: Each honest party Pi has at least t + 1 honest parties in Fi. It follows fromthe correctness of Two&Sum-AWSS that the share of each honest party Pj 2 Fi will besuccessfully reconstructed by Pi in Step 1 of AVSS-Rec. Thus, Pi will have at least t + 1non-null shares in Step 2 of AVSS-Rec, and will complete the protocol. 2

5.6 Asynchronous Veri�able Secret Sharing | AVSS 120Lemma 5.22 (Secrecy): If the dealer is honest then the information gathered by theadversary during AVSS-Share is independent of the shared secret.Proof: Assuming that Two&Sum-AWSS-Share is secure, the relevant information gatheredby the adversary in AVSS-Share consists of up to t shares of the polynomial f(�) shared bythe dealer in Step 1, and up to t shares of each of the random polynomials shared in Step 2.Furthermore, for each random polynomial g�(�), only one of g�(�) or f(�) + g�(�) is known.It can be veri�ed that this information is distributed independently of the shared secret. 2The Correctness property is proven via Lemmas 5.23 through 5.25.Lemma 5.23 Once an honest party Pi executes Step 6a of AVSS-Share in iteration r, avalue �0m 2 F [null is �xed for each Pm 2 ISi;r. Furthermore, if iteration r was successful(as de�ned in Step 6c of AVSS-Share) then the following properties hold with overwhelmingprobability:1. For each Pm 2 ISi;r, �0m 6= null.2. The set Ci;r 4= f(m;�0m)jPm 2 ISi;rg de�nes a secret s0.3. If the dealer is honest then s0 is the secret s shared by the dealer.4. When reconstructing Pm's share using Two&Sum-AWSS-Recm;s in Step 1 of AVSS-Rec, each honest party outputs �0m [null.Proof: De�ne the value �0m to be the value �xed for the secret shared by Pm in theTwo&Sum-AWSS-Share of Step 4. Once Pi executes Step 6a, in iteration r, he has com-pleted the Two&Sum-AWSS-Share of each Pm 2 ISi;r. It follows from the correctness ofTwo&Sum-AWSS that the value �0m is �xed. Part 4 of the lemma also follows.Part 1. It follows from the correctness of Two&Sum-AWSS that if �0m =null thenfor each l = 1::k at least one out of fTwo&Sum-AWSS-Recm;al;i;r , Two&Sum-AWSS-Recm;s+al;i;rg will have output null. Thus for each l = 1::k Pi will have null output withprobability at least 12 . The probability that Pi has, in Step 6c, non-null output of all the kinvocations of Two&Sum-AWSS-Rec is at most 2�k. Thus, executions where �0m =null anditeration r is successful occur only with negligible probability.Part 2. We use the same cut-and-choose argument as in part 1. Assume that Ci;r doesnot de�ne a secret. It follows that for each l = 1::k there exists a Pm such that either theoutput of Two&Sum-AWSS-Recm;al;i;r is not equal to hl;i;r(m) or the output of Two&Sum-AWSS-Recm;s+al;i;r is not equal to hl;i;r(m) (where hl;i;r is the corresponding polynomialbroadcasted by the dealer). Thus for each l = 1::k Pi will detect an error with probabilityat least 12 . The probability that Pi has not detected an error in all the k invocations ofTwo&Sum-AWSS-Rec in Step 6c is at most 2�k. Thus, iteration r is successful only withnegligible probability.Part 3. The correctness of Two&Sum-AWSS assures that the value reconstructedin Two&Sum-AWSS-Recm;s+al;i;r equals the sum of the values reconstructed in Two&Sum-AWSS-Recm;al;i;r and in Two&Sum-AWSS-Recm;s . Since the dealer is honest, he broadcasts,in Step 3 of AVSS-Share, the same polynomials that he shared in Step 1. Part 3 followsusing the same cut-and-choose argument as in parts 1 and 2. 2Lemma 5.24 Let C 4= f(m;�0m)jPm 2 Fi and Pi is honestg, where �0m is the value �xed forPm (See Lemma 5.23). Then the following properties hold with overwhelming probability:

5.7 Common Coin 1211. The set C de�nes a secret s0.2. If the dealer is honest then s0 is the shared secret, s.Proof: 1. Consider two parties Pm1 and Pm2 such that (m1; �0m1); (m20; �0m2) 2 C. Thenboth Pm1 and Pm2 were con�rmed by honest parties. Assume Pm1 was con�rmed by honestparty Pj1 in iteration r1, and Pm2 was con�rmed by honest party Pj2 in iteration r2. LetCj1;r1 4= f(m;�0m)jPm 2 ISj1;r1g, and let Cj2;r2 4= f(m;�0m)jPm 2 ISj2;r2g. Then the inter-section I 4= Cj1;r1 \ Cj2;r2 is of size at least t + 1. Lemma 5.23 implies that the values in Iare non-null with overwhelming probability, even if the corresponding parties are faulty. Itfollows that Cj1;r1 and Cj2;r2 de�ne the same secret. Part 1 follows.Part 2 follows from part 3 of Lemma 5.23. 2Lemma 5.25 Let r denote the secret de�ned by the set C (see Lemma 5.24). An honestparty has output di�erent than r of AVSS-Rec only with negligible probability.Proof: Consider an honest party Pi. The set f(m;�0m)jPm 2 Fig is a subset of C. Thus itde�nes the same secret r. Pi will have at least t+1 honest parties Pj in Fi; the correspondingreconstructed values �0j will be non-null. Thus Pi will be able to interpolate a value, andthis value will be r. 25.7 Common CoinWe de�ne an asynchronous common coin primitive, and describe an construction. Weemploy the AVSS scheme described in Section 5.6. We �rst present a de�nition of a commoncoin primitive.De�nition 5.26 Let � be a protocol, where each party has local random input and binaryoutput. We say that � is a (1 � �)-terminating, t-resilient Common Coin protocol if thefollowing requirements hold for every t-adversary:� Termination. With probability 1� �, all the honest parties terminate.� Correctness. For every value � 2 f0; 1g, with probability at least 14 all the honest partiesoutput �.Our construction (with `termination parameter' �). Roughly speaking, the protocol con-sists of two stages. First, each party shares n random secrets, using the AVSS-Share protocolof our AVSS scheme, with allowed error parameter �0 4= �n2 . Say that the ith secret shared byeach party is assigned to party Pi. Once a party, Pi, completes t+ 1 AVSS-Share protocolsof secrets assigned to him, he broadcasts the identity of the dealers of these secrets. Wesay that these t + 1 secrets are attached to Pi. (Later, the value associated with Pi will becomputed based on the secrets attached to him.)Upon completing the AVSS-Share of all the secrets attached to some Pj, party Pi iscertain that a �xed (and yet unknown) value is attached to Pj . (The way in which this valuewill be computed is described in the protocol.) Once Pi is assured that the values attachedto enough parties has been �xed, he starts reconstructing the relevant secrets. (This processof ensuring that enough values have been �xed is at the heart of the protocol.) Once all

5.7 Common Coin 122the relevant secrets are reconstructed, each party locally computes his output based on thereconstructed secrets, in a special way described in the sequel. The protocol is presented inFigure 5-9 below. Protocol Common-Coin[�]Code for party Pi, given `termination' parameter, �:1. Let �0 4= �n2 . For 1 � j � n, choose a random secret xi;j 2R F and execute AVSS-Share for this value. Denote the execution by AVSS-Sharei;j(xi;j).Participate in all the other AVSS-Share protocols.2. Create a dynamic communication set Ci. Add party Pj to Ci if AVSS-Sharej;l hasbeen completed for all 1 � l � n.Wait until jCij � t+ 1. Then, set Ci = C(t+1)i and broadcast (Attach Ai to Pi) .(We say that the secrets fxj;ijPj 2 Cig are the secrets attached to party Pi.)3. Accept a party Pj if the broadcast (Attach Aj to Pj) has been completed, andCj � Ci. Let Gi be the dynamic set of accepted parties.Wait until jGij � n� t. Then, let Gi = G(n�t)i and broadcast (Pi accepts Hi) .4. Say that party Pj is supportive, if the (Pj accepts Hj) broadcast has been received,and each party in Gj is accepted (namely, if Gj � Gi).Wait until n � t parties are supportive. Then, raise
ag `reconstruct enabled' .Let Hi denote the current contents of Gi.(Note that a party Pj who was not considered supportive since some Pk 2 Gj wasnot in Gi can become supportive later if Pk is added to Gi.)5. Wait until the
ag `reconstruct enabled' is raised. Then, reconstruct the secretsattached to all the accepted parties. That is, for each Pk 2 Cj such that Pj 2 Giinvoke AVSS-Reck;j , and let rk;j be the corresponding output.(Note that some parties may become accepted after the
ag `reconstruct enabled'has been raised. The corresponding AVSS-Rec protocols are invoked immediately.)6. Let u 4= d0:87ne. For every party Pj 2 Gi, let Vj, the value associated with Pj, be thesum modulo u of all the secrets attached to Pj. That is, Vj = (Pk2Cj rk;j) mod u.7. Wait until the values associated with all the parties in Gi are computed. If thereexists a party Pj 2 Hi where Vj = 0, output 0.Otherwise, output 1.Figure 5-9: The Common Coin protocolTheorem 5.27 Let n � 3t + 1. Then, for every 0 < � � 0:2 protocol Common-Coin is a(1� �)-terminating, t-resilient common coin protocol for n parties.The Termination property is asserted in Lemma 5.28. The Correctness property isasserted in Lemmas 5.29 through 5.31. Throughout the proof we assume that the followingevent E occurs. All invocations of AVSS have been properly completed. That is, if anhonest party has completed AVSS-Share then a value s0 is �xed. All honest parties willcomplete the corresponding invocation of AVSS-Rec, outputting s0. If the dealer is honest

5.7 Common Coin 123then s0 is the shared secret. (See De�nition 5.2.) Event E occurs with probability at least1� n2�0 = 1� �.Lemma 5.28 All the honest parties complete protocol Common-Coin[�] in constant time.Proof: Assume event E occurs, and let Pi be an honest party. Then, Pi will complete allthe AVSS-Share protocols initiated by honest parties in Step 1. Thus, Ci will eventually beof size t+ 1, and Step 2 will be completed.For every honest party Pj , the broadcast (Attach Aj to Pj) will be received by Pi.Furthermore, since Pj completed the AVSS-Sharek;j protocol for every Pk 2 Cj, then Piwill complete these AVSS-Sharek;j protocols as well. Therefore, every honest party willeventually be considered accepted by Pi (namely, added to the set Gi). Thus, Gi willeventually be of size n � t, and Step 3 will be completed. Similar reasoning implies thatevery honest party will eventually be considered supportive by every honest party in Step4. Consequently, every honest party will raise his `reconstruct enabled'
ag, and willinvoke his AVSS-Recs of Step 5.It remains to be shown that all the AVSS-Rec protocols invoked by each honest partywill be completed. If an honest party received an (Attach Aj to Pj) broadcast, then allthe honest parties will receive this broadcast. Thus, if an honest party invokes AVSS-Recj;k,then all the honest parties will invoke AVSS-Recj;k. Event E now assures us that all thehonest parties will complete all their AVSS-Rec protocols. Therefore, all the honest partieswill execute Step 6 and complete the protocol. (The invocations of AVSS-Share with faultydealers need not be terminated. Once an honest party completes Step 6, he may abort allnon-terminated invocations of AVSS-Share.)Given event E, all invocations of AVSS-Share and AVSS-Rec terminate in constant time.Protocol broadcast terminates in constant time. Thus, protocol Common-Coin terminatesin constant time as well. 2Lemma 5.29 Let u 4= d0:87ne. Let Pi be a party whose broadcast (Attach Ai to Pi) inStep 2 has been completed by some honest party. Then, there exists a value, vi, such thatall the honest parties associate vi with Pi in Step 6. Furthermore,� vi is �xed once the �rst honest party has completed the (Attach Aj to Pj) broad-cast.� vi is distributed uniformly over [1 : : :u], and is independent of the values associatedwith the other parties.Proof: Let Pi be a party whose (Attach Ai to Pi) broadcast of Step 2 has been com-pleted by some honest party. Then, all the honest parties will complete this broadcast withoutput Ci. Furthermore, The de�nition of AVSS assures us that for each party Pj 2 Ci,there exists a �xed value, rj;i, such that all the honest parties reconstruct have rj;i as theiroutput of AVSS-Recj;i[�0] in Step 5 (that is, rj;i is the value shared by Pj , and attachedto Pi.) Consequently, the value that each honest party associates with Pi in Step 6 isPPj2Ci rj;i mod u; let vi be this value. This value is �xed once Ci is �xed, namely by thetime that the �rst honest party has completed the broadcast (Attach Aj to Pj) .In remains to show that vi is uniformly distributed over [1 : : :u], and is independent of thevalues associated with the other parties. Recall that an honest party starts reconstructing

5.7 Common Coin 124the secrets attached to Pi (namely, invokes the AVSS-Recj;i[�0] protocols for Pj 2 Ci) onlyafter it completes the (Attach Ai to Pi) broadcast. Namely, the set Ci is �xed beforeany honest party invokes an AVSS-Reck;i for some k. The Privacy property of AVSS nowassures us that the bad parties have no information on the secrets shared by the honestparties when the set Ci is �xed. Thus, the set Ci, as well as the values that were sharedby bad parties, are independent of the values shared by honest parties. Furthermore, eachset Ci contains at least one honest party, and honest parties share uniformly distributed,mutually independent values. Consequently, the sum vi is uniformly and independentlydistributed over [1 : : :u]. 2Lemma 5.30 Assume that some honest party has raised the `reconstruct enabled'
ag.Then there exists a set, M , such that:1. For each party Pj 2 M , the (Attach Aj to Pj) broadcast of Step 2 has been com-pleted by some honest party. (Note that Lemma 5.29 applies to each Pj 2M .)2. When any honest party, Pj, raises his `reconstruct enabled'
ag, it will hold thatM � Hj.3. jM j � n3 .Proof: Let Pi be the �rst honest party to raise his `reconstruct enabled'
ag. Let Mbe the set of parties, Pk, for whom Pk 2 Gl for at least t+ 1 parties Pl who are consideredsupportive by Pi, in Step 4. We show that the set M has the properties required in theLemma.Clearly, M � Hi. Thus, party Pi has received the broadcast (Attach Ak to Pk) ofevery party Pk 2 M . This asserts the �rst property of M . We now assert the secondproperty. Let Pk 2 M . An honest party Pj raises his `reconstruct enabled'
ag, whenhe has found at least n � t parties who are supportive in Step 4. However, Pk 2 Gl for atleast t+1 of the (Pl accepts Hl) broadcasts; thus, there must exist a party Pl such thatPk 2 Gl and Gl � Hj . Consequently, Pk 2 Hj.It remains to show that jM j � n3 . We use a counting argument. Let m 4= jHij. We havem � n � t. Consider the m � n table T (relative to party Pi), where Tl;k = one i� Pi hasreceived the (Pl accepts Hl) broadcast and Pk 2 Gl. The set M is the set of parties Pksuch that the kth column in T has at least t+ 1 one entries. There are (n� t) one entriesin each row of T ; thus, there are m � (n� t) one entries in T .Let q denote the minimum number of columns in T that contain at least t + 1 oneentries. We show that q � n3 . Clearly, the worst distribution of the one entries in this tableis letting q columns be all one's (namely, each of the q columns has m one entries), andletting each of the remaining (n� q) columns have t one entries. This distribution requiresthat the number of one entries be no more than q �m + (n � q) � t. However, there arem � (n� t) one entries in T . Thus, we must have:q �m+ (n � q) � t � m � (n� t)or, equivalently, q � m(n�t)�ntm�t . Since m � n� t and n � 3t + 1, we haveq � m(n�t)�ntm�t � (n�t)2�ntn�2t � (n�2t)2+nt�3t2n�2t � n � 2t + nt�3t2n�2t � n� 2t+ tn�2t > n3 :

5.8 Byzantine Agreement 1252Lemma 5.31 Let � � 0:2, and assume that all the honest parties have completed protocolCommon-Coin[�]. Then, for every value � 2 f0; 1g, with probability at least 0:25, all thehonest parties output �.Proof: By Lemma 5.29 we have that for every party, Pj, who is accepted by some honestparty, there exists a value, vj, distributed uniformly and independently over [1 : : :u], suchthat with probability 1� �n all the honest parties associate vj with Pj in Step 6. Consequently,with probability 1� �, all the honest parties agree on the value associated with each one ofthe parties.)Consider the case � = 0. Let M be the set of parties guaranteed by Lemma 5.30.Clearly, if vj = 0 for some party Pj 2 M and all the honest parties associate vj with Pj,then all the honest parties output 0. The probability that at least one party Pj 2 M hasvj = 0 is 1 � (1 � 1u)jMj. Recall that u = d0:87ne, and that jM j � n3 . Therefore, for alln > 4 we have 1� (1� 1u)jMj � 1�e�0:38 � 0:316. Thus, Prob(all the honest parties output0) � 0:316 � (1� �) � 0:25.Consider the case � = 1. Clearly, if no party Pj has vj = 0 (and all the honest partiesassociate vj with every Pj), then all the honest parties output 1. The probability of thisevent is at least (1 � 1u)n(1 � �) � e�1:15 � 0:8 � 0:25. Thus, Prob(all the honest partiesoutput 1) � 0:25. 25.8 Byzantine AgreementBefore describing the Byzantine Agreement protocol, let us describe another protocol usedin our construction. Roughly speaking, this protocol, denoted Vote, does `whatever can bedone deterministically' to reach agreement.5.8.1 The Voting ProtocolIn protocol Vote each party tries to �nd out whether there is a detectable majority forsome value among the (binary) inputs of the parties. More precisely, each party's outputof the protocol can take �ve di�erent values. For � 2 f0; 1g, the output (�; 2) stands for`overwhelming majority for �'. Output (�; 1) stands for `distinct majority for �'. Output(�; 0) stands for `non-distinct majority'. It will be shown that if all the honest partieshave the same input, �, then all honest parties output (�; 2). Furthermore, if some honestparty outputs (�; 2) then every honest party will output either (�; 2) or (�; 1). If somehonest party outputs (�; 1) then either all outputs are in f(�; 2); (�; 1)g, or all outputs arein f(�; 0); (�; 1)g.The protocol consists of three `rounds', having similar structure. In the �rst round,each party broadcasts his input value, waits to complete n � t broadcasts of other parties,and sets his vote to the majority value among these inputs. In the second round, eachparty broadcasts his vote (along with the identities of the n � t parties whose broadcastedinputs were used to compute the vote), waits to complete n � t broadcasts of other votesthat are consistent with the broadcasted inputs of the �rst round, and sets his re-vote tothe majority value among these votes. In the third round each party broadcasts his re-vote,

5.8 Byzantine Agreement 126along with the identities of the n� t parties whose broadcasted votes were used to computethe re-vote, and waits to complete n� t broadcasts of other re-votes that are consistent withthe consistent votes of the second round.Now, if all the consistent votes received by a party agree on a value, �, then this partyoutputs (�; 2). Otherwise, if all the consistent re-votes received by the party agree on avalue, �, then the party outputs (�; 1). Otherwise, the party outputs (�; 0).Protocol Vote is presented in Figure 5-10 below.Protocol Vote(xi)Code for party Pi, on input xi:1. Broadcast (Input,Pi,xi) .2. De�ne a dynamic set Ai. Add (Pj; xj) to Ai if the (Input,Pj,xj) broadcast iscompleted.Wait until jAij � n � t. Set Ai to A(n�t)i . Then, set vi to the majority bit amongfxjj(Pj; xj) 2 Aig, and broadcast (Vote,Pi,Ai; vi) .3. De�ne a dynamic set Bi. Add (Pj; Aj; vj) to Bi if the (Vote,Pj,Aj; vj) broadcasthas been completed, aj � Ai, and vj is the majority bit of Aj .Wait until jBij � n � t. Set Bi to B(n�t)i . Then, set rvi to the majority bit amongfvj j(Pj; votej ; Aj) 2 Big, and broadcast (Re-vote,Pi,Bi; rvi) .4. De�ne a set Ci. Add (Pj ; Bj; rvj) to Ci if the (Re-vote,Pj,Bj ; rvj) broadcast hasbeen completed, Bj � Bi, and rvj is the majority bit of Bj .5. Wait until jCij � n� t.If all the parties Pj 2 Bi had the same vote vj = �, then output (�; 2) and terminate.Otherwise, if all the parties Pj 2 Ci have the same re-vote, rvj = �, then output (�; 1)and terminate.Otherwise, output (�; 0) and terminate.Figure 5-10: The Vote protocolIn Lemmas 5.32 through 5.35 we assert the properties of protocol Vote, as describeabove. The Lemmas hold for every input and every t-adversary.Lemma 5.32 All the honest parties terminate protocol Vote in constant time.Proof: The (Input,Pj,xj) broadcast of every honest party Pj in Step 1 will be completed.Thus, every honest party Pi will eventually have jAij = n� t, in Step 2, and will broadcast(Vote,Pi,Ai; vi) . For every honest party Pj the broadcast of Step 2 will be completed. Anhonest party Pi will add (Pj ; Aj; vj) to Bi for each honest Pj , in Step 3. Thus, every honestparty Pi will eventually have jBij = n�t, in Step 3, and will broadcast (Re-vote,Pi,Bi; rvi). Similarly, Pi will add every honest party Pj to Ci. Thus, every honest party Pi willeventually have jCij = n � t, in Step 5. Consequently, Pi will complete the protocol. Wenote that the protocol runs in constant time. 2Lemma 5.33 If all the honest parties have input �, then all the honest parties output (�; 2).

5.8 Byzantine Agreement 127Proof: Consider an honest party Pi. If all the honest parties have input �, then at most tparties will broadcast �� as their input in Step 1. Therefore, each party Pk who was addedto Bi in Step 3 has a majority for the value � in his Ak set, and vk = �. Thus, Pi outputs(�; 2) in Step 5. 2Lemma 5.34 If some honest party outputs (�; 2), then each honest party outputs either(�; 2) or (�; 1).Proof: Assume that honest party Pi outputs (�; 2). The size of Bi is n� t, hence for eachother honest party Pj it holds that Bi \ Bj is of size at least t + 1. Thus, Pj will set hisrevote rvj to �. Therefore, every honest party outputs either (�; 2) or (�; 1) in Step 5. 2Lemma 5.35 If some honest party outputs (�; 1), and no honest party outputs (�; 2), theneach honest party outputs either (�; 1), or (�; 0).Proof: Assume some honest party outputs (�; 1). Then, at most t parties Pj broadcasteda revote rvj = �� in Step 3; therefore, no honest party Pj has a unanimous re-votej = ��in Step 4, and no honest party outputs (��; 1). Furthermore, at least t + 1 parties Pk havebroadcasted votek = � in Step 2; therefore, no honest party had a unanimous vote in Step3, and no honest party outputs (��; 2). 25.8.2 The Byzantine Agreement protocolThe Byzantine Agreement protocol proceeds in iterations. In each iteration, each partyhas a `modi�ed input' value; in the �rst iteration, the modi�ed input of each party is hislocal input. In each iteration the parties invoke two protocols: Vote and Common-Coin.Protocol Common-Coin is invoked only after protocol Vote is completed. (The reason forthis provision will become clear in the proof of Lemma 5.38 below.) If a party recognizes a`distinct majority' for some value, �, in the output of protocol Vote (namely output (�; 1)or (�; 2)), then he sets his modi�ed input for the next iteration to �. Otherwise, he setshis modi�ed input for the next iteration to be the output of the Common-Coin protocol.(Protocol Common-Coin is invoked by all parties in each iteration, regardless of whethertheir output is used.) Once a party recognizes an `overwhelming majority' for some value,�, (namely, output (�; 2) of protocol Vote), he broadcasts �. Once a party completes t + 1broadcasts for some value, �, he terminates with output �.The code of the Byzantine Agreement protocol is presented in Figure 5-11 below.In Lemmas 5.36 through 5.40 we assert the validity of protocol BA. These Lemmas holdfor every input and every t-adversary.Lemma 5.36 If all the honest parties have input �, then all the honest parties terminateand output �.Proof: Assume that all the honest parties have input �. By Lemma 5.33, every honestparty Pi has (y1; m1) = (�; 2) by the end of Step 1 of the �rst iteration. Therefore, everyhonest party broadcasts (Terminate with �) in Step 2 of the �rst iteration. Therefore,every honest party will receive at least n� t (Terminate with �) broadcasts, and at mostt (Terminate with ��) broadcasts. Consequently, every honest party will output �. 2

5.8 Byzantine Agreement 128Protocol BA[�](xi)Code for party Pi, on input xi, and termination parameter �:1. Set r := 0. Set v1 := xi.Repeat until terminating:2. Set r := r + 1. Set (yr ;mr) :=Vote(vr).3. Wait until Vote(vr) is completed. Then, set cr :=Common-Coin[�4].4. (a) If mr = 2, set vr := yr and broadcast (Terminate with vr) .Participate in only one more Vote protocol and only one more Common-Coinprotocol. a(b) If mr = 1, set vr+1 := yr .(c) Otherwise, set vr+1 := cr .� Upon receiving t + 1 (Terminate with �) broadcasts for some value �, output �and terminate.Figure 5-11: The Byzantine Agreement protocolaThe purpose of this restriction is to prevent the parties from participating in an unboundednumber of iterations before enough (Terminate with �) broadcasts are completed.Lemma 5.37 If an honest party terminates with output �, then all honest parties terminatewith output �.Proof: Let us �rst establish that if an honest party broadcasts (Terminate with �) forsome value �, then all honest parties eventually broadcast (Terminate with �) . Let kbe the �rst iteration in which an honest party initiated a (Terminate with �) broadcastfor some value �. By Lemma 5.34, every honest party Pi has yk = � and either mk = 2or mk = 1. Therefore, no honest party broadcasts (Terminate with ��) at iteration k.Furthermore, all the honest parties execute the Vote protocol of iteration k + 1 with input�. Lemma 5.33 now implies that by the end of Step 1 of iteration k+1, every honest partyhas (yk+1; mk+1) = (�; 2). Thus, all the honest parties broadcast (Terminate with �) ,either at iteration k or at iteration k + 1.Now, assume an honest party terminates with output �. Thus, at least one honestparty broadcasted (Terminate with �) . Consequently, all the honest parties broadcast(Terminate with �) . Hence, every honest party will receive at least n � t (Terminatewith �) broadcasts, and at most t (Terminate with ��) broadcasts. Therefore, everyhonest party will output �. 2Lemma 5.38 Assume all honest parties have initiated and completed some round k. Then,with probability at least 14 all honest parties have the same value for vk+1.Proof: We distinguish two cases. If all the honest parties execute Step 4(c) in iteration k,then all the honest parties set their vk+1 value to their (local) output of protocol Common-Coin. In this case all the parties have the same vk+1 value with probability at least 12 .

5.8 Byzantine Agreement 129Otherwise, some honest party has set vk+1 = � for some � 2 f0; 1g, either in Step 4(a) orStep 4(b) of iteration k. By Lemma 5.35, no honest party will use either Step 4(a) or Step4(b) to set his vk+1 variable to ��. Furthermore, with probability at least 14 , all the honestparties have output � of the Common-Coin protocol of Step 3. Therefore, with probabilityat least 14 , all the honest parties have vk+1 = � at the end of iteration k. (Note that theparties' outputs of protocol Vote are �xed before Common-Coin is invoked. Were it not thecase, the bad parties could force the output of protocol Vote to prevent agreement.) 2Let Ck denote the event that each honest party completes all the iterations he initiated,up to (and including) the kth iteration (that is, for each iteration 1 � l � k and for eachparty P , if P initiated iteration l then he computes vl+1). Let C denote the event that Ckoccurs for all k.Lemma 5.39 Conditioned on event C, all the honest parties complete protocol BA in con-stant expected time.Proof: We �rst establish that all the honest parties terminate protocol BA within constanttime after the �rst honest party initiates a (Terminate with �) broadcast in Step 4(a)of the protocol. Assume the �rst honest party initiates a (Terminate with �) broadcastin iteration k. Then, all the honest parties participate in the Vote and Common-Coinprotocols of all the iterations up to iteration k + 1. We have seen in the proof of Lemma5.37 that in this case, all the honest parties initiate a (Terminate with �) broadcast bythe end of iteration k + 1. All these broadcasts terminate in constant time. Each honestparty terminates upon completing t+ 1 of these broadcasts.Let the random variable � count the number of iterations until the �rst honest partybroadcasts (Terminate with �) . (If no honest party broadcasts (Terminate with �)then � = 1). Conditioned on event C, all the honest parties terminate each iteration inconstant time. It is left to show that E(� jC) is constant. We haveProb(� > kjCk) � Prob(� 6= 1jCk) � : : : � Prob(� 6= kjCk \ � 6= 1 \ : : :\ � 6= k � 1)If follows from Lemma 5.38 that each one of the k multiplicands of the right hand side ofthe above equation is at most 34 . Thus, Prob(� > kjCk) � �34�k. It follows, via a simplecalculation, that E(� jC) � 16. 2Lemma 5.40 Prob(C) � 1� �.Proof: We haveProb(C) � Xk�1Prob(� > k \ Ck+1jCk) (5.1)� Xk�1Prob(� > kjCk) � Prob(Ck+1jCk \ � > k) (5.2)We have seen in the proof of Lemma 5.39 that Prob(� > kjCk) � �34�k�1. We bound theterm Prob(Ck+1jCk\� � k). If all the honest parties execute the kth iteration and completethe kth invocation of Common-Coin, then all the honest parties complete the kth iteration.Protocol Common-Coin is invoked with `termination parameter' �4 . Thus, with probability

5.8 Byzantine Agreement 1301� �4 , all the honest parties complete the kth invocation of Common-Coin. Therefore, foreach k, Prob(Ck+1jCk \ � � k) � �4 . Inequality 5.1 yields Prob(C) �Pk�1 �4 �34�k�1 = �. 2We have thus shown:Theorem 5.2 (Byzantine Agreement.) Let n � 3t + 1. Then, for every 0 < � �0:2, protocol BA[�] is a (1� �)-terminating, t-resilient, asynchronous Byzantine Agreementprotocol for n parties. Given that the parties terminate, they do so in constant expectedtime. Furthermore, the computational resources required of each party are polynomial in nand log 1� .

C h a p t e r 6Proactive security
We introduce a method for maintaining the security of systems in the presence of repeated,however transient break-ins to system components. We use secure multiparty computationas a formal setting, and use mobile adversaries as a vehicle for concentrating on the mech-anism of recovery from break-ins. This construction has applications to key managementschemes in actual security systems. See Section 1.6 for an introductory presentation.In Section 6.1 we de�ne PP protocols, and recall the de�nition of pseudorandom functionfamilies. In Sections 6.2 and 6.3 we describe our PP protocol and prove its correctness. InSection 6.4 we describe some modi�cations to our application to secure sign-on protocols.In Section 6.5 we o�er an alternative de�nition of PP protocols, and show that it is impliedby our �rst de�nition.6.1 De�nitionsThe setting. We consider a synchronous network with secure channels, and computation-ally bounded mobile adversaries. (In Section 6.3.1 we describe a relaxation of this securityrequirement on the channels.) For simplicity, we assume that at the end of each round, eachparty can send a message to each other party; these messages are received at the beginningof the next round. It is simple to extend our results to more realistic communication andsynchronization models. (We remark that here the rounds formalize the applications of theautomatic recovery mechanism described in Section 1.6. These are di�erent than commu-nication rounds. Typically, a recovery round may take place every several days, where acommunication round lasts only a fraction of a second.)The Adversary. At the beginning of each round the adversary may corrupt parties.(The adversary adaptively decides which parties to corrupt at each round.) Upon corruptionof a party, the entire contents of the party's memory becomes known to the adversary.Furthermore, the adversary can alter the party's memory and program. After some timethe adversary leaves the party. Once the adversary has left, the party returns to executeits original program; however, its memory may have been altered. We call this adversarya mobile adversary. We say that a mobile adversary is t-limited if in each round at most131

6.1 De�nitions 132t parties are corrupted. (We stress that there may exist no party that has never beencorrupted!)A de�nition of proactive pseudorandomness. Consider a network of parties per-forming some computation in the presence of a mobile adversary. The parties have accessto randomness only at the beginning of the computation. Once the interaction starts noadditional randomness is available.The parties will run a special deterministic protocol; this protocol will generate a newvalue within each party at each round. Given that the parties' initial inputs of this protocolare randomly chosen, the value generated within each party at each round will be indis-tinguishable from random from the point of view of a mobile adversary, even if the valuesgenerated within all the other parties, at all rounds, are known. We call such a protocol aproactive pseudorandomness (PP) protocol.We stress that at each round the adversary may know, in addition to the data gatheredby the adversary, the outputs of all the parties (including the uncorrupted ones) at all theprevious rounds. Still, it cannot distinguish between the current output of an uncorruptedparty and a random value.More formally, consider the following attack, called an on-line attack, with respect to ann-party PP protocol. Let the input of each party be taken at random from f0; 1gk, wherek is a security parameter (assume n < k). Furthermore, each party's output at each roundis also a value in f0; 1gk. On-line attackThe protocol is run in the presence of a mobile adversary for m rounds (m is polynomialin n and k), where in addition to the data gathered by the adversary, the adversary knowsthe outputs of all the parties at all the rounds. At a certain round, l (chosen \on-line" bythe adversary), the adversary chooses a party, P , out of the uncorrupted parties at thisround. The adversary is then given a test value, v, instead of P 's output at this round.The execution of the protocol is then resumed for rounds l+ 1; : : : ; m. (Our de�nition willrequire that the adversary be unable to say whether v is P 's output at round l, or a randomvalue.)F or an n-party protocol �, and a mobile adversaryA, let A(�;PR) (respectively, (A(�;R))denote the output of A after an on-line attack on �, and when the test value v given to A isindeed the output of the speci�ed party (respectively, when v is a random value). Withoutloss of generality, we assume that A(�;PR) 2 f0; 1g.De�nition 6.1 Let � be a deterministic n-party protocol with security parameter k. Wesay that � is a t-resilient proactive pseudorandomness protocol (PP) if for every t-limitedpolynomial time mobile adversary A, for all c > 1 and all large enough k we havejProb(A(�;PR) = 1)� Prob(A(�;R) = 1)j � mkcwhere m is the total number of rounds of protocol �, and the probability is taken over theparties' inputs of � and the choices of A. (We stress that m is polynomial in k.)We say that � is e�cient if it uses resources polynomial in n and k.

6.2 The Protocol 133An alternative de�nition. Using De�nition 6.1 above, it can be shown that the followingproperty holds for any randomized application protocol � run by the parties. Consider avariant, �0, of � that runs a PP protocol � along with �, and uses the output of � as randominput for � at each round. Then, The parties' outputs of � and �0 are indistinguishable;furthermore, running �0 the adversary gains no knowledge it did not gain running �. Infact, this property may serve as an alternative de�nition for PP protocols. In Section 6.5we present a more precise de�nition of this property.Pseudorandom function families. Our constructions make use of pseudorandom func-tions families. We brie
y sketch the standard de�nition.Let Fk denote the set of functions from f0; 1gk to f0; 1gk. Say that an algorithm D withoracle access distinguishes between two random variables f and g over Fk with gap s(k), ifthe probability that D outputs 1 with oracle to f di�ers by s(k) from the probability thatD outputs 1 with oracle to g. Say that a random variable f over Fk is s(k)-pseudorandom ifno polynomial time (in k) algorithm with oracle access distinguishes between f and g 2R Fkwith gap s(k). (Throughout the paper, we let e 2R D denote the process of choosing anelement e uniformly at random from domain D.)We say that a function family Fk = ff�g�2f0;1gk (where each f� 2 Fk) is s(k)-pseudorandomif the random variable f� where � 2R f0; 1gk is s(k)-pseudorandom. A collection fFkgk2N ispseudorandom if for all c > 0 and for all large enough k, the family Fk is 1kc -pseudorandom.We consider pseudorandom collections which are e�ciently constructible. Namely, thereexists a polytime algorithm that on input �; x 2 f0; 1gk outputs f�(x).Pseudorandom function families and their cryptographic applications were introducedby Goldreich, Goldwasser and Micali [GGM2, GGM1]. Applications to practical key distri-bution and authentication protocols were shown by Bellare and Rogaway [BR1]. In [GGM2]it is shown how to construct pseudo-random functions from any pseudo-random generator,which in turn could be constructed from any one-way function [HILL]. However, practition-ers often trust and use much simpler constructions based on DES or other widely availablecryptographic functions.6.2 The ProtocolIn this section we describe the basic protocol. Several modi�cations useful for the applicationto secure sign-on are described in Section 6.4.Consider a network of n parties, P1; : : : ; Pn, having inputs x1; : : : ; xn respectively. Eachinput value xi is uniformly distributed in f0; 1gk, where k is a security parameter. We as-sume that parties have agreed on a prede�ned pseudorandom function family F = ff�g�2f0;1gk ,where each f� : f0; 1gk ! f0; 1gk.In each round l each party Pi computes an internal value (called a key), �i;l, in a waydescribed below. Pi's output at round l, denoted ri;l, is set to be ri;l = f�i;l(0), where 0 isan arbitrary �xed value.The key �i;l is computed as follows. Initially, Pi sets its key to be its input value, namely�i;0 = xi. At the end of each round l � 0, party Pi sends f�i;l(j) to each party Pj . Next, Pierases its key for round l and sets its key for round l + 1 to the bitwise exclusive or of the

6.3 Analysis 134values received from all the parties at this round:�i;l+1 = �nj=1f�j;l(i) (6.1)We stress that it is crucial that the parties erase the old keys. In fact, if parties cannoterase their memory, proactive pseudo-randomness is impossible. In particular, once eachparty has been corrupted in the past, the adversary has complete information on the systemat, say, the �rst round. Now the adversary can predict all the subsequent outputs of thisdeterministic protocol.6.3 AnalysisWe �rst o�er some intuition for the security of our protocol. This intuition is based onan inductive argument. Assume that, at round l, the key of an uncorrupted party ispseudorandom from the point of view of the adversary. Therefore, the value that thisparty sends to each other party is also pseudorandom. Furthermore, the values received bydi�erent parties seem unrelated to the adversary; thus, the value that each party receivesfrom an uncorrupted party is pseudorandom from the point of view of the adversary, even ifthe values sent to other parties are known. Thus, the value computed by each uncorruptedparty at round l+1 (being the bitwise exclusive or of the values received from all the parties)is also pseudorandom.Naturally, this argument serves only as intuition. The main inaccuracy in it is in theimplied assumption that we do not lose any pseudo-randomness in the repeated applicationsof pseudorandom functions. A more rigorous proof of correctness (using known techniques)is presented below.Theorem 6.2 Our protocol, given a pseudorandom function family, is an e�cient, (n�1)-resilient PP protocol.Proof: Let � denote our protocol (run for m rounds). Assume there exists a polytimemobile adversary A such thatjProb(A(�;PR) = 1)� Prob(A(�;R) = 1)j > mkcfor some constant c > 0 and some value of k. For simplicity we assume that A corruptsexactly n � 1 parties at each round, and that A always runs the full m rounds beforeoutputting its guess. The proof can be easily generalized to all A. We show that Fk is notpseudorandom. Speci�cally, we construct a distinguisher D that distinguishes with gap 12kcbetween the case where its oracle is taken at random from Fk and the case where its oracleis a random function in Fk.In order to describe the operation of D, we de�ne hybrid probabilities as follows. First,de�ne m + 1 hybrid protocols, H0; : : : ; Hm, related to protocol �. Protocol Hi instructseach party Ps to proceed as follows.� In rounds l � i party Ps outputs a random value and sends a random value to eachother party Pt (instead of f�s;l(0) and f�s;l(t), respectively). In other words, Ps usesa random function from Fk instead of f�s;l for his computations.

6.3 Analysis 135� In rounds l > i party Ps executes the original protocol, �.Ofcourse, whenever a party is corrupted it follows the instructions of the adversary.Distinguisher D, given oracle access to function g, operates as follows. First, D choosesat random a round number l0 2R [0; : : : ; m� 1]. Next, D runs adversary A on the follow-ing simulated on-line attack on a network of n parties. The corrupted parties follow theinstructions of A. The (single) uncorrupted party at each round l, denoted P�(l), proceedsas follows.1. In rounds l < l0, party P�(l) outputs a random value and sends a random value toeach other party (as in the �rst steps of the hybrid interactions).2. In round l0, party P�(l0) uses the oracle function g to compute its output and messages.Namely, it outputs g(0) and sends g(j) to each other party Pj .3. In rounds l > l0, party P�(l) follows protocol �.(Note that D knows which parties are corrupted by A at each round.)Once a round is completed, D reveals all the parties' outputs of this round to A (asexpected by A in an on-line attack). When A asks for a test value v, D proceeds as follows.First, D chooses a bit b 2R f0; 1g. If b = 0, then D sets v to the actual correspondingoutput of the party chosen by A. Otherwise, D sets v to a random value. Finally, if b = 0then at the end of the simulated interaction D outputs whatever A outputs. If b = 1 thenD outputs the opposite value to whatever A outputs.The operation of D can be intuitively explained as follows. It follows from a standardhybrids argument that there must exist an i such that eitherjProb(A(Hi;PR) = 1)�Prob(A(Hi+1;PR) = 1)j is large or jProb(A(Hi;R) = 1)�Prob(A(Hi+1;R) =1)j is large. Thus, if D chooses the \correct" values for l0 and b it can use the output of Ato distinguish between the two possible distributions of its oracle. We show that a similardistinction can be achieved if l0 and b are chosen at random.We analyze the output of D as follows. Let PRi 4= Prob(A(Hi;PR) = 1). (Namely, PRiis the probability that A outputs 1 after interacting with parties running protocol Hi andwhen the test value given to A is indeed the corresponding output value of the party thatA chose.) Similarly, let Ri 4= Prob(A(Hi;R) = 1). Let � (resp., �) be a random variabledistributed uniformly over Fk (resp., over Fk). Assume that D is given oracle access to�. Then, at round l0 party P�(l0) outputs a random value and sends random values to allthe other parties. Thus, the simulated interaction of A is in fact an on-line attack of A onprotocol Hl0 . Therefore, if b = 0 (resp., if b = 1), then D outputs 1 with probability PRl0(resp., 1�Rl0). Similarly, D is given oracle access to � then the simulated interaction of Ais an on-line attack of A on protocol Hl0+1. In this case, if b = 0 (resp., if b = 1), then Doutputs 1 with probability PRl0+1 (resp., 1� Rl0+1). Thus,Prob(D� = 1)� Prob(D� = 1) = 12m m�1Xi=0 (PRi + 1� Ri)� 12m m�1Xi=0 (PRi+1 + 1� Ri+1)= 12m m�1Xi=0 [(PRi � Ri)� (PRi+1 � Ri+1)]= 12m [(PR0 � R0)� (PRm � Rm)]:

6.4 On the Application to Secure Sign-On 136Clearly, H0 is the original protocol �. Thus, by the contradiction hypothesis, jPR0�R0j >mkc . On the other end, in protocol Hm the parties output random values in all the m rounds,thus PRm �Rm = 0. We conclude that jProb(D� = 1)�Prob(D� = 1)j > 12m � mkc = 12kc . 226.3.1 Insecure LinksWhen describing the model, we assumed that all the communication channels are secure(i.e., private and authenticated). Here, we discuss the e�ect of insecure channels on ourprotocol. We note that the protocol remains a PP protocol even if in each round l only asingle uncorrupted party Pi has a single channel which is secure in round l to a party Pjthat wasn't corrupted in round l � 1 (and Pj had in round l � 1 a secure channel to anuncorrupted party, etc.).This security requirement on the channels is minimal in the following sense. If norandomness is allowed after the interaction begins then a mobile adversary that sees theentire communication can continue simulating each party that has once been corrupted,even after the adversary has left this party. Thus, after few rounds, the adversary will beable to simulate all parties and predict the output of each party at each subsequent round.6.4 On the Application to Secure Sign-OnIn subsection 1.6.1 we discussed reconstructible protocols and described an application of ourPP protocol to proactive secure sign-on, using its reconstructability. However, as mentionedthere, the protocol described in Section 6.2 is reconstructible only if all the parties (servers)follow their protocols at all times (that is, the adversary is only eavesdropping).In this section we describe modi�cations of our protocol, aimed at two goals: one goalis to make the protocol more e�cient for the user; the other goal is to maintain the recon-structability property for the case where the servers don't follow their protocols.We start by describing a variant of the protocol which is more e�cient for the user. Usingthe protocol described in Section 6.2, the user had to simulate the computation performedby the servers step by step. In case that many rounds have passed since the last time theuser updated its keys, this may pose a considerable overhead. Using this variant, denoted�, the user can compute its updated key simulating only one round of computation of theservers. On the other hand, this variant has a weaker resilience property: it assures thatthe servers' keys be unpredictable by the adversary only if there exists a server that hasnever been corrupted.The variant is similar in structure to the original protocol with the following modi�ca-tion. Each Pi has a master key which is never erased. This master key is set to be the initialkey, �i;0 (derived, say, from the password). The master key is used as the index for thefunction at all the rounds. Namely, the key �i;l at round l is computed by �i;l = �nj=1f�j;0(i).It is also possible to combine the original protocol with the variant described above,in order to reach a compromise between e�ciency and security. We de�ne a special typeof round: a major round. (For instance, let every 10th round be a major round.) Theparties now update their master keys, using the original protocol, only at major rounds. Innon-major rounds, the servers use their current master key as the index for the function.

6.5 An alternative de�nition of PP 137This combined protocol has the following properties. On one hand, the user has onetenth of the rounds to simulate than in the original scheme. On the other hand, we onlyneed that in any period of 10 rounds there exists a server that has not been corrupted. Webelieve that such versions may be a more reasonable design for actual implementations.Next, we describe additions to the protocol, aimed at maintaining the reconstructabilityproperty for the case where the servers don't follow their protocols. We note that it ispossible to withstand crash failures of servers, if the servers cooperatively keep track ofwhich servers crashed at each round (this coordination can be done using standard consensusprotocols).The following addition to the protocol handles the case of Byzantine faults, if variant� described above is used. The only way an adversary controlling party Pj could interferewith the reconstructability of variant � is by sending a wrong value instead of f�j;0(i), tosome server Pi. However, Pi can, when unable to authenticate a user, compare each of thef�j;0(i) values with the user, e.g. using the 2PP protocol [BGH+2], without exposing any ofthe values. If there are more than half of the values which match, the server and the usermay use the exclusive or of these values only. This technique requires that at any round,the majority of the servers are non-faulty (otherwise the server may end up using valueswhich are all known to the adversary). We note that this idea does not work if the basicprotocol (that of Section 6.2) is used instead of variant �.6.5 An alternative de�nition of PPWe o�er an alternative de�nition of a PP. This de�nition follows from De�nition 6.1. Bor-rowing from the theory of secure encryption functions, we call De�nition 6.1 \PP in thesense of indistinguishability" (or, in short, PP), whereas De�nition 6.4 below is called\semantic PP" (or, in short, SPP). We �rst recall the standard de�nition of polynomialindistinguishability of distributions.De�nition 6.3 Let A = fAkgk2N and B = fBkgk2N be two ensembles of probability distri-butions. We say that A and B are polynomially indistinguishable if there exists a constantc > 0 such that for every polytime distinguisher D and for all large enough k,jProb(D(Ak) = 1)� Prob(D(Bk) = 1)j < 1kc :We colloquially let Ak � Bk denote \fAkg and fBkg are polynomially indistinguishable".Let � be some distributed randomized protocol, which is resilient against t-limitedmobile adversaries, for some value of t. We wish to adapt protocol � to a situation whereno randomness is available once the interaction starts. Namely, we want to construct aprotocol �0 in which the parties use randomness only before the interaction starts, and theparties' outputs of protocol �0 are \the same as" their outputs of protocol �.A general framework for a solution to this problem proceeds as follows. The partiesrun protocol � along with another deterministic protocol, �. Each party's local input ofprotocol � is chosen at random at the beginning of the interaction. In each round, eachparty sets the random input of protocol � for this round to be the current output of protocol�. We call � a semantically secure proactive pseudorandomness(SPP) protocol. We referto protocol � as the application protocol.

6.5 An alternative de�nition of PP 138We state the requirements from a SPP protocol �. Informally, we want the followingrequirement to be satis�ed for every application �. Whatever an adversary can achieve byinteracting with � combined with protocol � as described above, could also be achieved byinteracting with the original protocol � when combined with a truly random oracle. Moreformally,� for an n-party randomized application protocol �, a mobile adversary A, an inputvector ~x = x1; : : : ; xn, and 1 � i � n, let �(~x; A)i denote party Pi's output of protocol� with a random oracle when party Pj has input xj and in the presence of adversaryA.Let �(~x; A)0 denoteA's output of this execution. Let ~�(~x; A) 4= �(~x; A)0; : : : ; �(~x; A)n.� For a randomized protocol � and a deterministic protocol � for which each partyhas an output at each round, let �� denote the protocol in which � and � are runsimultaneously and each party at each round sets the random input of � to be thecurrent output of �.De�nition 6.4 We say that an n party deterministic protocol � is a t-resilient SPP protocolif for every (randomized) application protocol � and every t-limited mobile adversary A thereexists a t-limited mobile adversary A0 such that for every input vector ~x (for protocol �) wehave ~��(~x; A0) � ~�(~x; A):where the probabilities are taken over the inputs of � and the random choices of A and ofthe oracle of �.Theorem 6.5 If a protocol is a t-resilient PP protocol then it is a t-resilient SPP protocol.

C h a p t e r 7Conclusion
In this brief chapter we present a personal view of our work and try to point out its merits.We also outline some directions for further research.Merit of this work. An important contribution of this work is, in our opinion, theprecise and workable de�nitions of secure multiparty computation (presented in Chapter 2and Section 4.1). These de�nitions allow us, for the �rst time, to have a clear and precisenotion of a secure multiparty protocol, and to prove security of our protocols.We believe that without these de�nitions we would not have been able to come up withprotocols that solve the adaptive security problem and the problem of secure computation inasynchronous networks. Hopefully, the framework and tools developed for these de�nitionswill prove helpful in formulating precise de�nitions of primitives encountered in the future.The long-sought solution for the adaptive security problem (Chapter 3) allows us topresent secure solutions for an abundance of known protocol problems in the presenceof adaptive adversaries (which seem to be a better model of reality than non-adaptiveones). Our solution stems from a better understanding of the nature of secure multipartycomputation. This understanding resulted in a better modeling of the degree of trust theparty have in each other, namely in the notion of a semi-honest party.Our solution works only for non-erasing parties. Investigating this notion of semi-honesty only slightly further, one �nds out that in a very natural (arguably, even themost natural) trust-model, namely that of honest-looking parties, we are unable to proveadaptive security of practically any non-trivial protocol (unless a trusted dealer is availablein an initial preprocessing phase). This holds even in the presence of absolutely securechannels. This surprising phenomenon should be taken into account whenever adaptiveadversaries are considered.The main tool used in solving the adaptive security problem is non-committing encryp-tion. The essence of these encryptions is separating encryption from commitment. Untilthis work, encryption was thought of as an inevitably committing primitive (in the sensethat the ciphertext could serve as a commitment of the sender - and of the receiver - tothe plaintext). We showed that encryption can be done without commitment, and demon-strated the bene�ts of this separation. We believe that non-committing encryption is of139

Conclusion 140independent interest. In particular, non-committing encryption may prove to be a `moresecure' way to encrypt data than standard encryption in many other scenarios.In the chapter on asynchronous secure computation (Chapter 4) we de�ne what it meansto securely compute (or, rather, approximate) a function in an asynchronous setting withfaults. We also show, in a detailed way, how known techniques for constructing protocolsfor securely computing any function can be adapted to the asynchronous setting. Finally,to the best of our knowledge this is the �rst (and so far only) place where a full proof ofsecurity of a construction for securely computing any function appears, in any model ofcomputation. In particular, a security proof of the [BGW] construction can be extractedfrom the proof presented here.The chapter on asynchronous Byzantine agreement (Chapter 5) applies ideas and tech-niques from secure multiparty computation to constructing the �rst asynchronous Byzantineagreement (BA) protocol with optimal resilience and polynomial complexity. The construc-tion is quite involved, using many layers and techniques. The main technical contributionsare, in our opinion, two: First, we adapt techniques from [RB, TRa] to construct the �rstAsynchronous Veri�able Secret Sharing (AVSS) scheme with optimal resilience. Next, weslightly modify the [F] scheme (which was never published and unaccessible) for reachingBA given an AVSS scheme, and present it in a (hopefully) readable way. Indeed, this workis the �rst accessible source to any asynchronous BA protocol with linear resilience andpolynomial complexity.The chapter on proactive security (Chapter 6) introduces a new approach to maintainingthe security of computer systems in the presence of transient and repeated break-ins (orfailures). We hope and believe that this approach will become a standard in the e�ort toprotect computer systems. In fact, a number of works have already followed this approach(e.g., [ChH, HJKY, CHH, HJJKY]).Subsequent and future work. We mention two directions for subsequent research. The�rst deals with an additional security requirements from multiparty protocols. Namely, werequire that the computation will not leave a `trace' that can be later used against theparties. An example is a `ma�a' that records the transcript and later uses it to `coerce'parties to reveal their inputs. Some research in this direction has been done ([BT, SK,CDNO, CG]); however many questions remain open.Another issue, not addressed in this work at all, is how to deal with unauthenticatedcommunication channels, that can be actively controlled by the adversary. In fact how,again, to precisely de�ne the problem? (Here additional de�nitional problems are encoun-tered. For instance, the adversary may always prevent the parties from completing thecomputation, by simply not delivering messages.) A somewhat restricted de�nition, as wellas a solution for a certain (quite powerful) adversary model is presented in [CHH]. Still,many questions remain open.

Bibliography
[AFL] E. Arjomandi, M. Fischer and N. Lynch, \E�ciency of Synchronous Versus Asyn-chronous Distributed Systems", Journal of the ACM, No. 3, Vol. 30, 1983, pp. 449-456.[Aw] B. Awerbuch, \The complexity of Network Synchronization", JACM, Vol. 32, no.4, pp. 804-823, 1985.[Ba] E. Bach, \How to generate factored random numbers", SIAM J. on Comput., Vol.17, No. 2, 1988, pp. 179-193.[Be] D. Beaver, \Foundations of Secure Interactive Computing", CRYPTO, 1991.[BH] D. Beaver and S. Haber, \Cryptographic Protocols Provably secure Against DynamicAdversaries", Eurocrypt, 1992.[BR1] M. Bellare and P. Rogaway, \Entity authentication and key distribution", Advancesin Cryptology: Proc. of Crypto 93, August 1993, pp. 232-249.[BR2] M. Bellare and P. Rogaway, \Random oracles are practical: A paradigm for designinge�cient protocols", First ACM conf. on Computer and Comm. Security, November1993, pp. 62-73.[BT] Josh Benaloh and Dwight Tunistra, \Receipt-Free Secret-Ballot Elections", 26thSTOC, 1994, pp. 544-552.[BCG] M. Ben-Or, R. Canetti and O. Goldreich, \Asynchronous Secure Computations",25th STOC, 1993, pp. 52-61.[BE] M. Ben-Or and R. El-Yaniv, \Interactive Consistency in Constant Time", submittedfor publication, 1991.[BGW] M. Ben-Or, S. Goldwasser and A. Wigderson, \ Completeness Theorems for Non-Cryptographic Fault-Tolerant Distributed Computation", 20th STOC, 1988, pp. 1-10. 141

Bibliography 142[BKR] M. Ben-Or, B. Kelmer and T. Rabin, \Asynchronous Secure Computation withOptimal Resilience", 13th PODC, 1994 pp. 183-192.[BGH+1] R. Bird, I. Gopal, A. Herzberg, P. Janson, S. Kutten, R. Molva, and M. Yung, \Afamily of light-weight protocols for authentication and key distribution", Submittedto IEEE T. Networking, 1993.[BGH+2] R. Bird, I. Gopal, A. Herzberg, P. Janson, S. Kutten, R. Molva, and M. Yung,\Systematic design of a family of attack-resistant authentication protocols", IEEEJournal on Selected Areas in Communications, 11(5) (Special issue on Secure Com-munications), June 1993, pp.679{693. See also a di�erent version in Crypto 91.[BM] M. Blum, and S. Micali, \How to generate Cryptographically strong sequences ofpseudo-random bits", em SIAM J. on Computing, Vol. 13, 1984, pp. 850-864.[Br] G. Bracha, \An Asynchronous b(n�1)=3c-resilient Consensus Protocol", 3rd PODC,1984, pp. 154-162.[BCC] G. Brassard, D. Chaum and C. Crepeau, \Minimum Disclosure Proofs of Knowl-edge", Journal of Computing and System Sciences, Vol. 37, No. 2, 1988, pp. 156-189.[C] R. Canetti, \Asynchronous Secure Computation", Technical Report no. 755, CSdepartment, Technion, 1992.[CDNO] R. Canetti, C. Dwork, M. Naor and R. Ostrovsky, \Deniable Encryptions",manuscript.[CFGN] R. Canetti, U. Feige, O. Goldreich and M. Naor, \Adaptively Secure Computa-tion", 28th STOC, 1996.[CG] R. Canetti and R. Genaro, \Deniable Multiparty Computation", manuscript.[CHH] R. Canetti, S. Halevi and A. Herzberg, \How to Maintain Authenticated Commu-nication in the Presence of Break-ins", manuscript.[CaH] R. Canetti and A. Herzberg, \Maintaining security in the presence of transientfaults", Crypto' 94, 1994, pp. 425-439.[CR] R. Canetti and T. Rabin, \Optimal Asynchronous Byzantine Agreement", 25thSTOC, 1993, pp. 42-51.[CCD] D. Chaum, C. Crepeau and I Damgard, \Multiparty unconditionally secure proto-cols", 20th STOC, 1988, pp. 11-19.[CD] B. Chor and C. Dwork, \Randomization in Byzantine Agreement", Advances inComputing Research, Vol. 5, 1989, pp. 443-497.[CGMA] B. Chor, S. Goldwasser, S. Micali and B. Awerbuch, \Veri�able Secret Sharing andAchieving Simultaneity in the Presence of Faults", 26th FOCS, 1985, pp. 383-395.[CK] B. Chor and E. Kushilevitz, \A Zero-One Law for Boolean Privacy", SIAM J. onDisc. Math., Vol. 4, no. 1, 1991, pp.36-47.

Bibliography 143[CM] B. Chor and L. Moscovici, \Solvability in Asynchronous Environments", 30th FOCS,1989.[ChH] C. Chow and A. Herzberg, \A reconstructible proactive pseudo-randomness proto-col", Work in progress, June 1994.[DP] A. De-Santis and G. Persiano, \Zero-Knowledge proofs of knowledge without inter-action", 33rd FOCS, pp. 427-436, 1992.[DH] W. Di�e and M. Hellman, \New directions in cryptography", IEEE Trans. on Info.Theory, IT-22(6), 1976, pp. 644-654.[Ed] J. Edmonds, `Paths, Trees, and Flowers", Canadian J. of Math., Vol.17, 1965, pp.449-467.[DDN] D. Dolev, C. Dwork and M. Naor, \Non-malleable Cryptography", 23rd STOC,1991.[ER] M. Elchin and J. Rochlis, \With microscope and tweezers: An analysis of the internetvirus of november 1988", IEEE Symp. on Security and Privacy, 1989, pp. 326{343.[EGL] S. Even, O. Goldreich and A. Lempel, \A randomized protocol for signing contracts",CACM, vol. 28, No. 6,1985, pp. 637-647.[Fe] P. Feldman, \Asynchronous Byzantine Agreement in Constant Expected Time",unpublished manuscript, 1989.[FM] P. Feldman and S. Micali, \An Optimal Algorithm For Synchronous ByzantineAgreement", 20th STOC, 1988, pp. 148-161.[F] M. Fischer, \The Consensus Problem in Unreliable Distributed System", TechnicalReport, Yale University, 1983.[FLP] M. Fischer, N. Lynch and M. Paterson, \Impossibility of Distributed Consensus withOne Faulty Process", JACM, Vol. 32, no. 2, 1985, pp. 374-382.[GJ] M. R. Garey and D. S. Johnson, \Computers and Intractability : a guide to NP-Completeness", W.H. Freeman ed., N.Y., 1979.[G] O. Goldreich, \Foundations of Cryptography (Fragments of a Book)", ed. Dept. ofComputer Science and Applied Mathemetics, Weizmann Institute, 1995.[GGL] O. Goldreich, S. Goldwasser, and N. Linial, \Fault-Tolerant Computation in theFull Information Model", 32nd FOCS, 1991, pp. 447-457.[GGM1] O. Goldreich, S. Goldwasser, and S. Micali, \On the cryptographic applications ofrandom functions", Advances in Cryptology: Proc. of Crypto 84, 1984, pp. 276-288.[GGM2] O. Goldreich, S. Goldwasser, and S. Micali, \How to construct random functions"J. ACM, 33(4), 1986, pp. 792-807. Extended abstract in FOCS84.[GILVZ] O. Goldreich, R. Impagliazzo, L. Levin, R. Venkatesan and D. Zuckerman, \Secu-rity Preserving Ampli�cation of Hardness", FOCS 1990, pp. 318{326.

Bibliography 144[GrL] O. Goldreich and L. Levin, \A Hard-Core Predicate to any One-Way Function",21st STOC, 1989, pp. 25-32.[GMW] O. Goldreich, S. Micali and A. Wigderson, \How to Play any Mental Game", 19thSTOC, 1987,pp. 218-229.[GwL] S. Goldwasser, and L. Levin, \Fair Computation of General Functions in Presenceof Immoral Majority", CRYPTO, 1990.[HILL] J. H�astad, R. Impagliazzo, L. Levin, and M. Luby, \Construction of pseudo-randomgenerator from any one-way functions", Manuscript, see preliminary versions byImpagliazzo et al. in 21st STOC and H�astad in 22nd STOC, 1993.[HJJKY] A. Herzberg, M. Jakonsson, S. Jarecki, H. Krawczyk and M. Yung, \ProactivePublic-Key and Signature Systems", manusript.[HJKY] A. Herzberg, S. Jarecki, H. Krawczyk and M. Yung, \Proactive Secret Sharing or:How to Cope with Perpetual Leakage", CRYPTO 1995.[IR] R. Impagliiazzo and S. Rudich, \Limits on the provable consequences of one-waypermutations", 21th STOC, 1989, pp. 44-58.[KY] A. Karlin and A. Yao, \Probabilistic Lower Bounds for Byzantine Agreement", un-published manuscript, 1986.[LE] T. A. Longsta� and S. E. Eugene, \Beyond preliminary analysis of the wank and oilzworms: A case of study of malicious code", Computers and Security, 12(1), 1993,pp. 61-77.[MS] F. J. Macwiliams and N. J. A. Sloane, \The Theory of Error Correcting Codes",North-Holland, 1977.[MR] S. Micali and P. Rogaway, \Secure Computation", in preparation. Preliminary ver-sion in CRYPTO 91.[MV] S. Micali and V. Vazirani, \An O(pjV j � jEj) Algorithm for Finding MaximumMatching in General Graphs", 21st FOCS, 1980.[MNSS] S. P. Miller, C. Neuman, J. I. Schiller, and J. H. Saltzer, \Kerberos authenticationand authorization system", Project Athena Technical Plan. Massachusetts Instituteof Technology, July 1987.[MT] R. H. Morris and K. Thompson, \Unix password security", Comm. ACM, 22(11),November 1979, pp. 594-597.[OY] R. Ostrovsky and M. Yung, \How to withstand mobile virus attacks", Proceedingsof the 10th Annual ACM Symposium on Principles of Distributed Computing, 1991,pp 51{59.[PSL] R. Pease, Shostak and L. Lamport, \Reaching Agreement in the Presence of Faults",JACM, Vol. 27 No. 2, 1980, pp. 228-234.

Bibliography 145[MRa1] M. Rabin, \How to exchange secrets by oblivious transfer", Tech. Memo TR-81,Aiken Computation Laboratory, Harvard U., 1981.[MRa2] M. Rabin, \Randomized Byzantine Generals", 24th FOCS, 1983, pp. 403-409.[RB] T. Rabin and M. Ben-Or, \Veri�able Secret Sharing and Multiparty Protocols withHonest Majority", 21st STOC, 1989, pp. 73-85.[TRa] T. Rabin , \Robust Sharing of Secrets When The Dealer is Honest or Faulty",Journal of the ACM, No. 6, Vol. 41, 1994, pp. 1089-1109.[Re] R. Reischuk, \A new solution to the byzantine generals problem", Information andControl, 1985, pp. 23-42.[SK] K. Sako and J. Kilian, \Receipt-Free Mix-Type Voting Scheme", Eurocrypt 1995,pp. 393-403.[Sh] A. Shamir, \How to share a secret", CACM, Vol. 22, No. 11, 1979, pp. 612-613.[St] C. Stoll, \How secure are computers in the u.s.a.?", Computers and Security, 7(6),1988, pp. 543-547.[Y1] A. Yao, \Protocols for Secure Computation", 23th FOCS, 1982, pp. 160-164.[Y2] A. Yao, \Theory and applications of trapdoor functions", 23rd FOCS, 1982, pp.80-91.

