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Abstract

Consider a set of parties who do not trust each other, nor the channels by which they
communicate. Still, the parties wish to correctly compute some common function of their
local inputs, while keeping their local data as private as possible. This, in a nutshell, is the
problem of secure multiparty computation. This problem is fundamental in cryptography
and in the study of distributed computations. It takes many different forms, depending on
the underlying network, on the function to be computed, and on the amount of distrust the
parties have in each other and in the network.

We study several aspects of secure multiparty computation. We first present new def-
initions of this problem in various settings. Our definitions draw from previous ideas and
formalizations, and incorporate aspects that were previously overlooked.

Next we study the problem of dealing with adaptive adversaries. (Adaptive adversaries
are adversaries that corrupt parties during the course of the computation, based on the
information gathered so far.) We investigate the power of adaptive adversaries in several
settings. In particular, we show how to construct adaptively secure protocols for computing
any function in a computational setting, where the communication channels can be tapped
by the adversary, and secure communication is achieved by cryptographic primitives based
on the computational limitations of the adversary. We remark that the problem of dealing
with adaptive adversaries in a computational setting was considered to be a hard open
problem.

Next, we initiate a study of secure multiparty computation in asynchronous networks.
We consider a completely asynchronous network where the parties are connected via secure
channels. In this setting, we present appropriate definitions and construct protocols for
securely computing any function. We present a detailed proof of security of our protocols.

In the same asynchronous setting, we apply ideas and techniques of secure multiparty
computation to a classical problem in the field of distributed computing, namely the problem
of reaching agreement in the presence of Byzantine faults. We present the first asynchronous
Byzantine Agreement protocol with optimal resilience (i.e., an adversary may corrupt up to
[5] — 1 of the n parties) and polynomial complexity.

Finally we address the problem of maintaining the security of computer systems in the
presence of repeated, however transient break-ins. We present a new approach for dealing
with this problem. Using our approach, we show how systems can automatically recover
from transient break-ins. We introduce mechanisms for maintaining the security of internal
data of parties. We use secure multiparty computation as a formal setting for developing
and analyzing our mechanisms.
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Introduction

Consider a set of parties who do not trust each other, nor the channels by which they
communicate. Still, the parties wish to correctly compute some common function of their
local inputs, while keeping their local data as private as possible. This, in a nutshell, is
the problem of secure multiparty computation. This problem takes many different forms
depending on the underlying network, on the function to be computed, and on the amount
of distrust the parties have in each other and in the network.

The problem of secure multiparty computation is fundamental in cryptography, as well
as relevant to practical cryptographic applications (as demonstrated in the sequel). In
particular, almost any known cryptographic setting and problem can be viewed as a special
case of this general problem (e.g., encryption, authentication, commitment, signatures, zero-
knowledge, and many others). Thus, secure multiparty computation may serve as a general,
uniform paradigm for the study of most of cryptography. Furthermore, understanding secure
multiparty computation is fundamental in the study of distributed systems in general.

The parties’ distrust in each other and in the network is usually modelled via an ad-
versary that has control over some of the parties, and perhaps also over the communication
media, or channels. (We call parties controlled by the adversary corrupted.) Many different
adversary types (or adversary models) may be considered, each modelling different problems,
or addressing a different setting. The requirements from solutions to secure computation
problems, as well as the techniques used, differ considerably with the adversary models. In
order to be able to present the work done in this field (and, in particular, our work), we
briefly sketch some prominent parameters defining adversary models.

Computational power: We distinguish between adversaries that are computationally un-
bounded and adversaries restricted to probabilistic polynomial time (PPT). We re-
mark that throughout this work we assume that the uncorrupted parties are restricted

to PPT.

Control over the communication: We distinguish three levels of control over the chan-
nels (or, alternatively, three levels of abstraction of the channel security). In the most
abstract setting the adversary has no access to the channels. That is, each two uncor-
rupted parties communicate securely without the adversary hearing or affecting the
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communication. This is the secure channels assumption. Alternatively, we may as-
sume that the adversary can hear all the communication among all parties. Still, the
adversary cannot alter the communication. This is the insecure channels assumption.
Lastly, if the channels are unauthenticated then the adversary has full control over
the communication. That is, on top of hearing the communication the adversary can
delete, generate and modify messages at wish. (We sometimes call insecure channels
authenticated. )

Synchrony: In a synchronous network all parties have a common, global clock. All mes-
sages are sent on a clock ‘tick’, and are received at the next ‘tick’. In an asynchronous
network no global clock exists. Furthermore, arbitrary (however finite) time may
lapse between the sending and receipt of a message. (In particular messages may be
received in an order different than the order of sending.) We remark that, although
often taken as a parameter of the network, synchrony may be considered as a param-
eter of the adversary. In particular, setting the actual delays of the messages may be
naturally considered as an additional power given to the adversary.

Number of corrupted parties: We limit the number of corrupted parties at any given
time. An adversary is ¢-limited if at any given time at most ¢ parties are corrupted. A
protocol is t-resilient if it meets it specifications in the presence of t-limited adversaries.
t-resilient protocols for secure computation are also called t-secure.

Control over corrupted parties: We distinguish between eavesdropping adversaries that
only gather information and do not alter the behavior of corrupted parties, and Byzan-
tine adversaries that may alter the behavior of the corrupted parties in an arbitrary and
coordinated way. In asynchronous networks it makes sense to consider also Fail-Stop
adversaries. Here the only diversion from the protocol allowed to the corrupted parties
is to “crash”, that is to stop sending message at some time during the computation.
(A crushed party may not resume sending messages.) For security considerations, we
assume that faulty parties continue receiving messages and have an output.

Adaptivity: By adaptivity we mean the way in which the corrupted parties are chosen. It
is simplest to assume that the set of corrupted parties is arbitrary but fixed (ofcourse,
the uncorrupted parties do not know the identity of the corrupted parties). We call
such adversaries non-adaptive. Alternatively, we may let the adversary choose which
parties to corrupt as the computation proceeds, based on the information gathered so
far. Once a party is corrupted it remains so for the rest of the computation. We call
such adversaries adaptive.

Lastly, we may let the adversary corrupt, in an adaptive way, a different set of parties
at different times during the computations. (Here, parties that were once corrupted
may become uncorrupted again, and there is no limit on the total number of par-
ties that were corrupted at some time or another during the computation.) Such
adversaries are called mobile.

In the sequel we often use the following terminology. A secure channels setting refers to
computationally unbounded adversaries with secure channels. A computational setting refers
to adversaries restricted to PPT, and insecure channels. Other parameters (e.g., synchrony,
adaptivity) may vary.
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A great deal of work has been done studying secure multiparty computation. This
body of work may be divided to three major efforts as follows. First, ingenious protocols
have been devised for securely computing, in several adversary models out of the ones
characterized above, any function whose inputs are distributed among the parties. Next,
ideas and techniques from multiparty computation have been successfully applied to other
problems in cryptography and in computer science in general. Another effort aims at finding
“good” definitions for secure multiparty computation in different adversary models. By
“good” we mean definitions that correctly capture our intuitive notions, and are coherent
and usable. Surprisingly, such definitions have proved to be very evasive. In particular,
in spite of considerable efforts (and some appreciable results), published definitions have
several shortcomings, described in the sequel.

We remark that the current state of knowledge regarding secure multiparty computation
is somewhat paradoxical: Constructions solving ‘any protocol problem’ exist, accompanied
by neither a proof nor a good definition. The value and validity of most of these construc-
tions is intuitively obvious. However, precise definitions and proofs are essential. To the
best of our knowledge, the first work that contains a definition, a protocol and a full proof
for a secure multiparty computation problem is the asynchronous secure computation work
presented here. In another part of our work we demonstrate a fundamental problem, namely
the adaptive security problem, where precise definition and analysis result in pinpointing
the difficulties and lead to a long-sought solution (for some important special cases).

In this work we address several different aspects of secure multiparty computation,
ranging over the above efforts. In the rest of the introduction we motivate and overview our
contributions, as follows. We first briefly overview, in Section 1.1, some of the prior work
in this area that is directly relevant to our work. Next, for n € {2,...,6}, Section 1.n in
the introduction motivates Chapter n in the sequel.

In Chapter 2 we address the problem of defining secure multiparty computation. We
present new formulations of definitions of secure multiparty computation in different adver-
sary models. In Section 1.2 we briefly and roughly sketch our new ideas, as well as overview
some prior definitions on which we base ours.

In Chapter 3 we investigate the extra power of adaptive adversaries over non-adaptive
adversaries. We consider two cases: the secure channels setting and the computational
setting. (In the secure channels setting, we distinguish two very different variants.) We shed
new light on this problem and re-evaluate some common beliefs. In particular, we show
how to construct adaptively secure protocols for computing any function in a computational
setting.

Next we study security in asynchronous networks. In Chapter 4 we define a notion of
secure multiparty computation in asynchronous networks. We also show how any functions
can be securely computed in our setting. We present detailed proofs of security of our
constructions. In Chapter 5 we apply ideas and techniques of secure multiparty compu-
tation to the classical Byzantine agreement problem. We present the first asynchronous
Byzantine Agreement protocol with optimal resilience (our protocol is ([%] — 1)-resilient)
and polynomial complexity.

The notion of asynchronous verifiable secret sharing (AVSS) plays a key role in both
Chapters 4 and 5. In each of the two chapters we present a very different construction
of AVSS. The two constructions have different resilience properties. We elaborate on the
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differences in the sequel.

In Chapter 6 we address the problem of maintaining the security of computer systems in
the presence of repeated, however transient break-ins. We present a new approach, called
the proactive approach, for dealing with this problem. Using our approach, we show how
systems can automatically recover from transient break-ins.  We use secure multiparty
computation as a formal setting for developing and analyzing our mechanisms.

We conclude by presenting, in Chapter 7, a brief personal view of the work and its
merits. We also propose some directions for further research.

1.1 Some prior and related work

We briefly overview three works that are immediately relevant to our work. We also mention
some other prominent works in secure multiparty computation. (We present other relevant
works in the sequel.)

The problem of secure computation was first formulated by Yao for the two-party case
in 1982 [Y1]. Five years later, Goldreich, Micali and Wigderson showed how to securely
compute any function whose inputs are divided among the parties, in a computational setting
[GMW]. That is, in [GMW] a synchronous network of n parties is considered, where the
communication channels are insecure, and the parties, as well as the adversary, are restricted
to PPT. In this model they showed, under the assumption that one-way functions with
trapdoor exist, how to construct n-secure protocols for computing any function, in the
presence of eavesdropping adversaries. In the case of Byzantine adversaries they show
([%]—1)-secure protocols for computing any function. Their protocols can be shown secure
in the presence of non-adaptive adversaries.

Ben-Or, Goldwasser and Wigderson [BGW] (and, independently, Chaum, Crepeau and
Damgard [CCD]) study secure multiparty computation in the secure channels setting. They
show that: (a) If the adversary is eavesdropping then there exist ([5] — 1)-secure protocols
for computing any function. (b) if the adversary is Byzantine, then any function can be
([2] — 1)-securely computed. Furthermore, they show that these bounds on the number of
corruptions are tight. These protocols can be shown secure in the presence of non-adaptive
adversaries. Adaptive security (i.e., security in the presence of adaptive adversaries) is
provable in certain variants of this setting. We elaborate on this point in Chapter 3.

Goldwasser and Levin build on a long sequence of works studying the case of Byzantine
adversaries limited to PPT, where a majority of the parties may be corrupted [GwL].
Chor and Kushilevitz study secure multiparty computation with corrupted majority of
the parties in the secure channels setting [CK]. Goldreich, Goldwasser and Linial study
secure multiparty computation in the presence of insecure channels and computationally
unlimited adversaries [GGL]. Ostrovsky and Yung study secure multiparty computation in
the presence of secure channels and mobile adversaries [OY]. Micali and Rogaway [MR],
and also Beaver [Be], propose definitions for secure multiparty computation in the secure

channels setting, in the presence of adaptive adversaries.
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1.2 Defining secure multiparty computation

We attempt at formulating coherent, lean, and usable definitions, that adequately capture
our intuitive notion of security of protocols for multiparty computation in different adversary
models. In the sequel we make extensive use of our definitions, when proving security of our
protocols. Our definitions build on previously known ideas. We first present these ideas, as
well as a brief critique and comparison of relevant works. Next we present our interpretation
and new ideas.

Micali and Rogaway [MR], and independently Beaver [Be| introduced the following
methodology for defining secure multiparty computation (or, more specifically, secure eval-
uation of a function whose inputs are distributed among the parties). First an ideal model for
secure multiparty computation is formulated. A computation in this ideal model, described
below, captures “the highest level of security we can expect from multiparty function eval-
uation”. Next we require that executing a secure protocol 7 for evaluating some function of
the parties” inputs in the actual, real-life setting is “equivalent” to evaluating the function
in the ideal model.

A computation in this ideal model proceeds as follows. First an ideal-model adversary
chooses to corrupt a set of parties (either adaptively or non-adaptively), learns their inputs,
and possibly modifies it. Next all parties hand their (possibly modified) inputs to an
incorruptible trusted party. Next the trusted party computes the expected output (i.e., the
function value) and hands it to all parties. The uncorrupted parties output whatever they
receive from the trusted party. The corrupted parties output some arbitrary function of
their joint inputs, random inputs, and the value received from the trusted party. Loosely
speaking, executing 7 in the real-life setting is said to be “equivalent” to evaluating the
function in the ideal model, if the same effect on the computation achieved by a real-life
adversary can be also achieved by an ideal-mode adversary.

The definitions in [MR] and [Be] differ in the notion of equivalence of computations. In
[MR] the ideal-model adversary is required to very closely mimic the operation of the real-
life adversary, down to precise details. In particular, the ideal-model adversary is limited to
creating a simulated environment for the real-life adversary (that looks the same as a real
environment), via a special type of black-box simulation. In [Be] a different approach is
pursued. First a general notion of comparing security of protocols is formulated, as follows.
Consider two protocols a and 8 for computing the same function. Essentially, protocol a is
at least as secure as protocol f if an adversary attacking a cannot affect the outputs of the
parties more than an adversary attacking 3. (Here some technical “interface” algorithms are
used when « and 3 operate in different adversary models.) Next, a protocol for evaluating
a function is secure if it at least as secure as the trivial protocol for evaluating the function
in the ideal model. We remark that, although their approach is general, both Micali and
Rogaway and Beaver formalize their definitions only in the secure channels setting.

Our definitions use ideas from both works. We first define an ideal-model adversary,
based on the above description. Next we require that for any real-life adversary B attacking
a secure protocol 7 there exists an ideal-model adversary A that has the same effect on the
computation as B, even though A operates in the ideal model. That is, on any inputs for
the parties, the random variable describing the outputs of all parties in the ideal model is
distributed “similarly” to the random variable describing the outputs of all parties in the
real-life model. (The particular notion of similarity, e.g. perfect equality or computational
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indistinguishability, depends on the specific adversary model.) We emphasize that the
complexity of the ideal-model adversary A should be comparable to the complexity of
the real-life adversary B. We elaborate on this point in Chapters 2 and 3. Our definitions
incorporate an important additional concern that was left unnoticed by previous definitions.
We present this concern in Section 1.2.1 below.

We believe that our simple and straightforward notion of equivalence of computations,
which does not restrict the operation of the ideal-model adversary, suffices for defining
security. In the sequel we also use a more restrictive and technical notion of equivalence of
a real-life computation to a computation in the ideal model. Here we limit the ideal-model
adversary A to black-box simulation of the real-life adversary. (A more precise definition of
this simulation is presented in the sequel.) We note that our notion of black-box simulation
is less restrictive than the [MR] notion.

We remark that Goldwasser and Levin take a slightly different approach at defining
secure multiparty computation [GwL]. First they extract the ‘inevitable advantages’ of
the adversary in the ideal model (we briefly sketch these ‘inevitable advantages’ below).
Next they say that a protocol is robust if for any adversary, there exists an “equivalent”
adversary that is limited to these ‘inevitable privileges’, and that has the same effect on
the computation. Their notion of robustness of protocols has the advantage that it is
independent of the specific function to be computed (except for some technical subtleties
ignored in this presentation).

The ‘inevitable privileges’ of the adversary, extracted from the ideal model, can be
sketched as follows. First, the adversary may choose to corrupt parties (either adaptively
or non-adaptively). Next, if the adversary is Byzantine then the inputs of the corrupted
parties may be modified. (However, this is done without knowledge of the inputs of the
uncorrupted parties). Next, the adversary may learn the specified outputs of the corrupted
parties. This may inevitably reveal some information on the inputs of the uncorrupted
parties. Furthermore, if the adversary is adaptive then it can corrupt parties, after the
computation is completed, based on the output of the computation.!

1.2.1 On semi-honest parties

The problem of secure computation in the presence of adaptive adversaries is intimately
related to the following concern. In a distributed scenario where no party is thoroughly
trusted, there is no reason to believe that even uncorrupted parties follow their protocols
to the dot. Honest parties internally deviate from their protocol in many real-life scenarios,
such as users that keep record of their passwords, stock-market brokers that keep records
of their clients’ orders, operating systems that “free” old memory instead of erasing or
take periodic snapshots of the memory (for error recovery purposes), and computers that
use pseudorandom generators as their source of randomness instead of truly random bits.
Consider for example a protocol in which party A is instructed to choose a random number
r for party B, hand r to B, and then to erase r from its own memory. Can B be certain

'It turns out that if a majority of the parties are corrupted then, in addition to the privileges described
above, the adversary cannot be prevented from “quitting early”, i.e. disrupting the computation at any
time. However, this is done without knowing the output with more certainty than the uncorrupted parties.
We do not discuss situations of corrupted majority in this work.
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that A no longer knows r? Furthermore, can A now convince a third party (or an adversary
that decides to corrupt A) that he no longer knows r?

For this purpose we introduce the notion of a semi-honest party.? Such a party “appears
as honest” (i.e., seems to be following its protocol) from the point of view of an outside
observer; however, internally it may somewhat deviate from his protocol. For instance, a
semi-honest party may fail to erase some internal data, or use randomness not as instructed.
(However, semi-honest parties do not collaborate.) We wish to have protocols that are secure
even when parties are not thoroughly trusted, or in other words when the uncorrupted
parties are semi-honest rather than honest. That is, say that a protocol 7’ is a semi-honest
protocol for a protocol 7 if a party running 7/ “appears as” an honest party running =.
(We define this notion more precisely in Chapter 2.) When the parties are not thoroughly
trusted we want the requirements from 7 to be satisfied even if the uncorrupted parties
are running some semi-honest protocol for 7. In the sequel, we consider several alternative
notions of semi-honest parties, differing in the “amount of allowed internal deviation” from
the protocol.

We distinguish three types of semi-honest behaviour. The most ‘benign’ (and hardest to
prevent) is simply not erasing internal data. We call such parties non-erasing. Alternatively,
one may consider parties that internally deviate from the protocol in an arbitrary way, as
long as the deviation is undetectable by any external test (that represents a collaboration
of the other parties). We call such parties honest-looking. Finally, we consider parties
that deviate from their protocols in a way that is undetectable only by parties running the
protocol. Such parties are called weakly honest. We elaborate on (and present definitions
of ) the three types of semi-honest parties in Chapter 2.

We remark that the difference between computations in the presence of totally honest
parties and computations in the presence of semi-honest parties becomes evident only in
the presence of adaptive adversaries.

1.3 Adaptively secure computation

We investigate adaptively secure multiparty computation (that is, computation secure in the
presence of adversaries that choose which parties to corrupt as the computation proceeds,
based on the information gathered so far). Unlike the case of non-adaptive adversaries,
which is pretty well understood, the case of adaptive adversaries contains various aspects
that were previously overlooked. In particular, unlike folklore belief, proving adaptive
security of protocols in both the secure channels and computational settings encounters
fundamental difficulties. We investigate these difficulties and provide solutions for some
important special cases.

The difference between adaptive and non-adaptive adversaries may be best demonstrated
via an example. Consider the following secret sharing protocol, run in the presence of an
adversary that may corrupt t = O(n) out of the n parties: A dealer D chooses at random
a small set S of m = \/t parties, and shares its secret among these parties using an m-out-
of-m sharing scheme. In addition D publicizes the set S. Intuitively, this scheme lacks in
security since S is public and |S| < t. Indeed, an adaptive adversary can easily find D’s

2We borrow the name from an earlier version of [GMW], where it is used for different purposes.
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secret, without corrupting D, by corrupting the parties in 5. However, any non-adaptive
adversary that does not corrupt D learns D’s secret only if .5 happens to be identical to the
pre-defined set of corrupted parties. This happens only with exponentially small probability.
Consequently, this protocol is secure in the presence of non-adaptive adversaries.

It turns out that the power of an adaptive adversary depends, in a crucial way, on the
amount in which uncorrupted parties internally deviate from their protocols. Consider a
party just corrupted by the adversary, during the course of the computation. If the party
is totally honest, then the adversary will see exactly the data specified in the protocol;
in particular, any data that was supposed to be erased will be indeed erased. In this case
adaptively secure computation can be carried out, using known primitives, in all the settings
discussed below [BH]. If, however, the party did not erase old data (or more generally if
the party is semi-honest, as informally defined in Section 1.2), then the adversary may see
a great deal of other data, such as all the past random choices of the party and all the
messages ever received and sent by the party. (The adversary may also see other, more
problematic types of internal data. We elaborate on this point in the sequel.) Therefore,
the adversary is much more powerful in the presence of semi-honest parties. The more
allowed “internal deviation” from the protocol, the stronger the adversary becomes.

We first consider the secure channels setting. Here the [BGW, CCD] protocols can be
proven adaptively secure in the presence of non-erasing parties (see Section 1.2.1). Funda-
mental problems arise when trying to prove adaptive security of protocols in the presence
of more general types of semi-honest parties. We sketch these problems.

Finally we concentrate on the computational setting, and on non-erasing parties. Is
adaptively secure computation possible in this scenario? This question has remained open
since the result of [GMW].

We answer this question in the affirmative. The problems encountered, and our solution,
are presented via the following transformation. It is a folklore belief that any secure protocol
in the secure channels setting can be transformed into a secure protocol in the computa-
tional setting, by encrypting each message using a standard (semantically) secure encryption
scheme. This belief can indeed be turned into a proof, provided that only non-adaptive ad-
versaries are considered. Major difficulties are encountered when trying to prove this belief
in the presence of adaptive adversaries. We show how these difficulties are overcome if a
novel protocol for transmission of encrypted data is used, instead of standard encryption.
We call such encryption protocols non-committing. (Standard encryption schemes are not
non-committing.) We also construct a non-committing encryption protocol, based on the
existence of a primitive called common domain trapdoor systems. This primitive exists under
the RSA assumption.

Non-committing encryption can be roughly described as follows. Traditional encryption
schemes have the extra property that the ciphertext may serve as a commitment of the
sender to the encrypted data. That is, suppose that after seeing the ciphertext, a third
party requests the sender to reveal the encrypted data, and show how it was encrypted and
decrypted. Using traditional encryption schemes it may be infeasible (or even impossible)
for the sender to demonstrate that the encrypted data was any different than what was
indeed transmitted. (In fact, many times encryption is explicitly or implicitly used for
commitment.) In a non-committing encryption scheme the ciphertext cannot be used to
commit the sender (or the receiver) to the transmitted data. That is, a non-committing
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encryption protocol allows a simulator to generate dummy ciphertexts that look like genuine
ones, and can be later “opened” as encryptions of either 1 or 0, at wish. We note that
communication over absolutely secure channels is trivially non-committing, since the third
party sees no “ciphertext”.

Our construction of non-committing data transmission requires all parties to participate
in the secure transmission of information between two parties. For benefit of other possible
applications, we note that our construction can be carried out in two stages; the first stage,
which requires the participation of all parties, does not depend on the data to be delivered
(which may even be undetermined at this stage), whereas the second stage consists of a
single message transmission from the data-sender to the receiver. Our scheme is resilient as
long as at least one party remains uncorrupted.

1.4 Asynchronous secure computation

We initiate a study of security in asynchronous networks. We consider a completely asyn-
chronous network of n parties connected by private channels. There is no global clock,
and messages can be arbitrarily delayed on the channels (however, each message sent is
eventually received). Furthermore, the order of the messages on a channel need not be
preserved.

If the adversary is eavesdropping, then any synchronous secure protocol can be run in
an asynchronous network using any synchronizer (e.g. [Aw]). It can be seen that in this
case, the security (in the synchronous sense, as defined in Chapter 2) of the protocol is
maintained. However, asynchrony combined with the possibility of faults has devastating
consequences on the computational capabilities of a network. Fischer, Lynch and Paterson
[FLP] showed that deterministic protocols cannot achieve even the basic goal of Consensus
in an asynchronous network in the presence of even one Fail-Stop fault. Consequently, every
(randomized) protocol reaching Consensus must have some infinite runs (on every input).
Chor and Moscovici [CM] characterized the possible “tasks” in the presence of ¢ Fail-Stop
faults: roughly speaking, the output of any computation, in the presence of ¢ potential
faults, cannot be based on more than n — ¢ of the inputs (since up to ¢ parties may never
join the computation).

We define secure computation in this asynchronous setting. Following the methodology
of synchronous definitions (see Section 1.2), we first envision an ideal model for secure com-
putation in our asynchronous setting. This ideal model is different than the ‘synchronous’
ideal model. We then say that a real-life computation is secure if it is “equivalent” to a
computation in the ideal model. A computation in the ideal model proceeds as follows. Also
here , an incorruptible trusted party is added to the network. Essentially, in the presence of ¢
potential faults (or corruptions), the trusted party cannot wait to hear from more than n—¢
parties in the network (since up to ¢ may never join the computation). Instead, the trusted
party outputs an “estimation” to the function value, based on the inputs of the parties in
some “core” set of size at least n — ¢. This “core” set, chosen by the adversary, should be
independent of the inputs of the uncorrupted parties. Furthermore, this “core” set should
appear explicitly in the output of the uncorrupted parties (otherwise, the output may have
no sense). The corrupted parties should learn nothing from the computation, other than
the estimated function value, and the agreed “core” set.



1.5 Asynchronous Byzantine Agreement 10

We show that whatever can be computed in this asynchronous setting can be computed
in a secure manner. We consider two types of adversaries. First, we show how to t-securely
compute any function (in the asynchronous sense), provided that the adversary is Fail-Stop,
and n > 3t 4+ 1. Next, we show how to t-securely compute any function in the presence of
Byzantine adversaries, provided that n > 4¢ + 1. In our protocols, there is no probability
of error in the output of the uncorrupted parties. Although infinite runs of our protocols
must exist, they occur with probability (or measure) zero.

The resilience of our construction to Fail-Stop adversaries is optimal. That is, we demon-
strate functions which cannot be n/3-securely computed (or even approximated better than
guessing at random) in the presence of Fail-Stop adversaries. The resilience of our construc-
tion for Byzantine adversaries is optimal with respect to errorless protocols. That is, we
demonstrate functions that cannot be [%]-securely computed in the presence of Byzantine
adversaries, if no errors are allowed. Subsequent to our work Ben-Or, Kelmer and Rabin
showed, using very different constructions, how any function can be ([%] —1)-securely com-
puted in the presence of Byzantine adversaries, and with exponentially small probability of
error [BKR].

Our constructions adapt the [BGW] synchronous constructions to an asynchronous envi-
ronment. Furthermore, we develop several new tools which may be of separate interest. We
describe a constant time, errorless Asynchronous Verifiable Secret Sharing (AVSS) scheme
for n > 4t41. (different constructions [Fe, CR] have a small probability of error.) Our AVSS
scheme employs a method for ‘on-line’ error correcting of Generalized Reed Solomon codes,
as well as a ‘specially tailored’” approximation scheme for the maximum-clique problem in
a graph.

Another tool is a protocol for agreement on a common “core” set of parties. At the
onset of this protocol, each party knows of a different set of parties that have completed
some stage (e.g., the sharing of their inputs has been successfully completed). The protocol
enables the uncorrupted parties to agree on a large enough “core” set of parties, such that
all the parties in this core set have indeed completed the specified stage.

We present a full proof of security of our constructions. For clarity of presentation, we
first prove that our protocols are secure against non-adaptive adversaries. Next we modify
the proofs to deal with adaptive adversaries.

1.5 Asynchronous Byzantine Agreement

The problem of reaching agreement in the presence of faults is one of the most fundamental
problems in the field of distributed computing. A particularly interesting variant of this
problem, introduced by Pease, Shostak and Lamport [PSL], allows Byzantine adversaries.
A standard formulation of this problem, called the Byzantine agreement (BA) problem,
follows: design a protocol that allows the uncorrupted parties to agree on a common value.
The agreed value should be the input value of one of the uncorrupted parties. We remark
that Byzantine agreement is a very limited special case of secure multiparty computation,
where privacy of the inputs of the parties need not be kept. Still, privacy-maintaining
primitives will play a key role in our construction.

The BA problem was extensively investigated in various adversary models (out of the
ones characterized at the beginning of the introduction). We refer the interested reader to
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the surveys of Fischer [F] and Chor and Dwork [CD]. However, despite extensive research
a few important questions have remained open. One of these questions is the focus of this
work.

Bounds on the resilience of BA protocols were proved in [PSL]. There, it was showed
that agreement cannot be reached by a deterministic protocol in an n-party synchronous
network with [%] Byzantine faults. Karlin and Yao [KY] generalized this result to ran-
domized protocols. These results apply also to asynchronous networks. Furthermore, the
impossibility result of Fischer, Lynch and Paterson for deterministic protocols [FLP] implies
that any (randomized) protocol reaching BA must have non-terminating runs. Bracha de-

scribes an ([2] — 1)-resilient asynchronous BA protocol which runs in 2°(") expected time

[Br]. Feldman and Micali describe a synchronous ([5] — 1)-resilient BA protocol, which

runs in constant expected time [FM]. Feldman [Fe] generalizes the [FM] construction to an

asynchronous setting, yielding a constant expected time, ([4] — 1)-resilient asynchronous

BA protocol. All of these works allow computationally unbounded adversaries ([F'M, Fe]
assume secure channels).

A long standing open question (cf. [FM, CD]) is whether there exists an ([%] — 1)-

resilient asynchronous BA protocol with polynomial (time and message) complexity.
We answer this question in the affirmative. We consider a completely asynchronous

network of n parties with secure channels, and computationally unlimited, adaptive ad-

versaries. In this setting, we describe a BA protocol that is ([%] — 1)-resilient. With

overwhelming probability all the uncorrupted parties complete our protocol. Given that all
the uncorrupted parties have completed the protocol, they do so in constant expected time.
The constructions we use in our protocol are of independent interest.

Let us overview the chain of results leading to our result, and sketch the techniques used.

Rabin [MRa2]| describes an ([%] — 1)-resilient BA protocol that runs in constant expected

time, provided that all the parties have access to a ‘global coin’ (namely, a common source

of randomness). Rabin’s construction can be used in synchronous as well as asynchronous

networks. Bracha [Br] improved the resilience of Rabin’s protocol to [5] — 1. Furthermore,

He proposed a very simple (however inefficient) scheme for implementing ‘global coin’. (This
inefficiency results in exponential running time.) The essence of the [FM] ([%] — 1)-resilient
synchronous BA protocol is an efficient scheme for generating such a ‘global coin’; once this
global coin is generated, the parties proceed in a similar manner to Rabin’s and Bracha’s
protocols. The [FM] protocol for generating this ‘global coin’ relies heavily on a Verifiable
Secret Sharing (VSS) scheme. (The notion of VSS was introduced in [CGMA].) Feldman
[Fe] describes an asynchronous construction for ‘global coin’ and BA, given an r-resilient

Asynchronous VSS (AVSS) scheme. This construction is men(r, [§]—1)-resilient. ([4]—1)-

resilient AVSS schemes are presented in [Fe, BCG]. (The [BCG] scheme is presented in
Section 4.4.) Up to now, no known AVSS scheme has been more than ([%] — 1)-resilient.

In this chapter, we construct an ([5]| — 1)-resilient AVSS scheme. We also present a

considerably modified version of Feldman’s construction for reaching BA given an AVSS

scheme. Put together, these constructions constitute an asynchronous ([%]| — 1)-resilient

BA protocol. We note that our ([5] — 1)-resilient AVSS scheme has applications in other

contexts as well (for instance, in [BE, BKR]).

We offer an intuitive exposition of the difficulties encountered in trying to devise an

([5] — 1)-resilient AVSS scheme. Generally, in an asynchronous network of n parties with
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t potential faults, a party can never wait to communicate with more than n — t other
parties, because the corrupted parties may not cooperate. An AVSS scheme is composed
of two phases: (1) a sharing phase, in which a dealer shares a secret among the parties,
and each party verifies for himself that a unique secret is defined by the shares, and (2) a
reconstruction phase in which the parties reconstruct the secret from its shares. A party P
must be able to complete the execution of the sharing phase even if he has communicated
with only » —t of the parties. This means that he has verified the existence of a well defined
secret only with this subset of the parties, denoted C;. When P proceeds to carry out the
reconstruction phase he again can communicate with at most n — ¢ of the parties. Denote
this set C5. The set 5 might include parties with whom P has not communicated in the
sharing phase, hence P does not know whether their shares are in accordance with the
secret defined by the shares of the parties in Cy. (Possibly, the parties that are not in
did not receive shares at all.) Thus, P can depend only on the parties in the intersection,
C, of the two sets. Still, ¢ out of the parties in €' may be corrupted. Aslong as n > 4t 4+ 1,
it holds that |C| > 2t 4 1; thus, the majority of the parties in C' are uncorrupted. However,
when n = 3t 4+ 1, it is possible that |C| = ¢ 4+ 1. In this case, there might be only a single
uncorrupted party in C'.

We overcome these difficulties by devising a tool, called Asynchronous Recoverable Shar-
ing (A-RS), assuring that, with overwhelming probability, the shares of all the parties in
the set C; (defined above) will be available in the reconstruction phase. The A-RS protocol
uses a tool presented in [TRa, RB], called Information Checking Protocol. Using A-RS as a
primitive, we construct a secret sharing scheme, called Asynchronous Weak Secret Sharing
(AWSS). Using AWSS, we construct our AVSS scheme. (Both the AWSS and the AVSS

schemes generalize synchronous constructs introduced in [TRa, RB].)

1.6 Proactive security: Maintaining security in the presence
of transient faults

Traditionally, cryptography is focused on protecting interacting parties (i.e., computers)
against external malicious entities. Such cryptographic tasks include private communica-
tion over insecure channels, authentication of parties, unforgeable signatures, and general
multiparty secure computation. An inherent property of all these scenarios is that once a
party is corrupted it remains this way.

As computer systems become more complex, internal attacks on systems (i.e., attacks
that corrupt components within a system) become an even more important security threat
(e.g., [LE, St]). Such attacks may be performed, for instance, by internal (human) fraud, op-
erating system weaknesses, or Trojan horse software (e.g. viruses). We use the generic term
break-ins for all these attacks. Security administrators often find break-ins more alarming
than external attacks, such as line tappings.

Break-ins are often temporary, or transient (e.g., [ER]). Thus the paradigm of “bad once
means bad forever” does not hold here. Still, known solutions to break-ins do not include
mechanisms for taking advantage of possible automatic recovery of a component, in case
that the fault is transient. This approach is contrasted with the traditional approach of
fault-tolerance, which relies heavily on the fact that faults are transient, and on the reuse of
recovered components. We believe that the idea of recovering and reusing components that
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have once been corrupted can be extremely useful also for cryptographic purposes. This
idea, and in particular the recovery process, is the focus of this work.

We propose a new approach to designing security systems in the presence of perpetual,
however transient break-ins. This approach, which we call the proactive approach, may be
outlined as follows.

(a). Distribute the tasks and responsibilities among several components ofthe
system. Design the system so that the overall security remains intact as long as
at any instance the security of only some fraction of the components is compro-
mised.

(b). Design a mechanism for automatic recovery of a given component from a
break-in, possibly with the help of other components. Recovery will be guaran-
teed only if the component is no longer corrupted (i.e., controlled by an adver-
sary).

(c¢). Apply the automatic recovery mechanism periodically to all components in
the system.

This way, the overall security provided by the system remains intact in the presence of
break-ins, as long as no large fraction of the components are broken into all at once (that
is, between two consecutive applications of the recovery mechanism).

The automatic recovery process is at the heart of proactive security. The goal of the
recovery process is to ensure that once a component is recovered, it will again contribute
to the overall security of the system. This goal is somewhat tricky. Even after the attacker
loses control of a component, it still knows the internal data of the component (e.g., the
private cryptographic keys). Thus, a first step in the recovery process must be to somehow
hand the recovering component some new secrets unknown to the attacker. These secrets
can then be used to, say, choose new keys. The obvious way to generate such secrets is to
use some source of “fresh”, physical randomness. However, such a source may not be readily
available. (In the sequel we demonstrate other reasons for not using fresh randomness in
each round, even when it is available.) In this paper we show how, using the non-corrupted
components in the system, new “pseudorandom” secrets can be generated without fresh
randomness. In Section 1.6.1 we describe an important application of our PP protocol to
secure sign-on mechanisms.

We use multiparty secure computation as a formal setting for our work, as follows. We
consider a system (network) of components (parties) where every two parties are connected
via a communication channel. (We elaborate below on the security requirements from the
channels.) Parties may be temporarily corrupted by a mobile adversary. That is, the
adversary may choose to corrupt different parties at different times (i.e., communication
rounds), as long as at any given time the number of infected parties is limited. We stress
that there may be no party that has never been infected! Secure multiparty computation
in the presence of mobile adversaries was previously studied by Ostrovsky and Yung [OY].

We remark that here the notion of semi-honest parties (discussed in Section 1.2) is
irrelevant, since all components are programmed and run by the same entity. In fact,
erasing old data plays a key role in our constructions.

We assume that, even if the faults are Byzantine, once the adversary has left the party
resumes executing its original protocol (while its memory may be corrupted). This assump-
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tion is explained as follows. If the adversary can control the protocol after it leaves, then
there is little meaning to recovery, and regaining security would be impossible. Further-
more, in practice there are reasonable ways to ensure that the code is not modified, such as
physical read-only storage or comparison against backup copies. These techniques are used
regularly in many systems.

In this work, we describe a scheme in which the parties use randomness only at the
beginning of the computation. At each round, the scheme supplies each uncorrupted party
with a “fresh” pseudorandom number, unpredictable by the adversary, even if this party
was corrupted in previous rounds, and if the adversary knows all the other pseudorandom
numbers supplied to any party at any round. In particular, these pseudorandom numbers
can be used by a recovering party just as fresh random numbers (e.g., for regaining security).
We call such a scheme a proactive pseudorandomness (PP) protocol.

We require the following weak conditions. First, we assume that the adversary is limited
to probabilistic polynomial time. Next, we require that in each round of computation there
is at least one secure party. A party is secure at a given round if it is uncorrupted at this
round, and it has a secure channel to a party that was secure in the previous round. This
channel has to be secure only during this round.

Our construction is simple, using pseudorandom functions [GGM2, GGM1]. A standard
cryptographic tool which is believed to behave as a pseudorandom function family is the
Data Encryption Standard (DES). Our construction requires each server to apply DES once
per user at each round.

1.6.1 Reconstructability and an application to secure sign-on

We describe an important application of our PP protocol to secure sign-on mechanisms.

Reconstructability. Pseudorandom generators, being deterministic functions applied to
a random seed, have the following advantage over truly random sources. A pseudorandom
sequence is reconstructible, in the sense that it is possible to generate exactly the same
sequence again by using the same seed. This property is very useful for several purposes,
such as repeatable simulations and debugging. Our application to secure sign-on also makes
use of this property.

In our setting, we say that a PP protocol is reconstructible if the value generated within
each party at each round depends only on the seeds chosen by the parties at the beginning
of the computation. In particular, these values should not depend on the adversary.

Reconstructability is not easily achieved for proactive pseudorandomness protocols. In
particular, the basic protocol described here is reconstructible only if the adversary is eaves-
dropping. Fail-Stop adversaries (and also Byzantine adversaries, at the price of slightly
compromising the security) could be tolerated by simple modifications.

An application to Secure Sign-On. Unix and other operating systems provide security
for the passwords by storing only a one-way function of the passwords on disk [MT]. This
technique allows authentication of the users, secure against eavesdropping the password file.
Session security is not provided if the communication channels are not secure.

When constructing secure LAN systems, it is not realistic to assume that the under-
lying communication channels are secure. Security mechanisms, therefore, avoid sending
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the password “on the clear”. Instead, they use the user’s password to derive a session
key, with which they secure the communication. In both Kerberos [MNSS] and NetSP /
KryptoKnight[BGH™ 1], this is done by using the password as a key for exchanging a ran-
dom session key; this method also allows NetSP / KryptoKnight to authenticate the user
automatically to additional systems (‘single sign on’).

However, this mechanism implies that some server must be able to compute the session
key itself, using some secret (e.g. the password). This in turn implies that the server has to
maintain the password file secret. This secrecy requirement is a major ‘Achilles heel’ of any
security system. (Indeed, NetWare 4.0 provides a more complicated and computationally
intensive solution, where the server keeps, for each user, an RSA private key encrypted
using the user’s password. The encrypted private key is sent to the workstation, which
decrypts it using the password, and then uses it to derive a session key. This solution only
requires the password file remains unmodified, rather than secret.)

We show how a reconstructible proactive pseudorandomness protocol can be used to
overcome this weakness, without compromising efficiency. Our solution uses several proac-
tive sign-on servers. The servers run a different copy of our PP protocol for each user. The
initial seed of each server P; is a pseudorandom value derived from the user’s password in a
straightforward way. Each server sets its key for each time period to be the current output
of the PP protocol. The user, knowing all the servers’ inputs of this reconstructible com-
putation, can simulate the computation and compute each server’s key at any time period
without need for any communication. Thus, a user can always interact with the server of
his choice. The security of our PP protocol makes sure that a mobile adversary does not
know the key currently used by a secure server, as long as in each round there exists at
least one secure server.

Our solution does not require public key mechanisms. Furthermore, it is valid even if
the attacker can modify the login files kept by the servers.



CHAPTER?2

Defining secure multiparty
computation

We present definitions of secure multiparty computation in different adversary models.
Good definitions of secure multiparty computation are notoriously hard to formulate, and
may become very complex in some settings. (See Section 1.2 for an introductory discus-
sion.) We therefore start with a simple setting: non-adaptive, computationally unbounded
adversaries with secure channels, in a synchronous network. (We later distinguish two very
different variants of this setting.) Although we do not use this definition in the sequel, its
presentation captures many of the ideas needed for defining multiparty secure computation.

Next we concentrate on adaptive adversaries. Here the notion of semi-honest parties,
introduced in Section 1.2, is central to our definitions. (The notion of semi-honest parties
is irrelevant in the presence of non-adaptive adversaries.) We first define several variants
of semi-honest parties, differing in the amount of internal deviation from the protocol.
Next we present our definition of adaptively secure computation. We also consider the
computational setting, where the channels are insecure and the adversary is restricted to
probabilistic polynomial time (PPT). Both settings are synchronous. Definitions of secure
multiparty computation in other settings can be formulated, using the same methodology.
In particular, in Chapter 4 we define secure multiparty computation in an asynchronous
setting.

Let us recall the standard definition of computational indistinguishability of distribu-
tions.

Definition 2.1 Let A = {A,},en and B = {B, },en be two ensembles of probability dis-
tributions. We say that A and B are computationally indistinguishable if for every constant
¢ > 0, for every polytime distinguisher D and for all large enough n,

Prob(D(A,) = 1) — Prob(D(B,) = 1)] < -

ne’

We colloquially say that “A,, and B,, are computationally indistinguishable”, or “A,, = B,,”.

16
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2.1 Non-adaptively secure computation

We define non-adaptively secure multiparty computation in the secure channels setting.
That is, we consider a synchronous network where every two parties are connected via
an absolutely secure communication channel (i.e., the adversary cannot hear, nor alter,
messages sent between uncorrupted parties)." The adversary is computationally unlimited.
We use the standard methodology presented in Section 1.2. Recall that executing a protocol
for computing some function is compared to evaluating the function in an ideal model,
where a trusted party is used. We substantiate the definition in three steps. First, we
give an exact definition of this ideal model. Next, we formulate our (high level) notion of
‘real-life’ protocol execution. Finally, we describe and formalize our method of comparing
computations.

Let f: D™ — D' be a function, for some domains D and D’. The parties have inputs
f=uxz ...z, € D" (party P; has input z;) and wish to compute f(z1,...,2,).” The ideal-
model-adversary § has a fixed set, B, of up to ¢ corrupted parties, and has the inputs of
the parties in B. The computation in the ideal model proceeds as follows.

Input substitution stage: The ideal-model-adversary S may alter the inputs of the cor-
rupted parties; however, this is done without any knowledge of the inputs of the good
parties. Let b be the | B|-vector of the altered inputs of the corrupted parties, and
let i be the n-vector constructed from the input & by substituting the entries of the
corrupted parties by the corresponding entries in b.

Computation stage: The parties hand § to the trusted party (party P; hands y;), and
receive f(7) from the trusted party.”

Output stage: The uncorrupted parties output f(%), and the corrupted parties output
some arbitrary function, computed by the adversary, of the information gathered dur-
ing the computation in the ideal model. This information consists only of their inputs,
their joint random input (and, consequently, the altered input vector I;), and the result-
ing function value f(§). We let the n-vector IDEAL; s(&) = IDEAL; (&)1 ... IDEAL; 5(Z),
denote the outputs of the parties on input & and adversary S (party P; outputs

IDEAL; s(Z);).

In Definitions 2.2 and 2.3 we formally define the output of the parties in the ideal

! An immediate interpretation of this model is that of a closed system: there is a fixed number of parties, all

of which know each others identity. This is a conceptually simple, however somewhat limiting interpretation.

A more general and realistic interpretation is that of an open system: there is an unbounded number of
parties in the network, each with a unique identity. The parties need not be aware of each other a-priori.
Still, only a limited number of parties actually join the computation. (In most cases, a limit on the number
of parties that may join needs to be known in advance.)

The distinction between these two interpretations of the model is merely conceptual, and is not reflected
in the definitions in any way. In particular, in both cases the number of parties is taken to be the number
of parties that actually join the computation.

2 A more general formulation allows different parties to compute a different functions of the input.
Specifically, in this case the range of f is a n-fold Cartesian product and the interpretation is that the ‘b
party should get the i*® component of f(&).

® In the case where each party computes a different function of the inputs, as discussed in the previous
footnote, the trusted party will hand each party its specified output.
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model. (These definitions capture the above description, and can be skipped in a first
reading.) First, we need two technical notations.

e For a vector ¥ = 2, ...2, and a set B C [n], let ¥ denote the vector ¥, projected on
the indices in B.

o For an n-vector # = z; ..., a set B C [n], and a | B|-vector b = b, .. bypy, let T/ g
denote the vector constructed from vector & by substituting the entries in B by the
corresponding entries from b.

Definition 2.2 Let S be the domain of possible inputs of the parties, and let R be the do-
main of possible random inputs. A t-limited ideal-model-adversary is a triplet S = (B, h,0),
where:

e B is the set of corrupted parties.
o h:[n]* x 5% xR — S* is the input substitution function

e O0:5 xR —{0,1}* is an output function for the bad parties.

Definition 2.3 Let f : D™ — D’ for some domains D and D’ be the computed function,
and let ¥ € D™ be an input vector. The output of computing function f in the ideal model
with adversary S = (B, h,0), on input & and random input r, is an n-vector IDEAL; s(Z) =
IDEAL; s(Z)1 ... IDEAL; 5(&), of random variables, satisfying for every 1 < i < n:

o 1@ ifidh
IDEAL; s(7); = { O(Zg, f(§),r) if i€B

where 1 is the random input of S, and §f = ¥/ (p n(B,7s,) 15 the substituted input vector for
the trusted party.

Next we describe the execution of a protocol 7 in the real-life scenario. The parties
engage in a synchronous computation in the secure channels setting, running protocol 7. A
computationally unbounded (non-adaptive) t-limited real-life adversary controls a fixed set B
of corrupted parties. Once the computation is completed, each uncorrupted party outputs
whatever it has computed to be the function value. Without loss of generality, we assume
that the corrupted parties output their entire view on the computation. The view consists of
all the information gathered by the adversary during the computation. Specifically, the view
includes the inputs and random inputs of the corrupted parties, and the communication
seen by the corrupted parties.

We use the following notation. Let VIEW, 4(Z,7) denote the view of the adversary
A when interacting with parties running protocol = on input & and random input 7 (z;
and r; for party P;), as described above. Let VIEW, 4(&) denote the random variable de-
scribing the distribution of VIEW, 4(&,7) when 7 is randomly chosen. Let EXEC, 4(Z,7);
denote the output of party P; after running protocol = on input & = z;...2, and ran-
dom input 7 = ry...r,, and with a real life adversary A. Let EXEC, 4(&); denote the
random variable describing EXEC, 4(Z,7); where 7 is uniformly chosen. Let EXEC, 4(Z) =
EXEC; A(Z)1...EXEC, 4(Z),. (We have EXEC, 4(Z); = VIEW, 4(Z,7) for corrupted parties
P.)
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Finally we require that executing a secure protocol 7 for evaluating a function f be
equivalent to evaluating f in the ideal model, in the following sense. For any real-life
adversary A there should exist an ideal-model adversary S, such that for every input vector
Z, the output vectors IDEAL; s(%) and EXEC, 4(Z) are identically distributed.

We require that the complexity of the ideal-model adversary & be comparable to the
complexity of the real-life adversary A. This requirement can be motivated as follows. The
ideal-model adversary is an imaginary concept whose purpose is to formalize the following
statement: “whatever the adversary learns from interacting with parties running w, he
could have also learned in the ideal model in roughly the same computational effort.” If
we do not limit the computational power of the ideal-model adversary, we end up with a
much weaker notion of security, detached from realistic computations. We remark that,
in the presence of adaptive adversaries, bounding the computational power of the ideal-
model adversary introduces several previously overlooked problems. We elaborate on these
problems in Chapter 3.

In the sequel, whenever we refer to the secure channels setting, we assume that the
complexity of the ideal-model adversary is polynomial in the complexity of the real-life
adversary. We let the unbounded secure channels setting denote the case where the ideal-
model adversary is computationally unbounded.

Definition 2.4 Let f : D™ — D for some domains D and D, and let © be a protocol for
n parties. We say that © (non-adaptively) #-securely computes f in unbounded the secure
channels setting, if for any (non-adaptive) t-limited real-life adversary A, there exists a
(non-adaptive) t-limited ideal-model-adversary S, whose running time is polynomial in the
running time of A, such that for every input vector &,

IDEAL; 5(F) = BXEC, 4(7).

If the running time of S is polynomial in the running time of A, then we say that ©
(non-adaptively) t-securely computes f in the bounded secure channels setting.

Remarks:

¢ For measuring complexity, we assume that the protocol =, the simulator & and the
adversary A are Turing machines that have n, the number of parties, as part of their
input. We measure the complexity of 7, § and A with respect to n. (The function f
is now a family of functions, where a function corresponds to each value of n.)

o We stress that the two whole output n-vectors must be identically distributed. Some
previous definitions of secure computation (e.g., [GMW]) partitioned the Security
requirement into two separate requirements: (a) the output of the corrupted parties
be equal in both scenarios, and (b) the output of the uncorrupted parties be equal
in both scenarios. However, as pointed out in [MR], requiring (a) and (b) does not
guarantee secure computation.
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2.2 Semi-honest parties

We define semi-honest parties (or, equivalently, semi-honest protocols). We consider three
alternative notions of semi-honesty. First we take a minimalist approach, in which semi-
honest parties deviate from the protocol only by not erasing old data. We call such parties
honest-but-non-erasing, or in short non-erasing. More precisely, say that a memory tape is
write-once if it consists of memory locations that can be modified only once (from their
initial default contents). Non erasing protocols are defined as follows.

Definition 2.5 Let 7 and 7' be n-party protocols. We say that ©’ is a non-erasing protocol
for m if ©' is identical to ™ with the exception that, in addition to the instructions of =,
protocol T copies the contents of each memory location accessed by 7 to a special write once
memory tape.

Alternatively, one may consider semi-honest parties that execute some arbitrary protocol
other than the specified one, with the only restriction that no external test (representing the
combination of all other parties) can distinguish between such a behaviour and a truly honest
behaviour. We call such parties honest-looking. We consider two variants of honest-looking
parties: In the secure channels setting the external distinguishing test is computationally
unbounded. In the computational setting the external distinguishing test is computationally
bounded. More formally, let com, (&, 7) denote the communication among n parties running
7 on input ¥ and random input 7 (z; and r; for party P;). Let com,(Z) denote the random
variable describing com, (&, 7) when # is uniformly chosen. For n-party protocols p and =
and an index 7 € [n], let p;; ») denote the protocol where party P; executes m and all the
other parties execute p.

Definition 2.6 Let 7 and 7’ be n-party protocols. We say that ' is a perfectly honest-
looking protocol for w if for any input &, for any n-party “test” protocol p, and for any
index 1 € [n],

COMp/(wr)(f) < com

P/(l,,r/)(f)'

If the test protocol p is restricted to probabilistic polynomial time, and COMp/(M)(f) ~

COM,, . W,)(f), then we say that ™' is a computationally honest-looking protocol for .

We stress that here the “test” protocol p represents a collaboration of all parties for testing
whether P, is honest.

Remark: Note that both the perfect and the computational variants of honest-looking
parties can do other “harmful” things, on top of not erasing data. For instance, assume that
some one-way permutation f, defined on some domain D, is known to all parties. When
instructed to choose a value 2 at random from D, an honest-looking party can instead
choose y at random from D and let @ = f(y). Thus, the party cannot be trusted to not
know f~'(z). Also, let fy, fi be a claw-free pair of permutations over D. Then, when
instructed to choose a random input r € D for use in its protocol, the party can, on input
o € {0,1}, use f,(r) for random input instead of r. (This particular example is very
‘disturbing’, as will become clear in the Chapter 3.)
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An even more permissive approach allows a semi-honest party to deviate arbitrarily
from the protocol, as long as his behaviour appears honest to parties executing the protocol.
We stress that other external tests, not specified in the protocol, may be able to detect
such a party as cheating. We call such semi-honest parties weakly-honest. More precisely,
here we require that Definition 2.6 is satisfied only with respect to the original protocol 7,
rather than with respect to any test protocol p.

Definition 2.7 Let © and 7' be n-party protocols. We say that 7' is an perfectly weakly-
honest protocol for « if for any input ¥ and for any index i € [n],

COM () = COM /5 2y (F).

If 7 is restricted to probabilistic polynomial time, and if com, (%) ~ COM (5,7 (Z), then
we say that ©' is a computationally weakly-honest protocol for «.

The choice of these particular notions of semi-honest parties can be motivated as follows.
Non-erasing behaviour is a very simple deviation from the protocol, that is very hard to
prevent. Even if the protocol (say, given to parties as a piece of software) is protected
against modifications, it is always possible to add an ezternal device that copies all memory
locations accessed by the protocol to a “safe” memory where the data is kept. Such an
external device requires no understanding in the internal structure or in the behaviour
of the protocol. Honest-looking parties represent “sophisticated” parties that internally
deviate from the protocol in an arbitrary way, but are willing to take no chance that they
will ever be uncovered (say, by an unexpected audit). Weakly-honest parties represent the
most general internal deviation from the protocol that may remain undetected by other
parties running the protocol.

2.3 Adaptively secure computation in the secure channels
setting

We define adaptively secure multiparty computation in the the secure channels setting.
We use the same “ideal model methodology” as in Section 2.1, with respect to adaptive
adversaries. Here, however, we require that the computation be secure even if the parties
run any semi-honest protocol for a given protocol 7.

We start by re-defining how a function is evaluated in the ideal model. Let f: D" — D
be a function, for some domains D and D’. The parties have inputs ¥ = z,...x, € D"
(party P; has input ;) and wish to compute f(z1,...,2,). The ideal-model-adversary S has
no initial input, and is parameterized by t, the maximum number of parties it may corrupt.
In the sequel we limit the computational power of the adversary. The difference from the
non-adaptive ideal-model adversary (Section 2.1) are the two extra adaptive corruption
stages.

First corruption stage: First, S proceeds in up to ¢ iterations. In each iteration & may
decide to corrupt some party, based on §’s random input and the information gathered
so far. Once a party is corrupted its internal data (that is, its input and random
input) become known to §. A corrupted party remains corrupted for the rest of the
computation. Let B denote the set of corrupted parties at the end of this stage.
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Input substitution stage: & may alter the inputs of the corrupted parties; however,
this is done without any knowledge of the inputs of the good parties. Let b be the
| B|-vector of the altered inputs of the corrupted parties, and let § be the n-vector
constructed from the input & by substituting the entries of the corrupted parties by
the corresponding entries in b.

Computation stage: The parties hand § to the trusted party (party P; hands y;), and
receive f(y) from the trusted party.

Second corruption stage: Now that the output of the computation is known, S proceeds
in another sequence of up to ¢t — | B| iterations, where in each iteration & may decide
to corrupt some additional party, based on &’s random input and the information
gathered so far (this information now includes the value received from the trusted
party). We stress that § may corrupt at most ¢ parties in the entire computation.

Output stage: The uncorrupted parties output f(%), and the corrupted parties output
some arbitrary function, computed by the adversary, of the information gathered dur-
ing the computation in the ideal model. This information consists only of their inputs,
their joint random input (and, consequently, the altered input vector I;), and the result-
ing function value f(§). We let the n-vector IDEAL; s(&) = IDEAL; (&)1 ... IDEAL; 5(Z),
denote the outputs of the parties on input & and adversary S (party P; outputs

IDEAL; s(Z);).

In Definitions 2.8 through 2.10 we formally define the output of the parties in the ideal
model. These definitions capture the above description, and can be skipped in a first
reading. We use the notations 5 and f/(B ;) as in Section 2.1.

Definition 2.8 Let D be the domain of possible inputs of the parties, and let R be the
domain of possible random inputs. A t-limited ideal-model-adversary is a quadruple § =

(t,b,h,0), where:

e 1 is the maximum number of corrupted parties.

b:[n]*x D* xR — [n]U{L} is the selection function for corrupting parties (the value
L is interpreted as “no more parties to corrupt at this stage”)

e h:[n]" x D* x R — D* is the input substitution function

O :D* xR — {0,1}* is an output function for the bad parties.
The sets of corrupted parties are now defined as follows.

Definition 2.9 Let D be the domain of possible inputs of the parties, and let S = (t,b,h,0)
be a t-limited ideal-model-adversary. Let & € D" be an input vector, and let r € R be a
random input for S. The ith set of corrupted parties in the ideal model BY(Z, 1), is defined
as follows.

o BO(Z r)=0¢
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o Let b 2 b(B(i)(f,r),fB(,)(fyr),r). For 0 <i<t, and as long as b; #1, let
BUD(E,r) £ BOE, 1)U {b)

o Leti* be the minimum betweent and the first i such thatb; =L. Letb! 2 b(BO(Z,r), oz, f(7),T),
where i is the substituted input vector for the trusted party.

. VAN
That is, § = 90/(30*)(5,7«),11(3(1*)(5,r),55(,*)(f)r),r))-
For v <1< t, let
BUHI(E, 1) 2 BO(F,r)Ub.

In Definition 2.10 we use B instead of B(Z,r).

Definition 2.10 Let f: D" — D' for some domains D and D be the computed function,
and let & € D" be an input vector. The output of computing function f in the ideal model with
adversary S = (t,b,h,0), on input & and random input r, is an n-vector IDEAL; s(Z) =
IDEAL; s(Z)1 ... IDEAL; 5(&), of random variables, satisfying for every 1 < i < n:

. _ @) if i¢BY
IDEALf’S(x)Z N { O(fB(t),f(@j),T) if e BW

where BY is the t™ set of corrupted parties, r is the random input of S, and ij = f/(B(t)yh(B(t)ny(t)yr))

1s the substituted input vector for the trusted party.

Next we describe the execution of a protocol 7 in an (adaptive) real-life scenario. The
parties engage in a synchronous computation in the secure channels setting, running some
semi-honest protocol 7’ for 7 (according to any one of the notions of semi-honesty defined
above). A computationally unbounded (adaptive) ¢-limited real-life adversary may choose
to corrupt parties at any point during the computation, based on the information known
to the previously corrupted parties, and as long as at most ¢ parties are corrupted alto-
gether. Once a party is corrupted the current contents of its memory (as determined by the
semi-honest protocol 7') becomes available to the adversary. From this point on, the cor-
rupted party follows the instructions of the adversary. Once the computation is completed,
each uncorrupted party outputs whatever it has computed to be the function value. Also
here, we assume that the corrupted parties output their entire view on the computation.
The view consists of all the information gathered by the adversary during the computa-
tion. Specifically, the view includes the inputs and random inputs of the corrupted parties,
the communication seen by the corrupted parties, and the internal data of parties upon
corruption.

We let VIEW, 4(Z) and EXEC, 4(&, ) have an analogous meaning to Section 2.1 in the
presence of adaptive adversaries.

Definition 2.11 Let f: D™ — D’ for some domains D and D', and let © be a protocol for
n parties. We say that m t-securely computes f in the unbounded secure channels setting, if
for any semi-honest protocol ©' for © (according to any of the Definitions 2.5 through 2.7),
and for any t-limited real-life adversary A, there exists a t-limited ideal-model-adversary S,
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whose running time is polynomial in the running time of A, such that for every input vector

w}
IDEAL; 5 (%) = BXECH (7).

If the running time of S is polynomial in the running time of A, then we say that ©
t-securely computes f in the bounded secure channels setting.

Black-box simulation. In the sequel we use a more restricted notion of equivalence
of computations, where the ideal-model adversary is limited to black-box simulation of
the real-life setting. That is, for any semi-honest protocol 7' for 7w there should exist a
ideal-model adversary S with oracle (or black-box) access to a real-life adversary. This
black-box represents the input-output relations of the real-life adversary described above.
For concreteness, we present the following description of the “mechanics” of this black-box,
representing a real-life adversary. The black-box has a random tape, where the black-box
expects to find its random input, and an input-output tape. Once a special start input is
given on the input-output tape, the interaction on this tape proceeds in iterations, as follows.
Initially, no party is corrupted. In each iteration [, first the black-box expects to receive
the information gathered in the {th round. (In the secure channels setting this information
consists of the messages sent by the uncorrupted parties to the corrupted parties.) Next
black-box outputs the messages to be sent by the corrupted parties in the /th round. Next,
the black-box may issue several ‘corrupt F;’ requests. Such a request should be answered
by the internal data of P;, according to protocol #’. Also, from this point on P; is corrupted.
At the end of the interaction, the output of the real-life adversary is defined as the contents of
the random tape succeeded by the history of the contents of the input-output tape during
the entire interaction. We let S# denote the ideal-model adversary S with black-box access
to a real-life adversary A.

The simulator is restricted to probabilistic polynomial time (where each invocation of

4 Furthermore, we limit the operation of the

the black-box is counted as one operation).
simulator as follows. We require that the start message is sent only once, and that no
party is corrupted in the ideal model unless a request to corrupt this party is issued by the
black-box.

If Definition 2.11 is satisfied by an ideal-model adversary limited to black-box simulation
as described above, then we say that 7 t-securely computes f in a simulatable way. In this
case we call the ideal-model adversary a black-box simulator, or in short a simulator.

We remark that the only purpose of the technical restrictions imposed on the operation
of the simulator is to facilitate proving composition theorems (such as Theorem 3.4). In
particular, black-box simulation is the only proof method currently known in the context
of secure multiparty computation. The [BGW] protocols for computing any function can
be proven secure, in the presence of non-erasing parties, using black-box simulators in

probabilistic polynomial time.

*For simplicity, we assume that the computed function is polynomially computable. Alternatively, the
simulator is polynomial in the complexity of the function.
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2.4 Adaptively secure computation in the computational set-
ting

We define adaptively secure multiparty computation in the computational setting. That is,
we consider a synchronous network where the channels are insecure; the adversary sees all
messages sent on all channels. (For simplicity we assume that the channels are authenticated,
namely the adversary cannot alter the communication. Authenticity can be achieved via
standard primitives.) All parties, as well as the adversary, are restricted to probabilistic
polynomial time.> Furthermore, we introduce a security parameter, determining ‘how close’ a
real-life computation is to a computation in the ideal model. All parties are polynomial also
in the security parameter. For simplicity of presentation, we identify the security parameter
with n, the number of parties.

The framework of defining adaptively secure multiparty computation in this setting is
the same as in the secure channels setting (Section 2.3). That is, we compare the real life
computation with a computation in the same ideal model, with the exception that here
we restrict the ideal-model adversary to probabilistic polynomial time. The execution of
a protocol 7 in the real-life scenario, as well as the notations EXEC, 4(Z) and VIEW, 4(Z),
are also the same as in the secure channels setting, with the exceptions that the real-life
adversary is polynomially bounded and sees all the communication between the uncorrupted
parties.

We define equivalence of a real-life computation to an ideal-model computation as in the
secure channel setting, with the exception that here we use computational indistinguisha-
bility as our notion of similarity of distributions. Black-box simulation is defined as in the
secure channels setting, with the exception that the information gathered by the adversary
in each rounds includes the communication between all parties.

Definition 2.12 Let f : D® — D’ for some domains D and D', and let © be a protocol
for n parties. We say that m t-securely computes [ in the computational scenario, if for
any semi-honest protocol ' for m (according to any of the Definitions 2.5 through 2.7),
and for any t-limited real-life adversary A, there exists a polynomially bounded t-limited
tdeal-model-adversary S, such that for every input vector &,

IDEAL; 5 (%) & EXECy (7).

If § is restricted to black-box simulation of real-life adversaries then we say that « 1-
simulatably computes f in the computational scenario.

Remark: Our convention that the real-life adversary outputs its entire view is important
for clarifying how the following difficulty, pointed out in [MR], is settled. Assume that the
corrupted parties do not output their inputs and random inputs, and that the function
f to be computed is pseudorandom. Then an insecure protocol that allows a uniformly
distributed output vector EXEC, 4(&), regardless of the parties’ inputs, could be considered

5For simplicity, we assume that the computed function is polynomially computable. Alternatively, all par-
ties, as well as the real-life adversary and the ideal-model-adversary, should be polynomial in the complexity
of the function.



2.4 Adaptively secure computation in the computational setting 26

secure since it generates outputs indistinguishable from the parties’ outputs in the ideal
model (i.e., IDEAL; 5(Z)). We stress that no generality is lost by using our convention, since
Definition 2.12 quantifies over all real-life adversaries.



CHAPTERS3

Adaptively secure computation in
the computational setting

We study secure multiparty computation in the presence of adaptive adversaries (see Sec-
tion 1.3 for an introductory discussion). Although the emphasis of this chapter is on the
computational setting, we also sketch the state of affairs in the secure channels setting. We
believe that understanding adaptively secure computation in the computational setting is
easier if the secure channels setting is first considered.

We first present, in Section 3.1, an overview of the problems encountered when trying
to prove adaptive security of protocols, first in the secure channels setting, and then in the
computational settings. We also sketch our solution for the computational setting. Next,
in Section 3.2 we define a tool, called non-committing encryption, that is central in our
solution for the computational setting. In Section 3.3 we present our construction for the
case of non-erasing parties. We first show how, given a non-committing encryption scheme,
any adaptively secure protocol in the secure channels setting can be transformed into an
adaptively secure protocol in the computational setting. Next we describe our construction
of a non-committing encryption scheme. In Section 3.4 we suggest a construction for the
case of honest-looking parties.

3.1 The problems in proving adaptive security: informal pre-
sentation

3.1.1 The secure channels setting

The state-of-the-art with respect to adaptive computation in the secure channels setting can
be briefly summarized as follows. Adaptively secure protocols for computing any function
exist in the presence of non-erasing parties (e.g., [BGW, CCD]). However, in contrast
with popular belief, not every non-adaptively secure protocol is also adaptively secure in the
presence of non-erasing parties. Furthermore, current techniques are insufficient for proving
adaptive security of any protocol for computing a non-trivial function in the presence of
honest-looking parties.

27
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A standard construction of an ideal-model-adversary, S, operates via black-box interac-
tion with the real-life adversary A. (The exact “mechanics” of the black-box representing A
are specified in Section 2.3.) More specifically, let 7/ be a semi-honest protocol for 7. & runs
the black-box representing A on a simulated interaction with a set of parties running 7. S
corrupts (in the ideal model) the same parties that A corrupts in the simulated interaction,
and outputs whatever A outputs. From the point of view of A, the interaction simulated by
S should be distributed identically to an authentic interaction with parties running =’. It is
crucial that § be able to run a successful simulation based only on the information available
to it in the ideal model, and in particular without knowing the inputs of uncorrupted parties.
We restrict our presentation to this methodology of proving security of protocols, where §
is restricted to probabilistic polynomial time. We remark that no other proof method is
known in this context. In the sequel we often call the ideal-model-adversary & a simulator.

Following the above methodology, the simulator that we construct has to generate sim-
ulated messages from the uncorrupted parties to the corrupted parties. In the non-adaptive
case the set of corrupted parties is fixed and known to the simulator. Thus the simulator
can corrupt these parties, in the ideal model, before the simulation starts. In the adaptive
case the corrupted parties are chosen by the simulated adversary A as the computation
unfolds. Here the simulator corrupts a party, in the ideal model, only when the simulated
adversary decides on corrupting that party. Thus the following extra problem is encoun-
tered. Consider a currently uncorrupted party P. Since § does not know the input of P,
it may not know which messages should be sent by P to the corrupted parties. Still, §
has to generate some dummy messages to be sent by the simulated P to corrupted parties.
When the simulated adversary A later corrupts P it expects to see P’s internal data. The
simulator should now be able to present internal data for P that is consistent with P’s
newly-learned input and with the messages previously sent by P, according to the partic-
ular semi-honest protocol ©’ run by P. It turns out that this can be done for the [BGW]
protocols for computing any function in the presence of non-erasing parties. Thus, the
[BGW] protocols are adaptively secure in the presence of non-erasing parties. We stress,
however, that not every protocol which is secure against non-adaptive adversaries is also
secure against adaptive adversaries.!

In face of honest-looking parties. FEven more severe problems are encountered when
honest-looking parties are allowed, as demonstrated by the following example. Consider a
protocol 3 that instructs each party, on private input o, to just publicize a uniformly and
independently chosen value r in some domain D and terminate. Let fy, f; be a claw-free pair
of permutations over D. Then, on input ¢ € {0,1}, an honest-looking party can ‘commit’
to its input by publicizing f,(r) instead of publicizing r. Now, if this honest-looking variant
of § is shown secure via an efficient black-box simulation as described above, then the
constructed simulator can be used to find claws between f; and f;. Similar honest-looking
protocols can be constructed for the [BGW, CCD] protocols. Consequently, if claw-free
pairs of permutations exist then adaptive security of the [BGW, CCD] protocols, in the
presence of honest-looking parties, cannot be proven via black-box simulation.

! See example in the third paragraph of the Introduction.
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3.1.2 Adaptive security in the computational setting

In this subsection we sketch the extra difficulty encountered in constructing adaptively se-
cure protocols in the computational setting, and outline our solution for non-erasing parties.
Consider the following folklore methodology for constructing secure protocols in the com-
putational setting. Start with an adaptively secure protocol 7 resilient against non-erasing
parties in the secure channels setting, and construct a protocol 7 by encrypting each message
using a standard encryption scheme. We investigate the security of 7 in the computational
setting.

Proving that 7 is non-adaptively secure. We first sketch how 7 can be shown non-
adaptively secure in the computational setting, assuming that 7 is non-adaptively secure in
the secure channels setting. Let S be the ideal-model-adversary (simulator) associated with
7 in the secure channels setting. (We assume that S operates via “black-box simulation” of
the real-life adversary A as described above.) We wish to construct, in the computational
setting, a simulator S for #. The simulator S operates just like S, with the following excep-
tion. In the computational setting the real-life adversary expects to see the ciphertexts sent
between uncorrupted parties. (In the secure channels setting the adversary does not see the
communication between uncorrupted parties.) Furthermore, the real-life adversary expects
that the messages sent to corrupted parties be encrypted. & will imitate this situation
as follows. First each message sent to a corrupted party will be appropriately encrypted.
Next, the simulated uncorrupted parties will exchange dummy ciphertexts. (These dummy
ciphertexts can be generated as, say, encryptions of the value ‘0’.) The validity of simulator
S can be shown to follow, in a straightforward way, from the validity of S and the security
of the encryption scheme in use.

Problems with proving adaptive security. When adaptive adversaries are considered,
the construction of a simulator S in the computational setting encounters the following
problem which is a more severe version of the problem encountered in the secure channels
setting. Consider an uncorrupted party P. Since S does not know the input of P, it does
not know which messages should be sent by P to other uncorrupted parties.? Still, S has to
generate dummy ciphertexts to be sent by the simulated P to uncorrupted parties. These
dummy ciphertexts are seen by the simulated adaptive adversary. When the simulated
adversary later corrupts P, it expects to see all of P’s internal data, as specified by the semi-
honest protocol ©’. Certainly, this data may include the cleartexts of all the ciphertexts sent
and received by P in the past, including the random bits used for encryption and decryption,
respectively. Thus, it may be the case that some specific dummy ciphertext ¢ was generated
as an encryption of ‘0’, and the simulated P now needs to “convince” the adversary that c is
in fact an encryption of ‘1’ (or vice versa). This task is impossible if a standard encryption
scheme (i.e., an encryption scheme where no ciphertext can be a legal encryption of both
‘1" and ‘07) is used.

2 There is also the easier problem of generating the messages sent by P to corrupted parties. This was
the problem discussed in the previous subsection. However, our hypothesis that & is a simulator for the
secure channel model means that S is able to generate these cleartext messages. Thus, all that S needs to
do is encrypt the messages it has obtained from S.
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We remark that Beaver and Haber [BH] have suggested to solve this problem as follows.
Instruct each party to erase (say, at the end of each round) all the information involved
with encrypting and decrypting of messages. If the parties indeed erase this data, then the
adversary will no longer see, upon corrupting a party, how past messages were encrypted
and decrypted. Thus the problem of convincing the adversary in the authenticity of past
ciphertexts no longer exists. Consequently, such “erasing” protocols can be shown adap-
tively secure in the computational setting. However, this approach is clearly not valid in the
presence of semi-honest parties. In particular, it is not known whether the [BH] protocols
(or any other previous protocols) are secure in the presence of non-erasing parties.

Sketch of our solution. We solve this problem by constructing, in the multi-party com-
putational setting, an encryption protocol that serves as an alternative to standard en-
cryption schemes, and enjoys an additional property roughly described as follows. The
additional property is that one can efliciently generate dummy ciphertexts that can later
be “opened” as encryptions of either ‘0’ or ‘1, at wish. (Here the word ‘ciphertext’ is used
to denote all the information seen by the adversary during the execution of the protocol.)
These dummy ciphertexts are different and yet computationally indistinguishable from the
valid encryptions of ‘0" (or ‘1”) produced in a real communication. We call such encryption
protocols non-committing.?

Let £© (resp., EM)) denote the distribution of encryptions of the value 0 (resp., 1) in
a public-key encryption scheme. For simplicity, suppose that each of these distributions is
generated by applying an efficient deterministic algorithm, denoted A (resp., AV), to a
uniformly selected n-bit string.* In a traditional encryption scheme (with no decryption
errors) the supports of £ and &) are disjoint (alas £ and &) are computationally
indistinguishable). In a non-committing encryption scheme, the supports of £ and &)
are not disjoint but the probability that an encryption (of either ‘0" or ‘1’) resides in their
intersection, denoted I, is negligible. Thus, decryption errors occur only with negligible

E>P which assumes

probability. However, it is possible to efliciently generate a distribution
values in I so that this distribution is computational indistinguishable from both £ and
EM 5 Furthermore, each “ambiguous ciphertext” ¢ € I is generated together with two
random looking n-bit strings, denoted ry and 7y, so that A®(ry) = AV (ry) = ¢. That is,
the string ro (resp., 1) may serve as a witness to the claim that ¢ is an encryption of ‘0’
(resp., ‘17).

Using a non-committing encryption protocol, we resolve the simulation problems which
were described above. Firstly, when transforming 7 into 7, we replace every bit transmission
of © by an invocation of the non-committing encryption protocol. This allows us to generate
dummy ciphertexts for messages sent between uncorrupted parties so that at a later stage
we can substantiate for each such ciphertext both the claim that it is an encryption of ‘0’ and
the claim that it is an encryption of ‘1’. We stress that although dummy ciphertexts appear

? This “non-committing property” is reminiscent of the “Chameleon blobs” of [Br]. Those are commitment
schemes where the recipient of a commitment ¢ can generate by himself de-commitments of ¢ to both 0 and
1. Here we consider encryption schemes where an adversary can generate by himself ciphertexts which can
be opened both as encryptions of 1 and as encryptions of 0.

* This is an over simplification. Actually, each of these algorithms is also given an n-bit encryption key.

® Consequently, it must be that £O and £D) are computationally indistinguishable. Thus, a non-
committing encryption scheme is also a secure encryption scheme in the traditional sense.
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with negligible probability in a real execution, they are computationally indistinguishable
from a uniformly generated encryption of either ‘0’ or ‘1’. Thus, using a non-committing
encryption protocol we construct adaptively secure protocols for computing any (recursive)
function in the computational model in the presence of non-erasing parties. Finally, we
construct a non-committing encryption protocol based on the intractability of inverting the
RSA, or more generally based on the existence of common-domain trapdoor systems (see
Definition 3.5). Thus, we get

Theorem 3.1 If common-domain trapdoor systems exist, then there exist secure protocols
for computing any (recursive) function in the computational setting, in the presence of non-
erasing parties and adaptive adversaries that corrupt less than a third of the parties.

We remark that, using standard constructs (e.g., [RB]), our protocols can be modified to
withstand adversaries that corrupt less than half of the parties.

Dealing with honest-looking parties. We also sketch a solution for the case of honest-
looking parties, assuming, in addition to the above, also the existence of a “trusted dealer”
at a pre-computation stage. The dealer hands each party P a truly random string rp, to
be used as random input. Next, the dealer hands the other parties shares of rp, so that a
coalition of all parties other than P can reconstruct rp. These shares enable us to “force”
each party to send messages according to the specification of the protocol. We stress that
this result does not hold if an initial (trusted) set-up is not allowed.

3.2 Defining non-committing encryption

We present a concise definition of a non-committing encryption protocol in our multi-party
scenario. First define the bit transmission function BTR : {0,1, L}* — {0,1, L}". This
function is parameterized by two identities of parties (i.e., indices s,7 € [n]), with the
following interpretation. BTR,, describes the secure transmission of a bit from party P,
(the sender) to party P, (the receiver). That is, for ¥ = zy,...,z, € {0,1, L}" let

x, if i=7r

BTR, ,(Z); = { |

otherwise

where BTR, ,(Z); is the ™" component of the vector BTR, ,.(Z). We are interested in input
vectors @ where z; (i.e., the senders input) is in {0,1}. All other inputs are assumed to be
1.

Definition 3.2 Let s,r € [n] and s # r. A protocol € is a t-resilient (in the presence of
T -semi-honest parties and adaptive adversaries), non-committing encryption protocol (from
P, to P, ) if e t-securely computes BTR; ., in a simulatable way, in the computational model,
in the presence T -semi-honest parties and an adaptive adversary.

It may not be immediately evident how Definition 3.2 corresponds to the informal de-
scription of non-committing encryptions, presented in Section 3.1.2. A closer look, how-
ever, will show that the requirements from the simulator associated with a non-committing
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encryption protocol (according to Definition 3.2) imply these informal descriptions. In par-
ticular, in the case where the simulated adversary corrupts the sender and receiver only
after the last communication round, the simulator has to first generate some simulated
communication between the parties, without knowing the transmitted bit. (This communi-
cation serves as the “dummy ciphertext”.) When the sender and/or the receiver are later
corrupted, the simulator has to generate internal data that correspond to any value of the
transmitted bit.

3.3 A solution for non-erasing parties

We show that any function can be securely computed in the computational setting, in
the presence of adaptive adversaries and non-erasing parties. In Subsection 3.3.1 we show
how, using a non-committing encryption protocol, a simulatable protocol for computing
some function f in the computational setting can be constructed from any simulatable
protocol for computing f in the secure channels setting. In Subsection 3.3.2 we present
our construction of non-committing encryption. We use the following result, attributed to
[BGW, CCD], as our starting point:®

Theorem 3.3 The [BGW, CCD] protocols for computing any function of n inputs are

([2] = 1)-securely computable in a simulatable way, in the secure channels setting, in the

presence of non-erasing parties and adaptive adversaries.

3.3.1 Adaptively secure computation given non-committing encryption

Theorem 3.4 Let f be an n-ary function, t < n and 7™ be a protocol that t-securely com-
putes [ in a simulatable way in the secure channels setting, in the presence of non-erasing
parties and adaptive adversaries. Suppose that e, , is a t-resilient non-committing encryp-
tion protocol, resilient to non-erasing parties and adaptive adversaries, for transmission
from P, to P.. Let © be the protocol constructed from w as follows. For each bit o trans-
mitted by © from party P, to party P,, protocol & invokes a copy of a ¢, , for transmitting
o. Then 7 t-securely computes f, in a simulatable way in the computational setting, in the
presence of non-erasing parties and adaptive adversaries.

Proof (sketch): Let 7’ be a non-erasing protocol for 7 and let § be a simulator for 7’
in the secure channels setting. For simplicity we assume that in protocol w, as well as in
the interaction generated by &, each party sends on bit to each other party in each round.
Let ¢ be the (computational-model) simulator that corresponds to the non-erasing protocol
¢’ for the non-committing encryption protocol €. Given these two different simulators, we
construct a simulator S for protocol # in the computational setting. The simulator S will
be a modification of & and will use several copies of § as subroutines.

Recall that § is supposed to interact with a black-box representing a real-life adversary
in the secure channels setting. That is, at each round S generates all the messages sent from
uncorrupted parties to corrupted parties. Furthermore, whenever the black-box decides to

6 A proof of this result can be extracted from Chapter 4, which deals with the more involved asynchronous
model.
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corrupt some party P, machine § generates internal data for P which is consistent with P’s
input and with the messages previously sent by P to corrupted parties.

The simulator S, interacts with a black box representing an arbitrary real-life adversary
in the computational setting, denoted A. The simulator S is identical to S with the exception
that for each bit sent in the interaction simulated by S, the simulator S invokes a copy of
§ and S incorporates the outputs of the various copies of § in its (i.e., S’S) communication
with A. Likewise, S extracts the transmitted bits from the invocations of 6 corresponding
to message transmissions from corrupted parties to uncoruppted ones. (The way S handles
these invocation will be discussed below.) At this point we stress that A is the only adversary
that S needs to simulate and to this end it “emulates” real-life adversaries of its choice for
the copies of §. In particular, when S asks to corrupt some party P, the simulator S
corrupts the same party P. When § generates P’s view in the secure channel setting, S will
complete this view into P’s view in the computational setting by using the various copies of
d.

We describe how S handles the various copies of 8. As stated above, § emulates a
real-life adversary for each copy of é using the communication tapes by which this copy
is supposed to interact with its black-box/adversary. The information that § expects to
receive form its black box is extracted, in the obvious manner, from the information that
S receives from A. That is, S hands § the messages, sent by the corrupted parties, that
are relevant to the corresponding invocation of ¢. Furthermore, all the past and current
requests for corrupting parties (issued by A) are handed over to §. The partial view received
from each copy of ¢ is used in the emulation of the corresponding black-box (of this é-copy)
as well as incorporated in the information handed by S to .A. When A asks to corrupt some
party P, the simulator S emulates a ‘corrupt P’ request to each copy of 6 and obtains the
internal data of P in the corresponding sub-protocol ¢ which it (i.e., ) hands to A (along
with the information obtained by & — the secure channel simulator). Finally, observe that
6 = b,, (where P; and P, are the designated sender and receiver) also expects to interact
with parties in the ideal-model. This interaction consists of issuing ‘corrupt’ requests and
obtaining the internal data (of the ideal model). This interaction is (also) emulated by S as
follows. Whenever § wishes to corrupt a party P which is either P, or P,, the simulator S
finds out which bit, o, was supposed to be sent in this invocation of ¢/ ; and passes o to ¢, .
We stress that o is available to S since at this point in time P has already been corrupted
and furthermore S (which mimics S) has already obtained P’s view in the secure channel
setting. (Here we use Definitions 2.12 and 3.2 which guarantee that é corrupts a party only
if this party is already corrupted by é’s black box. We also use the fact that S is playing
0’s black box and is issuing a ‘corrupt P’ request only after receiving such a request from
A and having simulated this corruption as S.) In case P is neither P, not P, the simulator
S passes L (as P’s input) to 6.

Let 7' be a non-erasing protocol for # and A be as above (i.e., an arbitrary real-life
adversary in the computational setting). We claim that SA (i.e., the ideal-model adversary
S with black-box access to A) properly simulates the execution of #/. We need to show that
for any adversary A and for any input & we have

IDEAL; ¢4 () & EXEC, 4(7).
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Here we present only a rough sketch of the proof of this claim. The plan is to construct
a real-life adversary A in the secure channels setting, and prove the following sequence of
equalities by which the above claim follows:

IDEAL; 54(7) < IDEAL; 54 (T) = EXECH 4(T) ~ EXEC. 7(7) (3.1)

Regardless of what A is, the second equality follows immediately from the hypothesis that
S is a simulator for 7’ (the non-erasing protocol for 7) in the secure channels setting. It
remains to construct A4 so that the other two equalities hold.

The real-life adversary A of the secure channel setting will operate via a simulation of A
(the real-life adversary of the computational setting), imitating the simulation carried out
by S. That is, for each bit communicated by 7, machine A will invoke a copy of § while
emulating an adversary in accordance with A. In particular, A will be given all ciphertexts
sent in the open as well as all internal data of corrupted parties (regardless if these parties
were corrupted before, during or after the ‘real’” transmission). Furthermore, when A cor-
rupts a party P, machine A corrupts P and hands A the internal data of P, along with the
outputs of the relevant copies 6, just as S does. At the end of the computation A outputs
whatever A outputs (that is, A outputs A’s view of the computation). It follows from the
definition of A that the execution of &, with black-box access to A, is in fact identical to
the execution of S with black-box access to A. Thus, IDEAL; 54(7) < IDEAL; g4 (%) which
establishes the first equality in Eq. (3.1).

It remains to show that EXEC 4(%) ~ EXEC; 4(%). Essentially the difference between
these two executions is that EXEC. 4(Z) is a real-life execution in the secure channel set-
ting which is augmented by invocations of ¢ (performed by A), whereas EXEC;, 4(7) is a
real-life execution in the computational setting in which honest parties use the encryption
protocol . However, the security of ¢ means that invocations of é are indistinguishable
from executions by ¢ (both in presence of adaptive adversaries). Using induction on the
number of rounds, one thus establishes the last equality of Eq. (3.1). a

3.3.2 Constructing non-committing encryption

Before describing our non-committing encryption protocol, let us note that one-time-pad is
a valid non-committing encryption protocol.” The drawback of this trivial solution is that
it requires an initial set-up in which each pair of parties share a random string of length at
least the number of bits they need to exchange. Such an initial set-up is not desirable in
practice and does not resolve the theoretically important problem of dealing with a setting
in which no secret information is shared a-priori.

Our scheme uses a collection of trapdoor permutations together with a corresponding
hard-core predicate [BM, Y2, GrL]. Actually, we need a collection of trapdoor permutation
with the additional property that they are many permutations over the same domain.

T Assume that each pair of parties share a sufficiently long secret random string, and each message is
encrypted by bitwise xor-ing it with a new segment of the shared random string. Then Definition 3.2 is
satisfied in a straightforward way. Specifically, the simulated message from the sender to the receiver (i.e.,
the dummy ciphertext), denoted ¢, can be uniformly chosen in {0, 1}. When either the sender or the receiver
are corrupted, and the simulator has to demonstrate that ¢ is an encryption of a bit o, the simulator claims
that the corresponding shared random bit was r = ¢ @ 0. Clearly r is uniformly distributed, regardless of
the value of o.
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Furthermore, we assume that given a permutation f over a domain D (but not f’s trapdoor),

one can efficiently generate at random another permutation f’ over D together with the

trapdoor of f’. Such a collection is called a common-domain trapdoor system.

Definition 3.5 A common-domain trapdoor system is an infinite set of finite permutations
{fap:Dat=DoYiapmer, where PC{0,1}*x{0,1}*, so that

domain selection: There exists a probabilistic polynomial-time algorithm G so that on
input 1, algorithm G, outputs a description a € {0,1}" of domain D,,.

function selection: There exists a probabilistic polynomial-time algorithm G4 so that on
input a, algorithm Gy outputs a pair (3,1(3)) so that (a, ) € P. (( is a description
of a permutation over D, and t((3) is the corresponding trapdoor.)

domain sampling:  There exists a probabilistic polynomial-time algorithm S that on
input «, uniformly selects an element of D,.

function evaluation: There exists a polynomial-time algorithm F that on inputs
(o, 8) € P and x € D, returns f, s(z).

function inversion: There exists a polynomial-time algorithm I that on inputs (o, t(5))
and y € D, where (o, 3) € P, returns f;}a(y)

one-wayness: For any probabilistic polynomial-time algorithm A, the probability that
on input (o, 3) € P and y = f, (), algorithm A outputs x is negligible (in n), where
the probability distribution is over the random choices of o = G1(1"), f = Ga(a),
z = S(a) and the coin tosses of algorithm A.

Remarks:

The standard definition of trapdoor permutations can be derived from the above
by replacing the two selection algorithms, G; and G5, by a single algorithm G that
on input 1" generates a pair (5,¢(5)) so that § specifies a domain Dj as well as a
permutation fs over this domain (and ¢(8) is fs’s trapdoor). Thus, the standard
definition does not guarantee any structural resemblance among domains of different
permutations. Furthermore, it does not allow to generate a new permutation with
corresponding trapdoor for a given domain (or given permutation). Nevertheless some
popular trapdoor permutations can be formulated in a way which essentially meets
the requirements of a common-domain trapdoor system.

Common-domain trapdoor systems can be constructed based on an arbitrary family
of trapdoor permutations, { f5: Dg e Dy}, with the extra property that the domain of
any permutation, generated on input 17, has non-negligible density inside {0, 1} (i.e.,
|Dg| > m - 211y, We construct a common-domain family where the domain is
{0,1}" and the permutations are natural extensions of the given permutations. That
is, we let G1(17) = 17, G5(1") = G(1™) and extend f5 into g5 so that gg(z) = fs(z)
if € Dy and gg(2) = 2 otherwise. This yields a collection of “common-domain”
permutations, {gs:{0, 1} {0, 11171}, which are weakly one-way. Employing am-
plification techniques (e.g., [Y2, GILVZ]) we obtain a proper common-domain system.
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In the sequel we refer to common-domain trapdoor systems in a less formal way. We
say that two one-way permutations, f, and f;, are a pair if they are both permutations over
the same domain (i.e., @ = (@, 1) and b = (a, f5), where the domain is D,). We associate
the permutations with their descriptions (and the corresponding inverse permutations with
their trapdoors). Finally, as stated above, we augment any common-domain trapdoor
system with a hard-core predicate, denoted B. (That is, B is polynomial-time computable,
but given (f, and) f,(z) is it infeasible to predict B(z) with non-negligible advantage over

1/2.)

Outline of our scheme. The scheme consists of two stages. In the first stage, called the
key generation stage, the parties arrive at a situation where the sender has two trapdoor
permutations f,, f, of a common-domain system, the trapdoor of only one of which is
known to the receiver. Furthermore, the simulator will be able to generate, in a simulated
execution of the protocol, two trapdoor permutations with the same distribution as in a real
execution and such that the trapdoors of both permutations are known. (The simulator
will later open dummy ciphertexts as either ‘0’ or ‘1’ by claiming that the decryption key
held by the receiver is either f=! or f;'. The correspondence between {0,1} and {a,b}
will be chosen at random by the simulator and never revealed). The key generation stage
is independent of the bit to be transmitted (and can be performed before this bit is even
determined).

Our most general implementation of this stage, based on any common-domain system,
requires participation of all parties. It is described in Section 3.3.2. In the implementations
based on the RSA and DH assumptions (see Section 3.3.3) the key-generation stage consists
of only one message sent from the receiver to the sender.

The second stage, in which the actual transmission takes place, consists of only one
message sent from the sender to the receiver. This stage consists of encryption and decryption
algorithms, invoked by the sender and the receiver respectively.

We first present, in Section 3.3.2, the encryption and decryption algorithms as well
as observations that will be instrumental for the simulation. In Section 3.3.2 we present
the key generation protocol. (A reader that is satisfied with a construction based on spe-
cific number theoretic assumptions may, for simplicity, skip Section 3.3.2 and read Section
3.3.3 instead.) Finally we show that these together constitute the desired non-committing
encryption protocol.

Encryption and decryption

Let f, and f; be two randomly selected permutations over the domain D, and let B be a
hard-core predicate associated with them. The scheme uses a security parameter, k, which
can be thought to equal log, | D|.

Encryption: toencrypt a bit o € {0, 1} with encryption key (f,, f;), the sender proceeds
as follows. First it chooses x4, ..., zs; at random from D, so that B(z;) = o fori =1, ..., 5k
and B(z;) = 1—o otherwise (i.e., for ¢ = 5k +1,...,8k). For each z; it computes y; = fu(2;).
These z;’s (and y;’s) are associated with f, (or with a). Next, it repeats the process with
respect to f,. That is, zggy1,..., 216, are chosen at random from D, so that B(z;) = o for
i=8k+1,..,13k and B(z;) = 1 — o otherwise, and y; = f,(z;) for i = 8k + 1, ..., 16k. The
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latter z;’s (and y;’s) are associated with f, (or with b). Finally, the sender applies a random
re-ordering (i.e., permutation) ¢ : [16k] — [16k] to yy, ..., y16x and send the resulting vector,
Ys(1)» - - -» Ys(16k), tO the Teceiver.

Decryption: upon receiving the ciphertext yi,...,y16x, When having private key f*
(where r € {a,b}), the receiver computes B(f7'(y1)),..., B(f7 (y1s:)), and outputs the
majority value among these bits.

Correctness of decryption. Let us first state a simple technical claim.

Claim 3.6 For all but a negligible fraction of the «’s and all but a negligible fraction of
permutation pairs f, and f, over D,,

|[Prob(B(f; ' (fu(2))) = B(z)) — %| is negligible (3.2)
where the probability is taken uniformly over the choices of x € D,,.

Proof: Assume for contradiction that the claim does not hold. Then, without loss of
generality, there exists a positive polynomial p so that for infinitely many n’s, we have

1 1
Prob( y€eD,:B(f; ' (y)) = > (= D)>—
{ 7 ) = BUT W > (4 o) D) > o
when f, and f, are independently generated from a = ( ™). This means that for these

(a,a,b)’s B(f7'(y)) gives a non-trivial prediction for B(fb "(y)). Intuitively this cannot be
the case and indeed this lead to contradiction as follows.

Given a = (a,f) € P and y € D, we may predict B(f;*(y)) as follows. First we
randomly generate a new permutation. f;, over D,, together with its trapdoor. Next
we test to see if indeed B(f1(2)) is correlated with B(f;'(2)). (The testing is done by
uniformly selecting polynomially many z;’s in D,, computing 2z, = f,(z;), and comparing
B(f7'(z)) = B(z;) with B(f;'(2)).) If a non-negligible correlation is detected then we
output B(f; '(y) (as our prediction for B(f;'(y))). Otherwise we output a uniformly
selected bit. (Note that [Prob(B(z) = 1) — 1| must be negligible otherwise a constant
function contradicts the hard-core hypothesis.) a
From this point on, we assume that the pair (f,, f;) satisfies Eq. (3.2).

Lemma 3.7 Let ¥ = y1,..., %16 be a random encryption of a bit o. Then with probability
1 —27%%) the bit decrypted from i is o.

Proof: Assume without loss of generality that the private key is f;!. Then, the receiver
outputs the majority value of the bits B(f7'(y1)),..., B(f7 (y16x)). Recall that 8% of the
y;’s are associated with f,. Out of them, 5k (of the y;’s) satisfy B(f '(y;)) = B(z;) = o,
and 3k satisfy B(f7'(y;)) = B(z;) = 1— 0. Thus, the receiver outputs 1 — ¢ only if at least
5k out of the rest of the y,;’s (that is, the y,’s associated with f) satisfy B(f;'(y;)) = 1—o0.
However, Eq. (3.2) implies that [Prob(B(f;*(y;) = 0)— 3| is negligible for each y; associated
with f,. Thus only an expected 4k of the y;’s associated with f; satisfy B(f 7 '(y;)) = 1—o.
Using a large deviation bound, it follows that decryption errors occur with probability
2 k), O
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Simulation assuming knowledge of both trapdoors. In Lemma 3.9 (below) we show
how the simulator, knowing the trapdoors of both f, and f;, can generate “dummy cipher-
texts” 2= 2y, ..., z16; that can be later “opened” as encryptions of both 0 and 1. Essentially,
the values B(f7*(2)) and B(f;'(2)) for each z; are carefully chosen so that this “cheating”
is possible. We use the following notations. Fix an encryption key (f,, f;). Let the random
variable A, = (o; &, ¢; §; v, 1) describe a legal encryption and decryption process of the bit
o. That is:

e ¥ ==xq,...,%16; is a vector of domain elements chosen at random as specified in the
encryption algorithm.

e ¢ is a random permutation on [16k].
o = 1u1,...,Y16 is generated from & and ¢ as specified in the encryption algorithm.

e 7 is uniformly chosen in {a,b} and f! is the inverse of f,. (Note that the decrypted
bit is defined by the majority of the bits B(f'(y:).)

We remark that the information seen by the adversary, after the sender and receiver are
corrupted, includes either Ag or A; (but not both).

Let us first prove a simple technical claim, that will help us in proving Lemma 3.9. Let
BIN,, denote the binomial distribution over [m].

Claim 3.8 There exists an efficiently samplable distribution p over {0,1,...,4k} so that the
distribution i constructed by sampling an integer from p and adding 2k is statistically close
to BINg;. That is, the statistical distance between i and BINg; is 2~UF),

Proof: Let BINg(i) denote the probability of i under BiNg; (i.e., BINg;(i) = (37)-27%). We
construct the distribution p (over {0,1,...,4k}) so that Prob(p=1) = BINg(¢ + 2k) for 7 =
1,...,4n and Prob(u=0) equals the remaining mass of BINg; (i.e., it equals 37° BINgg(7) +
Z?i6k+1 BINSk(i))-

It can be easily seen that each ¢ € {2k + 1, ..., 6k} occurs under i with exactly the same
probability as under BiNg,. Integers ¢ such that 7 < 2k or ¢ > 6k have probability 0 under
i (whereas 2k is more likely to occur under g than under BiNg;). Thus, the statistical
distance between ji and BiNg; equals the probability, under BiNgy, that ¢ is smaller than 2k
or larger than 6k. This probability is bounded by 2=%%), a

Lemma 3.9 Let (f,, f,) be the public key, and assume that both f7' and f;' are known.
Then it is possible to efficiently generate 7,7, 71 $©) M) (O () sych that:

1. (0; 70, (™) T(O),fr_(ul)) Ao.

2. (1; 70 ¢lL; r(l),fr_(ll)) Ay

Here ~ stands for ‘computationally indistinguishable’. We stress that the same dummy

Ro Ro

zZ;
zZ;

ciphertext, Z, appears in both (1) and (2).

Proof: Before describing how the dummy ciphertext Z and the rest of the data are con-

structed, we summarize, in Figure 3-1, the distribution of the hard-core bits, B(f; (Y1), ..., b(F, (y161))

and

B(fi ()
0.

o =

)y - B(f; '(y161)), with respect to a real encryption yg(i), ..., Ysisr) of the bit
Here BiNg; denotes the distribution of the number of ‘1’s in B(f;'(y;)) for
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I={1,...8k} | I ={8k+1,..,16k}
Viel Yi = fal(;) yi = filzy)
Sier BUT (i) = | 3k BiNgj,
>iel B(fb_l(yi)) = | BINg; 3k

Figure 3-1: The distribution of the B(f*(y;))’s with respect to Ao, where s € {a,b}. (The
case of A is similar, with the exception that 5k is replaced for 3k.)

i = 1,...,8k. Eq. (3.2) implies that the statistical difference between BINg; and BINg; is
negligible. The distribution of B(f;'(y;)) for i = 8k+1, ..., 16k is similar. Given only A, (or
only A;), only three-quarters of the B(f;*(y;))’s, i € [16k] and s € {a,b}, are known. Specif-
ically, consider A\, = (o; &, ¢;7;7, f7'), and suppose that » = a. Then all the B(f ' (y;))’s
can be computed using f7'. In addition, for i = 8k + 1,..., 16k, B(f; '(v:)) = B(a;) is
known too. However, for i € [8k], B(fy '(y:)) = B(f; ' fa(,))) is not known and in fact it is
(computationally) unpredictable (from A,). A similar analysis holds for r = b; in this case

the unpredictable bits are B(f;*(y;)) = B(f;* fo(x;))) for i = 8k + 1, ..., 16k.

INITIAL CONSTRUCTION AND CONDITIONS: Keeping the structure of A, in mind, we con-
struct Z, along with £, Z(1, ¢ o) 0 and »(1), as follows. First, we select uniformly
a bijection, p, of {0,1} to {a, b} (i.e., either p(0) = @ and p(1) = b or the other way around)

and set (" = p(0) and r™ = p(1). Next, we choose, in the way described below, two

binary vectors 7(* = ’yio),...,’yigi and ¥V = ’yil),...,’y%;ﬂ. We choose random values
V1, ..., vy, such that v\% = B(fp_(é)(vi)) and 7" = B(fp_(})(vi)), for each 7 € [16k]. We uni-
formly select a permutation 1 over [16k] and let the permuted vector vy, ..., vyc6r) be
the dummy ciphertext 7= (2, ..., 216;). It remains to determine ¢®) and ¢*), which in turn

determine #® and 7 so that 2!”) = Ji (Zp)-104y) for i € [8k] and 27 = I (Zoer0iy)
otherwise. This should be done so that both permutations ¢*) and ¢'*) are uniformly (but
not necessarily independently) distributed and so that the known B(f='(y\”)))’s match the
distribution seen in a legitimate encryption of 0. We stress that (o; 217, ¢(7); 2 r("),fr_(}))
should appear as a valid encryption of o. In particular, for each ¢ € {0,1} there should

exist a permutation (7 (= (¢(7))~! o ¢) over [16k] so that®

LYol = BU (o) = BUT (zom) = B(e™) = o, for i = 1,..,5k.
(E.g., if p(0) = @ this means 7;0(2')(2') =0.)

2. 9 = BUT (vpon)) = BUT (o)) = B(@{”) = 1= 0, for i = 5k + 1,...,8k.
(E.g., if p(0) = a this means ’yi}o(?,)(i) =1-o0.)

& In each of the following five conditions, the first equality is by the construction of the v;’s, the second
equality is by the definition of the z;’s, and the third equality represents the relation between #“, Z and ¢'*
that holds in a valid encryption (of ). In conditions (1) through (4), the last equality represents the relation
between 7 and & that holds in a valid encryption of o. In condition (5), the last equality represents the
information computable from Z using (the trapdoor) fr_(ol,) Here we refer to the inverses of the z;’s which

(o)

are not @, ”’s. The hard-core value of these inverses should be uniformly distributed.
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3. 7;;;;)(%)) = B(fb_l(vw(o)(i))) = B(fb_l(z(z)(a)(i))) = B($§U)) — g, fori=8k+1,.., 13k
(E.g., if p(0) = @ this means 'prl(z)(i) =0.)

4 A = BUT (vpor0) = BUT (o0) = B(al”) = 1=0, for i = 13k+1, .., 16k.
(E.g., if p(0) = a this means ’yfpl(?,)(i) =1-o0.)

5. Let [ = [8k] if p(¢) = b and I = {8k + 1,...,16k} otherwise. Then, ’yfﬁz)(i) =

BUT (vaio) = BUT o) = BUT - (7)) equals o with probabil-
ity negligibly close to %, for e e I.
(E.g., for p(0) = @ and ¢ = 0 we have Prob(’yi}o(?,)(i) =1)~ 1 fori=8k+1,..,16k,
whereas for p(0) = ¢ and ¢ = 1 we have Prob(’yfpl(l)(i) =1l)~ s fori=1,..,8k)
This allows setting ¢(7) = 1o(1)(?))~* so that xiﬁ?,)(i) is “mapped” to z; while ¢{?) is uniformly
distributed (i.e., 2!” = i (vpormy) = [ (2g-1000a)) = fi (Ze@)-10)) for © € [8k] and
2\ = I (z4001iy) otherwise).
INITIAL SETTING OF 7, MW 450 AND 1)(1): The key issue is how to select ¥(") and (1)
so that the five condition stated above hold (for both ¢ = 0 and ¢ = 1). As a first step
towards this goal we consider the four sums

8k 16k 8k 16k
o def “Ha o def b o def —b o def ~Ha
ST = Z'Vz(ﬁv)((i))) ;5 = Z 'Viﬁa)((i))) ;53 = Z'Vl(ﬁa)((i))) VS Z 7;’@)((2')))
i=1 1=8k+1 i=1 1=8k+1

The above conditions imply 57 = S¢ = 5k-0+3k-(1 —0) = 3k +2ko as well as S < BINg;
if p(0) = b and 57 = BiNg; otherwise. (Note that 57,57 and BiNg; are random variables. )
To satisfy the above summation conditions we partition [16k] into 4 equal sized subsets

denoted 11712713714 (e.g., Il = [4k], Iz = {4k‘ + 1,...,8k}, I3 = {8k‘ + 1,,12k‘} and I4 =

{12k + 1,...,16k}). This partition induces a similar partition on the 7(0), Z»(l)’s.

K3

s and the ~
The ’yi(o)’s and the ’yi(l)’s in each set are chosen using four different distributions which
satisfy the conditions summarized in Figure 3-2. Suppose p(0) = a. Then, we may set

I - Il I - Iz I - I3 I - I4
3k 0 2k I
[ Ak 2%k k

Zie[ %’(0)
Zie[ %’(1)

e =

Figure 3-2: The distribution of the v(®)’s and y")’s. (y is as in Claim 3.8.)

PO([8k]) = I, U I, and O ({8k + 1,...,16k}) = I3 U I, and »D([8k]) = I, U I3 and
M8k + 1,...,16k}) = I, U I,, where 7(I) = J means that the permutation = maps the
elements of the set I onto the set J. (It would have been more natural but less convenient
to write (¢, U I3) = [8k] and (¢ YL, U ) = {8k + 1,16k}.) We claim that,
for each o € {0,1}, the above setting satisfies the three relevant summation conditions.
Consider, for example, the case o = 0 (depicted in Figure 3-3). Then, §? = 3°%*, ) = 3k
and S5 = Zging 72(1) = 3k as required. Considering 5§ = Zging 72(0) we observe that it
is distributed as 2k + p = fi (of Claim 3.8) which in turn is statistically close to BINg,. We
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I={1,...8k}= (O Y L UL)| IT={8+1,..,16k} = ()Y (I3U L)
Zz’ef%'(o) =1 5Y=3k+0=3k Sffz?k—l—,ungNgk
Y oier 72(1) = | no condition SO =2k +k =3k

Figure 3-3: Using ¥(© the v{"V’s and 4{"s satisfy the summation conditions S, 5° and $?.
stress that the above argument holds for any way of setting the 1()’s as long as they obey
the equalities specified (e.g., for any bijection © : [} U I, 2 I, U I5, we are allowed to set
YM(i) = 7(i) for all ¢ € I; UL). The case o = 1 follows similarly; here 51 = 3, ... 7 =

5k, 53 = Yienur, v = 5k and 83 = Yicnuis + =+ 2k (see Figure 3-4). In case

I={1,...8k} = (W)Y L UL) | IT={8+1,..,16k} = (")~ Y, U L)
Dier %'(0) = | St =3k+2k =5k no condition
Zz’el%'(l) = S;z,u—l—QkéBngk S; =4k +k =5k

Figure 3-4: Using () the 7"s and 7!"’s satisfy the summation conditions 5, 5! and 52.

p(0) = b we set PO([8k]) = I3 U I, PO({8k + 1,...,16k}) = L, U I, vV([8k]) = L, U I,
and pW({8k +1,...,16k}) = I, U I5. The claim that, for each o € {0,1}, the above setting
satisfies the three relevant summation conditions, is shown analogously.

REFINEMENT OF O, ¥ 0 aAnp 9(1): However, the above summation conditions do
not guarantee satisfaction of all the five conditions. In particular, we must use permutations
¥() which guarantee the correct positioning visible bits within the 8k-bit long block. That

is, we must have

(Wi el = (@™, (1= 0)™)
(Worimieny = Toiay) = (@™, (1= 0)™)

that is, equality between the sequences and not merely equality in the number of 1’s. Clearly
there is no problem to set the 1/()’s so that these equalities hold and thus Conditions (1)
through (4) are satisfied. It is left to satisfy Condition (5).

Suppose that p(c) = a. In this case the third summation requirement guarantees
Zging ’yfﬁ?,)(i) < BiNg. This is indeed consistent with the requirement that these ’yiﬁ?,)(i)’s
are almost uniformly and independently distributed. But this is not sufficient. In particular,

we also need ZZ»EJ’y;‘f?,)(i) = BiNg, where J = {8k < i < 16k : ’7;1(0_)2) =1-o0} and

turn should be statistically close to BINs;). Let us start with the case ¢ = 0. In this case
we need
S nY < BNy, (3.3)
i€J

where J = {i € 3Ul,: 72(1) = 1}, and this sum needs to be independent of 37, ; ,;,_ ’yi(o).

By Figure 3-2 we have |J N I3] = 2k. We further restrict the distributions ’yi(o)’s and ’yi(l)’s
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so that in part I3 the four possible outcomes of the pairs (%(0)7 %(1)) are equally likely (e.g.,

for exactly k integers i € Iy we have (11", 7!") = (0,0)). Consider J' = J n I, (note
|J'| = k). To satisfy Eq. (3.3) we construct a random variable ' € {0,1,...,k} (analogously
to Claim 3.8) so that p; ' Prob(u' = j) = BINsp(k + 7) for j € [k] (with the rest of the
mass on 4/ = 0) and constrain the 7\s to satisfy Prob(3",c O = gy = p;. We get
dies v = k4 £ Bing, (analogously to Claim 3.8). A minor problem occurs: the new

(0), (0)

restriction on the ; ’s conditions ) ;c;,_; v, which we want to be distributed as some

1" L BINgj, — 2k and independently of i/ (the reason being that p’'+ p” should be distributed
equally to p). However this condition has a negligible effect since we can sample p’ and p
and set the ’yi(o)’s accordingly, getting into trouble only in case p < p’ which happens with
negligible probability (since Prob(u < p') < Prob(u < k) = 27Uh),

The case o = 1 gives rise to the requirement

S oA L BiNg, (3.4)

i€

where J = {i e [ UI;: 7O = 0}, and this sum needs to be independent of 37, ;._; .

To satisfy Eq. (3.4) we restrict the ’yi(l)’s inJ' ¥ Jnr analogously to satisfy > ;. 5 ’yi(l) =y

Z»(O)’s and ’y»(l)’

K3

Finally, we observe that generating the ~ s at random so that they satisfy the
above requirements makes them satisfy Condition (5).

BEYOND THE FIVE CONDITIONS. In the above construction we have explicitly dealt with
conditions which obviously have to hold for the construction to be valid. We now show that

indeed this suffices. Namely, we claim that
(0; 87,0\ 200 [0 R Ng = (058, 65 G, fT). (3.5)

Consider the case ¢ = 0. Both r(°) and r are uniformly chosen in {a, b} and so we consider,
w.lo.g., r = 7" = a. Furthermore, ¢?) is a random permutation and fa(x§0>) = 240 for
t=1,...,8k and fb(x§0>) = 24 for i = 8k 4+ 1,..., 16k, which matches the situation w.r.t ¢,
# and §. It remains to compare the distributions of B(f;!(+))’s, s € {a, b}, with respect to
7" and with respect to . By the above analysis we know that the entries corresponding
to s = a and to (s = b) A (i < 8k) are distributed similarly in the two cases. Thus, we need
to compare B(fb_l(fa($(10))))7"‘7B(fb_1(fa($(8(;c)))) and B(fy ' (fa(21))), s BUT (fa(si))-
Recall that the z;’s are selected at random subject to B(z;) = 0 for ¢ = 1,...,5k and

(0)5

B(z;) = 1 for i = 5k +1,...,8k. An analogous condition is imposed on the z; ’’s but in

addition we also have B(fb_l(fa(xgo)))) = 1for: =1,...,4k,and some complicated conditions

on B(fi ' (fa(2{”)) = 1, for i = 4k + 1, ..., 8k (i.c., the distribution of 1’s here is governed
by p and furthermore in the first k£ elements the number of 1’s is distributed identically to
@'). Thus, distinguishing # from #° amounts to distinguishing, given f,, f, : D — D and

the trapdoor for f, (but not for f;), between the two distributions

1. (uy, ..., us), where the u;’s are independently selected so that B(u;) = 0 if ¢ € [5k]
and B(u;) = 1 otherwise; and

2. (wy, ..., ws;), where the w;’s are uniformly selected under the conditions

o B(w;)=0if ¢ € [bk] and B(u;) = 1 otherwise,
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o B(fi'(fulwy))) =1 for i € [4k],
o iy BUT (fa(w)) = ', and
o Yilsips BUT (falws))) = p”, for some p" < =y’

We claim that distinguishing these two distributions yields a contradiction to the security
of the hard-core predicate B. Suppose, on the contrary that an efficient algorithm A can
distinguish these two distributions. Using a hybrid argument we construct an algorithm

A’ which distinguishes the the uniform distribution over D’ © {z € D : B(z) = 7} and

a distribution over D’ that is uniform over both D) © {z € D’ : B(f;'(f.(2))) = 0} and
Dy {2 e D' B(f;y Y(fu(2))) = 1}, where 7 is a bit which can be efficiently determined.
(We stress that the latter distribution is not uniform on D’ but rather uniform on each
of its two parts.) Without loss of generality, we assume 7 = 0. It follows that A’ must
distinguish inputs uniformly distributed in Dj from inputs uniformly distributed in D].
We now transform A’ into an algorithm, A”, that distinguishes a uniform distribution over
{y € D : B(f;"(y)) = 0} from a uniform distribution over {y € D : B(f; *(y)) = 1}. On
input y € D, and f, : D — D, algorithm A” first generates another permutation f,, over
D, together with the trapdoor for f,. Next, it computes z = f7!(y) and stop (outputting
0)if B(z) =1 (i.e.,, z ¢ D"). Otherwise, A”, invokes A’ on 2 and outputs A’(z). In this case
B(f; ' (fu(2))) = B(f; '(y)) (and B(z) = 0) so the output will be significantly different in
case B(f;'(y))) = 0 and in case B(f; '(y))) = 1. We observe that Prob(B(z) = 0) ~ 1
(otherwise a constant function violates the security of B), and conclude that one can a
random y with B(f;'(y)) = 0 from a random y with B(f; '(y)) = 1 (which contradicts the
security of B). ]

Key generation

We describe how the keys are generated, based on any common-domain trapdoor system.
We use Oblivious Transfer [MRal, EGL] in our constructions. Oblivious Transfer (OT) is
a protocol executed by a sender § with inputs s; and s,, and by a receiver R with input
T € {1,2}. After executing an OT protocol, the receiver should know s,, and learn nothing
else. The sender S should learn nothing from participating in the protocol. In particular §
should not know whether R learns s; or s,. We are only concerned with the case where R
is uncorrupted and non-erasing.

We use the implementation of OT described in [GMW] (which in turn originates in
[EGL]). This implementation has an additional property, discussed below, that is useful in
our construction. For self containment we sketch, in Figure 3-5, the [GMW] protocol for
OT of one bit.

It can be easily verified that the receiver outputs the correct value of o, in Step 4. Also,
if the receiver is semi-honest in the non-erasing sense, then it cannot predict o3_, with more
than negligible advantage over % ® The sender view of the interaction is uncorrelated with
the value of 7 € {1,2}. Thus it learns nothing from participating in the protocol.

The important additional property of this protocol is that, in a simulated execution of
the protocol, the simulator can learn both ¢; and o5 by uniformly selecting z;, z, € D, and

°This statement does not hold if R is semi-honest only in the honest-looking sense. Ironically, this ‘flaw’
is related to the useful (non-committing) feature discussed below.
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Oblivious Transfer (OT)

The parties proceed as follows, using a trapdoor-permutations generator and the associated
hard-core predicate B().

1. On input o1,09 € {0,1}, the sender generates a one-way trapdoor permutation f :
D — D with its trapdoor f~', and sends f to the receiver.

2. On input 7 € {1, 2}, the receiver uniformly selects 1, 22 € D, computes y, = f(z.),
sets ys_; = &3_r, and sends (y1,y2) to the sender.

3. Upon receiving (y1,y2), the sender sends the pair (o1 & B(f~1(y1)), 028 B(f~1(y2)))
to the receiver.

4. Having received (b1, b2), the receiver outputs s; = b, @& B(z;) (as the message re-
ceived).

Figure 3-5: The [GMW] Oblivious Transfer protocol

having the receiver R send f(z1), f(22) (in Step 2). Furthermore, if R is later corrupted,
then the simulator can “convince” the adversary that R received either o, or o4, at wish, by
claiming that in Step 2 party R chose either (z1,25) = (21, f(22)) or (21, 22) = (f(21), 22),
respectively.

In Figure 3-6 we describe our key generation protocol. This protocol is valid as long as
at least one party remains uncorrupted.

Simulation (Adaptive security of the encryption protocol)

Let ¢ denote the combined encryption and decryption protocols, preceded by the key gen-
eration protocol.

Theorem 3.10 Protocol € is an (n — 1)-resilient non-committing encryption protocol for n
parties, in the presence of non-erasing parties.

Proof (sketch): Let P. be the sender and let P, be the receiver. Recall that a non-
committing encryption protocol is a protocol that securely computes the bit transmission
function, BTR; ,, in a simulatable way. Let ¢’ be a non-erasing protocol for . We construct
a simulator & such that IDEALTR, , s4(0) < EXEC.s 4(0), for any (n — 1)-limited adversary
A and for any input o € {0,1} of P,.

The simulator § proceeds as follows. First an invocation of the key generation protocol
gg is simulated, in such a way that & knows both trapdoors f7! and f;'. (This can be
done using the additional property of the [GMW] Oblivious Transfer protocol, as described
above.) For each party P that A corrupts during this stage, S hands A the internal data
held by P in the simulated interaction. We stress that as long as at least one party remains
uncorrupted, the adversary knows at most one of f;!, f7'. Furthermore, as long as P,
remains uncorrupted, the adversary view of the computation is independent of whether P,
has f7! or f;'.

Once the simulation of the key generation protocol is completed, § instructs the trusted
party in the ideal model to notify P, of the function value. (This value is P;’s input, o.) If
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key-generation (e¢)

For generating an encryption key (f4, f5) known to the sender, and a decryption key f !
known only to the receiver (R), where r is uniformly distributed in {a,b}.

1.
2.

The receiver generates a common domain 1), and sends « to all parties.

Each party P; generates two trapdoor permutations over D, denoted f,, and f3,,
and sends (fq,, fp,) to R. The trapdoors of f,, and f, are kept secret by P;.

. The receiver R chooses uniformly 7 € {1,2} and invokes the OT protocol with each

party P; for a number of times equal to the length of the description of the trapdoor
of a permutation over «. In all invocations the receiver uses input 7. In the j*™
invocation of OT, party P; acting as sender uses input (o1, 02), where oy (resp., 2) is
the 7 bit of the trapdoor of f,, (resp., f3,). (Here we use the convention by which,
without loss of generality, the trapdoor may contain all random choices made by G5
when generating the permutation. This allows R to verify the validity of the data
received from P;.)

. Let H be the set of parties with which all the OT’s were completed successfully. Let

fa be the composition of the permutations f,;,’s for P; € H, in some canonical order,
and let f; be defined analogously (e.g., a is the concatenation of the a; with i € I).
Let r = a if 7 = 1 and r» = b otherwise. The trapdoor to f, is known only to R (it is
the concatenation of the trapdoors obtained in Step 3).

. R now sends the public key (fq, f3) to the sender.

Figure 3-6: The key generation protocol
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at this point either P, or P, is corrupted, then & gets to know the encrypted bit. In this
case § generates a true encryption of the bit o, according to the protocol. If neither P, nor
P, are corrupted, then S generates the values 7, 7%, D", (D () r(1) a5 in Lemma 3.9,
and lets 7 be the ciphertext that P, sends to P. in the simulated interaction.

If at this stage A corrupts some party P which is not the sender or the receiver, then S
hands A the internal data held by P in the simulated interaction. If A corrupts P,, then S
corrupts P, in the ideal model and learns . Next S hands A the values #(7), ¢(?) for P,’s
internal data. If A corrupts P,, then § corrupts P, in the ideal model, learns ¢, and hands
A the value f7}) for P,’s internal data.

The validity of the simulation follows from Lemma 3.9 and from the properties of the
[GMW] Oblivious Transfer protocol. O

3.3.3 Alternative implementations of non-committing encryption

We describe two alternative implementations of our non-committing encryption scheme,
based on the RSA and DH assumptions, respectively. These implementations have the
advantage that the key generation stage can be simplified to consist of a single message
sent from the receiver to the sender.

An implementation based on RSA. We first construct the following common-domain
trapdoor system. The common domain, given security parameter n, is {0,1}". A per-
mutation over {0,1}" is chosen as follows. First choose a number N uniformly from
[27=1...2"], together with its factorization (via Bach’s algorithm [Ba]). Next choose a
prime 2" < e < 2"t (This way, we are assured that ged(e, p(N)) = 1, where ¢() is Euler’s
totient function, even if the factorization of N is not known.) Let fy(z) = 2°(modN) if
z < N and fy(z) = 2 otherwise. With non-negligible probability N is a product of two
large primes. Thus, this construction yields a collection of common-domain permutations
which are weakly one-way. Employing an amplification procedure (e.g., [Y2, GILVZ]) we
obtain a proper common-domain system.

This common-domain trapdoor system can be used as described in Section 3.3.2. How-
ever, here the key-generation stage can be simplified considerably. Observe that it is possible
to choose a permutation from the above distribution without knowing its trapdoor. Specifi-
cally, this is done by choosing the numbers N of the different instances of fy in the direct
way, without knowing their factorization. Thus, the receiver will choose two trapdoor per-
mutations f,, f;, where only the trapdoor to f, (i.e., f7!) is known, r €x {a,b}. Both f,, f
are now sent to the sender, who proceeds as in Section 3.3.2. In a simulated execution the
simulator will choose both f, and f; together with their trapdoors.'®

An implementation based on DH. Consider the following construction. Although it
fails to satisfy Definition 3.5, it will be ‘just as good’ for our needs. The common domain,
given security parameter n, is a prime 2"7! < p < 2" where the factorization of p — 1 is
known. Also, a generator g of Z7 is fixed. p and g are publicly known. All computations
are done modulo p. To choose a permutation over Z7, choose an element v € Z; | and let

fo(x) = a¥. The public description of f, is y 2 g°. The “trapdoor’ is u 2 v~ H(modp — 1).

10A similar idea was used in [DP].
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This construction has the following properties:

e Although it is hard to compute f, if only p, ¢,y are known, it is easy to generate
random elements © € Z; together with fo(x): choose z €, Zy, and set x = g* and

Jo(z) = y*. (This holds since f,(z) =z" = ¢** = y*.)

o If u is known then it is easy to compute f(z) = a*.

e An algorithm A that inverts f, given only p, ¢,y can be easily transformed into an algo-
rithm A’ that given p, g, ¢, ¢° outputs g’ (that is, into an algorithm that contradicts
the Diffie-Hellman (DH) assumption). Specifically, Assume that A(p,g,¢",2") = x.
Then, on input p,g,g% ¢°, algorithm A’ will run A(p, ¢*, g, ") to obtain g*~.

e It is possible to choose a permutation from the above distribution without knowing
its trapdoor. Specifically, this is done by uniformly choosing numbers y €x Z; until a
generator is found. (It is easy to decide whether a given y is a generator of Z when
the factorization of p — 1 is known.)

Note that both in the encryption process and in the simulation it is not necessary to
compute the permutations f on arbitrary inputs. It suffices to be able to generate random
elements z in the domain together with their function value f(z). Thus, this construction
is used in a similar way to the previous one.

A concluding remark to Section 3.3. Our solutions for non-erasing parties may ap-
pear somewhat unsatisfactory since they are based on ‘trusting’ the receiver to choose trap-
door permutations without knowing the trapdoor, whereas the permutation can be chosen
together with its trapdoor by simple ‘honest-looking’ behavior. Recall, however, that if
honest-looking parties are allowed then no (non-trivial) protocol can be proven adaptively
secure (via black-box simulation if claw-free pairs exist). We do not see a meaningful way to
distinguish between the ‘honest-looking behavior’ that foils the security of our constructions
and the ‘honest-looking behavior’, described in Section 3.1.1, that foils provability of the
adaptive security of any protocol.

3.4 Honest-looking parties

Our construction for honest-looking parties assumes the existence of a “trusted dealer” at
a pre-computation stage. The dealer chooses, for each party P, a truly random string rp,
and hands r7p to P, to be used as random input. (We call 7p a certified random input for
P.) Next, the dealer generates n — 1 shares of 7p, so that 7p can be reconstructed from all
n — 1 shares, but any subset of n — 2 shares are independent of rp. Finally the dealer hands
one share to each party other than P.

Now, all parties are able to jointly reconstruct rp, and thus verify whether P follows
its protocol. Consequently, if party P is honest-looking (i.e., P does not take any chance
of being caught cheating), then it is forced to use rp exactly as instructed in the protocol.
Party P is now limited to non-erasing behavior, and the construction of Section 3.3 applies.
(We note that the use of certified random inputs does not limit the simulator. That is,
upon corruption of party P, the simulator can still compute some convenient value % to
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be used as P’s random input, and then “convince” the adversary that the certified random
input of P was 7. The adversary will not notice anything wrong since it will never have

all the shares of the certified random input.)



CHAPTERA4

Asynchronous secure computation

We study secure multiparty computation in asynchronous networks. (See an introductory
presentation in Section 1.4.) We first present, in Section 4.1, our definition of asynchronous
secure multiparty computation. We consider the bounded variant of the secure channels
setting, in the presence of adaptive adversaries and non-erasing parties. Here we also
describe our conventions for presenting asynchronous protocols. Next we present, in Section
4.2, asynchronous primitives used in our protocols. In Sections 4.3 and 4.5 we describe our
construction of the cases of Fail-Stop and Byzantine adversaries, respectively. In Section
4.4 we define and construct an Asynchronous Verifiable Secret Sharing (AVSS) scheme, that
is a key tool in our construction for Byzantine adversaries. In Section 4.6 we demonstrate
the optimality of our constructions.

4.1 Preliminaries

4.1.1 The asynchronous model

Consider an asynchronous network of n parties, where every two parties are connected via a
reliable and private communication channel. Messages sent on a channel can be arbitrarily
delayed; however, each message sent is eventually received. Furthermore, the order in which
messages are received on a channel may be different from the order in which they were sent?.

It is convenient to regard a computation in our model as a sequence of steps. In each
step a single party is active. The party is activated by receiving a message; it then per-
forms an internal computation, and possibly sends messages on its outgoing channels. We
consider the order of the steps as controlled by an adversarial entity, called a scheduler. We
allow computationally unbounded schedulers. The privacy of the channels is modelled by
considering only oblivious schedulers. The only information known to these schedulers is
the origin and destination (and, possibly, the length) of each message sent?. More formally,

!For simplicity, we assume that messages are not duplicated. Duplication can be prevented by standard
methods, e.g., using counters
2Private channels are useless in the presence of schedulers that have access to the contents of the messages:

49
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an oblivious scheduler is a functionD : (N X [n]*)* — N, with the following interpretation.
Given the list of {length, source, destination} of the ¢ first messages sent in an execution, in
some standard global ordering, function D specifies the serial number of the next message
to be delivered. (The scheduler must deliver every message exactly once, and cannot deliver
unsent messages.) In the sequel we incorporate the scheduler within the adversary.

We distinguish two types of adversaries: Fail-Stop and Byzantine. If the adversary is
Fail-stop, then the corrupted parties may stop sending messages at some time during the
computation; however, we assume that the corrupted parties continue to receive messages
and have an output. If the adversary is Byzantine, then the corrupted parties may deviate
from their protocols in any way. We consider adaptive adversaries.

4.1.2 Defining secure asynchronous computation

We use the ‘ideal model methodology’, described in Section 1.2 and Chapter 2, for defining
asynchronous secure computation. The ‘asynchronous version’ of the ideal model should re-
flect the special properties of the asynchronous setting. In particular, the following property
of the asynchronous setting remains unchanged, even in the presence of a trusted party. In
an asynchronous network with ¢ potential corruptions, the uncorrupted parties (as well as
the trusted party) cannot wait to communicate with more than n—t parties before deciding
on the output of a computation, since up to ¢ parties may never join the computation. Con-
sequently, unlike synchronous computations, the output of an asynchronous computation
can be based only on some ‘core’ subset, of size at least n — ¢, of the inputs. Furthermore,
the ¢ inputs that were left out are not necessarily inputs of corrupted parties: they can be
inputs of slow, however uncorrupted parties.® 4

Therefore, we suggest the following asynchronous ideal model. Evaluating a function f
in this model proceeds in the same way as in the synchronous ideal model (see Section 2.3
on page 21), with the only exception that the computation stage is modified as follows.

Computation stage (asynchronous version): The adversary chooses an arbitrary ‘core’
set of size at least n — ¢; this subset, denoted (', is independent of the inputs of the
uncorrupted parties. A ‘scheduler’ delivers only the messages of the parties in C' to
the trusted party.

Upon receiving the (possibly substituted) inputs of the parties in subset C, the trusted
party computes some predefined “approximation” to the function value, based on C
and the inputs of the parties in C. (For concreteness, we use the following “approxi-
mation”: set the inputs of the parties in C' to 0, and compute the original function.)
In order for the output to make more sense, the trusted party outputs the subset C
as well as the approximated function value.

for instance, such a scheduler can set the delivery order of the messages so that the first bit in the first message
received by party P; will be the same as the fifth bit in the first message that party P» sent on its private
channel to Ps... thus ‘breaking’ the privacy of this channel.

#Chor and Moscovici describe this property of the asynchronous model in more detail [CM]. Furthermore,
they give an exact characterization of the achievable ‘tasks’ in the presence of a given number of Fail-Stop
corruptions, when the privacy of the inputs is disregarded.

*A consequence of this phenomenon is that no asynchronous computation can be “equivalent” to a
computation in the synchronous trusted party scenario.
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Consequently, the output of the parties in this ideal model is as follows. On input
& =u2xy,...,2, of the parties (input z; to party P;), let C' be the set described above, and
let 7 denote the (possibly modified) inputs of the parties in C'. Let fo denote the “approxi-
mation” of the function f, made by the trusted party. Then, the uncorrupted parties output
(C, fo(9)). The corrupted parties output an arbitrary function of the information gathered
by the adversary in the computation; this information consists of the identity and inputs
of the corrupted parties, their random inputs, and the resulting approximation fo(¥). Also
here, we let the n-vector IDEAL; (%) = IDEAL; s(Z); ...IDEAL; 5(Z), denote the outputs of
the parties on input # and ideal-model adversary S (party P, outputs IDEAL; s(Z);).

In Definitions 4.1 through 4.3 we present notations for the output of the parties in the
asynchronous ideal model. (These notations capture the above description in an analogous
way to Definitions 2.8 through 2.10 in the synchronous setting, and can be skipped in a
first reading.) We use the same technical notations as in Section 2.3:

e For a vector ¥ = x;...2, and a set C' C [n], let ¥ denote the vector ¥, projected on
the indices in C.

o For an n-vector # = z; ..., a set B C [n], and a | B|-vector b = b, .. bypy, let T/ g
denote the vector constructed from vector & by substituting the entries in B by the
corresponding entries from b.

Using these notations, the approzimation of function f based on a subset C' C [n] is

defined by fo (&) = f(f/(é,é))'

Definition 4.1 Let D be the domain of possible inputs of the parties, and let R be the do-
main of possible random inputs. A t-limited asynchronous ideal-model-adversary is a quintuple

S =(t,b,h,c,0), where:
e 1 is the maximum number of corrupted parties.

o b:[n]*x D* xR — [n]U{L} is the selection function for corrupting parties (the value
L is interpreted as “no more parties to corrupt at this stage”)

e h:[n]* x D* x R — D* is the input substitution function

c: A" X R —{C C[n]| |C] >n—t} is a core set selection function,
e O:D* xR — {0,1}* is an output function for the bad parties.
The sets of corrupted parties are now defined as follows.

Definition 4.2 Let D be the domain of possible inputs of the parties, and let S = (t,b,h,c,0)
be a t-limited ideal-model-adversary. Let & € D" be an input vector, and let r € R be a

random input for S. The ith set of corrupted parties in the ideal model, denoted B (%, r),
is defined as follows.

. B(O)(f,r) =¢

o Let b 2 b(B(i)(f,r),fB(,)(fyr),r). For 0 <i<t, and as long as b; #1, let

BUI(E,r) 2 BO(E,r) U {bi)
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o Leti* be the minimum betweent and the firsti such thatb; =L. Let bl 2 b(BY(Z, 1), oz, fo(¥),T),
where i is the substituted input vector for the trusted party, and C' is the selected core

LA A L
subset. That is, = T/(pe*) (3, 0(B6) (3r),7 and C' = c(Tpeoyz),T)-

B(*) (2,y"))
Forv* << t, let
B (E 1) 2 BO(F,r)Ub.

In Definition 4.3 we use B instead of B (Z,r).

Definition 4.3 Let f : D™ — D’ for some domains D and D’ be the computed function,
and let ¥ € D" be an input vector. The output of computing function f in the asynchronous
ideal model with adversary & = (t,b,h,c,0), on input & and random input r, is an n-
vector IDEAL; s(Z) = IDEAL; s(Z); .. .IDEAL; 5(&), of random variables, satisfying for every
1<t < n:
. C, fely if i¢ BW
IDEAL; 5(2); = ( Lfc(y)) - 1 Z # )
O(Zpw, fe(y),r) if 1€ B

where r is the random input of S, B is the t*™ set of corrupted parties, i = f/(B(t)yh(B(t)ny(t)yr))
s the substituted input vector for the trusted party, and C 2 c(Zpw,r) is the selected core
subset.

Next we describe the execution of a protocol 7 in the asynchronous real-life scenario,
where the uncorrupted parties run some semi-honest protocol @’ for 7, and in the presence
of a computationally unbounded, adaptive ¢-limited asynchronous real-life adversary A. (We
incorporate the scheduler, described in Section 4.1.1, in A.) The computation proceeds as
follows. Initially, and upon the receipt of a message, each party sends messages according
to m’. The adversary (playing the scheduler) sees the sender, receiver and length of each
message sent. It also sees the contents of the messages sent to corrupted parties. After the
sending of each message, the adversary may decide to deliver one of the messages that were
sent and not yet delivered. It may also decide to corrupt some parties. Upon corruption
of a party P, the adversary sees all the data kept by P according to 7. As in Section 2.3,
we assume that the corrupted parties output the adversary view of the comutation (i.e.,
all the information gathered by the adversary during the computation). We let VIEW, 4(Z)
and EXEC, 4(Z) have an analogous meaning to that of Section 2.3, with respect to the
asynchronous setting.

In Definition 4.4 below we concentrate on the bounded variant of the (asynchronous)
secure channels setting. (See Section 2.1 for a presentation of the variants.)

Definition 4.4 Let f: D" — D' for some domains D and D', and let © be a protocol for n
parties that runs in PPT. We say that © asynchronously t-securely computes f in the bounded
secure channels setting, if the following requirements hold for any semi-honest protocol ' for
T (according to one of the Definitions 2.5 through 2.7), and for any asynchronous t-limited
real-life adversary A:

Termination: On all inputs, all the uncorrupted parties complete execution of the protocol
with probability 1.
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Security: there exists an asynchronous t-limited ideal-model-adversary S, whose complex-
ity is polynomial in the complexity of A, such that for every input vector Z,

IDEAL; 5 (%) = EXECH 4(7).

Remarks:

o We remark that the Termination property is implicit in the security property (parties
that did not complete the protocols do not have an output). We explicitly require
Termination to stress the importance and delicacy of this requirement in an asyn-
chronous setting. In particular, we note that Consensus is a (very limited) special
case of secure computation. The [FLP] impossibility result for deterministic protocols
implies that in an asynchronous network with potential faults there must exist non-
terminating runs of any (randomized) protocol reaching Consensus. Thus, we only
require a secure protocol to terminate with probability (or measure) 1.

o If only Fail-Stop adversaries are allowed, then the real-life adversary A only specifies:
(a) the conditions upon which the corrupted parties should stop sending messages,
and (b) the output of the corrupted parties. Consequently, the input substitution
function h of the trusted-party adversary are the identity function.

4.1.3 Writing asynchronous protocols

We review the way in which an asynchronous computation is carried out, and describe
some useful writing conventions for asynchronous protocols. In Section 4.1.1 we described
an asynchronous computation as a sequence of steps. This is a global, ‘external’ view of the
computation. From the point of view of a party, a computation is a sequence of cycles. A
cycle is initiated upon receiving a message; it consists of executing an internal computation,
and possibly sending messages to other parties. Once a cycle is completed, the party waits
for the next message. The set of instructions to be executed upon the receipt of a message
is called an asynchronous protocol. These instructions may depend on the internal state of
the party, and on the contents of the message received.

However, for clarity of presentation and analysis, our description of an asynchronous
protocol is somewhat different: we partition the protocol into several modules, called sub-
protocols. Each sub-protocol is first presented, and sometimes analyzed, as if it were the
only protocol run by the party. Sub-protocols are combined by letting one sub-protocols
‘call” other sub-protocols during its execution. We present our interpretation of this writing
style of asynchronous protocols.

The party keeps track of the sub-protocols that are currently ‘in execution’: initially,
only one predefined sub-protocol is ‘in execution’; when some sub-protocol is called by
another sub-protocol, it is added to the sub-protocols ‘in execution’.

We assume that each message applies to one sub-protocol only. Thus, Upon the receipt
of a message, the party invokes a cycle of the relevant sub-protocol. If the received message
refers to a sub-protocol which is not ‘in execution’, then the party keeps the message; once
the sub-protocol has started, a cycle is invoked for each one of the kept messages.

We associate input and output values with each sub-protocol; furthermore, the output of
one sub-protocol may be the input of another sub-protocol. However, the latter sub-protocol
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may be in execution before the former sub-protocol has completed updating its output;
consequently, the input of the latter sub-protocol may be changed during its execution. We
call such input a dynamic input; namely, unlike regular input, dynamic input variables may
have different input values in different cycles in the same run of a sub-protocol.

The variables we use for dynamic input will only have items added to them. It is
convenient to regard such variables as monotonically increasing sets. Namely, let I/ be such
a variable, and let Z/(*) denote the set held in &/ when this set is of size ¢ for the first time;
then, if ¢ < d we have Y(®) C U@ . We call these variables accumulative sets. (In the sequel,
we will use calligraphic letters (e.g., ) to denote accumulative sets.)

Using the above conventions, the shorthand “Set ¢ = 7(b)” stands for: “(a) call sub-
protocol 7, with b for input; (b) Let a denote its output”. Note that b may be a dynamic
input of 7; similarly, the output @ may be updated as long as sub-protocol 7 is in execution.

Another shorthand used is as follows. Let condition denote some relation (e.g. ‘there
are at least k elements in the accumulative set’). We use “Wait until condition” to denote
“If condition holds, continue to the next instruction. Else, end this cycle.” In the sequel we
do not distinguish between protocols and sub-protocols.

4.2 Primitives

In this section we describe primitives used in our constructions, in both the Fail-Stop and
the Byzantine cases. We first define the requirements of each primitive, and then describe
(or give a reference to) an implementation.

4.2.1 Byzantine Agreement

We present the standard definition of asynchronous Byzantine Agreement. (When the
adversary is Fail-Stop, this primitive is sometimes called Consensus.)

Definition 4.5 Let © be an n-party protocol where each party has binary input. Protocol
7 is a l-resilient Byzantine Agreement protocol if the following hold, for every input, every
scheduler, and every coalition of up to t corrupted parties.

e Termination. With probability 1, all the uncorrupted parties eventually complete the
protocol (i.e., terminate locally).

e Correctness. All the uncorrupted parties that complete the protocol have an identical
output. Furthermore, if all the uncorrupted parties have the same input, denoted o,
then all the uncorrupted parties output o.

Feldman [Fe] describes an ([%] — 1)-resilient asynchronous BA protocol, running in
constant expected time®. ([%] — 1)-resilient Consensus can be reached by substituting the

AVSS scheme in Chapter 5 by a simple secret sharing scheme. (For instance, use the scheme
described in Section 4.3.)

®We define the running time of an asynchronous protocol in Section 4-A.
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4.2.2 Broadcast

We present a definition of a broadcast protocol.

Definition 4.6 Let be an n-party protocol initialized by a special party (called the sender),
having input m (the message to be broadcast). Protocol w is a t-resilient Broadcast protocol
if the following hold, for every input, scheduler, and coalition of up to t corrupted parties.

e Termination. 1. If the sender is uncorrupted, then all the uncorrupted parties even-
tually complete the protocol.

2. If any uncorrupted party completes the protocol, then all the uncorrupted parties
eventually complete the protocol.

e Correctness. If the uncorrupted parties complete the protocol, then they do so with a
common output m*. Furthermore, if the sender is uncorrupted then m* = m.

We stress that the Termination property of Broadcast is much weaker than the Ter-
mination property of Byzantine Agreement: for Broadcast, we do not require that the
uncorrupted parties complete the protocol, in case that the sender is corrupted.

In Figure 4-1 we describe a simple Broadcast protocol for the Fail-Stop model.

Protocol BC

Code for the sender (on input m):

1. Send (MSG, m) to all the parties, and complete the protocol with output m.
Code for the other parties:

2. Upon receiving the first (MSG,m) or (ECHO, m) message, send (ECHO,m) to all
the parties and complete the protocol with output m.

Figure 4-1: A simple broadcast protocol for Fail-stop adversaries

Proposition 4.7 Protocol BC is an n-resilient Broadcast protocol for Fail-stop adversaries.

Proof: If the sender is uncorrupted, then all uncorrupted parties receive a (MSG,m)
message and thus complete the protocol with output m. If a uncorrupted party completed
the protocol, with output m, then it has sent an (ECHO, m) message to all the parties, thus
every uncorrupted party will complete the protocol with output m. a

Bracha [Br] describes an ([%] —1)-resilient Broadcast protocol for the Byzantine setting.
For self-containment, we present Bracha’s Byzantine Broadcast (BB) protocol in Figure 4-2.

Convention: in the sequel, we use “party P received an m broadcast” to shorthand
“party P completed a Broadcast protocol with output m”. We assume that the identity of
the sender appears in m.
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Protocol BB

Code for the sender (on input m):

1. send message (MSG, m) to all the parties.
Code for party F;:

2. Upon receiving a message (MSG, m), send (ECHO, m) to all the parties.

3. Upon receiving n — ¢t messages (ECHO,m’) that agree on the value of m/,
send (READY,m’) to all the parties.

4. Upon receiving t + 1 messages (READY, m’) that agree on the value of m/,
send (READY,m’) to all the parties.

5. Upon receiving n — ¢ messages (READY, m’) that agree on the value of m/,
send (OK,m') to all the parties and accept message m’ as a broadcast message.

Figure 4-2: Bracha’s Broadcast protocol

4.2.3 Agreement on a Core Set

We first illustrate a setting in which an Agreement on a Core Set (ACS) primitive is needed.
Assume each party initiates a Broadcast of some value; next, the parties wish to agree on a
common ‘core’ set of at least n —¢ parties whose Broadcast has been successfully completed.
Clearly, each uncorrupted party can wait to (locally) complete n — ¢ Broadcasts, and keep
the senders of these Broadcasts. However, if more than n—t¢ Broadcasts have been (globally)
completed, then we cannot be sure that all the uncorrupted parties keep the same set of
parties. For this purpose, the parties use the Agreement on a Core Set (ACS) primitive:
the parties’ output of this primitive, when used in this context, is a common set of at least
n — t parties whose Broadcast has been completed.

We proceed to formally define the properties required of an ACS primitive. Recall the
definition of an accumulative set (described in Section 4.1.3, on page 53): we let /(*) denote
the value of variable I/ in cycle ¢ of the protocol; An accumulative set I/ is a variable holding
a set, such that for every two cycles ¢ and d, if ¢ precedes d then U(®) C (D,

Definition 4.8 Let m, M € N (in out context, we use m = n —t and M = n), and let
Uy ... U, C[M] be a collection of accumulative sets, so that party P; has U;. We say that
the collection is (m, t)-uniform, if the following hold, for every scheduler and every coalition
of up to t corrupted parties.

o For every uncorrupted party P; there exists a cycle ¢ such that |Z/{Z»(c)| > m.

o [or every two uncorrupted parties P; and P, if k € Ui(a) for some cycle a within party
P;, then there exists a cycle b within party P; so that k € U](b) (namely, P; and P; will
eventually have U; = U; ).

Definition 4.9 Let m < M, and let © be an n-party protocol with parameters m, M, where
the input of every uncorrupted party P; is an accumulative set U;. Protocol T is a t-resilient
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protocol for Agreement on a Core Set (with parameters m, M ), if the following hold, for every
coalition of up to t corrupted parties, and every scheduler.

e Termination. [f the collectionU, ...U, is (m,t)-uniform, then with probability 1 all
the uncorrupted parties eventually complete the protocol.

e Correctness. All the uncorrupted parties complete the protocol with a common output
C C [M] so that |C| > m. Furthermore, every uncorrupted party has C C U}, where

U is the value of U; upon the completion of protocol 7.

Before presenting our construction, let us remark that in [BKR] a simpler construction
of an ([§] — 1)-reslient protocol for agreement on a core set is described. Furthermore, the
[BKR] protocol runs in constant expected time. Let n > 3t 4+ 1. Our construction, with
parameters m and M, consists of two phases:

Phase I: In the first phase, each party first waits until its dynamic input is of size m; then,
it performs log, n iterations. In each iteration, the party sends the current contents of its
dynamic input to all the other parties; then, the party collects the sets sent by the other
parties in this iteration, and waits until its dynamic input contains n — ¢ such sets; then,
the party continues to the next iteration. It will be shown below that the intersection of
the dynamic inputs of all the uncorrupted parties that have completed this phase is of size
at least m. ©

Phase II: In the second phase, the parties concurrently run M Byzantine Agreement
protocols; in the c¢th Byzantine Agreement, the parties decide whether element ¢ € [M] will
be in the agreed set C'. Namely, each party’s input to the ¢th Byzantine Agreement is 1iff ¢
belongs to the party’s dynamic input; the element ¢ belongs to the set C, iff the (common)
output of the ¢th Byzantine Agreement is 1. The properties of Byzantine Agreement assure
us that the set C' contains the intersection of the dynamic inputs of all the parties that have
completed the first step; therefore, the set C' is large enough.

Remark: Our construction applies to both the Fail-Stop and the Byzantine cases, using
the appropriate agreement primitive (either BA or Consensus).

Protocol ACS is described in Figure 4-3.

Proposition 4.10 Protocol ACS[m, M| is a min(r, [5]—1)-resilient protocol for Agreement
on a Core Set in a network of n parties, where r is the resilience of the agreement protocol
used.

Proof: We first assert the Termination condition. Assume that the accumulative sets
U, ... U, define an (m,t)-uniform collection. We show that every uncorrupted party P; will
eventually complete the protocol.

Clearly, Step 1 will be completed. It can be seen, by induction on the number of
iterations, that every iteration in Step 2 will be completed: in each iteration r, party F; will
eventually receive the (r, 5;) message from every uncorrupted party. Furthermore, for every

5This problem of assuring a large intersection of the sets of a uniform collection was previously addressed
by [Fe], as well as [BE]. Both works present partial solutions to this problem: let m = n — ¢; Feldman
[Fe] made sure that the intersection of the sets held by all the uncorrupted parties is of size ©(n) (but
not necessarily m); Ben-Or and El-Yaniv [BE] made sure that the intersection of the sets held by n — 2¢
uncorrupted parties is of size at least m.
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Protocol ACS[m, M](U;)

Party P; acts as follows, on inputs m, M and accumulative set ;.
1. Wait until |i;] > m.
2. For 0 < r < |logn| do
(a) Send (r,U;) to all the parties.
(b) Let F} = {P;| an (r, S;) message was received from F;}.
Wait until S; C U; for at least n — ¢ parties P; € F[.

(Note that sets S; that were not contained in ; when they were received, may
later be contained in U; if elements are added to it.)

3. Run M Byzantine Agreement protocols BA; ... BAys, with input 1 to BA; iff j € U;.
4. Set C; = {j|the output of BA; is 1}. Wait until C; C U;.
5. Qutput C;.

Figure 4-3: ACS - A protocol for Agreement on a Core Set

uncorrupted party P;, party P; will eventually have S; C U; (since the collection U, ...U,
is uniform).

Step 3 will be completed with probability 1, since all the Byzantine Agreement protocols
are completed with probability 1. To see that Step 4 will be completed, we note that if a
Byzantine Agreement protocol BA; has output 1, then there exists a uncorrupted party P
that started BA; with j € Uy; thus, party P; will eventually have j € U;.

We assert the Correctness property. The unanimity of the outputs of the parties follows
directly from the definition of Byzantine Agreement. Step 4 of the protocol assures us that
C C Uy, within each uncorrupted party P;. It is left to show that |C| > m.

Let U] denote the value of accumulative set f; upon completion of iteration r of Step 2
by party P;. We show by induction on r that every set D of at most 2" uncorrupted parties,
all of which have completed iteration r, satisfies | Njep U7 > m.

The base of induction (7 = 0) is immediate from Step 1 of the protocol. For the induction
step, consider a set D of up to 2" uncorrupted parties. We first observe that for every two
parties P;, P, € D, we have [F] N FY| > ¢+ 1, since n > 3t + 1 and |F]| > n —t for each j.
Therefore, there exists at least one uncorrupted party P, € F; N Fy; we call P, an arbiter of
P; and P,. Party P; (resp. P;) has received the (r,5;) message; furthermore, U;~" C 5.
Thus, U;™" C U (resp. U/ ™" C U}).

Consider an arbitrary partition of the set D to pairs of parties, choose an arbiter for each
pair, and let D’ be the set of these arbiters; thus, |D’| < 2"~!. By the induction hypothesis,
we have m < |ﬁjED/U;_1|. Every party in D has an arbiter in D', thus ﬂieD/U;_l C NjepU;.
Therefore, we have m < | Njecp UT|.

Let D be the set of uncorrupted parties that start Step 3 of the protocol, and let
¢ = Njep U;Og"; by the above induction, we have |C'| > m. For every j € C, the inputs
of all the uncorrupted parties to the BA; protocol is 1. Therefore, by the definition of
Byzantine Agreement, the output of every BA; protocol is 1. Thus, ¢ C C and |C| > m.
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4.3 Fail-Stop faults

We show how to securely t-compute any function whose input is partitioned among n parties,
when n > 3t + 1 and the faults are Fail-Stop. Our costruction follows the outline of the
first [BGW] construction (namely, the construction resilient against corrupted parties which
only try to gather information but otherwise follow the protocol).

Let F be a finite field known to the parties with |F| > n, and let f: F"* — F be the
computed function. (Namely, we restrict our discussion to functions where the input of
each party, as well as the function value, are field elements. We note that no generality is
lost in this restriction: if the range of the computed function does not ‘fit into’ F’, then the
function can be partitioned into several functions whose range is F. Furthermore, a party
can have more than one field element for input; in this case, it executes a different copy of
the protocol for each field element.)

We assume that the parties have an arithmetic circuit computing f; the circuit consists
of addition and multiplication gates of in-degree 2 (we regard adding a constant as a special
case of addition). All the computations in the sequel are done in F'.

An outline of the protocol follows. Let z; be the input of P;. As a first step, each party
shares its input among the parties, using a technique similar to Shamir’s secret sharing
scheme [Sh]. (Namely, for each party P; that successfully shared its input, a random poly-
nomial p;(-) of degree ¢ is generated, so that each party P; has p;(j) and p;(0) is P’s input
value. We say that p;(j)is P;’s share of p;(0).) Next, the parties agree, using protocol ACS,
on a core set C' of parties that have successfully shared their input. Once ' is computed,
the parties proceed to compute fo(Z), in the following way. First, the input values of the
parties not in C' are set to a default value, say 0; then, the parties evaluate the given circuit,
gate by gate, in a way described below. Note that the output of the protocol is fixed once
the set ' is fixed.

For each gate, the parties use their shares of the input lines to jointly and securely
‘generate’ a random polynomial p(-) of degree ¢t such that every party P, computes p(7),
and p(0) is the output value of this gate. (Namely, p(¢) is P;’s share of the output line of
this gate.) Once enough parties have computed their shares of the output line of the entire
circuit, the parties reveal their shares of the output line, and interpolate the output value.

In the rest of this section, we describe our construction in more detail. First, we describe
the Global-Share and Reconstruct protocols. Next, we describe the evaluation of a linear
gate and of a multiplication gate. Finally, we put all the pieces together to describe the
main protocol, and prove its correctness.

When presenting each protocol, we describe the uncorrupted parties’ outputs of the
protocol. We postpone the formal proof of security to Section 4.3.5.

4.3.1 Global-Share and Reconstruct

The Global-Share protocol, denoted GShare, consists of two phases. First, each party shares
a secret among the parties; next, the parties use an ACS protocol in order to agree on a set,
of size at least n — ¢, of parties that have successfully shared their secret. Party P;’s output
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of the GShare protocol is the set of parties that have successfully shared their inputs, along
with the ¢th share of the input of each of the parties in this set.

This protocol is applied once at the beginning of the protocol (where each party shares
its input of the main protocol), and twice in each invocation of the protocol for computing
a multiplication gate (see Section 4.3.3). Protocol GShare has a ‘security parameter’, d.
This parameter will be set to either ¢ or 2¢, according to the context in which the protocol
is activated. Protocol GShare is presented in Figure 4-4.

Protocol GShare[d](z;)

Party P; acts as follows, on inputs x;, d.

1. “Share z;”:

(a) Choose a random polynomial h;(-) of degree d, such that h;(0) = ;.
For each 1 < j < n, send h;(j) to party F;.

(b) Broadcast ‘Party P; completed sharing’.

2. Upon receiving the share s; ; of P;’s secret and the ‘Party F; completed sharing’
broadcast, add j to a set C; of parties that have successfully shared their secret.

Set ' =ACS[n —t, n](Cy).
3. Output C, and {s; ;|5 € C'}.

Figure 4-4: GShare - The global sharing protocol

We note that the accumulative sets C;...C, of Step 2 define an (n — ¢,¢)-uniform
collection. Thus, all the uncorrupted parties complete protocol ACS (and, hence, the entire
GShare protocol) with the desired output. Furthermore, the corrupted parties have no
information about the values shared by the uncorrupted parties.

In the Reconstruct protocol, described in Figure 4-5, the parties reconstruct a secret
from its shares. The parameters of this protocol are the ‘security parameter’ d, and a set R
of the parties to which the secret is to be revealed. Party P;’s input is the i-th share of the
secret, denoted s;. The Reconstruct protocol is invoked once for every multiplication gate,
and once at the end of the protocol. (Parameter R is necessary in the multiplication gate
invocation. In the other invocation it is set to R = [n].)

We note that if d + 1 < n — ¢ then a Reconstruct protocol that is run by all the parties
will be completed. Furthermore, if there exists a polynomial, p(-), of degree d such that the
share of each active party P; is s; = p(7), then all the uncorrupted parties in R will output

p(0).

4.3.2 Evaluating a linear gate

We describe the evaluation of a linear gate, instead of a simple addition gate; this more gen-
eral formulation will be convenient in presenting the protocol for computing a multiplication
gate.

Evaluating a linear gate is easy and requires no communication. Let ¢ = Z?Il a; -a; be
a linear gate, where @, ...qa; are the input lines of the gate, oy ...y are fixed coeflicients,
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Protocol Reconstruct[d, R](s;)

Party P; acts as follows, on input s;, and parameters d € {t,2t} and R C {Py,..., P,}.

1. Send s; to all the parties in R.
2. If P; ¢ R, output 0.

Otherwise, upon receiving d + 1 values (value v; from party P;), interpolate a poly-
nomial p;(-) of degree d such that p(j) = v; for each received value v;.
Output p;(0).

Figure 4-5: Reconstruct - The reconstruction protocol

and c¢ is the output line. Let A;(-) be the polynomial associated with the jth input line;
namely, party P;’s share of this line is a; ; = A;(7).

Each party P; locally sets its share of the output line to ¢; = Z?Il a; -a;;. It can be
easily seen that the shares ¢;...¢, define a random polynomial C(-) of degree ¢ with the
correct free coefficient, and with C'(i) = ¢; for all 1.

4.3.3 Evaluating a multiplication gate

Let ¢ = a - b be a multiplication gate, and let A(-), B(-) be the polynomials associated with
the input lines; namely, each party P,’s shares of these lines are A(7) and B(¢), respectively.
The parties will jointly compute their shares of a random polynomial C(-) of degree ¢,
satisfying C'(0) = A(0)- B(0); namely, each uncorrupted party P;’s share of the output line
will be C'(2).

Initially, each party locally computes its share of the polynomial E(-) = A(-)- B(-), by
setting F2(¢) = A(7)- B(i). Clearly, I(-) has the required free coefficient. However, F(-) is of
degree 2t; moreover, it is not uniformly distributed. The parties use their shares of F(-) to
compute their shares of the desired polynomial C(-), in a secure manner. The computation
proceeds in two steps: first, the parties jointly generate a random polynomial, D(-), of
degree 2t, so that D(0) = E(0) (namely, each party P; will have D(¢)). Next, the parties
will use their shares of D(-) in order to jointly compute their shares of polynomial C'(-).
These steps are described below.

Randomization. We describe how polynomial D(-) is generated. First, the parties gen-
erate a random polynomial H(-) of degree 2t and with H(0) = 0; namely, each party P; will
have H (7).

We first describe how the polynomial H(-) is shared in a synchronous setting [BGW].
Fach party P; selects a random polynomial H,(-) of degree 2t with H;(0) = 0, and shares
it among the parties; namely, each party P; receives H;(j). Polynomial H(-) is set to
H(-) = >77_, Hj(-); namely, each party P; computes H (i) = y_7_, H;(i).

In our asynchronous setting, a party cannot wait to receive its share from all the other
parties. Instead, the parties agree, using protocol ACS, on a set € of parties that have
successfully shared their H; polynomials; next, polynomial H(-) will be set to H(:) =
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> ;ec H;(+). In other words, the parties run protocol GShare[2¢](0); on output (C, { H;(7)|j €
C'}) of the GShare protocol, party P; computes H (i) = > .. H;(2).

Polynomial D(-) is now defined as D(:) = E(-) 4+ H(-); namely each party P; computes
D(i) = E(¢)+ H(:). Clearly, D(0) = A(0) - B(0), and all the other coefficients of D(-) are

uniformly and independently distributed over F.

Degree-reduction. In the degree-reduction step, the parties use their shares of D(-) in
order to jointly and securely compute their shares of a random polynomial C(-) of degree
t, with C'(0) = D(0). Polynomial C'(-) will be set to the ‘truncation’ of polynomial D(-) to
degree t; namely, the t4 1 coefficients of C'(-) are the coefficients of the ¢t + 1 lower degrees of
D(-). An important observation is that the information gathered by the corrupted parties
(namely, ¢ shares of polynomial D(-), along with ¢ shares of the truncation polynomial C(-)),
is independent of C'(0). This statement is formalized in Lemma 4.16 on page 70, and used
in proving the security of the entire protocol.

Let d = D(1)...D(n), and let &= C(1)...C(n). [BGW] noted that there exists a fixed
n x n matrix M such that & = dM. It follows that the desired output of each party F;
is a linear combination of the inputs of the parties: C(i) = [dM]; = Yz D) - M;,;. We
colloquially call such an operation ‘multiplying the inputs by a fixed matrix’. (In this case,
the parties’ inputs are their shares of the polynomial D(-).)

In a synchronous setting, ‘multiplying the inputs by a fixed matrix’ can be done by
securely computing the appropriate n fixed linear combinations of the inputs, so that the
value of the ¢th linear combination is revealed to party P; only. Linear combinations are
securely computed as follows. First, each party shares its input; next, each party computes
the linear combination of its shares (as in Section 4.3.2), and reveals this linear combination
to the specified party; finally, the specified party computes the output value by interpolating
a degree ¢ polynomial from the received combinations. 7

Linear combinations of all the inputs cannot be computed in an asynchronous setting.
Thus, the synchronous method described above cannot be used. We outline our solution for
the asynchronous setting. First, we describe a technique for multiplying inputs by a fixed
matrix in an asynchronous setting, for the case where the matrix and the set of inputs are
related in a special way described below. Next, we note that the matrix M and the set of
possible inputs of the degree-reduction step are related in this special way.

Definition 4.11 Let A be an n X n matriz, and let S C F" be a set of input vectors. we
say that S is t-multipliable by A, if for every set G C [n] with |G| > n — t, there exists an
(easily computable) matriz Ag, of size |G| X n, such that for every input & € S, we have
Tg-Aqg =7 A.

Let S be t-multipliable by A. Then, the protocol described in Figure 4-6 ‘multiplies
inputs in S by the matrix A’. Let & € 5. The parties first execute a GShare protocol
(applied on the input vector &); once the common set G is computed, each party locally
computes Ag. Next, the parties run n Reconstruct protocols; in the ith Reconstruct, the

"Note that computing a linear combination of input values is harder than computing a linear combination
of already-shared values (i.e., the problem addressed in section 4.3.2): the former computation involves
sharing of all the inputs.
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parties let P; compute [Zs - Ag];, by sending him the appropriate linear combination of their
shares.

Protocol MAT (#;, A)

Party P; acts as follows, on input x;, and matrix A.

1. Set (G, {s;;|j € G}) =GShare[t](xz;).
Enumerate G = g1,...,9|g|, and let 5; = s; 4, .. - SiLg1q)-
2. Compute Ag.
3. For 1 < k < n, set y;, =Reconstruct([s; - Ag]x,t,{k}).
Output y;.

Figure 4-6: MAT - A protocol for multiplying the input by a fixed matrix

We say that an input vector & is d-generated if there exists a polynomial P(-) of degree
d satisfying @; = P(7) for every ¢; the set of possible inputs of the degree-reduction step is
the set of 2t-generated vectors.

Proposition 4.12 Let M be the n X n matriz introduced in [BGW]. Then, the set of
2t-generated n-vectors is t-multipliable by M, when n > 3t + 1.

Proof: Recall that matrix M used in [BGW] is constructed as M = V7'TV, where V
is a (Vandermonde) n x n matrix defined by V;; = ¢, and T is constructed by setting all
but the first ¢ + 1 rows of a Unit matrix to 0. (Let d_),é'be as defined above. To see that
d-M = ¢, note that d- V=1 is the coefficients vector of the polynomial D(-); thus d-v-iT
is the coefficients vector of C(-), and d- V=TV = &)

Let G C [n] with |G| > n — 1, and let G = g¢1...gj. Matrix Mg is constructed as
follows. Let the |G| x |G| matrix V¢ be the matrix V projected on the indices in G; namely,
VZG] = (¢;)’. Next, construct the |G| x n matrix V by appending n — |G| zero columns to
(VE)~='. Finally, set Mg = VTV, where T is defined above.

Since n > 3t + 1, we have |G| > 2t 4 1; it can be verified that in this case, Zg LV is,
once again, the coefficients vector of D(-) (namely, #¢ -V = &-V~1). Thus, VIV =
T-V-ITV = #- M as required. O

Combining the Randomization and Degree-reduction steps, we derive a protocol for
computing a multiplication gate. This protocol, denoted MUL, is presented in Figure 4-7.

4.3.4 The main protocol

Let f: F" — F be given by an arithmetic circuit A. Our protocol for securely ¢t-computing
f is described in Figure 4-8.

Theorem 4.13 Let f : F" — F, for some field F' with |F| > n, and let A be a circuit
computing f. Then, protocol FScompute[A] asynchronously ([%]—1)-securely computes f in
the bounded secure channels setting with n non-erasing parties, provided that only Fail-Stop
adversaries are considered.
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Protocol MUL(a;, b;)

Party P; acts as follows, on inputs a;, b;.
1. Set (C',{h;;|j € C'}) =GShare[2t](0).
Let d; = a; - b; + Z]’EC’ h
2. Let Mpxn be the matrix introduced in [BGW].
Set C; IMAT(dZ', M)
Output ¢;.

4,5+

Figure 4-7: MUL - A protocol for computing a multiplication gate

Protocol FScompute[A](z;)

Party P; acts as follows, on local input z;, and given circuit A.

1. Set (C,{s; ;|j € C}) =GShare[t](x;).
For a line [ in the circuit, let ) denote the share of party P; in the value of this
line. If  is the jth input line of the circuit, then set {() = s;; if j € C, and 1 =0
otherwise.

2. For each gate ¢ in the circuit, wait until the ith shares of all the input lines of ¢ are
computed. Then, do the following.

(a) If ¢ is an addition gate with output line { and input lines {; and l2, then set
10 =119 413,
(b) If g is a multiplication gate [ = - I3, then set {(¥) :MUL(lgi), lgi)).

3. Let l,u: be the output line of the circuit.
Once lgl)t is computed, send ‘Ready’ to all the parties.

(The only role of the ‘Ready’ messages is simplifying the proof of correctness, below.)

4. Wait to receive n — ¢ ‘Ready’ messages.
Set y =Reconstructlt, [n]](l((fu)t)

5. Output (C,y).

Figure 4-8: FScompute - The protocol for Fail-Stop faults
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We present the proof of Theorem 4.13 in two steps. First, we show security of the
protocol in the presence of non-adaptive adversaries. (When the adversary is non-adaptive
there is no difference between the cases where the uncorrupted parties are semi-honest or
honest. We thus assume that the uncorrupted parties are honest.) We do not present a
definition of non-adaptively, secure computation in asynchronous networks. However, such
a definition can be easily assembled from the definition of adaptive security in asynchronous
networks (Definition 4.4), and definition of non-adaptive security in synchronous networks
(Definition 2.4).

Next we show adaptive security of protocol FScompute in the presence of non-erasing
parties. We remark that protocol FScompute can be shown adaptively secure also in the
presence of honest-looking parties, using similar constructs to those described in Section
3.4.

4.3.5 Proof of correctness — non-adaptive case

let A be a non-adaptive Fail-stop adversary, and let B be the set of corrupted parties (we
incorporate the scheduler in A).

Termination

We use F'S to shorthand protocol FScompute[A]. We show that for every input &, with
probability 1 all the uncorrupted parties terminate protocol F'S.

Protocol FS consists of several invocations of protocols GShare and Reconstruct; if a
uncorrupted party terminates all these invocations, then this party terminates the entire
protocol as well. We have seen that a Reconstruct protocol always terminates, provided
that » > 3¢t + 1. If all the Consensus protocols invoked in a GShare protocol terminate,
then the GShare protocol terminates as well.

Each one of these Consensus protocols terminates with probability 1, by the definition
of Consensus. Thus, with probability 1, all the Consensus protocols invoked in the entire
protocol terminate; therefore, with probability 1, all the GShare protocols terminate as well.

Security

For any real-life non-adaptive ([%] — 1)-limited real-life adversary A, we construct a ideal-
model adversary S, so that for every input #, we have IDEAL; s(Z) = EXECpg 4(Z). (The
notations § and IDEAL; s(+), as well as EXEC, 4(+) for a protocol © (here 7 =FS), are defined
in Section 4.1.2, on page 23.) Here the set of corrupted parties, denoted B, is fixed. We
represent the ideal-model adversary S as a quadruple A = (B, h,¢c,0).
Construction of the ideal-model adversary. We remark that adversary & operates
via black-box simulation of the real-life adversary. (Black-box simulation was described,
for the synchronous setting, in Section 2.3. The asynchronous version is analogous.) Here
the set B of parties corrupted by the real-life adversary A is fixed. Adversary S corrupts
the parties in B. The input substitution function h, the core set selection function ¢ and
the output function O are computed via the following simulated interaction between the
real-life adversary A and parties executing protocol FS.

On input ¥ and random input r, S extends ¥y to an n-vector & by filling the extra
entries with, say, zeros. Partition r into n sections ry...r,, and let ¥ = r;...7r,. Simulate
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an execution of protocol F'S with adversary A, and with 2} as input and r; as random input
of each party P;. (In the sequel we incorporate D in A). Let C be the core set decided upon
in the GShare invocation in Step 1 of the protocol. For each P; € (', let y; be the value
shared by P; (namely, y; = 2;); for P, ¢ C,let y; =0. Let ¥ = y1...y,. Set (&g, 7) = ¥5,
and ¢(Zp,r)=C. 3

Our next step is computing the output function O of the corrupted parties in the ideal
model. The inputs to this function are ¥, r, and fo(7). (Recall that fo(¥) is the value
received from the trusted party). We continue the above simulation of protocol 'S, with the
following modification. Step 3 of the protocol assures us that by the time the first uncor-
rupted party starts executing the Reconstruct protocol of Step 4, at least { + 1 uncorrupted
parties have computed their shares of the output line. In the proof of Lemma 4.15 below,
we show that these shares determine a unique polynomial of degree ¢; let p(-) denote this
polynomial.” Once the first uncorrupted party reaches the final Reconstruct protocol, the
simulator computes the above polynomial p(-), and chooses a random polynomial, p'(-), of
degree t, such that p’(0) = fo(9), and p'(¢) = p(¢) for every corrupted party P;. In the sim-
ulated run, every uncorrupted party P; executes the last Reconstruct protocol with input
P'(7), instead of p(j). Let w denote the output of the corrupted parties after this simulated
run of protocol FS. Set O(Zg,r, fo(¥)) = w. 1°
Validity of the ideal-model adversary. It is left to show that for every input vector
Z, the output vector EXECpg 4(Z) of the parties in the ‘real’ computation has the same
distribution as the output vector IDEAL; (&) of the parties in the ideal model. An outline of
our proof follows. Recall the definition of the adversary view of the computation (we re-define
this notion in more detail below). This notion captures the information gathered by the
adversary during the computation, combined with the information seen by the scheduler. In
Lemma 4.14 below, we show that the adversary view of the real computation is distributed
equally to the adversary view in the interaction simulated by the ideal-model adversary.
We complete our proof by showing that whenever the adversary view of the real execution
equals the adversary view of the simulated execution, the output vector of all the parties
in the real-life model equals the output vector of all the parties in the ideal model.

We proceed to re-define the adversary view. First, define the transcript of a computation.
The transcript U consists of the inputs & of all the parties, their random inputs 7, and the
entire communication among the parties. The communication is organized in events; each
event, e, consists of a message received by a party, and its corresponding responses. The
order of events is induced by the order of delivery of the messages. Namely, we have

U=2%,7,e1,...,6p.

We partition each message in protocol F'S to its contents and its frame. The contents of

8Since the faults are Fail-Stop, we could let the input substitution function A be the identity function.
However, this formulation is valid for the proof of Theorem 4.30 (Security of the Byzantine protocol) as well.
Note that f(#) = fo(%); in the sequel, we leave the subscript C for clarity.

?Step 3 of the algorithm is a technical step whose purpose is making the fact that p(+) is fixed at this
stage more obvious. It can be seen that, even without Step 3, by the time the first uncorrupted party starts
executing the last Reconstruct protocol, at least n — 2¢ uncorrupted parties have computed their shares of
the output line.

19T he output of the corrupted parties is defined as the contents of their output tapes after all the messages
sent by the uncorrupted parties have been received.
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a message consists of the elements of the field F', appearing in this message. The frame of a
message is the message itself where each field element is replaced by a ‘blank’. In particular,
the frame contains the type of the message, the name of the protocol and invocation that
the message belongs to, and the identity of the sender and the receiver. Messages that do
not contain any field elements have empty contents. (Informally, the scheduler sees only
the frame of each message sent, while the receiver sees the entire message.) '*

Let 5 be a set of parties, and let U = &,7,eq,...,e, be a transcript of some com-
putation. The view of the computation, as seen by the parties in 5, is the sequence
Us = ¥g,7s,61,...,6,, where Zg is the inputs of the parties in 5 and 7 is their ran-
dom inputs. Each é; is a semi-event; namely, if the recipient party of event e; is in 5, then é;
consists of the full received message and the subsequent responses. Otherwise, é; consists of
only the frame of the received message and responses. The adversary view is the view of the
set B of corrupted parties. We note that the adversary view contains all the information
gathered by the adversary during the relevant computation. Without loss of generality, we
assume that the corrupted parties’ output of a computation is the adversary view. Let O
denote this function.

Fix an input vector Z. Define the random variable p: for each random input 7, set
1 to be the corrupted parties’ view of the execution of protocol FS on input #, random
input 7, and adversary A. Let the random variable u' be similarly defined, with respect to
the simulated protocol described above. In Lemma 4.14 below we show that p and p’ are
identically distributed.

Lemma 4.14 The random variables p and p' are identically distributed.

(The proof of Lemma 4.14 is given at the end of this section.)
It is left to show that the following two quantities are equal, with respect to every
possible view, V', of the corrupted parties (i.e., every view V' in the support set of p and

H/)312

(a) The output of all the parties in the ideal model with the adversary S described above,
when the corrupted parties’ view of the simulated execution is V.

(b) The output of all the parties after an execution of protocol FS, when the view of the
corrupted parties is V.

Equality is proven by showing that in both cases, the output of the corrupted parties
is O(V), and the output of the uncorrupted parties is (C, fo(%)), where C' is the core set
appearing in V and 7 is the substituted input vector defined above. (Note that both €' and
¢ are uniquely determined by @ and V).

Case (a) (the ideal model): By the definition of the output of the parties in the ideal
model (Definition 2.10 on page 23), the uncorrupted parties output (C, fo(¥%)), and the
corrupted parties output O(Zp,r, fo(7)); in the above construction of §, we have set

O(Zp,r, fo(7)) = O(V).

"' Note that this partitioning of a message to its contents and frame is specific to protocol FS. A more
general definition may let the frame of a message be its length only. However, the present definition of a
frame is more natural for our protocol; furthermore, it simplifies our proof of Lemma 4.14 below.

12We use V to shorthand Ug.
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Case (b) (an execution of protocol FS): The corrupted parties output O(V), by the
definition of function O. In Lemma 4.15 below, we show that the uncorrupted parties

output fo (7). O

Lemma 4.15 Consider an execution of protocol FS on input T with adversary B, and let C
and i be the quantities defined above, with respect to this execution. Then, the uncorrupted
parties’ output of this execution is fo(7).

Proof: For each line [ in the computed circuit, let v»; be the value of this line when the
input of the circuit is %. Let [,,; denote the output line of the computed circuit; since the
circuit computes the function f, we have v, , = f(¥) = fc(¥).

Consider an execution of protocol F'S as in the Lemma. For each line, [, let p;(-) be the
lowest degree polynomial such that the share of each uncorrupted party P; in this line, in
this execution, is pi(¢). It can be seen, by induction on the structure of the circuit, that
every pi(-) is of degree at most ¢ and that p;(0) = v;: each line is either an input line,
an output of a linear gate, or an output of a multiplication gate. These cases were dealt
with in the sections describing the initial commit, the linear gate, and the multiplication
gate protocol, respectively. Thus, in the final Reconstruct protocol, the uncorrupted parties
retrieve (and output) p;,,,(0) = v, = fe(9). ]
Proof of Lemma 4.14. We show, by induction on the number of communication events,
that every prefix of p has the same distribution as the corresponding prefix of p/ with the
same number of events.

We use the following notations. For every 7 > 0, let u; denote the prefix of p that ends
after the ¢th semi-event. Let p} be similarly defined with respect to p/. Fix an instance,
Vi, of p;, and let ¢4, be the random variable describing the distribution of the (i + 1)th
semi-event in p, given that the corresponding prefix of p is V;. Namely, for each semi-event
67

Prob(e; 41 = €) = Prob(pip1 = (Vi, €) | s = V2).

Recall that each semi-event consists of a received message and the subsequent response
messages. Let 0;,1 and 7,41 be the random variables having the distributions of the received
message and the response messages in ¢4, respectively. Let ¢, o, , and 77, be similarly
defined with respect to pu'.

For the base of induction, we note that £ = &, and both random inputs 75 and 7
are uniformly distributed; thus, (Zp,75) and (&%, 7’) are identically distributed.

For the induction step, we show that for every ¢ > 0 and for every instance V;, the
random variables ¢, and ¢, are identically distributed.

First, note that V; contains all the information seen by the scheduler when delivering
the (7 4+ 1)st message. Therefore, the frame of the (i 4 1)st message is uniquely determined
by V;. In particular, the sender (resp. the recipient) of the (¢ + 1)st message is the same
party in both computations. We distinguish two cases:

(a) The recipient party is uncorrupted. In this case, it is left to show that the frames
of the response messages sent in this event are identically distributed. However, it can be
seen, by observing the protocol, that the frames of the messages sent by a uncorrupted
party are uniquely determined by the frames of the messages received by this party so far;
these frames are part of the common instance V; of the prefixes p; and p.
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(b) The recipient party is corrupted. Clearly, if the received messages 0;1, and o}, are
identically distributed, then the response messages 7;;; and 7/, are identically distributed
as well. If the sender is corrupted, then entire received message is explicitly written in the
instance V;, which is the same in both computations. It remains to consider the case in
which the sender is uncorrupted. We have that the frames of o; and o} are equal. We show
that the contents of o; and o] are identically distributed.

Every message in protocol I'S belongs either to some invocation of protocol GShare, or
to some invocation of protocol Reconstruct. We consider these two cases separately. In
the sequel, we say that a random variable is a semi-random polynomial of degree d, if its
instances are polynomials of degree at most d, such that all the coefficients other than the
free coefficient are uniformly and independently distributed. (The free coefficient may have
any distribution.)

GShare messages. The only messages of a GShare protocol having non-empty contents
are shares of some secret. However, the corrupted parties receive only up to t shares
of each secret shared by a uncorrupted party, namely up to ¢ shares of a semi-random
polynomial of degree t. Consequently, both in g and in g’ the contents is distributed
uniformly and independently over the field F', regardless of the shared values.

In an invocation of Reconstruct, the corrupted parties receive n shares of a semi-random
polynomial p(-) of degree t. Thus, the contents of the first ¢ messages are uniformly dis-
tributed, both in p and in p’. The contents of the other messages are uniquely determined
by the ¢ shares known to the corrupted parties (namely, the contents of the first ¢ messages
of the same invocation), and the free coefficient of p(-). Thus, it suffices to show that the
free coefficient of p(-) (namely, the output of this invocation of Reconstruct) is identically
distributed in g and p’'. We distinguish two types of invocations of Reconstruct: a Recon-
struct within a multiplication step (namely, a Reconstruct invoked in Step 3 of protocol
MAT), and the final invocation of Reconstruct, in Step 4 of protocol I'S.

Reconstruct as a part of a multiplication step. Consider an invocation of protocol
MUL (see Figure 4-7 on page 64). We show that the corrupted parties’ outputs of
the ¢ invocations of Reconstruct, along with the contents of the other messages of
this invocation of MUL, received by the corrupted parties, are uniformly and inde-
pendently distributed, regardless of the values of the input lines of the corresponding
multiplication gate.

The polynomial H(-) generated by the parties in the Randomization phase (Step 1 of
protocol MUL) is a semi-random polynomial of degree 2¢, with zero free coefficient.
The contents of the GShare messages of Step 1 received by the corrupted parties
add up to ¢ shares of the polynomial H(-). Fix some arbitrary polynomials A(-) and
B(+) associated with the input lines of the corresponding multiplication gate, and let
D(-)= H(:)+A(:)-B(-). Then, both in g and in y’, D(-)is a semi-random polynomial
of degree 2t with some fixed free coeflicient.

The data gathered by the corrupted parties during the entire invocation of MUL
consists of ¢ shares of the semi-random polynomial D(-), along with ¢ shares of the
truncation polynomial C'(-) (namely, the outputs of the ¢ invocations of Reconstruct).
Let s = A(0) - B(0). Lemma 4.16 below shows that there exists a unique instance
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of D(-) (namely, a unique polynomial of degree 2t whose free coefficient is s), that
corresponds to each sequence of 2t field elements gathered by the corrupted parties.
Consequently, the sequence of 2t field-elements gathered by the corrupted parties is
uniformly distributed, both in x and in u/. 13

Final Reconstruct. Let (' be the core set determined by V;, and let § be the substi-
tuted input vector described above. By Lemma 4.15, the parties’ output of the final
Reconstruct in a computation of protocol FS is fo(¥). By the construction of the
ideal-model adversary §, the parties’ output of the final Reconstruct in the simulated

—

execution is also fc (%)

This concludes our proof that p and g’ have the same distribution. a

Lemma 4.16 (technical lemma). Let F be a finite field with |F| > d, and let s € F. Then
for every sequence vy, ...,vg, U1, ..., uq of field-elements, there exists a unique polynomial
p(-) of degree 2d with p(0) = s, such that:

1. For1 <1i<d, we have p(i) = v;.

2. For 1 <1 < d, we have q(i) = wu;, where q(-) is the truncation of p(-) to degree d.
(Namely, the coefficients of q(-) are the coefficients of the d+ 1 lower degrees of p(-).)

Proof: See Section 4-B. a

4.3.6 Proof of correctness — adaptive case

Let A be a t-limited adaptive Fail-stop adversary, where n > 3t 4+ 1 (we incorporate the
scheduler within the adversary). Termination is shown as in the non-adaptive case, pro-
vided that the Consensus protocol in use is resilient against adaptive adversaries. To show
Security, we construct an ideal-model adversary § = (¢,b,h,¢,0), as in Definition 4.1. We
remark that our construction of § uses only with black-box access to .A. Here we assume
non-erasing parties. That is, each party keeps all the information gathered during the
computation. This information consists of the party’s input and random input, and the
messages received from other parties.

Construction of the ideal-model adversary. The functions b, h,c, O are determined
via a simulated execution of protocol FS with adversary A. That is, § hands A information
on the computation, in an interactive process that simulates a real-life computation. (We
use the description of a real-life computation presented immediately above Definition 4.4
on page 52.)

Recall the definition of the contents and frame of a message (presented on page 66). The
information handed to A in the simulated interaction is as follows.

1. & hands A the frame of each message sent by each party according to protocol FS.
(This is the information seen by the scheduler. We note that protocol F'S has the
following property. At any point during the computation, the frames of the messages

13In Lemma 4.16 we assume, without loss of generality, that the corrupted parties are P, ..., P;.
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received by a party so far determine the frame of the next message sent by this party.
Thus, the frames of the messages sent by the uncorrupted parties are predictable by
the adversary.)

2. Up to the decision point, defined below, The contents of each message sent from an
uncorrupted party to a corrupted party is set to uniformly chosen random elements

in the field F'.

3. Up to the decision point, whenever the adversary decides to corrupt a party P, the
simulator & proceeds as follows.

First, § hands A simulated contents of all the messages previously received by P;. The
simulated contents of the messages sent by corrupted parties, including parties that
were uncorrupted at the time of sending but became corrupted since, are consistent
with the contents already known to the adversary. The simulated contents of messages
sent by still uncorrupted parties are chosen uniformly from F.

Next & decides to corrupt P; in the ideal-model (in the first corruption stage). Upon
learning x;, the input of P;, the simulator chooses, in a way described below, a simu-
lated random input r; for P, that is consistent with input x;, with the contents of the
messages previously received by P; (as chosen above), and with the messages previ-
ously sent by P to corrupted parties. Note that r; determines also the messages that
were supposedly sent by P; to uncorrupted parties. Finally & hands A the input x;
and the simulated random input ;.

Functions b, ¢, h are determined as follows. Let the decision point be the time where
the first uncorrupted party invokes the final Reconstruct (i.e., the Reconstruct of Step 4 of
protocol I'S, see Figure 4-8). The selection function b() of corrupted parties is determined
as described in Step 3 above. Let B be the set of corrupted parties at the decision point.
Let C be the core set decided upon in the initial GShare (i.e., in the GShare of Step 1 of the
protocol). For each P; € C, let y; be the value shared by P; (namely, y; = ;); for P, ¢ C,
let y; = 0. Let ¥ = y1...yn. Set h(Zp,r) = §p, and c¢(Zp,r) = C.

The output function O of § is determined as follows. At the decidion point § asks
the trusted party for the computed function value. & continues the above simulation of
protocol FS, with the following modifications. At the decision point, & computes each
corrupted party’s share of the output line of the circuit. (This can be efficiently done based
on 8’s information on the computation.) Next, § chooses a random polynomial p'(-) such
that p'(0) = fo(¥) and for each corrupted party P;, the value p'(j) equals P;’s share of
the output line. (The polynomial p’(-) plays a similar role as in the non-adaptive case.)
In the simulated run, each uncorrupted party P; executes the final Reconstruct protocol
with input p/(7). If the adversary decides to corrupt P; after the decision point, then &
proceeds as in Step 3 above, with the exception that the chosen random input r; should be
consistent also with P; having p/(¢) as input to the final Reconstruct. (In the ideal model
these corruptions are part of the second corruption stage.) Let w denote the output of the
corrupted parties after this simulated run of protocol F'S, and let B’ be the set of faulty
parties in this run. Set O(Zg:, 7, fo(¥)) = w.

It remains to describe how the random input r; is chosen, upon the corruption of a
party P;. Assume first that P; is corrupted before the decision point. We distinguish the
following cases.
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Random input for the initial invocation of GShare: Here the relevant information
known to the adversary consists of up to t — 1 uniformly chosen elements in F’, sent
by P; to corrupted parties. S chooses a random polynomial ¢() of degree ¢, such that
q(0) = z; (where z; is P;’s input), and for each corrupted party P;, the value of ¢() at
point j equals the value sent by P; to P;. We note that ¢() can be chosen efficiently.
Furthermore, ¢() has the distribution of a semi-random polynomial of degree ¢ with
q(0) = ;. (This is so since the values sent by the simulated P; to corrupted parties
were uniformly chosen from F.) § sets the random input of P; for the initial invocation
of GShare so that the polynomial chosen in Step 1(a) of GShare (See Figure 4-4) is

q()-

We remark that the messages received by P; from other parties during this invocation
of GShare are irrelevant to P,’s random choices.

Random input for an invocation of MULT: The relevant information gathered by A
on P, in an invocation of MULT is as follows.

e P;’s shares of the input lines of the corresponding gate. These shares are deter-
mined by the simulated invocations of the procedures for evaluating the input
lines of this gate.

o Up tot — 1 shares of the degree-2¢ polynomial chosen by P; in the invocation of
GShare in the Randomization Step (Step 1 of MULT, see Figure 4-7). These are
the shares sent by P; to corrupted parties.

e P’s shares of the polynomials shared by other parties in this invocation of
GShare. (S hands A these uniformly chosen shares upon the corruption of P;,
as described in Step 2 above.)

o Up tot—1 shares of the degree-t polynomial chosen by P; in the Degree-Reduction
Step (Step 1 of MAT, see Figure 4-6). These are the shares sent by P; to corrupted
parties.

Let the fingerprint of an invocation of MULT within P; consist of this information
seen by A. Fach fingerprint is consistent with an equal number of random inputs
of this invocation of MULT (i.e., with an equal number of polynomials chosen by P,
in Steps 1 of MULT and MAT). This can be seen in a similar way to Lemma 4.16:
Each fingerprint can be completed, in the same number of ways, to a sequence that
uniquely determines the polynomials chosen by P;. Furthermore, as remarked in the
proof of Lemma 4.16, sampling these polynomials with the appropriate probability,
given a fingerprint, can be done efficiently.

If P; is corrupted after the decision point, then it may be the case that P; has already
started the final Reconstruct, and has sent p’(¢) to corrupted parties. In this case, P;’s
simulated random input should be consistent with P; having p/(7) for its share of the output
line of the circuit. Such random input can be efficiently sampled, in a similar way to the
previous case (i.e., the case where P; is corrupted before the decision point.)

We note that randomness is used also in the various invocations of Consensus. & uses,
and hands A upon corruption of P;, uniformly chosen random inputs for the use of P; in
the simulated invocations of Consensus.
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Validity of the ideal-model adversary. The validity of the simulation is shown in a
similar way to the non-adaptive case, with the exception that an additional type of event is
added to the adversary view of the computation: corruption of some party. Consequently,
the case of corruption of a party has to be considered in the inductive proof of Lemma 4.14.
In Lemma 4.17 we state the inductive claim of Lemma 4.14, for the case of a corruption
event. A full proof of this lemma is omitted.

Lemma 4.17 Consider n parties running protocol 'S on some input . Let u; consist of
the first i events in some instance p of the adversary view of this computation, such that
the (i+41)th event in u is the corruption of party P,. Let ¢V (resp., V) denote the random
variable having the distribution of the information gathered by the adversary in the (i+1)th
event in an authentic (resp., simulated) computation, given that the adversary view up to
the ith event is p;. Then, ¢V and ¢V are equally distributed. 0

4.4 Asynchronous verifiable secret sharing

We define Verifiable Secret Sharing in an asynchronous setting (AVSS), and describe an
AVSS scheme. Our AVSS scheme is resilient against ¢-limited (Byzantine) adversaries in a
network of n parties, as long as n > 4t + 1.

Our construction uses ideas appearing in [BGW, FM, Fe]. In particular, [Fe] and [CR]
describe different AVSS schemes, for n > 4t + 1 and n > 3t + 1, respectively (the [CR]
scheme is presented in Chapter 5). However, in those schemes the parties have a small
probability of error in reconstructing the secret (and in [CR] also a small probability of not
terminating), whereas our scheme has no probability of error.

We describe our AVSS scheme as a preamble for our construction for Byzantine adver-
saries. In our construction we do not use the AVSS scheme as such: in an AVSS scheme,
the dealer shares a secret among the parties; later, the parties reconstruct the secret from
its shares. In our protocol, the parties’ shares of the secret are further processed, and the
reconstructed secret is different than the shared secret (much as in the Fail-Stop case).
Nevertheless, for clarity and completeness, we first define AVSS and describe a stand-alone
AVSS scheme; the components of this scheme will be used in the Byzantine protocol.

In Section 4.4.1 we define AVSS. In Sections 4.4.2 through 4.4.4 we describe our AVSS
scheme. In Section 4.4.5 we prove the correctness of our scheme.

4.4.1 A definition

A Verifiable Secret Sharing scheme (either synchronous or asynchronous) consists of two
protocols: a sharing protocol, in which a dealer shares a secret among the other parties,
and a reconstruction protocol, in which the parties reconstruct the secret from its shares.
An AVSS scheme should have the following properties: first, a uncorrupted dealer should
be able to share a secret in a reconstructible way. Furthermore, if one uncorrupted party
accepts a sharing of a secret, then all the uncorrupted parties accept this sharing, and a
unique secret will be reconstructed (even if the dealer is corrupted). Finally, if the dealer
is uncorrupted, then the shared secret should remain unknown to the corrupted parties,
as long as no uncorrupted party has started the reconstruction protocol. The following
definition formalizes these requirements in our asynchronous setting.
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Definition 4.18 Let (9, R) be a pair of protocols such that each uncorrupted party that
completes protocol § subsequently invokes protocol R with its local output of protocol S as
local input. We say that (S, R) is a t-resilient AVSS scheme for n parties if the following
holds, for every t-limited adversary.

e Termination. 1. If the dealer is uncorrupted, then every uncorrupted player will even-
tually complete protocol §'.

2. If some uncorrupted party has completed protocol S, then all the uncorrupted
parties will eventually complete protocol S'.

3. If a uncorrupted party has completed protocol S, then it will complete protocol R.

e Correctness. Once the first uncorrupted party has completed protocol S, a unique value,
r, is fized, such that:

1. r is each uncorrupted party’s output of prtocol R.

2. 1If the dealer is uncorrupted, sharing a secret s, then r = s.

e Secrecy. If the dealer is uncorrupted and as long as no uncorrupted party has invoked
protocol R, then the adversary view of the computation s distributed independently of
the shared secret.

Remark. We stress that a uncorrupted party is not required to complete protocol 5
in case that the dealer is corrupted. (We do not distinguish between the case where a
uncorrupted party did not complete protocol §, and the case where a uncorrupted party
has completed S unsuccessfully.)

4.4.2 An AVSS scheme

We present an outline of our scheme. Roughly speaking, the sharing protocol (denoted
V-Share) consists of three stages: first, each party waits to receive its share of the secret
from the dealer. Next, the parties jointly try to verify that their shares define a unique
secret. Once a party is convinced that a unique secret is defined, it locally computes and
outputs a ‘corrected share’ of the secret (using the information gathered in the verification
stage).

Our AVSS scheme has the following additional property. There exists a polynomial p(-)
of degree ¢ such that each uncorrupted party P;’s output of protocol V-Share is p(i), and
p(0) is the shared secret. This property is at the heart of our construction for Byzantine
adversaries.

In the reconstruction protocol (denoted V-Recon), each party sends its share to the
parties in some predefined set R (the set R is an external parameter with the same role as
in the Fail-Stop case). Next, each party in R waits to receive enough shares to uniquely
determine a secret, and outputs the reconstructed secret. In order to deal with possibly
erroneous shares, we use a procedure for error correcting of Generalized Reed-Solomon
(GRS) codes in an ‘on-line’ fashion. This procedure is presented in Section 4.4.4 below.



4.4 Asynchronous verifiable secret sharing 75

We turn to describing the V-Share protocol in more detail. To share a secret, s, the dealer
chooses at random a polynomial h(-,-) of degree ¢ in two variables such that 2(0,0) = s,**
and sends each party P; the ¢-degree polynomials f;(-) 2 h(i,-) and ¢;(-) 2 h(-,7). Each
party P, now sends a verification message v; ; = f;(j) to each party P;. If the verification
message sent from P; to P; is correct, then party P; has v, ; = fi(j) = h(4,7) = g;(3); in
this case P; ‘confirms party P,’ by Broadcasting (OK, j,7). Party P, accepts the shared
secret when it finds a large enough set of parties that have confirmed each other in a ‘dense’
enough manner, described below.

We describe each party’s view of the ‘OK’ Broadcasts in terms of a graph. Namely, let
the OK; graph be the (undirected) graph over the nodes [n], where an edge (j,k) exists
if party P; completed both the (OK, j, k) Broadcast (initiated by P;), and the (OK,k, )
Broadcast (initiated by P;). Define an (n,t)-star in a graph:*®

Definition 4.19 Let GG be a graph over the nodes [n]. We say that a pair (C, D) of sets
such that C' C D C [n] is an (n,t)-star in G, if the following hold:

o |C|>n—2t
e |[D|>n—t
o for every j € C and every k € D the edge (j,k) exists in G.

In the sequel, we use star to shorthand (n,?)-star. Party P; accepts a shared secret when
it finds a star in its OK; graph. Lemma 4.26 on page 82 below implies that, provided that
n > 4t + 1, the shares of the uncorrupted parties in a star in the OK; graph define a unique
polynomial of degree ¢ in two variables; Lemma 4.27 implies that the polynomials defined
by the stars of every two parties are equal. Thus, once a uncorrupted party finds a star, a
unique secret is defined.

Remark: conceptually, we could have let a party wait to have a clique of size n—t (instead
of a star) in its OK graph, before accepting a shared secret: if the dealer is uncorrupted,
then the OK graph will eventually contain such a clique. However, finding a maximum size
clique in a graph is an NP-complete problem. Instead, the party will try to find a star. In
Section 4.4.3 we describe an efficient procedure for finding a (n,t)-star in a graph, provided
that the graph contains a clique of size n — .

We want to make sure that if a uncorrupted party finds a star in its OK graph, then
all the uncorrupted parties will find a star, even when the dealer is corrupted and the OK
graph does not contain a clique. For this purpose, upon finding a star, the party sends it
to all the other parties. Upon receiving an (OK, -, -) Broadcast, a party that has not found
a star checks whether any of the suggested stars is indeed a star in its OK graph. Note
that an edge in the OK graph of a uncorrupted party will eventually be an edge in the OK
graph of every uncorrupted party (since all the (OK, -, -) messages are Broadcasted); thus, a
star in the OK graph of some uncorrupted party will eventually be a star in the OK graph
of every other uncorrupted party.

M“That is, h(z,y) = Z:‘:o Z;zo hiij"yj, where hoo = s, and all the other coefficients ho1,..., hs s are
chosen uniformly and independently over F.
>Our definition of an (n, t)-star is different than the “standard” definition.
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Party P’s output of protocol V-Share will be h;(0,7), where h;(-,-) is the (unique)
polynomial defined by the star found by P;. If P; is a member of its own star, then the
polynomial g;(-) that P; received from the dealer satisfies g;(-) = h;(-,7), and P; outputs
¢:(0). If P; is not a member of its own star, then ¢;(-) may be erroneous (possibly, P; didn’t
even receive g;(-).) Therefore, upon finding a star (C;, D;), and if P; ¢ D;, then P; computes
h;(0, %) using the verification messages v;; it has received (or still expects to receive) from
the parties P; € D;. (For the 2t + 1 uncorrupted parties P; € D;, we have v;; = h;(j,1).
Therefore, the values received from the parties in D; uniquely determine the polynomial
hi(-,t).) In Section 4.4.4 we describe how this computation is carried out.

The code of the V-Share and V-Recon protocols is described in Figures 4-9 and 4-10,
respectively.

protocol V-Share

Code for the dealer (on input s):

1. choose a random polynomial A(-, ) of degree ¢ in two variables, such that 2(0,0) = s.
For every 1 < ¢ < n, send the polynomials f;(-) = h(-,4) and ¢;(-) = h(i,-) to party
B;.

Code for party F;:

2. Upon receiving f;(-) and g¢;(-) from the dealer, and for each 1 < j <n,
send f;(j) to party P;.
3. Upon receiving v; ; from party P;: if v; ; = ¢;(j), then broadcast (OK, 4, j).
4. Upon receiving a broadcast (OK, j, k), check for the existence of a star in OK;, using

procedure STAR described in Section 4.4.3 below. If a star (C;, D;) is found, go to
Step 6 and send (Cj, D;) to all the parties.

5. Upon receiving a message (C;, D;) add (Cj, D;) to the set of ‘suggested stars’. As
long as a star is not yet found, then whenever an (OK, k,!) Broadcast is received,
check whether (C}, D;) form a star in the OK; graph.

6. Upon finding a star (C;, D;), and if ¢ ¢ D;, correct polynomial g;(), based on the
verification messages received from the parties in D;, and using the error correcting
procedure OEC described in Section 4.4.4.

Namely: let V; = {(j,vi;)|j € D;}; set g;(-) =OEC[t, £](Vy).
7. Once g¢;(-) is corrected, (locally) output g;(0).

Figure 4-9: V-Share - The verifiable sharing protocol

4.4.3 Efficiently finding a star

We describe an efficient procedure for finding a (n,¢)-star in a graph of n nodes (see Defini-
tion 4.19 on page 75), provided that the graph contains a clique of size n — t. Namely, our
procedure outputs either a star in the graph, or a message ‘star not found’; whenever the
input graph contains a clique of size n — ¢, then the procedure outputs a star in the graph.

We follow an idea of Gabril, appearing in [GJ] p. 134. There, the following approxi-
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Protocol V-Recon|[R](«;)

Code for party P; (on input a;, and with parameter R C {Py,..., Py}):

7. Send a; to the parties in R.

8. Let S; = {(J,q;)| ¢; has been received from P;}.

If P; € R, terminate without output.
Otherwise, set z;(-) =OEC[t, t](S;), and output z(0).

Figure 4-10: V-Recon - The verifiable reconstruction protocol

mation algorithm is described: if the input graph contains a clique of size n — k, then a
clique of size n — 2k is found. The algorithm is simple: find a maximal matching'® in the
complementary graph'” and output the set of unmatched nodes. Clearly, the output is an
independent set in the complementary graph; thus, it forms a clique in the original graph.
Furthermore, if a graph contains a clique of size n — k, then any maximal matching in the
complementary graph involves at most k edges and 2k nodes.

We first restate our problem in terms of the complementary graph: if the input graph
has an independent set of size n — ¢, find sets C' C D of nodes, such that |C| > n — 2t,
|D| > n —t, and no edges exist between nodes in C' and nodes in C' U D. We call such a
pair of sets an (n,t)-star. In the rest of this section, we refer to the complementary graph
only.

In our procedure, we find a mazimum matching in the graph (say, using [Ed] or [MV]).
% Based on this matching, we compute sets C', D of nodes, and check whether (C, D) form
an (n,t)-star in the graph. If the input graph contains an independent set of size n — t,
then the computed sets €', D form an (n,t)-star in the input graph.

We describe how sets ' and D are computed. Consider a matching; we say that a
node is a triangle-head if it is unmatched, and two of its neighbours are a matched pair
(namely, the edge between these two neighbours is in the matching). Let C' denote the set
of unmatched nodes that are not triangle-heads. Let B be the set of matched nodes that
have neighbours in C', and let D 2 [n] — B.

Our procedure is described in Figure 4-11. Figure 4-12 illustrates the relations among
the different subsets of nodes.

Proposition 4.20 Assume procedure STAR outputs (C, D), on input graph G. Then,
(C, D) form a t-star in G.

Proof: Clearly, if algorithm STAR outputs (C, D) then |C| > n — 2t and |D| > n — ¢,
and C' € D. We show that for every ¢ € €' and every j € D, the nodes ¢« and j are not
neighbours in G.

' A matching in a graph is a set M of edges such that no two edges in M have a common endpoint. A
matching is maximal if every edge added to it has a common endpoint with an edge in the matching.

1"The complementary graph is the graph in which an edge exists iff it does not exist in the original graph.

8In fact, we only need that the matching cannot be improved by augmenting paths of length at most 3.
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Procedure STARJt](G)

input: an undirected graph G (over the nodes [n]), a parameter ¢.
output: a ¢-star in the graph G, or a message: ‘star not found’.

1. Find a maximum matching M in G.
Let N be the set of matched nodes (namely, the endpoints of the edges in M), and

let N 2 [n] — N.
2. Verify that the matching, M, has property P:

(a) Let T be the set of triangle-heads; namely, set
T2 {ieN|3j kst (k)€ M and (i,j), (i, k) € G}.
Let C2 N —T.
(b) Let B be the set of matched nodes that have neighbours in C
namely, let B 2 {jeN|Felst. (i,)) € G}.
Let D £ [n] — B.
(¢) If |C] > n—2t and |D| > n —t, output (C, D). Otherwise, output ‘star not
found’.

Figure 4-11: STAR - A procedure for finding a star in a graph

Figure 4-12: Partition of the graph &
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Assume that ¢ € C and 7 € D, and that (¢,7) is an edge in (. As j € D, we must
have 7 ¢ B. By The definition of B, we have j ¢ N (if i € C and j € N, then j € B).
Furthermore, i € C' C N. Thus, both ¢ and j are unmatched. Consequently, the edge
(i,7) can be added to the matching to create a larger matching, and the matching is not
maximum (in this case, it is not even maximal). a

Proposition 4.21 Let G be a graph over n nodes containing an independent set of size
n —t. Then procedure STAR, outputs a t-star in G.

Proof: We show that if the input graph G contains an independent set of size n — ¢, then
the sets C' and D determined in Steps 2(a) and 2(b) of procedure STAR are large enough
(i.e., |C| > 2t4+ 1 and |D| > n —t). Consequently, the procedure outputs (C, D) in Step 4;
Proposition 4.20 assures us that (C, D) form a star in G.

First, we show that |C'| > n — 2t. Let I C [n] be an independent set of size n — ¢ in G,
and let I = [n] — I. We adopt the definitions of N, T, and C in the procedure (see Figure
412).

Let F' 2 [ —C'. We show below that |F| < |I]. However, |I| < t. Consequently, we have
1> 11— |F| > n - 2.

To see that |F| < |I|, we show a one-to-one correspondence ¢ : F' — I. Let i € F; since
i ¢ C, we have either i € N orieT.

Case 1: i € N. Then, let ¢(7) be the node matched to s in M. Clearly, ¢(i) € I: otherwise,
we had an edge (i, ¢(¢)) where both ¢ and ¢(i) are in an independent set.

Case 2: i € T'. By the definition of 7', node ¢ has two neighbours j, k such that (j,k) € M.
Arbitrarily set ¢(i) = j. Clearly, both j and k are in I.

Wo show that ¢ is one-to-one. Consider two distinct nodes [, m € F; we distinguish
three case:

Case 1: [,m € N. In this case, ¢(I) # ¢(m) since M is a matching.

Case 2: [ € N and m € T. Since m € T, there exists an edge between m and the
node matched to ¢(m). Since [ € N, the node matched to ¢(/) is [. Now, assume
that ¢(l) = ¢(m). Thus, (I,m) is an edge in G. However, both [ and m are in the
independent set I: a contradiction.

Case 3: [,m € T. Assume ¢(l) = ¢(m). Let a be the node matched to ¢(m) in M; then,
both [ and m are neighbours of both ¢(m) and a. However, in this case the matching
M is not maximum since, for instance, M —{(¢(m), a)} U{(¢(m),1),(a,m)}is a larger
matching.

It remains to show that |D| > n — t. Recall that D = [n] — B. We show below that
|B| < |M]; since G contains an independent set of size n — ¢, we have |M| < ¢. Thus,
Dl =n— Bl >n—|M>n—t.

To see that |B| < |M]|, we show that at most one of the endpoints of every edge
(a,b) € M is in B. Suppose on the contrary that both a and b have neighbours in C', and
let ¢,d € C' be the neighbours of a and b, respectively. Surely, ¢ # d (otherwise, ¢ was a
triangle-head, and we had ¢ ¢ C'). However, in this case the matching M is not maximum,
since, for instance, M — {(a,b)} U {(a, ), (b,d)} is a larger matching. o
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4.4.4 On-line error correcting

Consider the following scenario. A party expects to receive messages from m parties (mes-
sage a; from party P;), so that there exists a polynomial p(-) of degree d, satisfying p(j) = «;
for every message a;. The messages arrive one by one, in some arbitrary order; further-
more, up to ¢ of the messages may be wrong or missing. (In our context, we have m = n —t¢
and d = t.) We describe an efficient procedure that enables the party to compute this
polynomial ‘on-line’; namely, the party will recognize when the received messages define a
unique ‘interpolated polynomial’ of degree d, and compute this polynomial. The following
definitions provide tools for precisely stating this problem.

Definition 4.22 Let § and p be integers, and let S C [n] x F such that for every two
elements (1,a) and (V',a’) in S we have 1 # i'. We say that S is (8, p)-interpolated if there
exists a polynomial p(-) of degree ¢, so that at most p elements (i,a) € S do not satisfy
pla) = e. We say that p(-) is a (6, p)-interpolated polynomial of 5.

(Remark: A d-interpolated vector, defined in Section 4.3.3 on page 61, is a different
formulation of a (d,0)-interpolated set.) Note that the (¢, p)-interpolated polynomial of a
(6, p)-interpolated set S is unique, provided that |S| > é + 2p + 1. (Proof: assume S has
two (6, p)-interpolated polynomials p(-), ¢(-). Then, for at least |.S| — 2p elements (a,€e) € 9
we have p(a) = e = ¢(a). However, |S| —2p > 6 + 1; thus, p(-) = q(+).)

Definition 4.23 Let 7 be an accumulative set *°.  We say that T is eventually (6,7)-
interpolated, if for every t-limited adversary, and every run, there exists an integer 0 <
p <7, such that T will eventually hold a (6, p)-interpolated set of size at least 6 + 1+ p+ 1.

Let 7 be an eventually (6, 7)-interpolated accumulative set. Using a similar argument
to the one used above, it can be seen that all the (6, p)-interpolated sets of size at least
04+ 7+ p+ 1 held in 7 have the same interpolated polynomial. We call this polynomial the
(6, 7)-interpolated polynomial of 7.

Using these notations, the (dynamic) input of the procedure described in this section is
an eventually (d,t)-interpolated accumulative set Z. The required output of this procedure
is the (d,t)-interpolated polynomial of Z. (Definition 4.23 assures us that at least d + ¢+ 1
values in Z will ‘sit on a polynomial’ of degree t. At least ¢t + 1 of thus values originate with
uncorrupted parties. Consequently, the (d,?)-interpolated polynomial of Z is bound to be
the ‘correct’ polynomial, namely the polynomial defined by the values of the uncorrupted
parties.)

Our procedure, denoted OEC (for On-line Error Correcting), consists of up to ¢ it-
erations. In iteration r, the party waits until the accumulative set 7 is of size at least
d+t+ 7+ 1; then, the party uses a procedure, described below, that determines whether
this set is (d, r)-interpolated, and computes the corresponding interpolated polynomial. If
a (d,r)-interpolated polynomial is found, then we output this polynomial and terminate.
Otherwise, we proceed to iteration r+1 (since 7 is (d, t)-eventually interpolated, it is bound
to have at least one more element; thus, iteration r + 1 will be completed).

19 Accumulative sets are defined in Section 4.1.3 on page 53.
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It is left to describe how to determine if a given set is (d,r)-interpolated, and how to
compute the interpolated polynomial. We use a result from Coding theory. Consider the
following code: a word W = (i1, a1)...(4, ;) is a code-word iff there exists a polynomial
p(-) of degree d such that p(i;) = a; for every 1 < j < [. This is a Generalized Reed-
Solomon (GRS) code; GRS codes have an efficient error correcting procedure that detects
and corrects up to r errors in an input word, W, provided that |W| > d 4 2r + 1 (see,
for instance, [MS pp. 294-315]). Let EC denote such a procedure. Namely, let 5 be a
(d,r)-interpolated set of size at least d + 2r + 1; then, procedure EC, on input (d,r,5),
outputs the (d, r)-interpolated polynomial of 5.

Procedure OEC is described in Figure 4-13.

Procedure OEC[d,t](7)

For 0 <r <t do:
1. Let I, denote the contents of accumulative set 7, when 7 contains d +¢ + r + 1
elements.
Wait until |Z| > d+ ¢+ r + 1. Then, run EC(d,r, 1), and let p(-) be the output
polynomial.

If p(-) is a (d,r)-interpolated polynomial of I, (namely, if for d + ¢ + 1 elements
(7,a) € I, we have p(i) = a), output p(-). Otherwise, proceed to the next iteration.

Figure 4-13: OEC - A procedure for on-line error correcting

Proposition 4.24 Let 7 be an eventually (d,t)-interpolated accumulative set. Then, pro-
cedure OFC[d,t)(T) halts and outputs the (d,t)-interpolated polynomial of T.

Proof: Let 7 be the smallest r such that [: is (d,7)-interpolated; since Z is eventually
(d,t)-interpolated, we have 7 < ¢. All the iterations up to iteration 7 will be completed
(unsuccessfully). The (d,t)-interpolated polynomial of 7 will be found in iteration 7. a

4.4.5 Correctness of the AVSS scheme

Theorem 4.25 The pair (V-Share, V-Recon) is a t-resilient AVSS scheme in a network of
n parties, provided that n > 4t + 1.

Proof: We assert the Correctness, Termination and Secrecy requirements of Definition
4.18 on page 74.

Correctness. We associate with every uncorrupted party P; that completed protocol V-
Share a unique polynomial h;(-,-) of degree ¢ in two variables, and show that every two
uncorrupted parties P; and P; have h;(-,-) = h;(+,-). Next, we show that Conditions 1 and
2 of the Correctness requirement are met, with respect to r = h;(0,0) (for some uncorrupted
party P;). Moreover, we show that party P;’s output of protocol V-Share is h;(¢,0).

We use two technical lemmas.
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Lemma 4.26 Let m > d+ 1, and let fi(-)...fm(:) and gi(-)...gm(-) be polynomials of
degree d over a field F' with |F| > m, such that for every 1 <i < d+1 and every 1 <j<m
we have fi(j) = ¢;(¢) and g;(j) = f;(¢). Then, there exists a unique polynomial h(-,-) of
degree d in two variables so that for every 1 < i < m we have h(-,7) = fi(-) and h(i,-) = g:(-).

Proof: See Appendix B. a

Lemma 4.27 Let h(-,-), h'(-,-) be two polynomials of degree d in two variables over a
field F with |F| > d, and let vy ...v4.1 be distinct elements in F. Assume that for every
1<4,j <d+1 we have h(v;,v;) = W' (v;,v;). Then, h(-,-)=N(-,-).

Proof: See Appendix B. a

Let P; be a uncorrupted party that completed protocol V-Share, and let (C;, D;) be the
star found by P;. Let D! be the set of uncorrupted parties in D;, and let C/ be the set of
uncorrupted parties in Cy; thus, |[D}| > |D|—t>n—2tand |C}| > |C|—-t>n-3t>t+1
(since n > 4t 4+ 1). Applying Lemma 4.26, we get that the polynomials f;(-),g;(-) of the
parties j € D} determine a unique polynomial of degree ¢ in two variables. Let h;(-,-) denote
this polynomial. (Namely, h;(-,-) is the polynomial associated with P;.) Note that h;(-,-)
is fixed once P; has completed protocol V-Share.

For every other uncorrupted party P;, let I, ; be the set of uncorrupted parties in D;ND;.
Since n > 4t 4 1, we have |D; N D;| > n — 2t > 2t 4 1, thus |[; ;| > t + 1. For every two
parties k,l € I; ; we have h;(k,l) = vy; = h;(k,1), where vy, ; is the verification piece sent
by P, to Py in Step 2 of protocol V-Share. Applying Lemma 4.27, we have h;(-,-) = h;(-, ).
The value r required in the Correctness condition is r = £,(0,0).

We assert Condition 1 (namely, that if the dealer is uncorrupted and has shared a value
s, then 7 = s). If the dealer is uncorrupted and has chosen a polynomial A(-,-)in Step 1,
then for every two parties P, P, € D! we have h;(k,l) = h(k,l). Applying Lemma 4.27
again, we get h;(-,-) = h(-,-). In the sequel, we omit the subscript from the polynomial
h(-,-).

Next, we show that each uncorrupted party P;’s output of protocol V-Share is h(¢,0).
Polynomial h(%,-) is the (only) interpolated polynomial of P;’s accumulative set V; in Step
6. Therefore, the output of the error correcting procedure OEC in Step 6 will be h(¢,-),
and the output of protocol V-Share will be h(¢,0).

It remains to assert Condition 2 (namely, that P;’s output of V-Recon is r). Every

uncorrupted party P; will Broadcast A(j,0) in Step 7; thus, h(-,0) is the (only) interpolated
polynomial of P;’s accumulative set S; in Step 8. Therefore, the output of the error cor-
recting procedure OEC in Step 8 will be A(-,0), and the output of protocol V-Recon will
be h(0,0) = r.
Termination. Condition 1. If the dealer is uncorrupted, then for every two uncorrupted
parties P; and Py, both (OK, j, k) and (OK, k, j) will be broadcasted, since f;(k) = h(k,j) =
gx(j) and g¢;(k) = h(j, k) = fi(j). Thus, every uncorrupted party P; will eventually have
a clique of size n — ¢t in its OK; graph. Therefore, procedure STAR will find a star in
OK; and Step 4 will be completed. Step 6 will be completed since the input of procedure
OEC (namely, the accumulative set V; which is based on the star found in Steps 4 or 5) is
eventually (¢,?)-interpolated.

Condition 2. Let P; be a uncorrupted party that completed protocol V-Share, and
let (Cy, D;) be the star found by P;. Then, (C;, D;) will eventually be a star in the OK;
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graph of every uncorrupted party P;, unless P; has already completed protocol V-Share.
Furthermore, party P; will receive the (C;, D;) message (sent by F; in Step 4), and will
verify, in Step 5, that the sets (C;, D;) form a star in OK;. Upon finding a star, P; will
execute Step 6 and complete protocol V-Share.

Condition 3. If all the uncorrupted parties have started protocol V-Recon, then the
accumulative set S; of Step 8 of each uncorrupted party P; is eventually (¢,¢)-interpolated.
Thus, all the uncorrupted parties will complete procedures OEC and V-Recon.

Secrecy. We use the following notations.

e For a value v, let 'H, denote the set of polynomials of degree ¢ in two variables, with
free coefficient v.

o We say that a sequence fi(-),..., fi(+),q1(+), ..., ¢:(-) of polynomials is interleaved if
for every 1 < 4,57 < t we have fi(j) = g¢;(¢). Let I denote the set of interleaved
sequences of 2t polynomials of degree .

Lemma 4.28 Let F be a field with |F| > d, and let s € F. Then, for every interleaved
sequence fi(+),..., fa(+),91(*), ..., g4a() in I, there exists a unique polynomial h(-,-) € H,,
so that for every 1 <i < d we have h(-,i) = fi(-) and h(i,-) = g:(+).

Proof: See Appendix B. a

Assume a uncorrupted dealer, and let s be the shared value. Then, the dealer has
chosen, in Step 1 of protocol V-Share, a polynomial A(-,-) with uniform distribution over
H,. Furthermore, all the relevant information a set of ¢ parties received during an execution
of protocol V-Share, is an interleaved sequence fi(-),..., fi(+),g1(+),...,g:(+) in I, so that
for every 1 < i <t we have h(-,7) = fi(-) and h(7,-) = ¢;(-).

Lemma 4.28 implies that for every shared value s € F, this correspondence between
polynomials in H, and interleaved sequences in I is one to one and onto. Therefore, a
uniform distribution over the polynomials in ‘H, induces a uniform distribution over the
interleaved sequences in 1.

Thus, all the corrupted parties have after executing protocol V-Share is a sequence of
interleaved polynomials of degree ¢, chosen with uniform distribution over I, regardless of
the shared value. a

4.5 Byzantine adversaries

As in the Fail-Stop case, let the computed function be f : F” — F. and assume that the
parties have an arithmetic circuit computing f. We describe an n party protocol for securely
t-computing f in an asynchronous network with arbitrary (i.e., Byzantine) adversaries,
provided that n > 4t + 1.

We follow the outline of the Fail-Stop protocol, modifying its components to the Byzan-
tine setting. First, we extend Shamir’s Secret Sharing scheme (used for Fail-Stop adver-
saries) to an Asynchronous Verifiable Secret Sharing (AVSS) scheme. Next, The multipli-
cation step is adapted to a Byzantine setting.

In our protocol we do not use the AVSS scheme as such: in an AVSS scheme, the dealer
shares a secret among the parties; later, the parties reconstruct the secret from its shares.
In our protocol, the parties’ shares of the secret are further processed, and the reconstructed
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secret is different than the shared secret (much as in the Fail-Stop case). Nevertheless, for
clarity and completeness, we first define AVSS and describe a stand-alone AVSS scheme;
the components of this scheme will be used in the Byzantine protocol.

Our AVSS scheme, as well as the multiplication step protocol, makes use of error correct-
ing techniques for Generalized Reed-Solomon (GRS) codes. In the AVSS scheme we describe
a procedure, run locally by each party, that enables the party to locate and correct, in an
‘on-line’ fashion, erroneous or missing messages in a sequence of received messages. In the
multiplication step, a GRS code-word is generated, so that each party holds a piece of this
code-word. Each party shares its piece, using AVSS; then, the parties agree, without learn-
ing further information, on a set of parties whose shared pieces are indeed the pieces of the
original code-word.

4.5.1 Global Verifiable Share

The Global Verifiable Share (GV-Share) protocol, described in Figure 4-14, is the Byzantine
counterpart of the Fail-Stop GShare protocol (described in Figure 4-4 on page 60). It
consists of two phases: first, each party shares its input, using the V-Share protocol of the
AVSS scheme (Figure 4-9 on page 76); next, the parties use protocol ACS (Section 4.2.3 on
page 56) to agree on a set C' of at least n—t parties who properly shared their inputs. Party
P;’s output of protocol GV-Share is this set (', and the ith share of each secret shared by
a party in C'. (Recall that protocol GShare had an additional security parameter, d; here,
the security parameter is fixed to d = t.)

Protocol GV-Share(z;)

Code for Party P;, on input z;:

1. Initiate V-Share;(#;) (with P; as the dealer).
For 1 < j < n, participate in V-Share;.
Let v; be the output of V-Share;.
2. Let U; = {j| V-Share; has been completed}. Set C' =ACS[n — ¢, n](U;).

3. Once the set C'is computed, output (C, {v;|j € C}).

Figure 4-14: GV-Share - The global verifiable sharing protocol

4.5.2 Computing a multiplication gate

Let ¢ = a - b be a multiplication gate, and let A(-), B(-) be the polynomials associated with
the input lines. Namely, each uncorrupted party P,;’s shares of these lines are A(¢) and B(%)
respectively, and A(0) = @ and B(0) = b. As in the Fail-Stop case, the parties will jointly
compute their shares of a random polynomial C(-) of degree ¢t with C'(0) = A(0) - B(0), so
that each uncorrupted party P;’s share of the output line will be C'(¢).

The Byzantine multiplication procedure follows the outline of its Fail-Stop counterpart.
Namely, the parties first generate a random polynomial D(-) of degree 2¢ with free coefficient
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D(0) = A(0) - B(0). Then, the parties compute their shares of the truncation polynomial
of D(-) to degree t; this truncation polynomial is the output polynomial C(-).
We proceed to describe the Byzantine implementations of these two steps.

Randomization

The Byzantine randomization step follows the outline of its Fail-Stop counterpart. Namely,
each party P; first shares (in a way described below) a random polynomial H,(-) of degree
2t with H;(0) = 0. Next, the parties use protocol ACS to agree on a set C of parties
that have successfully shared their polynomial. Finally, each party F; locally computes
H(i) = ¥ec Hy(i). and D(i) = A(i)- B(i) + H{i).

It remains to describe how each party P; shares its polynomial H;(-). We use the [BGW]
method. This method ‘has the effect’” of sharing polynomial H;(-) in the ‘straightforward’
way. Namely, on one hand, each party P; will have H;(j); on the other hand, the information
gathered by the corrupted parties will be ‘equivalent’ to each corrupted party knowing only
its share of H;(-). Consequently, the information gathered by the corrupted parties in the
entire multiplication step will be independent of the computed value (i.e., A(0) - B(0)).

We describe this sharing method. Each party P; shares t uniformly chosen values, using
t invocations of V-Share. Let z; ;; be party P;’s output of the jth invocation of V-Share
where P; is the dealer. Upon completing all the ¢ invocations of V-Share, each party P
locally computes H;(k) =Y \_ k- 2 4.

Let us reason this slightly unintuitive sharing method (for a formal proof, see the proof
of Theorem 4.30 on page 90). Let .9; ;(+) be the polynomial of degree ¢ defined by the jth V-
Share initiated by P; (namely, S; ;(k) = 2 ; , for every uncorrupted party Py ). Polynomial
H;(+) is now defined as H;(x) = >_i_, a7 - 9 ;(x): each party Py locally computes H;(k) =
Z;Il K-S i(k) = Z;Il K -2z ;5. Let s;;; be the coefficient of z' in S ;(x); it might be
helpful to visualize

Hi(z) =
2 ¢ t+1
S0+ ST+ o0+ S+ sttt 4
2 ¢ t+1 142
Si00%? 4+ .. F Spog0xt 4 sioqatTh 4 s 02t £
1 141 2t
St 0’ + sttt 4 et s

The free coefficient of H,(-) is 0; thus, H;(0) = 0. Each polynomial S5; ;() is of degree
t; thus, H;(x) is of degree 2¢. Furthermore, it can be seen that the coefficients of the
monomials z,...,2" in H;(z) (and, thus, the same coefficients of the sum polynomial H(-)
and in polynomial D(-)) are uniformly distributed over F. Consequently, the coefficients of
all the non-zero powers of the truncation polynomial C(-)) are uniformly distributed over
F.

Clearly, the corrupted parties gather some extra information on top of the ¢ shares of
H,(-). However, it is plausible that this information is independent of A(0)- B(0): party P
chooses t* + ¢ random coefficients, and the corrupted parties receive only ¢* values. (In the
proof of Lemma 4.31 on page 91 we show that the information gathered by the corrupted
parties during the whole multiplication protocol is independent of A(0) - B(0).)
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Degree-reduction

Next, the parties use their shares of polynomial D(-) in order to jointly and securely compute
their shares of the ‘truncation’ of D(-) to degree ¢; namely, the ¢4 1 coefficients of the output
polynomial C'(-) are the coefficients of the ¢ + 1 lower degrees of D(-).

In the Fail-Stop protocol, the parties computed their shares of C'(-) by invoking a pro-
tocol for ‘multiplying the inputs vector by a fixed matrix’; we shortly review this protocol.
Let d = D(1),...,D(n),let = C(1),...,C(n), and let M be the n x n matrix such that
d-M=¢ First, each party P; shared its ‘input’ D(i); next, the parties agreed on a set
of parties that have successfully shared their inputs. Once this set, (G, was agreed upon,
each party locally computed the appropriate matrix M, and the products of his shares by
M€, Finally the parties invoked n Reconstruct protocols, so that in the ith invocation of
Reconstruct, party P; computed C(i) = 3", d; - M]GZ

In the Byzantine setting, the parties will use V-Share and V-Recon instead of the simple
sharing scheme of the Fail-Stop case. Still, a major problem remains: the agreed set G may
contain (corrupted) parties P, that have shared some value different than the expected
value D(i); in this case, the parties will not have the expected outputs. In the rest of this
section, we describe how the parties make sure that the value associated with each party
P; in the agreed set (namely, the free coefficient of the ¢-degree polynomial defined by the
uncorrupted parties’ shares of P;’s input) is indeed D(3).

For a party P;, let s; be the value associated with P; (recall that s, is fixed once the first
uncorrupted party has completed P;’s V-Share); for a set A of parties, let S, = {(7,s;)| P €
A}. We first note that it is enough to agree on a set G of at least 3t 4+ 1 parties, such
that S¢ is (2¢,0)-interpolated 2° (namely, all the values shared by the parties in G ‘sit on a
polynomial of degree 2¢’). This is so, since the set &, being of size 3t + 1, contains at least
2t + 1 uncorrupted parties; thus, the interpolated polynomial of S¢ is bound to be D(-).

We describe a protocol for agreement on a set A of parties, such that S, is (2¢,0)-
interpolated. This protocol, denoted AIS (for Agreement on an Interpolated Set), is a
‘distributed implementation’ of procedure OEC (described in Section 4.4.4 on page 80).
Protocol AIS consists of up to ¢ iterations. In iteration r (0 < r < ¢), the parties first use
protocol ACS (Figure 4-3 on page 58) to agree on a set, G&,., of at least 3t+ 14 r parties that
have successfully shares their inputs. Next, the parties perform a computation, described
below, to check whether S¢_ is (2¢, r)-interpolated. If S¢, is (2, r)-interpolated, then there
exists a set G, C G, of size at least 3t 4 1, such that S is (2t,0)-interpolated; the parties
will compute and output G/.. Otherwise (i.e., S, is not (2¢,r)-interpolated), the parties
will proceed to the next iteration. We stress that the parties will not know the interpolated
polynomial of each S, . They will only know whether such a polynomial exists.

It remains to describe how to check, given a set G of size 3t + 1+, whether S¢ is (2¢,7)-
interpolated, and how to compute the corresponding set G’ (i.e., G’ C G, |G’| > 3t+ 1, and
Sei is (2t,0)-interpolated). As in procedure OEC, we use error correcting for Generalized
Reed-Solomon codes. However, in procedure OEC, the ‘word’, S, was a (dynamic) input
of one party. Thus, each party could locally run an error correcting procedure. In our
setting, each party has only one share of each element of S4; the parties will invoke a joint
computation implementing a specific error correcting procedure, and use it to check whether

Interpolated sets and interpolated polynomials were defined in Section 4.4.4 on page 80.
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G is (2t,r)-interpolated and to compute G.

Let us first outline the particular error correcting procedure we will be implementing.
The inputs to this procedure are (d,r, W). If |[W| > d+2r+1and W is (d, r)-interpolated,
then the output is the interpolated polynomial of W. (Otherwise, an appropriate message
is output). The procedure consists of three steps:

Computing the syndrome. For an input word W = (iy,s1)...(4;, 8), let Vi, be the
(Vandermonde) matrix defined by V;; = (i)’. Let @ = s;...5. The syndrome of W
is the { — (d 4+ 1) right most elements of the [-vector product @- V1.

First, compute the syndrome of W.

Remark. Let Q(-) be the polynomial so that for every (i, a) € W we have Q(é) = a. Then, the
vector @-V =1 is the vector of the coefficients of Q(+); the syndrome consists of the coefficients
of the monomials 4+ ... 2! of Q(z). In particular, if Q(-) is of degree d (namely, W is a

code-word), then the syndrome is the zero vector.

Computing the error-vector. The error-vector is the [-vector € = e;...¢;, where ¢; is
the ‘displacement of s; from the correct value’. Namely, assume that W is (d,r)-
interpolated, and let P(-) be the (d,r)-interpolated polynomial of W; then e; =
P(i;) — s, for every element (7;,s;) € W. The error-vector is unique, since the
interpolated polynomial P(-) is unique.

Compute the error-vector, using the syndrome. A widely used implementation of this
step is the Berlkamp-Massey algorithm (see [MS pp. 365-368]).

Remark. We stress that the error-vector can be computed based on the syndrome only. If the

input word, W, is not (d, r)-interpolated, then the computed error-vector may be erroneous.

Computing the output polynomial. Choose 2t + 1 correct elements in W (namely, el-
ements (i;,a;) such that e; = 0), and use them to interpolate P(-). (This step will
not be implemented.)

An important observation is that the syndrome can be represented as a function of the
error vector only; thus, it holds no information on the (d, r)-interpolated polynomial, P(-),
of W. Namely, let P (resp. Cj) be the coefficients vector of the polynomial P(-) (resp. Q(-)),
completed to length [. (Polynomial Q(-) is the polynomial satisfying Q(7) = « for every pair
(i,a) € W.) Then,

—

Q=a-V'=(P-V4+&)V'i=P4&. VL

The last [ — (d + 1) elements in P are zero. Therefore, for [ — (d + 1) < i < I, we have
Q: = [€-V];. Consequently, the last [ — (d + 1) elements in Q (namely, the syndrome) are
a linear combination of the elements of € only.

Let us now describe how we implement and use this error correcting procedure in our
setting. Each element of the syndrome is a linear combination of the inputs; thus, the
parties can jointly compute the syndrome. That is, given an agreed set, G, each element
of the syndrome of S¢ is computed as follows. Each party computes the appropriate linear
combination of its shares, and invokes a V-Recon protocol with the result of this linear
combination as input. Once all these V-Recon protocols are completed, each party has the
full syndrome of 5.
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Once the syndrome is computed, each party uses the Berlkamp-Massey algorithm in
order to locally compute the error vector. If, in iteration r, S¢, is (2¢,r)-interpolated, then
the computed error vector is the ‘true’ error vector of S¢,; however, if Sg, is not (2¢,r)-
interpolated, then the computed error vector may be incorrect. Consequently, the parties
draw the following conclusions. (Each party draws these conclusions locally; still, all the
uncorrupted parties draw the same conclusions.) If the computed error vector, denoted &,
contains more than r non-zero elements, then surely S, is not (2, r)-interpolated, and the
parties proceed to the next iteration. If & contains up to r non-zero elements, then the
parties still have to verify that & is the correct error vector: let (7. be the set of parties
FP; such that e} = 0; the parties will recompute the syndrome, based on G/ alone. If the
recomputed syndrome is all zeros, then S¢. is (2t,0)-interpolated, and the parties output
G and terminate. If the recomputed syndrome is non-zero, the parties conclude that Sg_
is not (2t,r)-interpolated, and proceed to the next iteration. *!

Protocol AIS is described in Figure 4-15. Let z; ; be P;’s share of the value shared by P;.
The (dynamic) input of each party P; is the following accumulative set, denoted Z;: once
P; has successfully completed P;’s V-Share, the pair (7,2, ;) is added to Z;. The parties’
common output is a set G of at least 3t + 1 parties, such that each uncorrupted party F;
has completed the V-Share of every party in G (namely, G C {P;|(j,2 ;) € 2;}), and Sg is
(2t,0)-interpolated.

Claim 4.29 Assume that protocol AIS is run with dynamic inputs Z,,..., 2, as described
above. Then all the uncorrupted parties terminate protocol AILS with a common set G of at
least 3t + 1 parties, such that S¢ is (2t,0)-interpolated.

Proof: First, assume that the ACS protocol of Step 1 of some iteration is completed by
the uncorrupted parties. Then, all the uncorrupted parties compute the same syndrome in
Step 2 of this iteration; thus, all the uncorrupted parties make the same decisions in Step
3. Consequently, all the uncorrupted parties complete this iteration; furthermore, either all
the parties output a (2t,0)-interpolated set of size at least 3¢t 4 1, or all the parties proceed
to the next iteration.

Next, we show, by induction on the number of iterations, that as long as the required
set is not found, all the uncorrupted parties will complete each invocation of ACS. For the
base of induction, we note that the sequence U;, ..., U, of the accumulative sets defined in
Step 1 of the first iteration is (3¢ 4 1, n)-uniform (see Definition 3.6 on page 37). Thus,
all the uncorrupted parties will complete the ACS invocation of the first iteration. For the
induction step, assume that the uncorrupted parties have completed the ACS protocol of
iteration r. Consequently, the sequence Uy, ..., U, is (3t +r+ 1,t)-uniform. Assume further
that the set agreed upon in iteration r is not (2¢,r)-interpolated; let G, denote this set.
Then, G, contain at most 3t uncorrupted parties. Thus, there exists at least one uncorrupted
party in [n] — GG,. This uncorrupted party will eventually be in the accumulative sets of all
the uncorrupted parties; thus the collection U, .. .U, is (3t+7+2,¢)-uniform. Consequently,
all the uncorrupted parties will complete the ACS invocation of iteration r + 1.

21 A more “time-efficient” version of this protocol lets the parties execute all the ¢ iterations ‘in parallel’;
consequently, the running time of the protocol is the running time of the slowest iteration. (In this ‘parallel’
version, different parties may complete the ‘iterations’ in different order. Thus, the parties need to execute
an additional simple protocol to agree on the iteration whose output is adopted.)
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Protocol AIS(Z;)

Code for party F;, on dynamic input Z;.

for 0 <r <tdo
1. Let U; = {P;|(j, 2z ;) € Zi}.

Set G =ACS[3t + 1 + r, n](U;).

2. Once G 1s computed, compute the syndrome of Sg:
Let V' be the Vandermonde matrix of the indices in GG. Namely, let G = k1 ... kG|

then, Vi,j = (]C]')Z.

Let Z; = Zi,kla ceey ZikaGI'

For 2t + 1 < j < |G| set 0; =V-Recon([Z; - V~1];, [n]).

Let & = 01...0¢4p. (& is the

syndrome of Sg).

3. Run the Berlkamp-Massey algorithm on &, and let & be the output.

(a) If & has more than r non-zero elements, continue to the next iteration (Sg is

not (2t, r)-interpolated).

(b) If € has up to r non-zer

o elements, verify that é’ is correct:

Let G’ be the set of parties in G whose corresponding entry in ¢ is zero. Repeat
step 2 with respect to G’.

If the syndrome of S/ 1

s the zero vector, output G’ and halt.

Otherwise, proceed to the next iteration (Sg is not (2, r)-interpolated).

Figure 4-15: AIS - The agreement on an interpolated set protocol
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Finally, we note that G; (namely, the set [n]) is (2¢,¢)-interpolated; thus, the required
set will be found in iteration ¢, unless it was found beforehand. a

The multiplication protocol

Combining the Randomization and the Degree-Reduction steps, we derive a protocol for
computing a multiplication gate. The code is presented in Figure 4-16.

Protocol BMUL

Code for party F;, on inputs a; and b;.
Randomization
1. For 1 < k <1, execute V-Share; (1), where ry €g F and P; is the dealer.
For 1 <j <n,for 1 <k <t participate in V-Share; ;.
Let h; ;1 be P;’s output of V-Share; ;.
2. Let U; = {P;| V-Share; ; has completed, for all 1 <k < n}.
Set G =ACS[n —t, n](U;).
Set h; = Z]’EG 22:1 it hi,j,k, and d; = a; - b; + h;.

Degree-Reduction

3. Once d; is computed, execute V-Share;(d;), where P; is the dealer.
For 1 < j < n, participate in V-Share;.

4. Let z;; be F;’s share of P;’s shared secret,
and let Z/ = {(j, % ;)| V-Share; has been completed}.
Set G' =AIS(Z)).

5. Let VS be the matrix used in the Fail-Stop multiplication step, as described in section
4.3.3 on page 61, and let 2; = 2 ;, .. CZig ) where ji ...jjg are the indices of the
parties in G’.

For 1 < j <mn, Set ¢; :V—Recon([?‘é . (Vél]j, -

6. Once ¢; 1s computed, output ¢;.

Figure 4-16: BMUL - The Byzantine multiplication gate protocol

4.5.3 The Byzantine protocol

The overall structure of the Byzantine protocol is the same as that of the Fail-Stop protocol.
Namely, in the Byzantine protocol, denoted Bcompute, the parties execute the code of
protocol FStop, with the exception that protocols GShare, MUL, and Reconstruct are
replaced by protocols GV-Share, BMUL, and V-Recon, respectively.

Theorem 4.30 Let f : F* — F for some field F with |F| > n, and let A be a circuit
computing f. Then, protocol Becompute[A] asynchronously ([%] — 1)-securely computes f in
the bounded secure channels setting in the presence of adaptive adversaries and non-erasing
parties.
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Proof: Here we consider only the case of non-adaptive adversaries. The case of adaptive
adversaries is proven in the same way as in Section 4.3.6.

The proof of the Termination property, as well as the construction of the ideal-model
adversary is the same as in the proof of Theorem 4.13 on page 63 (security of protocol
F'S-Compute). We stress that our construction of the ideal-model adversary for Fail-Stop
adversaries is valid even for corrupted parties that change their inputs, although in the
Fail-Stop case the inputs of the corrupted parties are not changed.

The validity of this construction in the Byzantine setting is shown in the same way
as in the Fail-Stop case, with the exception that lemmas analogous to Lemmas 4.15 and
4.14 (on pages 68 and 67, respectively) need to be proven. The proof of the Byzantine
analogue of Lemma 4.15 is similar to the proof of Lemma 4.15, with the exception that
now, the correctness of the uncorrupted parties’ outputs of the Byzantine implementations
of the different protocols (namely, GV-Share, V-Recon, and BMUL) need to be proven.
Correctness of the GV-Share and V-Recon protocols is implied by the correctness of the
AVSS scheme; correctness of protocol BMUL is discussed in Section 4.5.2.

In order to state the Byzantine analogue of Lemma 4.14, let us redefine some notations.
The view of a set of parties is defined as in the proof of Theorem 4.13. Fix an adversary and
an input vector #. The random variables p (resp. p’) take the distribution of the corrupted
parties’ view of protocol Bcompute, run on input & (resp. the corrupted parties’ view of
a simulated computation). Lemma 4.31 below is the Byzantine analogue of Lemma 4.14.
Our proof of Theorem 4.30 is thus completed. a

Lemma 4.31 Fiz an adversay and an input vector. Then, the corresponding random vari-
ables 11 and p' are identically distributed.

Proof: We use the notations of Lemma 4.14. Namely, fix a prefix, V;, of length ¢ of a view
(namely, V; is a prefix of an instance of either p or y/). The random variable 3,,, (resp.
57, 1) describes the distribution of the (i 4 1)th delivered message in p (resp. p'), given that
V; is the corresponding prefix of the view.

As in the proof of Lemma 4.14, it is enough to show that the contentsof 5;, and &}, are
identically distributed, for the case that the sender of §,, is uncorrupted and the recipient
is corrupted. Fach message of protocol Bcompute falls into one of the following cases.

Messages of some invocation of V-Share. We distinguish two cases: if the dealer of
the relevant invocation of V-Share is uncorrupted, then equality of the distributions
of ;11 and &, is implied by the proof of the privacy property of the AVSS scheme
(Theorem 4.25 on page 81). If the dealer is corrupted, then the contents of §;;, and
5i,, can be inferred from the common prefix V; (and are, thus, equal).

Messages of some invocation of ACS. This case is trivial, since messages of protocol
ACS have empty contents.

The last three cases are different types of invocations of protocol V-Recon. We note
that, as in the Fail-Stop case, in order to show that the contents of all the messages of
some invocation of V-Recon are identically distributed in the two computations, it suffices
to show that the output of this invocation of V-Recon is identically distributed in the two
computations.
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Messages of the final invocation of V-Recon. (Namely, Step 4 of protocol Bcompute.
See figure 4-8 on page 64.) This case is shown using similar considerations to those of
the Fail-Stop case.

Messages of an invocation of V-Recons within protocol AIS. (Namely, Step 2 of
the AIS.) See Figure 4-15 on page 89.) We have seen in Section 4.5.2 that the outputs
of the V-Recons of the AIS protocol are the different syndromes computed by the
parties; furthermore, we have seen that the syndromes are uniquely determined by
the errors introduced by the corrupted parties. However, these errors can be inferred
from the common prefix V;: the values associated with each corrupted party, F;, in
each set (4. can be inferred from the messages sent by P; in the corresponding invo-
cation of V-Share (these messages appear in the common prefix V;). Thus, the errors
introduced by the corrupted parties, as well as the different syndromes, are identical
in the two computations.

Messages of an invocation of V-Recon within protocol BMUL. (Namely, Step 5 of
BMUL. See Figure 4-16 on page 90.) As in the Fail-Stop case, we show that the cor-
rupted parties’ outputs of the ¢ invocations of V-Recon, along with the contents of
the other messages of this invocation of BMUL, received by the corrupted parties, are
uniformly and independently distributed, regardless of the values of the input lines of
the corresponding multiplication gate.

The polynomial H(z) interpolated by the parties in Step 2 (Randomization) of pro-
tocol BMUL is H(z) = Y ;cq Yoy @' - 5;;(2). (The set G is the output of the cor-
responding invocation of ACS, and each polynomial 5; ;(+) is the polynomial defined
by the uncorrupted parties’ outputs of P;’s jth invocation of V-Share. See Section
4.5.2 on page 85 for more details.) Let us first regard this polynomial in a more
convenient way: reversing the order of summation, we have H(z) = 2;21 a - gj(x),
where S;(-) = Yicq Si,j(-). All the coefficients of each polynomial $;(-) are uni-
formly distributed, since the set G contains uncorrupted parties. The contents of the
randomization-phase messages received by the corrupted parties constitute ¢ shares
of each polynomial 5‘]() Consequently, the data gathered by the corrupted parties
during the entire BMUL protocol adds up to ¢ shares of each one of the ¢ polynomials
5‘1(-), .. .,5}(-), along with the outputs of the ¢ invocations of V-Recon (namely, ¢
shares of the truncation polynomial C'(-)).

Fix some arbitrary input polynomials A(-) and B(-) of the multiplication step. Lemma
4.32 below shows that for each sequence of ¢* + ¢ field elements gathered by the
corrupted parties there exists a unique choice of the polynomials 31() .. 5}() that
yield this sequence. However, the polynomials 31() .. 5}() are uniformly distributed;
thus, the sequence of field-elements gathered by the corrupted parties is uniformly
distributed, both in p and in p'. *?

2In Lemma 4.32 we assume, without loss of generality, that the corrupted parties are Py, ..., P;.
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Lemma 4.32 Let F' be a finite field with |F| > d, and let A(-) and B(-) be polynomials of
degree d over I'. Then, for every sequence ay1,...,044,C1,...,cq of elements in I there
exists a unique sequence 31(-), .. .,5}(-) of polynomials of degree d such that:

1. Fore each 1 < 1,5 < d, we have Sz(]) = ;.

2. Let C(-) be the truncation to degree d of the polynomial

D(z) = A(z) - B(z) + Z:wj - 5j(x)

Then, for 1 <i < d we have C(i) = ¢;.

Proof: See Section 4-B. a

4.6 Lower bounds

We show that our protocols have optimal resilience, both in the Fail-Stop and in the Byzan-
tine cases. Firsr we show, in Theorem 4.34, that there exist functions that cannot be
[5]-securely computed in an asynchronous network of n parties if Fail-Stop adversaries are
allowed. We prove this result in two steps. First we reduce the problem of secure com-
putation in a synchronous network with n = 2t to the problem of secure computation in
an asynchronous network with n = 3¢. Next we use the results of [BGW] (and also Chor
and Kushilevitz [CK]) that there exist functions that cannot be securely computed (or even
approximated) when n < 2¢. Simple examples of such functions are the OR and AND
functions of n boolean inputs. Even though a direct (and conceivably shorter) impossiblity
proof for the asynchronous case is possible, we believe that our proof by reduction is clearer

as well as more general.
i
computed with no probability of error in an asynchronous network if general (Byzantine)

Next we show, in Theorem 4.35, that there exist functions that cannot be [2]-securely
adversaries are allowed. This proof is a generalization of a technique used in [BGW]. Both
Theorems 4.34 and 4.35 apply even to non-adaptive adversaries.

We remark that Ben-Or Kelmer and T. Rabin [BKR] show, using techniques from
[BGW, CCD, CR], how any function can be asynchronously ([%] — 1)-securely computed,
in the presence of Byzantine adversaries, with exponentially small (but positive) probability
of either not terminating or having wrong outputs.

For the proof, we use the following notations. For an asynchronous protocol p, a set
G of parties, an adversary A and input Z, let p, ¢ 4(Z) be the random variable having the
distribution of the view of the parties in G when running protocol p with adversary A and
input &. (Unlike the notion of adversary view defined in previous sections, here the view of
a set of parties does not include the information seen by the scheduler.)

A party’s output of a computation is a function of its view only. Consequently, if
Ep.ca(Z) and g, ¢ a(Z) are identically distributed (for some protocol p, input Z, some set
G of parties, two adversaries A and A’ and some input &), then the output of the parties in
(i is identically distributed with adversaries A and A’.
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4.6.1 Fail-Stop adversaries

We use the following result of [CK]. This result refers to synchronous networks where the
adversaries are eavesdropping (namely, the corrupted parties only try to gather information,
but otherwise follow the protocol). In this model, we say that a protocol approximates a
boolean function, if for every input, with probability greater than % the uncorrupted parties
output the function value. Informally, a protocol is t-private if every adversary gathers no
information from executing the protocol, other than the output of the uncorrupted parties
(namely the computed function value).

Theorem 4.33 [BGW, CK]: For every n > 2, there exist boolean functions f such that

there is no synchronous |3 |-private protocol for n parties that approximates f.

Some intuition for the proof of Theorem 4.33 follows. Consider the case where n = 2,
and f is the OR function of two boolean inputs. The first party, A, should make sure that
if the input of the other party, B, is 0 then the communication between the parties will
be independent of A’s input (otherwise B will learn about A’s input). Similarly, B should
make sure that if the input of A is 0 then the communication between the parties will be
independent of B’s input. Now, consider the case where both A and B have input 0. Since
the communication must be independent of both inputs the parties will never be able to
decide on an output.

This argument can be generalized in a simple way to deal with three parties in an
asynchronous network with one possible Fail-stop fault. Assume that A is good, and the
third party, C', does not respond to A’s messages. Then, A must complete the protocol based
only on its communication with B, since ¢' may be faulty. Furthermore, the communication
with B should be independent of A’s input (for the case where C' is good but slow and B
is faulty with input 0). The argument now continues as in the synchropbous case.

To be more precise, we prove the following lower bound based on Theorem 4.33.

Theorem 4.34 For every n > 3, there exist boolean functions f, such that no asynchronous
protocol for n parties securely [5|-computes f when Fail-Stop adversaries are allowed.

Proof: Let n > 3, and let m = n — [2]. (Hence, m = [%] and [2] < [2].) Let

f:{0,1}™ — {0,1} be a boolean function as in Theorem 4.33 (namely, f' cannot be
approximated by any [%]-private protocol). Construct the function f:{0,1}" — {0,1} so
that for every n-vector &, we have f(¥) = f'(Z[,]). We show that if there exists a protocol,

n
3
adversaries, then there exists an [

7, that securely [Z]-computes f in an asynchronous network of n parties with Fail-Stop

5
approximates f’. The theorem follows.

|-private synchronous protocol, 7/, for m parties, that

Suppose we have an n-party asynchronous protocol, 7, that securely [%]-computes f.
We construct an m-party synchronous protocol, 7/, as follows. In protocol 7' each party
will simulate a party executing protocol 7 in an asynchronous network of n parties. The
simulation proceeds as follows. Let P/,..., P, be the parties of the actual synchronous
network. Let Py,...P, be the ‘virtual’ parties addressed by protocol m. Actual party P/
will simulate virtual party P;; parties P4y ... P, are not simulated. Each (actual) party
keeps a queue of incoming messages. In each (synchronous) communication round, the
party invokes a cycle of protocol 7 for the first message in the queue. Whenever protocol
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7 instructs to send a message to ‘virtual’ party P; for ¢ € [m], the party sends this message
to P!/. If ¢ > m, the instruction is ignored. Once virtual party P; terminates, actual party
P! terminates with the output of protocol P;.

We note that if the asynchronous protocol, 7, doesn’t terminate, then the synchronous
protocol ' doesn’t terminate as well. Thus, there may exist executions in which protocol
7' doesn’t terminate. We describe how we avoid this phenomenon at the end of the proof.

We assert the validity of protocol 7’ (namely, we show that it is [%+]-private and ap-
proximates f). An outline of the proof follows. For every synchronous adversary interacting
with protocol #’, we describe three synchronous adversaries, denoted A;, A, and Aj, for
protocol 7:

o Adversary A, is the adversary that corresponds to the virtual execution of protocol
7, when run by protocol /. With this adversary, the messages sent by t parties re
delayed (these are the parties P4, ...P,), and additional ¢ parties are corrupted
(these are the parties that correspond to the actual corrupted parties).

o Adversary A, delivers the messages in the same order as adversary A;. However,
the parties P, ... P,, are uncorrupted, and the parties P, ... P, are corrupted. The
security of protocol 7 asserts that with this adversary the parties P, ... P,, output the
correct function value.

o Adversary Aj delivers the messages sent by the parties P, ... P, in the same order
as adversary A;. The messages of the parties P, ... P, are postponed until there
are no undelivered messages from the parties P, ... P,,. The corrupted parties are the
parties that correspond to the actual corrupted parties. The security of protocol =
asserts that with this adversary the set of corrupted parties gathers no information,
other than the output of the uncorrupted parties.

We show below that, for any synchronous adversary that interacts with 7/, the outputs
of the parties Py,..., P, running protocol 7 are identically distributed in the presence of
all three (asynchronous) adversaries. It follows that, for every (synchronous) adversary the
uncorrupted parties output the correct function value, and the corrupted parties gather
no information other than the computed function value. Consequently, the synchronous
protocol, 7', is t-private and approximates f.

We now describe adversaries A;, A,, and Az in more detail. We partition the set of
parties of protocol = (namely, Pi,...,P,) as follows. Let B be the set of parties that
correspond to the corrupted parties the synchronous network (namely, P, € B iff P/ is
corrupted). Let G be the set of parties that correspond to wuncorrupted parties in the
synchronous network (i.e.,, G = {P,...P,} — B). Let L be the set of “silent” parties
(namely, L = {Ppy1,-.., Pu}).

Adversary A;. Corrupted parties: the corrupted parties are the parties in B; they follows

the protocol without fail-stopping.
Scheduler: messages sent from the parties in P;,..., P, are delivered in a ‘round
robin’; messages sent from the parties in L are not delivered.

Adversary A,. Corrupted parties: the corrupted parties are the parties in L; they do not

send any messages.
Scheduler: messages sent from the parties Py, ..., P,, are delivered in a ‘round robin’.
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By the definition of asynchronous secure computation (Definition 4.4 on page 52), the
following property holds with adversary As: on every input, #, the parties in G U B must
complete protocol m with output fo(Z), for some core set, C', of size at least m = n — [%].
The only inputs available are the inputs of the parties Pi,..., F,,. Thus, with adversary
As, the parties in GU B output f,)(Z). (In the sequel, we use this observation only for the
parties in G.)

Furthermore, it can be seen, by induction on the number of communication events, that
the following relation holds for every asynchronous protocol, p, and for every input vector,
Z: Every prefix of a view of the parties Py,..., P, when running protocol p on input 7 is
identically distributed with adversaries A; and A,. Thus, fir ()4, () and pir (m) 4, (%) are
identically distributed. Consequently, the outputs of the parties Py,..., P, are identically
distributed with adversaries A; and A,.

Adversary Az. Corrupted parties: as with adversary A;.

Scheduler: messages sent from the parties Py, ..., P,, are delivered in a ‘round robin’;
messages sent from the parties in L are delayed until all the messages from parties in
P, ..., P, are delivered.

For every input, &, let 4/ (1 4. (&) denote the longest prefix of fir [m) 4,(Z) that does not
contain messages sent by parties in L. It can be seen (again, by induction on the number
of events in a prefix of a view) that the random variables u/ [ 1 . (&) and pir (] 4, (%)
are identically distributed; in particular, they have the same support set. We have seen
above that in every execution where the view of the parties in G is in the support set
of fir m),4, (¥), these parties terminate. Consequently, with adversary A3 the parties in
G terminate, deciding on an output, once their view is in the support set of Iu;T,[m],Ag,(f)
(i.e., before any message from a party in L is delivered). Furthermore, the parties in ¢
have the same output as with adversary A;, namely f},,)(¥). In addition, since protocol =
is secure, adversary Az gathers no information other than the output of the uncorrupted
parties (namely, f;,)(%)). Consequently, the corrupted parties gather no information other
than the computed function value with adversary A;.

It remains to fix the termination condition of protocol 7’. We use the following provi-
sion. If, in the ‘simulated execution’, protocol # doesn’t terminate after some predefined
large enough number of rounds, then the party terminates with some default output. We
compute this limit on the number of rounds: With adversary A, protocol 7 terminates
with probability 1. Consequently, there exist an integer, k, such that on every input, with
% all the uncorrupted parties complete protocol 7 after & communica-
tion events. (The limit 2 is arbitrary. Any number in the interval (1,1) would do.) We

3
fix the limit on the number of rounds to k. Thus, protocol 7' always terminates, and with

probability at least

probability at least % the uncorrupted parties output the output of protocol 7, namely

Jim)(Z) = f'(Zpn). (We note that this “truncated” synchronous protocol is [%]-private,
since the limit, k, is independent of the inputs.) a

4.6.2 Byzantine adversaries

For the proof of the lower bound for the Byzantine case we use the following additional
notation. Fix some adversary and input vector. Let A be a set of parties. Let the conver-
sation, (4, among the parties in A, be the random variable having the distribution of the
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sequence of all messages sent among the parties in A. (The order of the messages in each
instance of the conversation is induced by their order in the corresponding view.)

Theorem 4.35 For everyn > 4, there exist functions f such that no asynchronous protocol
for n parties securely [%5|-computes f, if Byzantine adversaries are allowed.

Proof (sketch): First, we note that the straightforward reduction to the synchronous case
(used in the previous proof) does not hold in the Byzantine case, for the following reason. In
the Fail-Stop case, a uncorrupted party has no way of telling whether a party is uncorrupted
or corrupted; therefore, each uncorrupted party must terminate whenever any set of n — ¢
parties are ready to terminate. in the presence of Byzantine adversaries, there may exist
strategies for the corrupted parties that cause the uncorrupted parties to recognize some
party, P, as corrupted. In this case, the uncorrupted parties can wait for n —t parties other
than P. Consequently, in the simulation of the previous proof, if some corrupted party is
recognized as corrupted then the uncorrupted parties may never terminate.

We prove the Theorem for the case n = 4. The proof can be easily generalized to all n.
Let m be a four party protocol that securely 1-computes the following function:

1 if Ty = T3 = 1
0 otherwise

f($17$27$37$4) = {

Let P, P5, Ps and P, be the parties (and let z; be the input of P;).

Consider the following setting. Party P; is corrupted (with a strategy described below),
and the adversary delivers the messages of parties P, P, and P5 in a ‘round robin’; messages
sent by P, are delivered only when there are no undelivered messages of the other parties.
We show below that, with small but non-zero probability, both P, and P; do not recognize
P, as being corrupted. In this case, both P, and P will terminate before any message of P,
s delivered; this can be shown using similar considerations to those of the previous proof.
We show that in this case, the output of P, is different than the output of Ps.

We first observe that the conversation Cyp, p,} is independent of both 2, and x5: consider,
for contradiction, the first message in Cyp, p,; that depends on the input of its sender (say,
Py). Then, P5 can learn x4, regardless of the value of z5. Consequently, it is the combination
of the conversations Cip, p,; and Cyp, p,; that determines the output of P,. Similarly, it is
the combination of the conversations Cyp, p,; and Cyp, p,3 that determines the output of Ps.

Now, assume the following strategy of P;: send some random string instead of each
message expected of P;. Let x5 = 23 = 1. With small but non-zero probability, the
combination of the conversations Cyp, p,} and Cip, p,} is consistent with input 0 of P5 (and
some input of P;), and at the same time the combination of the conversations Cyp, p,} and
Cip, p.} is consistent with input 1 of P, (and some input of P;). In this case, both P, and Ps
terminate before any message of Py is delivered. Furthermore, P, outputs 0, and P; outputs
1. That is, P, and P; have different outputs and the protocol is not 1-secure. O
Remark: Using a technique similar to the technique of the above proof, it can be shown
that there exist functions that cannot be securely computed in a synchronous network where
a third of the parties are corrupted. (This result is stated in [BGW].) Moreover, the result
for the synchronous case is much stronger: consider a secure, synchronous protocol for
computing the AND function of three variables (i.e., AND(zy,29,25) = 1 iff 2, = 2z, =
3 = 1) in a network where the parties are { Py, 5, P3}, and one corrupted party, Py, does
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not send any messages. Using the same argument as in the above proof, it can be shown
that the view of party P, is independent of the input of Ps, and the view of party Ps is
independent of the input of P,. Consequently, there must exist inputs for which the output
of the uncorrupted parties is incorrect with probability at least one half (instead of negligible
probability in the above proof).

We note that this ‘synchronous’ strategy for the corrupted party is useless in our asyn-
chronous model: if a corrupted party, P, does not send messages (or, alternatively, if this
party is ‘caught sending nonsense messages’), then the uncorrupted parties may interact
with » — ¢ parties other than P.

4-A Expected running times

We analyze the running times of protocols FScompute and Bcompute. First, let us infor-
mally present the standard definition of the running time of an asynchronous protocol.

Consider a virtual ‘external clock’ measuring time in the network (of course, the players
cannot read this clock). Let the delay of a message be the time elapsed from its sending
to its receipt. Let the period of a finite execution of a protocol be the longest delay of a
message in this execution. The duration of a finite execution is the total time measured by
the global clock divided by the period of this execution. (Infinite executions have infinite
duration.)

The expected running time of a protocol, is the maximum over all inputs and applicable
adversaries, of the average over the random inputs of the players, of the duration of an
execution of the protocol.

Let n be the number of parties, and let d be the depth of the computed circuit. Consider
protocol FScompute. The expected running time of protocol ACS is O(logn); thus, the
expected running time of protocol GShare is also O(logn). Protocol Reconstruct runs in
constant time. Consequently, each invocation of protocol MUL has expected running time
of O(logn), and Protocol FScompute has expected running time of O(d - logn).

Consider protocol Bcompute. Protocols V-Share and V-Recon run in constant time.
Protocol AIS, as presented in Figure 4-15 on page 89, consists of O(n) iterations, where
each iteration has expected running time of O(logn). However, as remarked at the end of
Section 4.5.2, we can let all iterations run ‘in parallel’; in this version, protocol AIS has
expected running time of O(logn). Consequently, protocol Bcompute runs in O(d - logn)
expected time.

4-B Proofs of technical lemmas

In the sequel, we let V) denote the k x k (Vendermonde) matrix, where (V(*)), . = 4.
Note that V*) is non-singular. (When the dimension k is obvious, we write V instead of

yi)

Lemma 4.3 Let F be a finite field with |F| > d, and let s € F. Then for every sequence
Viyevy Vg, Ul ..., Ug Of field-elements, there exists a unique polynomial p(-) of degree 2d with
p(0) = s, such that:

1. For1 <1i<d, we have p(i) = v;.
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2. For 1 <1i<d, we have ¢(i) = u;, where q(-) is the truncation of p(-) to degree d (i.e.,
the coefficients of q(-) are the coefficients of the d + 1 lower degrees of p(+)).

Proof: Let pg,...,p2q be the coefficients of polynomial p(-) claimed in the Lemma. Then,
the following 2d + 1 equations hold:

pol® + o4 pal® 4 pa 1T+ L+ pl®t =y
pod® + ...+ ped* + pgdtt 4 +  poad® = oy
P+ ...+ 0 4+ 0 + ...+ 0 = s (4.1)
pol® + + pal? + 0 + + 0 =
pod® + ...+ pgd? 0 - 0 = uy

We show that the equations (4.1) (in the variables py,. .., p24) are linearly independent.
The coefficients matrix M of the left hand side of (4.1) can be partitioned into:

Adx(d+1) ded
Moapyxzarn) = Clasiyniass) O

Matrix C' equals V(¥ thus the last d + 1 rows of M are linearly independent.

We show that matrix B is non-singular: let D be the d x d diagonal matrix, where
D;; = i% then, B = D -V, Matrices V(? and D are non-singular; thus, B is non-singular
as well. Therefore, the first d rows of M are linearly independent.

Assume that some linear combination ¢ of the first ¢ rows of M equals a linear combina-
tion of the last d 4+ 1 rows. Then, the same linear combination ¢, restricted to the columns
of B, yields a row of d zeros, in contradiction with the non-singularity of matrix B.

We remark that the polynomial p(-) can be efficiently computed. Furthermore, given

a degree t > d, it is possible to efficiently sample a random polynomial of degree ¢ that
satisfies conditions (1) and (2) of the lemma. ]

Lemma 4.4 Letm > d+1, andlet fi(-)...fn(-) and ¢:(-) . ..gm() be polynomials of degree
d over a field F' with |F| > m, such that for every 1 <i < d+ 1 and every 1 < j < m we
have f;(7) = g;(t) and ¢;(j) = f;(i). Then, there exists a unique polynomial h(-,-) of degree
d in two variables so that for every 1 <1i < m we have h(-,i) = f;(-) and h(,-) = ¢;(+).

Proof: Let F be the (d4 1) x (d + 1) matrix where E; ; is the coefficient of 27 in f;(2).
Then, the (4,j)th entry in £ -V is fi(j).

Let H 2 (VT)=1. E, and let h(z,y) be the polynomial of degree d in two variables®?
where the coefficient of z'y’ is H, ;. Then, for every 1 <i,j < d+ 1 we have

Wi, j)y=VT-H-V=E-V=fi(j)= g;(i).

Consequently, for every 1 < i < d+ 1, the polynomials f;(-) and h(%,-) are two polynomials
of degree d that are equal in d 4 1 places. Thus, fi(-) = h(¢,-). Similarly, g;(-) = h(-, 7).

23 _ —d d ‘ i g .
Namely, h(z,y) = Zi:o Z]=0 a;; - x'y’, where ago, ..., aq,q are fixed coefficients.
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Now, consider an index d+1 < ¢ < m. Forevery 1 < j <d+1, we have f;(j) = g;(i); by
the construction of polynomial A(-,-), we also have h(-, j) = g;(¢). Namely, f;(-) and h(¢,-)
are polynomials of degree d that are equal in d + 1 places. Consequently, fi(-) = h(3,-).
Similarly, ¢;(-) = h(-, 7). ]

Lemma 4.5 Let h(-,-), h'(-,-) be two polynomials of degree d in two variables over a field
F with |F| > d, and let vy,...,v4.1 be distinct elements in F. Assume that for every
1<4,j <d+1 we have h(v;,v;) = W' (v;,v;). Then, h(-,-)=N(-,-).

Proof: Let W denote the (d41) x (d4 1) (Vendermonde) matrix defined by W, ; = (v;)".
Let H be the (d+ 1) x (d 4 1) matrix where H, ; is the coefficient of 'y’ in h(z,y). Let H’
be similarly defined with respect to h'(x,y). Using these notations, we have

wWr-H-W=w"-H W
Note that W is non-singular, since vy, ..., vqy1 are distinct. Consequently, H = H’'. a

Lemma 4.6 Let F be a field with |F| > d, and let s € F. Then, for every sequence
HG) o () 01(0), - o, 9:(¢) of polynomials of degree d, such that fi(j) = ¢;(¢) for every

1 < 4,5 < d, there exists a unique polynomial h(-,-) of degree d in two variables with
h(0,0) = s, so that for every 1 < i < d we have h(-,i) = fi(+) and h(i,-) = ¢;().

Proof: Let E be the following (d+ 1) x (d+ 1) matrix. For 1 <i,j <dlet E;; = f;(j) =
g;(i); let E; o = g;(0), and Ey; = fi(0). Finally, let Eoo = s. Let H 2 (VT)~1. E. V-1,
and let h(z,y) be the polynomial of degree d in two variables, such that the coefficient of
z'y’ is H;;. Similar arguments to those of the proof of Lemma 4.26 show that h(z,y) is
the required, uniquely defined, polynomial. a

Lemma 4.8 Let I' be a finite field with |F'| > d, and let A(-) and B(-) be polynomials of
degree d over I'. Then, for every sequence ay1,...,044,C1,...,cq of elements in I there
exists a unique sequence 31(-), .. ,,S‘d(-) of polynomials of degree d such that:

1. Fore each 1 < 1,5 < d, we have Sz(]) = ;.

2. Let C(-) be the truncation to degree d of the polynomial D(z) = A(x)-B(z)+3;_; 27 -
Sj(w) Then, for 1 <i <d we have C(i) = ¢;.

Proof: Let ay;,...,a44,¢1,...,¢4 be a sequence of field elements, and let s;; be the
coefficient of 7 in the 7th polynomial in a sequence 31(-), . S‘d(-) of polynomials satisfying
requirements 1 and 2 of the Lemma. Then, requirements 1 and 2 translate to d?+d equations
in the d* 4 d variables s, o...544. It remains to show that the (d* + d) x (d* + d) matrix
M of the coeflicients of these equations is non-singular. Matrix M has the following form:

fw, 0 0 ... 0
0 W, 0 ... 0
M =
0 0 ... 0 W,
_U1 U1 Ud_
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where each sub-matrix W; (of dimensions d x (d + 1)) is constructed by deleting the last
row from V(Y and every matrix U; (of dimensions d x (d+ 1)) is constructed by deleting
the 7 — 1 leftmost columns from a V(¥ matrix and appending i zero columns on the right.

Clearly, the first d* rows in M are linearly independent, and the last d rows in M are
linearly independent. It remains to show that no non-trivial linear combination of the first
d? rows equals a linear combination of the last d rows.

Let the (d? + d)-vector L; be a linear combination of the first d* rows, let the (d* + d)-
vector L, be a linear combination of the last d rows, and assume that L, = L,. We show
that L, = L, = 0. Partition L, to d blocks, where each block contains d + 1 elements (the
ith block is a combination of the elements in U;).

The d rightmost columns of U, are zero, and the d rightmost columns of W, are linearly
independent. Thus, Ly = L, involves no rows of W;. Consequently, all the last d+ 1 entries
(namely, the dth block) in L, are zero.

However, U,_; is a shift-right by one of U;. Thus, the d rightmost entries in the (d—1)th
block of L, are zero as well. Using a similar argument to that of the last paragraph, we get
that all the entries in the (d — 1)th block in L, are zero.

Applying this argument d — 2 more times, we get that L; = L, = 0. a



CHAPTERSY

Asynchronous Byzantine agreement

We describe the first ([%] — 1)-resilient asynchronous Byzantine agreement protocol with
polynomial complexity. We use ideas and techniques that emerge from secure multiparty
computation. See Section 1.5 for an introductory presentation and discussion.

In Section 5.1 we recall the asynchronous model and definitions of Byzantine Agreement
and Asynchronous Verifiable Secret Sharing (AVSS). In Section 5.2 we state our main
theorems, and present an overview of our protocols. In Section 5.3 we describe tools used

in our construction. In Sections 5.4 through 5.6 we describe our ([2] — 1)-resilient AVSS

scheme. In Sections 5.7 and 5.8 we describe our BA protocol given an AVSS scheme.

5.1 Definitions

We assume the same model as in Chapter 4 (see Section 4.1 on page 49). We also use the
same conventions for writing asynchronous protocols (see Section 4.1.3), and the same mea-
sure of running times of asynchronous protocols (see Section 4-A). We re-define Byzantine
agreeement and AVSS. The definitions here are identical to the definitions in Chapter 4
(Definitions 4.5 and 4.18, respectively), with the exception that here we allow the parties
to not terminate (and in AVSS also to have wrong output) with small probability.

Definition 5.1 Let © be an asynchronous protocol for which each party has binary input.
We say that 7 is a (1—¢)-terminating, ¢-resilient Byzantine Agreement protocol if the following
requirements hold, for every t-adversary and every input.

e Termination. With probability 1 — ¢ all the uncorrupted parties complete the protocol
(i.e., terminate locally).

e Correctness. All the uncorrupted parties who have terminated have identical outputs.
Furthermore, if all the uncorrupted parties have the same input, o, then all the uncorrupted
parties output o.

Definition 5.2 Let S be a finite set. Let (S,R) be a pair of protocols in which a dealer,
D, shares a secret s € 5. All parties invoke protocol S, and later invoke protocol R with the
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local output of protocol S as local input. We say that (S,R) is a (1 — €)-correct, t-resilient
AVSS scheme for n parties if the following hold, for every t-adversary.
e Termination. With probability 1 — ¢ the following requirements hold.

1. If the dealer is uncorrupted, then each uncorrupted party will eventually complete
protocol S.

2. If some uncorrupted party has completed protocol S, then each uncorrupted party will
eventually complete protocol S.

3. If all the uncorrupted parties have completed protocol S, then all the uncorrupted
parties will complete protocol R.
e Correctness. Once the first uncorrupted party has completed protocol S, then a value, r,
s fixed, such that the following requirements hold with probability 1 — ¢:

1. Fach uncorrupted party outputs v. (Namely, r is the reconstructed secret.)

2. If the dealer is uncorrupted, then r is the shared secret, i.e. r = s.
e Secrecy. If the dealer is uncorrupted and no uncorrupted party has bequn executing proto-
col R, then the information gathered by the adversary during the computation is independent
of the shared secret.

Remark: We stress that an uncorrupted party is not required to complete protocol S
in case that the dealer is corrupted. We do not distinguish between the case where an
uncorrupted party did not complete protocol S, and the case where an uncorrupted party
has completed S unsuccessfully.

5.2 Overview of the protocols
First, let us state our main results.

Theorem 5.3 (AVSS). Let n > 3t + 1. For every ¢ > 0 there exists a (1 — ¢)-correct,
t-resilient AVSS scheme for n parties. Conditioned on the event that the honest parties
terminate, they do so in constant time. Furthermore, the computational resources required
of each party are polynomial in n and log %

Theorem 5.4 (BA). Let n > 3t + 1. For every € > 0 there exists a (1 — €)-terminating,
t-resilient, asynchronous Byzantine Agreement protocol for n parties. Conditioned on the
event that the honest parties terminate, they do so in constant expected time. Furthermore,
the computational resources required of each party are polynomial in n and log %

Our Byzantine Agreement protocol is complex and involves many layers. To facilitate
the reading we first present an overview of our protocol. Let F be a field of size greater
than n. All the computations in the sequel are done in F. The BA protocol employs the
idea of using ‘common coins’ to reach agreement, as follows.

BA using Common Coin. This part of our protocol follows the constructions of Rabin,
Bracha and Feldman [MRa2, Br, Fe]. The protocol proceeds in rounds. In each round, each
party has a ‘modified input’ value. In the first round, the modified input of each party is
his local input. In each round the parties invoke two protocols, called Vote and Common
Coin. Protocol Common Coin has the following property. Each party has a random input,
and binary output. For every value o € {0, 1}, with probability at least i all the honest
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parties output o. In protocol Vote each party tries to establish whether there exists a
‘distinct majority’ for some value amongst the parties’ modified inputs of this round (we
define distinct majority in the sequel). If a party recognizes a ‘distinct majority’ for some
value he takes this value to be his modified input for the next round. Otherwise, he sets his
modified input for the next round to be the output of protocol Common Coin. We show
that no two honest parties ever recognize a distinct majority for two different values. This
is used to show that in each round, with probability at least i all parties have the same
modified input.

If all the honest parties have the same modified input in some round, then all the

honest parties will recognize this and terminate outputting this value. It follows that the
BA protocol terminates within a constant expected number of rounds. Given that all the
honest parties complete all Common Coin protocols they invoked, then each round of the
Byzantine Agreement protocol terminates in constant time.
Common Coin using AVSS. Our construction follows Feldman, and Feldman and Micali
[Fe, FM]. The protocol proceeds roughly as follows. First, each party shares n random
secrets using our AVSS scheme. Once a party is assured that enough secrets have been
properly shared, he starts reconstructing the relevant secrets. Once all these secrets are
reconstructed, each party locally computes his output based on the reconstructed secrets.
AVSS from scratch. Our AVSS scheme is constructed in three ‘layers’. Each layer con-
sists of a different secret sharing scheme (with an allowed-error parameter, €). The scheme
of the lowest layer is called Asynchronous Recoverable Sharing A-RS). The next scheme
is called Asynchronous Weak Secret Sharing (AWSS). The last (‘top’) layer is an AVSS
scheme (as in Definition 5.2). Each scheme is used as a building block for the next. All
three sharing schemes satisfy the termination and secrecy requirements of Definition 5.2.
In all three schemes, if the dealer is honest then the honest parties always reconstruct the
secret shared by the dealer. The correctness property for the case that the dealer is faulty
is upgraded from A-RS to AWSS and finally to AVSS:

A-RS- Once the first honest party completes the reconstruction phase, a subset 5 C F,
of size 2t + 1, is fixed. With probability 1 — €, each honest party will reconstruct a value
r € S U {null}. (We stress that it is not required that all honest parties end up with the
same reconstructed value.)

AWSS- Once the first honest party completes the sharing phase, a value s is fixed. With
probability 1 — ¢, each honest party will reconstruct either s or null.

AVSS- Once the first honest party completes the sharing phase, a value s is fixed. With
probability 1 — ¢, each honest party will reconstruct s.

5.3 Tools

5.3.1 Information Checking Protocol- ICP

The Information Checking Protocol (ICP) is a tool for authenticating messages in the
presence of (computationally unbounded) faulty parties. The ICP was introduced by T.
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ICP

Generation phase (Gen):
1. The dealer D having a secret s € F, chooses random values y1, ..., y2; and

b1, ..., bar uniformly distributed in F. He computes ¢; 2 bis + y; for 1 < i < 2k.

2. D sends s and = Yiy oo, Yop tO 1.
3. D sends the check vectors (by, c1), ..., (bag, cox) to R.

Verification (Ver):

1. I chooses k distinct random indices dy, ..., dg, 1 < d; < 2k, and asks R to reveal
(bdl s Cdl), ceny (bdk, Cdk)~

2. R reveals these values. The remaining indices will be the unrevealed indices.

3. For each one of the revealed indices d;, I tests whether s-bgq, +y4, = cq,. If all k
indices satisfy this requirement then I sets Ver= 1. Otherwise, he sets Ver= 0.

Authentication (Auth):

1. I sends s and the rest of the y’s to R.

2. If k/2 out of the unrevealed indices d; satisfy s - bg, + ya, = cq, then R sets
Auth= s, otherwise Auth=null

Figure 5-1: The Information Checking Protocol of [TRa, RB]

Rabin and Ben-Or [TRa, RB] We first state the properties of this protocol. Next we sketch
the [TRa, RB] construction.

The protocol is executed by three parties: a dealer D, an intermediary I, and a receiver
R. The dealer hands a secret value s over to I. At a later stage, I is required to hand this
value over to R, and to convince R that s is indeed the value which I received from D.
More precisely, the protocol is carried out in three phases:
GENERATION(s) is initiated by D. In this phase D hands the secret s to I and some
auxiliary data to both I and R.
VERIFICATION is carried out by I and R. In this phase I decides whether to continue or
abort the protocol. I bases his decision on the prediction whether, in the Authentication
phase, R will output s, the secret held by /. We denote continuation (resp., abortion) by
Ver=1 (resp., 0).
AUTHENTICATION is carried out by I and R. In this phase R receives a value s’ from I,
along with some auxiliary data, and either accepts or rejects it. We denote acceptance of a
secret s, (resp., rejection) by Auth= s’ (resp., null).

The ICP has the following properties, given an ‘allowed-error parameter’ e:
Correctness:
1. If D, holding a secret s, I and R are all honest, then Ver= 1 and Auth= s.
2. If I and R are honest, and I has decided, in the Verification phase, to continue the proto-
col, with local input s’, then with probability (1 —¢€), R will output s’ in the Authentication
phase.
3. If D and R are honest, and R accepted a secret s’ in the Authentication phase, then
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s’ = s, with probability (1 — €).
Secrecy:
4. If D and I are honest, then as long as I has not joined in the Authentication phase, R
has no information about the secret s.
For self containment we sketch the [TRa, RB] construction in Figure 5-1.1

5.3.2 Broadcast

We use the same definition of Broeadcast as in Chapter 4 (see Section 4.2.2). We also use
the elegant implementation of Bracha [Br], described there.

5.4 Asynchronous Recoverable Sharing — A-RS

Unlike synchronous systems, in an asynchronous system it is not possible to decide whether a
party from which messages do not arrive is faulty or just slow. As argued in the Introduction,
this difficulty causes known techniques for AVSS to fail when n < 4f. We overcome this
difficulty using the Information Checking Protocol (ICP) described in the previous section.
We first show how the ICP is used to construct A-RS.

An A-RS scheme satisfies the termination and secrecy requirements of AVSS (Definition
5.2). Also, if the dealer is honest then the honest parties always reconstruct the secret
shared by the dealer. The difference from AVSS lies in the case where the dealer is faulty.
For A-RS we only require that:

Correctness of A-RS for the case that the dealer is faulty: once the first honest party
completes the reconstruction phase, a subset S C F, of size n — t, is defined. With
probability 1 — €, each honest party will reconstruct a value r € SU{null}. (We stress
that it is not required that all honest parties end up with the same reconstructed value.)

A-RS has a “synchronizing effect” on the network, in the sense that it guarantees a
bounded wait for receiving values, even from faulty parties. That is, if we have completed
the sharing of a value by some party, then we are guaranteed to eventually reconstruct some
(not necessarily valid) value. We use this property in the construction of AWSS in the next
section.

We describe our construction. Basically, we use Shamir’s classic secret sharing scheme
[Sh] while using ICP to verify the shares. This way, we can make sure that the following
two properties hold simultaneously (with overwhelming probability): (a) the shares of at
least ¢ + 1 honest parties will always be available at reconstruction, and (b) if the dealer
is honest then all the shares available at reconstruction are the originally dealt shares. A
more detailed description of our construction follows.

Remark: Here, as well as in all subsequent secret sharing schemes, we use the convention
that the dealer, in addition to executing his specific code, also participates as one of the
parties (and will eventually have a share of the secret).

'In fact, the version presented here differs from the one in [TRa, RB] in the decision rule for R in the
Authentication stage (in the original construction R accepted the secret if there ezisted an index d; that
satisfied the requirement. This modification allows us to tolerate fields of size only slightly larger than the
number of parties.
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Sharing protocol. The dealer, having a secret s, chooses values ay,...,a; €x F', and
defines the polynomial f(z) = @' + ... + a;z + s.? (We call this process choosing a
random polynomial f(z) for s.) Next, for each i, the dealer sends ¢; 2 f(i) to P;,. We
say that ¢, is P;’s share of s. In addition, for each share ¢; and for each party P;, the
dealer executes the Generation phase of ICP (described in Section 5.3.1), with party P;
acting as the intermediary, and party P; acting as the receiver. The ICP protocol will have
the appropriate allowed error parameter € (we set ¢ = -5). We denote this execution of
the Generation phase by Genp; ;[€'](¢;). (In the sequel, we omit the parameter ¢ from
the notation.) Next, every two parties P; and P; execute the Verification phase of ICP,
denoted Ver, ;[¢']. Success of Ver,; ;[¢'] assures P; that, with probability 1 — ¢/, P; will
later authenticate his share ¢;. Once P; successfully (i.e. with output 1) terminates 2¢ 4 1
invocations of Ver,[¢], he broadcasts (0K, P;) . A party completes the sharing protocol
upon completing 2t + 1 broadcasts of the form (0K, F) . Our protocol, denoted A-RS
Share, is presented in Figure 5-2.

Definition 5.5 Let F be a field, and let » > t + 1. A set {(i1,¢:,),...,(ir, ¢, )} where
¢i; € F is said to define a secret s if there exists a (unique) polynomial f(x) of degree at
most t, such that f(0) = s, and f(i;) = ¢;,, for 1 < j < r. (We shall interchangeably say
that the shares ¢; ,...,¢; define the polynomial f(z).)

Using interpolation, one can efficiently check whether a given set of shares define a

secret.
Reconstruction protocol. First, each party P, initiates an broadcast of his share, ¢,;. He
then executes the Authentication phase of ICP with every other party, P;. (We denote this
execution by Auth,;.) For each party P;, whose share is accepted (namely, Auth;;[¢'] =
#:), party P; broadcasts (P; authenticates F;) .

Party P; considers a share, ¢;, legal, if P; has been authenticated by at least 41 parties.
Once P; has t+ 1 legal shares, he computes the secret which they define, and broadcasts it.
If there exists a value which is broadcasted by at least » — 2t parties, then P; output this
value. Otherwise, P; outputs null. (This extra broadcast is required to limit the size of the
set of possible values reconstructed by the different parties.)

The reconstruction protocol, denoted A-RS-Rec, is presented in Figure 5-3.

Theorem 5.6 Let n > 3t+ 1. Then for every € > 0, the pair (A-RS-Share[e],A-RS-Rec[e])
is a (1 — €)-correct, t-resilient A-RS scheme for n parties.

Proof: Fix a t-adversary. We show that the Termination and Secrecy requirements of
Definition 5.2 (AVSS) are met, as well as the Correctness property for the case that the
dealer is honest. The Correctness for the case that the dealer is honest was stated above.

Termination (1): When the dealer is honest, the Verification phase of ICP between
every two honest parties will terminate with Ver=1 (see the definition of ICP on page 104).
Therefore, each honest party will have 2¢ + 1 successful verifications for his share ¢;. Thus,
each honest party P; will initiate an broadcast of (0K, F;) . Consequently, each honest
party will complete participation in 2¢+1 broadcasts of the form (0K, F;) , and terminate
protocol A-RS-Share.

We let e €r D denote an element e chosen uniformly at random from domain D.
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Protocol A-RS-Sharel¢]

Code for the dealer, with secret s: °

1. Choose a random polynomial, f(z), for s.

2. Set (bléf(z) for 1 <i<n.

Let ¢ 2 ~5. Execute Genp ; ;[€'](¢;) for 1 <i,j <n.

Code for party F;:

3. For all j € [n]: Wait until Genp ; ; is completed; then, initiate Ver; ;.
4. If Ver; ; = 1 for 2¢ 4 1 parties P;, then initiate broadcast (0K, F;) .

5. Upon completing participation in 2¢ + 1 different broadcasts of the form (0K, P) |,
terminate.

Figure 5-2: The A-RS sharing protocol

“In this and all subsequent sharing protocols, the dealer also executes the code of a regular party.

Protocol A-RS-Rec|¢]

Code for party F;:

1. Broadcast the share ¢;.

2. For each party P; for whom the broadcast of his share has been completed (with qb;),
initiate Auth; ;.
If Auth;; = (b;, then initiate the broadcast (F; authenticates F;) .

3. Consider a share, (b;, legal if at least ¢+ 1 broadcasts of the form (P, authenticates

P;) have been completed. Create a set called I.5; (standing for Interpolation Set.
Add every legal share to I5;.

4. Once |IS;] =t + 1, compute, using interpolation, the secret s defined by the shares
in IS;. Broadcast (F; suggests secret s) .

5. Wait until completing n — ¢ (P, suggests secret s') broadcasts.
If there is a value, s’, which appears in at least n — 2t such broadcasts, then output
s'. Otherwise, output null.

Figure 5-3: The A-RS reconstruction protocol

Termination (2): If one honest party has completed A-RS-Share, then he has com-
pleted participation in 2t +1 (0K, P;) broadcasts. By the properties of broadcast (Defi-
nition 4.6), every honest party will complete these 2¢+ 1 broadcasts, and will thus complete

A-RS-Share.

Termination (3): Let F be the event that no errors occur in all the invocation

s of

ICP. (That is, all the requirements listed in Section 5.3 hold with no probability of error.)

We know that event E occurs with probability at least 1 — n%¢ =1 — .
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If some honest party, F;, has completed the A-RS-Share protocol, then 2t 4+ 1 parties
have broadcasted (0K, ...) in Step 3 of A-RS-Share. Out of these broadcasts, at least
t 4+ 1 have originated with honest parties. Let G; be this set of at least { + 1 honest parties,
relative to party F;.

For each party P; € &; there exist ¢ + 1 honest parties who have broadcasted (0K, F;)
. Now, assume event £ occurs. By the properties of ICP, for each P; € G, there will be
t 4 1 parties P, who broadcast (P, authenticates F;) . Thus, the share of each party
P; € G; will be considered legal by each honest party. Therefore every honest party will
have t 4+ 1 legal shares in Step 3 of A-RS-Rec and will suggest some secret. Consequently,
each honest party will have n — ¢t suggested secrets, and will complete protocol A-RS-Rec.

Correctness (1): If the dealer is honest and event £ occurs, then each share ¢; in
the set 1.5; of each honest P, has originated with D (namely, ¢; = f(j)). Therefore, the
shares in 1.5; define the secret, s, shared by the dealer, and P; will broadcast (F; suggests
secret s) . Consequently, each honest party will complete n — ¢ such broadcasts, out of
which at least n — 2t suggest the secret s. Hence, each honest party will output s.

Correctness (2): Let P, be the first honest party to complete n — ¢t broadcasts of
the form (P, suggests secret ...) . Let 5 denote the set of secrets suggested in these
n —t broadcasts. Now, consider another honest party, P;. At least n — 2¢ out of the n — ¢
broadcasts completed by P; in Step 5 of A-R5-Rec are of values in 5. P; outputs a non-
null value r only if this value appears n — 2t times in the broadcasts which he completes.
However, in this case it must be that r € §.

Secrecy: If the dealer is honest and no honest party has initiated protocol A-RS-Rec,
then any set of ' <t parties have only ¢’ shares of the secret, along with the data received
during the ICP Generation and Verification Protocols with respect to the other parties’
shares of the secret. The secrecy properties of ICP and Shamir’s secret sharing scheme
imply that the shared secret is independent of this data. O

5.5 Asynchronous Weak Secret Sharing — AWSS

We construct an asynchronous secret sharing scheme called Asynchronous Weak Secret
Sharing (AWSS). An AWSS scheme satisfies the termination and secrecy requirements of
AVSS (Definition 5.2 on page 102). The correctness requirement is as follows. If the dealer
is honest then the honest parties always reconstruct the secret shared by the dealer, as in
AVSS. The difference from AVSS lies in the case where the dealer is faulty. For AWSS we

only require that:

Correctness of AWSS for the case that the dealer is faulty: Once an honest party
completes the sharing protocol, a value r € F U {null} is fired. With probability 1 — €,
each honest party outputs either v or nullupon completing the reconstruction protocol.

Remarks:

e We stress that if r # null then some of the honest parties may output r and some
may output null. The adversary can decide, during the execution of the reconstruction
protocol, which parties will output null.
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e Our construction of A-RS, described in the previous section, does not satisfy the
requirements from an AWSS scheme. There, in case that the dealer is faulty, the
adversary has the power to decide, at the reconstruction stage, which value each honest
party reconstructs (out of the predefined set of size 2¢ + 1).

Our construction. Our construction follows the synchronous WSS version of [TRa, RB].
The idea is to make sure that, at the end of the sharing protocol, each party will have an
interpolation set of parties whose shares will be available in the reconstruction stage. (The
availability of these shares is guaranteed using A-RS, as described below.) The interpolation
sets of every two honest parties P, and P; will have an intersection of at least ¢ + 1 parties.
This way, if the shares of the parties in the interpolation sets of P, and P, define some
secret, then they define the same secret.

In the reconstruction stage the shares of all the parties are jointly reconstructed. Next,
each party computes and outputs the secret defined by the shares of the parties in his
interpolation set. If these shares do not define a secret then the party outputs null.

Sharing protocol. The dealer, sharing a secret s € F, chooses a random polynomial
f(2) of degree t for s. For each i, the dealer sets ¢; 2 f(#). In addition, for each share
¢; and for each party P;, the dealer executes the generation phase of ICP with party P,
acting as the Intermediary, and party P; acting as the Receiver. (This part is the same as
in A-RS-Share.)

Next, each party shares each value received from the dealer (including the values re-
ceived in the ICP-Generation Protocol), using A-RS-Share (Figure 5-2). Party P; creates
a dynamic set, C;. (See Section 4.1.3 on page 53 for a definition of dynamic sets). Once
P; completes all the A-RS5-Shares of P;’s values, P; is added to ;. Next party F; initiates
the ICP-Verification Protocol for ¢; with each party P; € C;, and with the appropriate
allowed-error parameter, ¢. (We denote this execution by Ver; ;[¢'](¢;)).

Let A; be P;’s set of parties P; such that Ver, ;[¢'](¢;) = 1. Once |A4;| = 2t 4 1, party P,
broadcasts A;. (This acceptance set, A;, is the set of parties who will later accept ¢; with
high probability.)

Let & be P;’s dynamic set of parties P; € C; whose broadcast of A; has been completed,
and A; C C;. Once |&] > 2t+1, party P, broadcasts 1.5; = EZ»(zt'I'l). (This eligibility set, &, is
the set of parties whose share will be later considered either legal or null. The interpolation
set, 1.5;, is the set of parties whose shares will later define the secret associated with P;.)

Let F; be P;’s set of parties P; whose I5; broadcast has been completed, and 1.5; C &;.
Once |F;| = n —t, party P; completes the sharing protocol. (This final set, F;, is the set of
parties, with whom P, will later associate a secret.)

Reconstruction protocol. (Remark: it will be seen that when party P executes the
reconstruction protocol, he essentially doubles up as each other party,i.e. he locally executes
the protocols of the other parties). Initially, each party P; reconstructs the values shared,
using A-RS-Share, by each party P; € &;, as follows. Recall that each party in & shared, in
the sharing protocol, values he received as an intermediary of ICP, and values he received
as a receiver of ICP. Party P; first invokes A-RS-Rec for all the values that the parties in
&; received as intermediaries in ICP. Call these invocations of A-RS-Rec preliminary. For
each party P; € &, once all the preliminary A-RS-Rec have been completed, P; invokes the
A-RS-Rec of (the rest of) the values shared by each P, € A;. We note that the order in
which the A-RS-Rec are invoked is crucial for the correctness of the scheme.
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For each party P; € & and for each party P, € A;, once all the necessary values are
reconstructed, P; computes P’s expected result of Auth;[¢'] (by ‘doubling up’ as F).
Next, P; associates a value with party P; as follows. If P; finds out that ¢4 1 parties in A;
have outputted Auth;; = ¢; then P; associates ¢; with P;. (We then say that ¢; is legal).
Otherwise, P; associates the value “null” with P;.

Now, for each party P, € F;, once the values associated with all the parties in 19} are
computed, if all the legal shares in IS5, define a secret, s, then P; considers s to be the
secret suggested by P,. Otherwise, the secret suggested by P, is null.

Once the values shared by all the parties in &; are reconstructed, P; computes the secrets
suggested by all the parties in F;. (Again, this is done by ‘doubling up’ as each party in
F;.) If all the parties in F; suggest the same secret, s, then P, outputs s. Otherwise, P;
outputs null. (Equivalently, P; can output the secret defined by the reconstructed shares of
the parties in Up,ep, 15;. If these shares do not define a secret then P; outputs null.)

The AWSS-Share and AWSS-Rec are described in Figures 5-4 and 5-5 respectively.

Protocol AWSS-Share[]

Code for the dealer, on parameter ¢ and secret s:

1. Choose a random polynomial f(z) for s. Set ¢ and ¢’ to the appropriate values,
depending on e.

2. Set ¢; 2 f(i). For each two parties P; and P; execute Genp ; ;[€”](¢;).

Code for party F;, on parameter e:

3. Invoke A-RS-Share[¢'] (as a dealer) for each value received from D in Step 2. Partic-
ipate in all other invocations of A-RS-Share[€’].

Create a dynamic Communication Set, C;. Add party F; to C; if all the A-RS Shares
initiated by P; have been completed.

4. For each party P; invoke Ver; ;[€”](¢;).
Create an Acceptance Set, A;. Add party P; € C; to A; if Ver; ;[¢”](¢;) = 1.

5. Once |A4;| = 2t + 1 broadcast (Acceptance Set, P, 4;).
Create a dynamic Eligibility Set, &, which will contain the parties P; for whom the
broadcast of the form (Acceptance Set,F;,A;) has been completed, and P; € C;
and A]' g Cz

6. Define the Interpolation Set 1.5; 2 SZ»(n_t). Broadcast (Interpolation set, F;,IS;).

Create a Final Set, F;, which will contain the parties £; for whom the broadcast of
the form (Interpolation Set, F;,[S;) has been completed, and I5; C &;.

7. Once |F;| = n —t terminate.

Figure 5-4: The AWSS Sharing Protocol

Theorem 5.7 Letn > 3t+1. Then for every e > 0, the pair (AWSS-Share[e], AWSS-Rec[e])
is a (1 — €)-correct, t-resilient AWSS scheme for n parties.
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Protocol AWSS-Recl¢]

Code for party F;, on parameter e:

1. For each party P; € & and for each party P; € A;:
(a) Execute A-RS-Rec[¢’] (Figure 5-3) of ¢;, and of P;’s values needed for
Auth; ;[¢"]. (These values were shared by P; in Step 3 of AWSS-Share.)

(b) Upon ending the previous step, execute the A-RS-Rec of P;’s values needed for
Auth; ;[¢'] (These values were shared by P in Step 3 of AWSS-Share.)

(c) Using the reconstructed values from the two previous steps simulate Auth; ;[¢'']
acting both as P; and ;. If at least ¢t +1 Auth; ,[¢”] = (¢;) then associate the
share ¢; with party P;, else associate “null” with F;.

2. Let B ={¢ | ¢ # null, ¢ is associated with partyP;,and P, € IS;, P; € F;}, If all
the shares of B define a secret s, then output s, else output null.

Figure 5-5: The AWSS - Reconstruction Protocol

As in the proof of Theorem 5.6, let I be the event that no errors occur in all the invoca-
tions of ICP. (That is, all the requirements listed in Section 5.3.1 hold with no probability
of error.) In proving Theorem 5.7 we assume that event E occurs. For convenience and
clarity, we partition the proof of Theorem 5.7 to several short lemmas. (The Termination
and Secrecy properties are taken from Definition 5.2.)

Lemma 5.8 If P;, P; are honest, then eventually C; = C;.

Proof: Let us look at some P, € C;. If party P; has placed P, in C; (Step 3) then P
has completed P;’s A-RS-Share of Step 3. Due to the Termination property of the A-RS

protocol we know that eventually P; will also conclude that A-RS-Share has ended and then
P; will add P, to ;. O

Lemma 5.9 If P;, P; are honest, then eventually & = &;.

Proof: Let us look at some P, € &. If party P, placed P, in & then P; has completed
the broadcast (Acceptance set, P, A;) and P € C; and A; C C;. Due to the broadcast

property P; will also complete the above broadcast, and eventually we will have (due to
Lemma 5.8) P, € C; =C;, and A4; CC; = C;. Then, P; will add P, to &;. O

Lemma 5.10 (Termination (1):) If the dealer is honest then each honest party will
complete protocol AWSS-Share.

Proof: All honest parties will eventually be in the sets C; and A; of every honest party
FP;. Thus A; will eventually be of size 2¢t + 1, and every honest party P, will broadcast
(Acceptance Set,P;,...) in Step 5 of AWSS-Share. Thus all honest parties will even-
tually be in the set & of every honest party. Consequently, every honest party F; will
broadcast (Interpolation Set,F;,I5;) in Step 6. Thus every honest party will eventu-
ally have |F;| > 2t + 1 and will complete protocol AWSS-Share. O
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Lemma 5.11 (Termination (2)): If some honest party, P;, completes protocol AWSS-
Share, then each honest party P; will eventually complete protocol AWSS-Share.

Proof: Assume that party P; has completed AWSS-Share. Thus, |F;| = n—t, which means
that P; has completed n — t broadcasts of the form (Interpolation set,P;, 195;), and
15, C &;. Due to the properties of broadcast P; will eventually complete these invocations

of broadcast. Due to Lemma 5.9, we have that eventually & C &;, hence, the requirement
that 1.5 C &; will be satisfied and P; will complete AWSS-Share. a

Lemma 5.12 (Termination (3)): If one honest party has completed protocol AWSS-
Share, then each honest party will complete protocol AWSS-Rec.

Proof: Consider an honest party F;. For each P; € F; we have P; € (;, thus P, has
completed all the A-RS-Share where P; is the dealer. Thus P; will complete, in Steps 1(a)
and 1(b) of AWSS-Rec, the A-RS-Rec of all the values shared by P;. Consequently, P
will associate a value, in Step 2 of AWSS5-Rec, with each party P; € F;, and will complete
AWSS-Rec. O

The Correctness property is proven in Lemma 5.13 through Lemma 5.16.

Lemma 5.13 Let ¢; be the share that party P; recewed from the dealer in Step 2 of AWSS-
Share. With overwhelming probability, the value which an honest party P; associates with a

party P; € & in Step 1(c) of AWSS-Rec is as follows:

honest dealer | faulty dealer
P; honest ol ol
P; faulty @; or null —

Proof: Party P; will associate a value ¢ with party P; if the following two requirements

hold:
L. ¢} is the value which was reconstructed by the A-RS-Rec of P;’s share.
2. There are at least ¢ 4 1 parties in A; for whom Auth; . = ¢.

Consider first the case where P; is honest. In this case P; shared the value ¢; in Step
3 of AWSS-Share. From the correctness of A-RS we have that P; will reconstruct, in Step
1(a) of AWSS-Rec, the correct values of ¢; and of P;’s data needed for executing Auth,;
for each party P, € A;. Furthermore, at least ¢ 4+ 1 out of the parties in A; are honest. The
data of these ¢ + 1 parties will also be correctly reconstructed, in Step 1(b) of AWSS-Rec.
Thus it follows from the properties of ICP that P; will successfully verify, in Step 1(c), that
Auth;; = ¢, for at least t + 1 parties P, € A;, and will associate ¢; with P;.

Consider the case where P; is faulty and the dealer is honest, and assume that the value
¢ reconstructed in the A-RS-Rec of P;’s share is different than ¢;. Party P; will, in Step
I(c) of AWSS-Rec, asociate a non-null value with P; only if P; has Auth;; = ¢} for at least
t+ 1 parties F;; one of these t 4+ 1 parties must be honest. We show that if P, is honest then
P computes Auth;; = ¢} only with negligible probability.

Let 1; j; (resp., R; ;) denote the value that P, reconstructs, in Step 1(a) (resp., 1(b))
of AWSS-Rec, for P’s (resp., P;’s) data relevant to Auth;,;. (This data was respectively
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shared by P; and P, in Step 3 of AWSS-Share. Recall that here P; acts as the Intermediary
in ICP, and P, acts as the Receiver.) Since P, is honest, A-RS ensures that g, ;; is indeed
P’s data in Auth; ;. Therefore, if it were true that 1; ;; is determined by the adversary
independently of &, ;;, then Property 3 of ICP (see Section 5.3) would imply that P; sets
Auth;; = ¢} with negligible probability. However, since P; is faulty, A-RS ensures only a
weaker requirement on 1; ; ;. We show that this property suffices.

A-RS allows 1, ;; to be set by the adversary during the reconstruction stage. However,
once the first honest party completes A-RS-Rec, a small set 5 of 2¢ + 1 possible values for
I; j 1 is fixed. By the time that 5 is fixed no honest party has yet started the reconstruction
of R; ;; (i.e., of the data shared by P, in Step 3 of AWSS-Share). Thus, R, ;; is unknown
to the adversary when S is fixed. It follows that the probability that for a given P; and
P; there exist an honest P, and a value ¢; # ¢; such that P; computes Auth;; = ¢; is
exponentially small. a

We define the following value, associated with each party F; who has completed AWSS-
Share. Let

Vi = U {(k, ¢1) | ¢ is the share of an honest party Py, P, € 15;}.

P;eF;

Let
{ v; if V; defines a secret v;
T, =

null otherwise

We stress that F; does not know V;. Still, V; is a useful tool in our analysis.

We set the value r from the Correctness requirement to be the value r; associated with
the first honest party P, who completes AWSS-Share with r; Znull. Note that |V;| > ¢t + 1,
and that V; (and consequently r;) are defined once P, has completed AWSS-Share.

Lemma 5.14 If the values r; and r; of two honest parties P; and P; do not equal null, then

TZ'IT]'.

Proof: Consider a party P, € F; N F;. (F; N F; # () since both F; and F} are of size n —t.)
In 1.5; there are at least t4+ 1 honest parties, the shares of which define a single secret. Since
V; and V; define a secret, it must be the same secret defined by the shares in 1.5;. Hence,
T, = 7‘]'. a

Lemma 5.15 Fvery honest party P; outputs, upon completing AWSS-Rec, either r; or null.

Proof: It follows from Lemma 5.13 that the value that FP; associates with each honest party
in F; is ¢;, even if the dealer is faulty. Note that F; contains at least ¢t + 1 honest parties.
Thus if the values associated with the parties in F; define a secret then this secret is r;.
Consequently P; outputs either r; or null. a

Lemma 5.16 If the dealer is honest, sharing a secret s, then every honest party P; outputs
s.

Proof: It follows from the definition of r; that if the dealer is honest then r; = s. Further-
more, Lemma 5.13 implies that if the dealer is honest then the values associated with the
parties in F; always define a secret. Since the dealer is honest, P; does not output null. It
now follows from Lemma 5.15 that F; outputs s. a
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Lemma 5.17 (Secrecy): If the dealer is honest then the information gathered by the
adversary during AWSS-Share is independent of the shared secret.

Proof: The proof is the same as the proof of Secrecy for the A-RS protocol (Theorem
5.6). We add that the distribution of the information gathered by the adversary in the
invocations of A-RS-Share during AWSS-Share is independent of the shared secret. O

5.5.1 Two&Sum-AWSS

In our AVSS scheme we do not use AWSS as such. Instead, we use a slight variation of
AWSS, called Two&Sum-AWSS. A dealer shares a secret s, together with a set {ay,...,a;}
of auxiliary secrets, in a way that allows the parties to separately reconstruct the secret, any
one of the auxiliary secrets, and the sum s + a; of the secret with any one of the auxiliary
secrets. (That is, several invocations of the reconstruction protocol will use the shares
obtained in a single invocation of the sharing protocol.) For each i, reconstructing any
single value out of {s,a;, s+ a;} reveals no information on the other two. The correctness
property of Two&Sum-AWSS is stated more formally as follows.

Correctness of Two&Sum-AWSS:

1. If the dealer is honest, sharing s,{ay,...,a}, then, with probability 1 — €, when
reconstructing the secret (resp., the ith auzxiliary secret, or the sum of the secret
and the ith auziliary secret), each honest party outputs s (resp., a;, or s+ a;).

2. Once an honest party completes the sharing protocol, the values

TS?{T(I17 i ‘7Tak}7{rs+a17 i '7T5+ak} 6 fU {null}

are fized.

(a) With probability 1 — €, when reconstructing the secret (resp., the ith auxiliary
secret, or the sum of the secret and the ith auxiliary secret), each honest
party outputs either vy (resp., r4,, or roi1s,) or null.

(b) If rs is null then, for each i, at least one of {r,,,7sya,} ts null. If ry, r,, and
Tsiq, are not null then ro, ., = ry+ rq,.

3. Even if for each i one value out of {a;, s + a;} are reconstructed, the adversary
gathers no information about the secret s.

Our construction of Two&Sum-AWSS, presented in Figure 5-6, is a straightforward
generalization of our AWSS scheme. (The scheme is based on the synchronous Two& Sum-
WSS presented in [TRa].)

The reconstruction protocol is identical to AWSS-Rec, with the addition of parameters
specifying which value should be reconstructed. We denote by AWSS-Recg (resp., AWSS-
Rec,,, AWSS-Recq,,,) the invocation for reconstructing the secret (resp., the ¢th auxiliary
secret, the sum of the secret and the ith auxiliary secret).

The correctness of Two&Sum AWSS is proven in a way similar to the proof of correctness
of the AWSS scheme. (Similar proofs appear in [TRa].)
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Protocol Two&Sum AWSS-Share[e, k]

Code for the dealer: (on input s,as,...,a; and €)

1. Choose random polynomials f(-) for s and g;(-) for each a;. Let ¢; 2 f(#) and
o 2 gi(i) for 0 << kand 1 <i<n. Let gy 2 Gi+ Vi
Send ¢i, {y1,i...,7k,i} to each party F;.

2. For every two parties P;, P;, invoke: Genp ; ;(¢;), Genp ; (1), ... Genp ; ;(vx,i),
and GenDVZ'y]'(O'LZ'), . .GenDVZ'y]'(O'kVZ').

Code for party P;

3. Invoke A-RS-Share (as a dealer) for each value received from the dealer in
Steps 1 and 2. Participate in all other invocations of A-RS-Share.

Create a dynamic Communication Set, C;, which is the set of all parties for whom all
the invocations of A-RS Share have been completed.

4. For each party P; invoke Verp,;(¢;), Verp,;(v.,),...Verp;;(vr:), and
VerD,i,j(Ul,i), .. ~VerD,i,j(0'k,i)~
Create an Acceptance Set, A;. Add party P; € C; to A; if all the above invocations of

Verp ; j(*) were completed successfully.

5. Execute the rest of the code of AWSS-Share (i.e., Steps 5 through 7 of Figure 5-4).

Figure 5-6: The Two&Sum AWSS Sharing Protocol
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5.6 Asynchronous Verifiable Secret Sharing — AVSS

The idea of the AVSS scheme is as follows. First, the dealer sends each party a share
of the secret, as in the previous schemes. The parties will then ‘commit’ to their shares
by re-sharing them using AWSS. Next, the parties will make sure, using a cut-and-choose
method (as in [CCD, Fe]), that enough AWSS-Sharings have been successful and that the
‘committed upon’ shares indeed define a secret. We describe the scheme in some more
detail. Full details appear in Figure 5-7.

Sharing protocol. The dealer, sharing a secret s, chooses a random polynomial f(z) for
s. For each 1, the dealer sends f(¢) to P,. In addition, the dealer chooses k - n - ¢ random
polynomials g; 1 1(2),..., g, n(2) of degree ¢, where k is an appropriate security parameter
(polynomial in log1/€). For each such polynomial ¢g(z), and for each i, the dealer sends
g(1) to party P;. Upon receiving all the expected values from the dealer, each P; re-shares
the values f(7),{g111(¢),...,gpn(?)} using Two&Sum-AWSS-Share with the appropriate
allowed-error parameter (see Section 5.5.1).

Next, the dealer proves to the parties that their shares indeed define a secret. Each party
P; is looking for a set 1.9; of at least n—t parties, such that the Two&Sum-AWSS-Share’s of
these parties have been completed, and the corresponding values define a polynomial. For
this purpose P; participates in up to ¢ iterations, as follows.? Initially, all parties are valid.
At the beginning of each iteration P; waits until he has completed the Two&Sum-AWSS-
Share of n — t valid parties. Let I.5;, denote this set of parties, in iteration r. Next P,
verifies, using cut-and-choose as described in the code, that the share of each party in 1.5; ,
is valid (in a sense defined in Figure 5-7). P; removes, from the set of valid parties, all the
parties in 1.5; , whose validation failed. If the validity of the shares of at least n —t parties in
15; , is confirmed, then we say that the iteration was successful. In this case, F; broadcasts
(P, confirms P;) for each party P; € IS;,. (Now P; is assured that the shares of the
parties in 1.5; . define a polynomial.) When the verification procedure is completed, and P,
has completed the Two&Sum-AWSS-Share of at least one other valid party, P; proceeds to
the next iteration.

Let F; be P’s set of parties who were confirmed by at least ¢t + 1 parties. Party F;
completes the sharing protocol once | F;| > 2t + 1.

Reconstruction protocol. The reconstruction protocol is simple: The share of each
party P; is reconstructed using Two&Sum-AWSS-Rec; ¢.* Once t 4 1 shares of parties in
F; are reconstructed with a non-null value, party P; computes the secret defined by these
shares, and terminates.

Protocols AVSS-Share and AVSS-Rec are presented in Figures 5-7 and 5-8, respectively.

Theorem 5.18 Letn > 3t+1. Then for every e > 0, the pair (AVSS-Share[e],AVSS-Rec[e])
is a (1 — €)-correct, t-resilient AVSS scheme for n parties.

?Partitioning the protocol into t iterations is dome for clarity of exposition. All these iterations are
completed in a constant number of asynchronous time steps.

*We let Two&Sum-AWSS-Rec; » denote an invocation of Two&Sum-AWSS-Rec, that corresponds to the
Two&Sum-AWSS-Share of P;.
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Protocol AVSS-Share[¢]
Code for the dealer, on parameter ¢ and secret s:
1. Choose a random polynomial f(x) for s. Send ¢; 2 f(%) to each party P;.
2. Set kéO(n,log%). For 1 <l <k, for 1 <j<mn,andfor 1 <r <t do:
Pick a random polynomial g; ; ,(2) of degree ¢, and send g;; (i) to each party F;.
3. Upon completing an broadcast
(Random vector,by j,, ..., by ;r,iteration r,party,P;) (see Step 6a), broadcast
(Polynomials of P;, iteration r, g1;,.(:)+ f(:) - b1ir .oy grir(:)+F() bpir).
Code for party F;, on parameter e:
4. Set € = ¢/2n. Share ¢;, {g1,11(¢),...,, gx n (i)} using
Two&Sum-AWSS-Share[e', n - k - t] (see Figure 5-6). Participate in the Two&Sum-
AWSS-Share of other parties.
5. Create a dynamic set C;. Add each party whose Two&Sum-AWSS-Share of the pre-
vious step has been completed to C;.
Let V; be the set of valid parties. Initially V; = {1,...,n}.
6. A local variable r is set to 0. Initialize sets 1.5; , = F; = 0.
As long as |F3| < 2t + 1, do:
(a) Waituntil [C;NV;] > n—t and ;NV; # IS; . Set r :=r+41. Let IS; , := C;NV;.
Choose b1y, ... bpir En {0, 1}, and  broadcast (Random

(b)

vector,bi;,,...,bp -, iteration r,party,F;).

Upon completing an broadcast (Polynomials of P;,...) (see Step 3), for { =
1.k, m = 1.n,if b;;, = 0 execute TWO&Sum—AWSS—RecmyAMT. Ifb;r=1
then execute TWO&Sum—AWSS—Recmys_FAl)j)T.

If any Two&Sum-AWSS-Rec of a share of party P, terminates with null, or if
any reconstructed share of P, does not agree with the corresponding polynomial
broadcasted by the dealer, then Py, is removed from V; and from I5; ..

Once all the relevant invocations of Two&Sum-AWSS-Rec of shares of parties
in 15;, are completed, if |IS;,| > n —t then for each P, € I5;, broadcast
(P;,confirms party,P,). (In this case we say that the iteration was success-

ful)

* Once there are t + 1 broadcasts of the form (...,confirms party, P,) for some
P, (see Step 6¢) then add P, to F;.

Figure 5-7: The AVSS Sharing Protocol
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Protocol AVSS-Rec[¢]

Code for party F;, on parameter e:

1. For each party P; execute Two&Sum-AWSS-Rec;s. (P;’s share, ¢;, was shared by
P; in the Two&Sum-AWSS-Share of Step 4 of AVSS-Share.)

2. Take any t 4+ 1 reconstructed non-null shares of parties in F;, and output the secret
defined by these shares.

Figure 5-8: The AVSS Reconstruction Protocol

For convenience and clarity we partition the proof of Theorem 5.18 to several lemmas.
Throughout the proof we assume that the following event F occurs. All invocations of
TwodzSum-AWSS have been properly completed. That is, if an honest party has completed
TwodzSum-AWSS-Share then all honest parties will complete all corresponding invocations
of AWSS-Rec, outputting either the required value or null. (See the Correctness requirement
of Two&Sum-AWSS, on page 115.) Event E occurs with probability at least 1 —ne’ = 1—¢/2.

Lemma 5.19 (Termination (1)): If the dealer is honest then each honest party will
complete protocol AVSS-Share.

Proof: Each honest party P; will complete the Two&Sum-AWSS-Share of the shares of
each honest party P; in Step 4. Thus P; will eventually be in the set 1.5;, of P; for some
iteration r. If the dealer is honest then P;’s reconstructed shares will agree, in Step 6c,
with the polynomials broadcasted by the dealer. Thus, P; will not be removed from I.9; , or
Vi. Hence there will exist an iteration r where all n — ¢ honest parties are in 1.5; ,, causing
each honest party P; to broadcast (F;,confirms,P;). Consequently, each honest party
will be in the final set F}, of each honest P,. Thus P, will have |F;| > 2t + 1 and will
complete AVSS-Share. We note that all honest parties terminate in a constant number of
(asynchronous) rounds. ]

Lemma 5.20 (Termination (2)): If some honest party P; completes protocol AVSS-
Share, then each honest party will eventually complete protocol AVSS-Share.

Proof: Assume an honest party P; completed protocol AVSS-Share. Then |F;| > 2t + 1.
It follows from the correctness properties of broadcast that, for any honest party P;, any
party in F; will eventually be in Fj. Thus P; will complete AVSS-Share. a

Lemma 5.21 (Termination (3)): If AVSS-Share has been completed by the honest par-
ties, then each honest party will complete protocol AVSS-Rec.

Proof: FEach honest party P, has at least ¢ + 1 honest parties in F;. It follows from
the correctness of Two&Sum-AWSS that the share of each honest party P; € F; will be
successfully reconstructed by P; in Step 1 of AVSS-Rec. Thus, P; will have at least ¢ 4+ 1
non-null shares in Step 2 of AVSS-Rec, and will complete the protocol. a
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Lemma 5.22 (Secrecy): If the dealer is honest then the information gathered by the
adversary during AVSS-Share is independent of the shared secret.

Proof: Assuming that Two&Sum-AWSS-Share is secure, the relevant information gathered

by the adversary in AVSS-Share consists of up to ¢ shares of the polynomial f(-) shared by

the dealer in Step 1, and up to t shares of each of the random polynomials shared in Step 2.

Furthermore, for each random polynomial g.(-), only one of g.(-) or f(-) + g.(-) is known.

It can be verified that this information is distributed independently of the shared secret. O
The Correctness property is proven via Lemmas 5.23 through 5.25.

Lemma 5.23 Once an honest party P, executes Step 6a of AVSS-Share in iteration r, a
value ¢, € F U null is fized for each P, € 15;,. Furthermore, if iteration v was successful
(as defined in Step 6¢ of AVSS-Share) then the following properties hold with overwhelming
probability:

1. For each P,, € 15;,, ¢, # null.

2. The set C; , 2 {(m, )| Py, € 159;,} defines a secret s'.
3. If the dealer is honest then s’ is the secret s shared by the dealer.

4. When reconstructing P,,’s share using Two&Sum-AWSS-Rec,, s in Step 1 of AVSS-
Rec, each honest party outputs ¢, U null.

Proof: Define the value ¢!, to be the value fixed for the secret shared by P, in the
Twod&Sum-AWSS-Share of Step 4. Once P; executes Step 6a, in iteration r, he has com-
pleted the Two&Sum-AWSS-Share of each P, € I.5;,. It follows from the correctness of
Two&Sum-AWSS that the value ¢/ is fixed. Part 4 of the lemma also follows.

Part 1. It follows from the correctness of Two&Sum-AWSS that if ¢!, =null then
for each [ = 1..k at least one out of {Two&Sum-AWSS-Rec,, ., , Two&Sum-AWSS-
Recm,s+Al,,,r} will have output null. Thus for each | = 1..k P; will have null output with
probability at least % The probability that P; has, in Step 6¢, non-null output of all the &
invocations of Two&Sum-AWSS-Rec is at most 27%. Thus, executions where ¢/ =null and
iteration r is successful occur only with negligible probability.

Part 2. We use the same cut-and-choose argument as in part 1. Assume that C; , does
not define a secret. It follows that for each { = 1..k there exists a P,, such that either the
output of Two&Sum-AWSS-Rec,, ,, , , is not equal to hi; (m) or the output of Two&Sum-
AWSS-Rec,, sya, ,, is not equal to hy;.(m) (where hy;, is the corresponding polynomial
broadcasted by the dealer). Thus for each [ = 1..k P; will detect an error with probability
at least % The probability that P; has not detected an error in all the %k invocations of
Two&Sum-AWSS-Rec in Step 6¢ is at most 27%. Thus, iteration r is successful only with
negligible probability.

Part 3. The correctness of Two&Sum-AWSS assures that the value reconstructed
in TWO&Sum—AWSS—Recmys_l_Amr equals the sum of the values reconstructed in Two&Sum-
AWSS-Rec,, ,, ., and in Two&Sum-AWSS-Rec,, 5. Since the dealer is honest, he broadcasts,
in Step 3 of AVSS-Share, the same polynomials that he shared in Step 1. Part 3 follows
using the same cut-and-choose argument as in parts 1 and 2. a

Lemma 5.24 Let C 2 {(m, ¢, )| P, € F; and P; is honest}, where ¢!, is the value fized for
P,, (See Lemma 5.23). Then the following properties hold with overwhelming probability:
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1. The set C defines a secret s'.

2. If the dealer is honest then s’ is the shared secret, s.

Proof: 1. Consider two parties P,, and P, such that (m,¢., ),(my,¢,, ) € C. Then
both F,, and P,,, were confirmed by honest parties. Assume F,,, was confirmed by honest
party P;, in iteration 7y, and P,, was confirmed by honest party F;, in iteration r,. Let
Ciime 2 {(my & )Py € IS5, }, and let Cy .. £ {(m, L) P € I5;,,,}. Then the inter-
section | 2 Ci,py NCY, -, is of size at least ¢ + 1. Lemma 5.23 implies that the values in [/
are non-null with overwhelming probability, even if the corresponding parties are faulty. It

follows that C;, ., and (), ,, define the same secret. Part 1 follows.
Part 2 follows from part 3 of Lemma 5.23. a

Lemma 5.25 Let r denote the secret defined by the set C' (see Lemma 5.24). An honest
party has output different than r of AVSS-Rec only with negligible probability.

Proof: Consider an honest party P;. The set {(m,¢],)|Pn € F;} is a subset of C'. Thus it
defines the same secret r. P; will have at least 41 honest parties P; in F}; the corresponding
reconstructed values ¢} will be non-null. Thus P; will be able to interpolate a value, and
this value will be r. a

5.7 Common Coin

We define an asynchronous common coin primitive, and describe an construction. We
employ the AVSS scheme described in Section 5.6. We first present a definition of a common
coin primitive.

Definition 5.26 Let 7w be a protocol, where each party has local random input and binary
output. We say that © is a (1 — €)-terminating, t-resilient Common Coin protocol if the
following requirements hold for every t-adversary:

e Termination. With probability 1 — ¢, all the honest parties terminate.

e Correctness. For every value o € {0, 1}, with probability at least i all the honest parties
output o.

Our construction (with ‘termination parameter’ €). Roughly speaking, the protocol con-
sists of two stages. First, each party shares n random secrets, using the AVSS-Share protocol
of our AVSS scheme, with allowed error parameter ¢’ 2 ~5. Say that the ith secret shared by
each party is assigned to party P;. Once a party, P;, completes { + 1 AVSS-Share protocols
of secrets assigned to him, he broadcasts the identity of the dealers of these secrets. We
say that these t 4+ 1 secrets are attached to P;. (Later, the value associated with P; will be
computed based on the secrets attached to him.)

Upon completing the AVSS-Share of all the secrets attached to some P;, party F; is
certain that a fixed (and yet unknown) value is attached to P;. (The way in which this value
will be computed is described in the protocol.) Once P; is assured that the values attached
to enough parties has been fixed, he starts reconstructing the relevant secrets. (This process
of ensuring that enough values have been fixed is at the heart of the protocol.) Once all
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the relevant secrets are reconstructed, each party locally computes his output based on the
reconstructed secrets, in a special way described in the sequel. The protocol is presented in
Figure 5-9 below.

Protocol Common-Coinl¢]

Code for party F;, given ‘termination’ parameter, e:

1. Let ¢ = %. For 1 < j < n, choose a random secret x; ; € F and execute AVSS-
Share for thls value. Denote the execution by AVSS-Share; ;(z; ;).

Participate in all the other AVSS-Share protocols.

2. Create a dynamic communication set C;. Add party P; to C; if AVSS-Share;; has
been completed for all 1 <1 < n.
Wait until |C;| >t + 1. Then, set C; = CZ(H_l) and broadcast (Attach A; to P;) .
(We say that the secrets {z;;|P; € C;} are the secrets attached to party P;.)

3. Accept a party F; if the broadcast (Attach A; to F;) has been completed, and
C; C C;. Let G; be the dynamic set of accepted parties.

Wait until |G;| > n —t. Then, let G; = g}”‘” and broadcast (P; accepts H;) .

4. Say that party F; is supportive, if the (P; accepts f;) broadcast has been received,
and each party in G; is accepted (namely, if G; C G;).
Wait until n — ¢ parties are supportive. Then, raise flag ‘reconstruct enabled’ .
Let H; denote the current contents of G;.
(Note that a party P; who was not considered supportive since some P € (; was
not in G; can become supportive later if Py is added to G;.)

5. Wait until the flag ‘reconstruct enabled’ is raised. Then, reconstruct the secrets
attached to all the accepted parties. That is, for each P, € C; such that P; € G;
invoke AVSS-Recy, ;, and let r; ; be the corresponding output.

(Note that some parties may become accepted after the flag ‘reconstruct enabled’
has been raised. The corresponding AVSS-Rec protocols are invoked immediately.)

6. Let u = fO 87n]. For every party P; € G;, let V;, the value associated with P;, be the
sum modulo u of all the secrets attached to P;. That is, V; = (Zkecj 7 ;) mod u.

7. Wait until the values associated with all the parties in (; are computed. If there
exists a party P; € H; where V; =0, output 0.
Otherwise, output 1.

Figure 5-9: The Common Coin protocol

Theorem 5.27 Let n > 3t + 1. Then, for every 0 < € < 0.2 protocol Common-Coin is a
(1 — €)-terminating, t-resilient common coin protocol for n parties.

The Termination property is asserted in Lemma 5.28. The Correctness property is
agserted in Lemmas 5.29 through 5.31. Throughout the proof we assume that the following
event F occurs. All invocations of AVSS have been properly completed. That is, if an
honest party has completed AVSS-Share then a value s’ is fixed. All honest parties will
complete the corresponding invocation of AVSS-Rec, outputting s’. If the dealer is honest
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then s is the shared secret. (See Definition 5.2.) Event I occurs with probability at least
1—n% =1-¢

Lemma 5.28 All the honest parties complete protocol Common-Coin|e] in constant time.

Proof: Assume event F occurs, and let P; be an honest party. Then, P, will complete all
the AVSS-Share protocols initiated by honest parties in Step 1. Thus, C; will eventually be
of size t + 1, and Step 2 will be completed.

For every honest party P;, the broadcast (Attach A; to F;) will be received by P;.
Furthermore, since P; completed the AVSS-Share; ; protocol for every P, € C}, then P,
will complete these AVSS-Sharey ; protocols as well. Therefore, every honest party will
eventually be considered accepted by P; (namely, added to the set G;). Thus, G; will
eventually be of size n — ¢, and Step 3 will be completed. Similar reasoning implies that
every honest party will eventually be considered supportive by every honest party in Step
4. Consequently, every honest party will raise his ‘reconstruct enabled’ flag, and will
invoke his AVSS-Recs of Step 5.

It remains to be shown that all the AVSS-Rec protocols invoked by each honest party
will be completed. If an honest party received an (Attach A; to F;) broadcast, then all
the honest parties will receive this broadcast. Thus, if an honest party invokes AVSS-Rec; i,
then all the honest parties will invoke AVSS-Rec; ;. Event £/ now assures us that all the
honest parties will complete all their AVSS-Rec protocols. Therefore, all the honest parties
will execute Step 6 and complete the protocol. (The invocations of AVSS-Share with faulty
dealers need not be terminated. Once an honest party completes Step 6, he may abort all
non-terminated invocations of AVSS-Share.)

Given event F. all invocations of AVSS-Share and AVSS-Rec terminate in constant time.
Protocol broadcast terminates in constant time. Thus, protocol Common-Coin terminates
in constant time as well. a

Lemma 5.29 Letu 2 [0.87n]. Let P; be a party whose broadcast (Attach A; to P;) in
Step 2 has been completed by some honest party. Then, there exists a value, v;, such that
all the honest parties associate v; with P; in Step 6. Furthermore,

o v; is fized once the first honest party has completed the (Attach A; to P;) broad-
cast.

o v; is distributed uniformly over [1...u], and is independent of the values associated
with the other parties.

Proof: Let P; be a party whose (Attach A; to F;) broadcast of Step 2 has been com-
pleted by some honest party. Then, all the honest parties will complete this broadcast with
output (. Furthermore, The definition of AVSS assures us that for each party P; € Cj,
there exists a fixed value, r;;, such that all the honest parties reconstruct have r;; as their
output of AVSS-Rec;;[¢]] in Step 5 (that is, r;; is the value shared by P;, and attached
to P;.) Consequently, the value that each honest party associates with P, in Step 6 is
ZPJEC, r;; mod u; let v; be this value. This value is fixed once (; is fixed, namely by the
time that the first honest party has completed the broadcast (Attach A; to P;) .

In remains to show that v; is uniformly distributed over [1...u], and is independent of the
values associated with the other parties. Recall that an honest party starts reconstructing
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the secrets attached to P; (namely, invokes the AVSS-Rec; ;[€'] protocols for P; € C;) only
after it completes the (Attach A; to F;) broadcast. Namely, the set C; is fixed before
any honest party invokes an AVSS-Rec;; for some k. The Privacy property of AVSS now
assures us that the bad parties have no information on the secrets shared by the honest
parties when the set C; is fixed. Thus, the set (;, as well as the values that were shared
by bad parties, are independent of the values shared by honest parties. Furthermore, each
set C; contains at least one honest party, and honest parties share uniformly distributed,
mutually independent values. Consequently, the sum v; is uniformly and independently
distributed over [1...u]. O

Lemma 5.30 Assume that some honest party has raised the ‘reconstruct enabled’ flag.
Then there exists a set, M, such that:

1. For each party P; € M, the (Attach A; to FP;) broadcast of Step 2 has been com-
pleted by some honest party. (Note that Lemma 5.29 applies to each P; € M.)

2. When any honest party, P;, raises his ‘reconstruct enabled’ flag, it will hold that
M CH;.

3. M| > 2.

Proof: Let P; be the first honest party to raise his ‘reconstruct enabled’ flag. Let M
be the set of parties, Py, for whom P, € G for at least ¢t + 1 parties P, who are considered
supportive by P, in Step 4. We show that the set M has the properties required in the
Lemma.

Clearly, M C H;. Thus, party P, has received the broadcast (Attach A, to P,) of
every party P, € M. This asserts the first property of M. We now assert the second
property. Let P, € M. An honest party P; raises his ‘reconstruct enabled’ flag, when
he has found at least n — ¢ parties who are supportive in Step 4. However, P, € (5, for at
least t 4+ 1 of the (P, accepts H;) broadcasts; thus, there must exist a party F; such that
P, € GGy and G; C H;. Consequently, P, € H;.

It remains to show that [M]| > Z. We use a counting argument. Let m 2 |H;|. We have
m > n —t. Consider the m X n table T' (relative to party F;), where 7}, = one iff P, has
received the (P, accepts H;) broadcast and P, € G;. The set M is the set of parties P,
such that the kth column in 7" has at least ¢ + 1 one entries. There are (n — ) one entries
in each row of T'; thus, there are m - (n — t) one entries in 7.

Let ¢ denote the minimum number of columns in T that contain at least ¢ + 1 one
entries. We show that ¢ > 2. Clearly, the worst distribution of the one entries in this table
is letting ¢ columns be all one’s (namely, each of the ¢ columns has m one entries), and
letting each of the remaining (n — ¢) columns have ¢ one entries. This distribution requires
that the number of one entries be no more than ¢ -m + (n — ¢) - t. However, there are
m - (n —t) one entries in 7T'. Thus, we must have:

g-m+(n—q)-t>m-(n—t)

m(n—t)—nt

or, equivalently, ¢ > =———

. Since m > n—1t and n > 3t + 1, we have

q Z m(nﬂ;i)t—nt > (n—t)?—nt > (n—2t)°4+nt—3t° Z n — 2t + nri:gf Z n— 2+ t >

n
- n—2t - n—2t n—2t 3°
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a

Lemma 5.31 Let € < 0.2, and assume that all the honest parties have completed protocol
Common-Coinle]. Then, for every value o € {0,1}, with probability at least 0.25, all the
honest parties output o.

Proof: By Lemma 5.29 we have that for every party, P;, who is accepted by some honest
party, there exists a value, v;, distributed uniformly and independently over [1...u], such
that with probability 1— £ all the honest parties associate v; with P; in Step 6. Consequently,
with probability 1 — €, all the honest parties agree on the value associated with each one of
the parties.)

Consider the case ¢ = 0. Let M be the set of parties guaranteed by Lemma 5.30.
Clearly, if v; = 0 for some party P; € M and all the honest parties associate v; with P;,
then all the honest parties output 0. The probability that at least one party P; € M has
v; = 01is 1 — (1 — 1)M Recall that v = [0.87n], and that [M| > Z. Therefore, for all
n >4 we have 1 —(1—1)M >1_¢7935 > 0.316. Thus, Prob( all the honest parties output
0) > 0.316- (1 —¢) > 0.25.

Consider the case o = 1. Clearly, if no party P; has v; = 0 (and all the honest parties
associate v; with every F;), then all the honest parties output 1. The probability of this
event is at least (1 — £)"(1 —¢) > e7"'%.0.8 > 0.25. Thus, Prob( all the honest parties
output 1) > 0.25. O

5.8 Byzantine Agreement

Before describing the Byzantine Agreement protocol, let us describe another protocol used
in our construction. Roughly speaking, this protocol, denoted Vote, does ‘whatever can be
done deterministically’ to reach agreement.

5.8.1 The Voting Protocol

In protocol Vote each party tries to find out whether there is a detectable majority for
some value among the (binary) inputs of the parties. More precisely, each party’s output
of the protocol can take five different values. For o € {0, 1}, the output (o,2) stands for
‘overwhelming majority for ¢’. Output (o,1) stands for ‘distinct majority for ¢’. Output
(A,0) stands for ‘non-distinct majority’. It will be shown that if all the honest parties
have the same input, o, then all honest parties output (o,2). Furthermore, if some honest
party outputs (o,2) then every honest party will output either (o,2) or (o,1). If some
honest party outputs (o, 1) then either all outputs are in {(o,2),(o,1)}, or all outputs are
in {(A,0),(c,1)}.

The protocol consists of three ‘rounds’, having similar structure. In the first round,
each party broadcasts his input value, waits to complete n — t broadcasts of other parties,
and sets his vote to the majority value among these inputs. In the second round, each
party broadcasts his vote (along with the identities of the n — ¢ parties whose broadcasted
inputs were used to compute the vote), waits to complete n — ¢ broadcasts of other votes
that are consistent with the broadcasted inputs of the first round, and sets his re-vote to
the majority value among these votes. In the third round each party broadcasts his re-vote,
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along with the identities of the n — ¢ parties whose broadcasted votes were used to compute
the re-vote, and waits to complete n —t broadcasts of other re-votes that are consistent with
the consistent votes of the second round.

Now, if all the consistent votes received by a party agree on a value, o, then this party
outputs (,2). Otherwise, if all the consistent re-votes received by the party agree on a
value, o, then the party outputs (o,1). Otherwise, the party outputs (A,0).

Protocol Vote is presented in Figure 5-10 below.

Protocol Vote(z;)

Code for party F;, on input z;:

1. Broadcast (Input,F;,z;) .
2. Define a dynamic set A;. Add (Pj,z;) to A; if the (Input,P;,z;) broadcast is

completed.
Wait until [A;| > n — . Set A4; to Agn_t). Then, set v; to the majority bit among
{;|(P;,z;) € A;}, and broadcast (Vote, s, A;,v;) .

3. Define a dynamic set B;. Add (P;, 4;,v;) to B; if the (Vote, P;, A;,v;) broadcast
has been completed, a; C A;, and v; is the majority bit of A;.
Wait until |B;| > n — . Set B; to Bgn_t). Then, set rv; to the majority bit among
{v; |(P;,vote;, A;) € B;}, and broadcast (Re-vote, P;, B;, rv;) .

4. Define a set Cj. Add (P;, B;,rv;) to C; if the (Re-vote,P;, B;,rv;) broadcast has
been completed, B; C B;, and rv; is the majority bit of B;.

5. Wait until |C;| > n — 1.
If all the parties P; € B; had the same vote v; = o, then output (o, 2) and terminate.

Otherwise, if all the parties P; € C; have the same re-vote, rv; = o, then output (o, 1)
and terminate.

Otherwise, output (A, 0) and terminate.

Figure 5-10: The Vote protocol

In Lemmas 5.32 through 5.35 we assert the properties of protocol Vote, as describe
above. The Lemmas hold for every input and every t-adversary.

Lemma 5.32 All the honest parties terminate protocol Vote in constant time.

Proof: The (Input,P;,z;) broadcast of every honest party P; in Step 1 will be completed.
Thus, every honest party P; will eventually have |A;| = n — ¢, in Step 2, and will broadcast
(Vote, P;, A;,v;) . For every honest party P; the broadcast of Step 2 will be completed. An
honest party P; will add (P}, A;,v;) to B; for each honest P;, in Step 3. Thus, every honest
party P; will eventually have |B;| = n—t, in Step 3, and will broadcast (Re-vote, P;, By, rv;)

Similarly, P; will add every honest party P; to ;. Thus, every honest party P; will
eventually have |C;| = n — ¢, in Step 5. Consequently, P; will complete the protocol. We
note that the protocol runs in constant time. a

Lemma 5.33 If all the honest parties have input o, then all the honest parties output (0,2).
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Proof: Consider an honest party P;. If all the honest parties have input o, then at most ¢
parties will broadcast & as their input in Step 1. Therefore, each party P, who was added
to B; in Step 3 has a majority for the value ¢ in his A set, and v, = ¢. Thus, P; outputs
(0,2) in Step 5. ]

Lemma 5.34 If some honest party outputs (0,2), then each honest party outputs either
(0,2) or (o,1).

Proof: Assume that honest party P; outputs (¢,2). The size of B; is n — t, hence for each
other honest party P; it holds that B; N B; is of size at least ¢ + 1. Thus, P; will set his
revote 7v; to 0. Therefore, every honest party outputs either (¢,2) or (¢,1) in Step 5. O

Lemma 5.35 If some honest party outputs (o,1), and no honest party outputs (0,2), then
each honest party outputs either (o,1), or (A,0).

Proof: Assume some honest party outputs (¢,1). Then, at most ¢ parties P; broadcasted
a revote rv; = ¢ in Step 3; therefore, no honest party P, has a unanimous re-vote; = &
in Step 4, and no honest party outputs (&, 1). Furthermore, at least ¢t + 1 parties P, have
broadcasted vote, = o in Step 2; therefore, no honest party had a unanimous vote in Step
3, and no honest party outputs (a,2). O

5.8.2 The Byzantine Agreement protocol

The Byzantine Agreement protocol proceeds in iterations. In each iteration, each party
has a ‘modified input’ value; in the first iteration, the modified input of each party is his
local input. In each iteration the parties invoke two protocols: Vote and Common-Coin.
Protocol Common-Coin is invoked only after protocol Vote is completed. (The reason for
this provision will become clear in the proof of Lemma 5.38 below.) If a party recognizes a
‘distinct majority’ for some value, o, in the output of protocol Vote (namely output (o, 1)
or (0,2)), then he sets his modified input for the next iteration to o. Otherwise, he sets
his modified input for the next iteration to be the output of the Common-Coin protocol.
(Protocol Common-Coin is invoked by all parties in each iteration, regardless of whether
their output is used.) Once a party recognizes an ‘overwhelming majority’ for some value,
o, (namely, output (o,2) of protocol Vote), he broadcasts o. Once a party completes ¢ + 1
broadcasts for some value, o, he terminates with output o.

The code of the Byzantine Agreement protocol is presented in Figure 5-11 below.

In Lemmas 5.36 through 5.40 we assert the validity of protocol BA. These Lemmas hold
for every input and every t-adversary.

Lemma 5.36 If all the honest parties have input o, then all the honest parties terminate
and output o.

Proof: Assume that all the honest parties have input ¢. By Lemma 5.33, every honest
party P; has (y;,m1) = (0,2) by the end of Step 1 of the first iteration. Therefore, every
honest party broadcasts (Terminate with o) in Step 2 of the first iteration. Therefore,
every honest party will receive at least n —t (Terminate with o) broadcasts, and at most
t (Terminate with ) broadcasts. Consequently, every honest party will output o. a
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Protocol BA[e](z;)

Code for party F;, on input z;, and termination parameter e:

1. Set r:= 0. Set vy := ;.

Repeat until terminating:
2. Set r:=r 4+ 1. Set (y,, m,) :=Vote(v,).

3. Wait until Vote(v,) is completed. Then, set ¢, :=Common-Coin[£].

4. (a) If m, = 2, set v, := y, and broadcast (Terminate with v,) .
Participate in only one more Vote protocol and only one more Common-Coin
protocol. @

(b) It m, =1, set v,41 := yy.

(¢) Otherwise, set v,41 1= ¢;.

e Upon receiving ¢ + 1 (Terminate with o) broadcasts for some value o, output o
and terminate.

Figure 5-11: The Byzantine Agreement protocol

“The purpose of this restriction is to prevent the parties from participating in an unbounded
number of iterations before enough (Terminate with o) broadcasts are completed.

Lemma 5.37 If an honest party terminates with output o, then all honest parties terminate
with output o.

Proof: Let us first establish that if an honest party broadcasts (Terminate with o) for
some value o, then all honest parties eventually broadcast (Terminate with o) . Let k
be the first iteration in which an honest party initiated a (Terminate with o) broadcast
for some value . By Lemma 5.34, every honest party P; has y, = ¢ and either m;, = 2
or m, = 1. Therefore, no honest party broadcasts (Terminate with &) at iteration k.
Furthermore, all the honest parties execute the Vote protocol of iteration k£ + 1 with input
o. Lemma 5.33 now implies that by the end of Step 1 of iteration k+ 1, every honest party
has (yry1,mes1) = (0,2). Thus, all the honest parties broadcast (Terminate with o) ,
either at iteration k or at iteration & + 1.

Now, assume an honest party terminates with output ¢. Thus, at least one honest
party broadcasted (Terminate with o) . Consequently, all the honest parties broadcast
(Terminate with o) . Hence, every honest party will receive at least n — ¢ (Terminate
with o) broadcasts, and at most ¢ (Terminate with &) broadcasts. Therefore, every
honest party will output o. a

Lemma 5.38 Assume all honest parties have initiated and completed some round k. Then,
with probability at least i all honest parties have the same value for vy, 4.

Proof: We distinguish two cases. If all the honest parties execute Step 4(c) in iteration £,
then all the honest parties set their v, value to their (local) output of protocol Common-
Coin. In this case all the parties have the same v, value with probability at least %
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Otherwise, some honest party has set v, 4, = o for some o € {0, 1}, either in Step 4(a) or

Step 4(b) of iteration k. By Lemma 5.35, no honest party will use either Step 4(a) or Step

4(b) to set his vy, variable to 6. Furthermore, with probability at least i, all the honest

parties have output ¢ of the Common-Coin protocol of Step 3. Therefore, with probability

at least i,

parties’” outputs of protocol Vote are fixed before Common-Coin is invoked. Were it not the

all the honest parties have vy, = ¢ at the end of iteration k. (Note that the

case, the bad parties could force the output of protocol Vote to prevent agreement.) a

Let C'y denote the event that each honest party completes all the iterations he initiated,
up to (and including) the kth iteration (that is, for each iteration 1 <1 < k and for each
party P, if P initiated iteration [ then he computes v;;1). Let C' denote the event that Cy
occurs for all k.

Lemma 5.39 Conditioned on event C', all the honest parties complete protocol BA in con-
stant expected time.

Proof: We first establish that all the honest parties terminate protocol BA within constant
time after the first honest party initiates a (Terminate with o) broadcast in Step 4(a)
of the protocol. Assume the first honest party initiates a (Terminate with o) broadcast
in iteration k. Then, all the honest parties participate in the Vote and Common-Coin
protocols of all the iterations up to iteration k + 1. We have seen in the proof of Lemma
5.37 that in this case, all the honest parties initiate a (Terminate with o) broadcast by
the end of iteration & + 1. All these broadcasts terminate in constant time. FEach honest
party terminates upon completing ¢ 4+ 1 of these broadcasts.

Let the random variable 7 count the number of iterations until the first honest party
broadcasts (Terminate with o) . (If no honest party broadcasts (Terminate with o)
then 7 = o00). Conditioned on event C, all the honest parties terminate each iteration in
constant time. It is left to show that E(7|C') is constant. We have

Prob(r > k|Cy) < Prob(t # 1|Cy) -...- Prob(t Z E|C,nT £ 1Nn...07#k—1)

If follows from Lemma 5.38 that each one of the £ multiplicands of the right hand side of

the above equation is at most 2. Thus, Prob(r > k|C}) < (%)k It follows, via a simple

calculation, that E(7|C) < 16. O
Lemma 5.40 Prob(C')>1—e.

Proof: We have

Prob(C) < > Prob(r > kN Chpi|Cr) (5.1)
k>1

< ZProb(T > k|Cy) - Prob(Cryq|Ce 0T > k) (5.2)
k>1

We have seen in the proof of Lemma 5.39 that Prob(r > k|C}) < (é)k_l. We bound the

el 4
term Prob(Cyy(|CrN7T > k). If all the honest parties execute the kth iteration and complete
the kth invocation of Common-Coin, then all the honest parties complete the kth iteration.

Protocol Common-Coin is invoked with ‘termination parameter’ £. Thus, with probability
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1 — ¢, all the honest parties complete the kth invocation of Common-Coin. Therefore, for
each k, Prob(Clya|C N7 > k) < 5. Inequality 5.1 yields Prob(C) < 35, £ (%)k_l =e O
We have thus shown:

Theorem 5.2 (Byzantine Agreement.) Let n > 3t + 1. Then, for every 0 < € <
0.2, protocol BA[€] is a (1 — €)-terminating, t-resilient, asynchronous Byzantine Agreement
protocol for n parties. Given that the parties terminate, they do so in constant expected
time. Furthermore, the computational resources required of each party are polynomial in n
and log %
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Proactive security

We introduce a method for maintaining the security of systems in the presence of repeated,
however transient break-ins to system components. We use secure multiparty computation
as a formal setting, and use mobile adversaries as a vehicle for concentrating on the mech-
anism of recovery from break-ins. This construction has applications to key management
schemes in actual security systems. See Section 1.6 for an introductory presentation.

In Section 6.1 we define PP protocols, and recall the definition of pseudorandom function
families. In Sections 6.2 and 6.3 we describe our PP protocol and prove its correctness. In
Section 6.4 we describe some modifications to our application to secure sign-on protocols.
In Section 6.5 we offer an alternative definition of PP protocols, and show that it is implied
by our first definition.

6.1 Definitions

The setting. We consider a synchronous network with secure channels, and computation-
ally bounded mobile adversaries. (In Section 6.3.1 we describe a relaxation of this security
requirement on the channels.) For simplicity, we assume that at the end of each round, each
party can send a message to each other party; these messages are received at the beginning
of the next round. It is simple to extend our results to more realistic communication and
synchronization models. (We remark that here the rounds formalize the applications of the
automatic recovery mechanism described in Section 1.6. These are different than commu-
nication rounds. Typically, a recovery round may take place every several days, where a
communication round lasts only a fraction of a second.)

The Adversary. At the beginning of each round the adversary may corrupt parties.
(The adversary adaptively decides which parties to corrupt at each round.) Upon corruption
of a party, the entire contents of the party’s memory becomes known to the adversary.
Furthermore, the adversary can alter the party’s memory and program. After some time
the adversary leaves the party. Once the adversary has left, the party returns to execute
its original program; however, its memory may have been altered. We call this adversary
a mobile adversary. We say that a mobile adversary is t-limited if in each round at most
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t parties are corrupted. (We stress that there may exist no party that has never been
corrupted!)

A definition of proactive pseudorandomness. Consider a network of parties per-
forming some computation in the presence of a mobile adversary. The parties have access
to randomness only at the beginning of the computation. Once the interaction starts no
additional randomness is available.

The parties will Tun a special deterministic protocol; this protocol will generate a new
value within each party at each round. Given that the parties’ initial inputs of this protocol
are randomly chosen, the value generated within each party at each round will be indis-
tinguishable from random from the point of view of a mobile adversary, even if the values
generated within all the other parties, at all rounds, are known. We call such a protocol a
proactive pseudorandomness (PP) protocol.

We stress that at each round the adversary may know, in addition to the data gathered
by the adversary, the outputs of all the parties (including the uncorrupted ones) at all the
previous rounds. Still, it cannot distinguish between the current output of an uncorrupted
party and a random value.

More formally, consider the following attack, called an on-line attack, with respect to an
n-party PP protocol. Let the input of each party be taken at random from {0,1}*, where
k is a security parameter (assume n < k). Furthermore, each party’s output at each round
is also a value in {0, 1}*.

On-line attack

The protocol is run in the presence of a mobile adversary for m rounds (m is polynomial
in n and k), where in addition to the data gathered by the adversary, the adversary knows
the outputs of all the parties at all the rounds. At a certain round, | (chosen “on-line” by
the adversary), the adversary chooses a party, P, out of the uncorrupted parties at this
round. The adversary is then given a test value, v, instead of P’s output at this round.
The execution of the protocol is then resumed for rounds [ + 1, ..., m. (Our definition will
require that the adversary be unable to say whether v is P’s output at round /, or a random
value.)

F oran n-party protocol 7, and a mobile adversary A, let A(w, PR) (respectively, (A(7,R))
denote the output of A after an on-line attack on 7, and when the test value v given to A is
indeed the output of the specified party (respectively, when v is a random value). Without
loss of generality, we assume that A(7,PR) € {0, 1}.

Definition 6.1 Let © be a deterministic n-party protocol with security parameter k. We
say that 7 is a t-resilient proactive pseudorandomness protocol (PP) if for every t-limited
polynomial time mobile adversary A, for all ¢ > 1 and all large enough k we have

|Prob(A(r, PR) = 1) — Prob(A(x,R) = 1)| < kﬁ
where m is the total number of rounds of protocol 7, and the probability is taken over the

parties’ inputs of T and the choices of A. (We stress that m is polynomial in k.)
We say that © is efficient if it uses resources polynomial in n and k.
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An alternative definition. Using Definition 6.1 above, it can be shown that the following
property holds for any randomized application protocol a run by the parties. Consider a
variant, o', of @ that runs a PP protocol 7 along with «, and uses the output of 7 as random
input for a at each round. Then, The parties” outputs of a and o' are indistinguishable;
furthermore, running o’ the adversary gains no knowledge it did not gain running «. In
fact, this property may serve as an alternative definition for PP protocols. In Section 6.5
we present a more precise definition of this property.

Pseudorandom function families. Our constructions make use of pseudorandom func-
tions families. We briefly sketch the standard definition.

Let Fj, denote the set of functions from {0, 1}* to {0,1}*. Say that an algorithm D with
oracle access distinguishes between two random variables f and ¢ over F, with gap s(k), if
the probability that D outputs 1 with oracle to f differs by s(k) from the probability that
D outputs 1 with oracle to ¢g. Say that a random variable f over F; is s(k)-pseudorandom if
no polynomial time (in k) algorithm with oracle access distinguishes between f and ¢ €5 F},
with gap s(k). (Throughout the paper, we let e €5 D denote the process of choosing an
element e uniformly at random from domain D.)

We say that a function family Fy, = {fs}reqo,13x (Where each f, € Fy)is s(k)-pseudorandom
if the random variable f, where k € {0,1}" is s(k)-pseudorandom. A collection {F} }1en is
pseudorandom if for all ¢ > 0 and for all large enough k, the family F} is #—pseudorandom.
We consider pseudorandom collections which are efficiently constructible. Namely, there
exists a polytime algorithm that on input x,2z € {0,1}* outputs f.(z).

Pseudorandom function families and their cryptographic applications were introduced
by Goldreich, Goldwasser and Micali [GGM2, GGM1]. Applications to practical key distri-
bution and authentication protocols were shown by Bellare and Rogaway [BR1]. In [GGM?2]
it is shown how to construct pseudo-random functions from any pseudo-random generator,
which in turn could be constructed from any one-way function [HILL]. However, practition-
ers often trust and use much simpler constructions based on DES or other widely available
cryptographic functions.

6.2 The Protocol

In this section we describe the basic protocol. Several modifications useful for the application
to secure sign-on are described in Section 6.4.

Consider a network of n parties, Py,..., P,, having inputs z,, ..., z, respectively. FEach
input value z; is uniformly distributed in {0, 1}*, where k is a security parameter. We as-
sume that parties have agreed on a predefined pseudorandom function family F' = {f.}reqo,17%,
where each f, : {0,1}F — {0, 1}".

In each round [ each party P, computes an internal value (called a key), &;;, in a way
described below. P;’s output at round /, denoted r;, is set to be r;; = fm)l(O), where 0 is
an arbitrary fixed value.

The key &, ; is computed as follows. Initially, P; sets its key to be its input value, namely
Kio = ;. At the end of each round [ > 0, party P; sends f,, ,(j) to each party P;. Next, P;
erases its key for round [ and sets its key for round [ + 1 to the bitwise exclusive or of the
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values received from all the parties at this round:

Rii41 = @?:1.][/@]',1(2.) (61)

We stress that it is crucial that the parties erase the old keys. In fact, if parties cannot
erase their memory, proactive pseudo-randomness is impossible. In particular, once each
party has been corrupted in the past, the adversary has complete information on the system
at, say, the first round. Now the adversary can predict all the subsequent outputs of this
deterministic protocol.

6.3 Analysis

We first offer some intuition for the security of our protocol. This intuition is based on
an inductive argument. Assume that, at round [, the key of an uncorrupted party is
pseudorandom from the point of view of the adversary. Therefore, the value that this
party sends to each other party is also pseudorandom. Furthermore, the values received by
different parties seem unrelated to the adversary; thus, the value that each party receives
from an uncorrupted party is pseudorandom from the point of view of the adversary, even if
the values sent to other parties are known. Thus, the value computed by each uncorrupted
party at round [+ 1 (being the bitwise exclusive or of the values received from all the parties)
is also pseudorandom.

Naturally, this argument serves only as intuition. The main inaccuracy in it is in the
implied assumption that we do not lose any pseudo-randomness in the repeated applications
of pseudorandom functions. A more rigorous proof of correctness (using known techniques)
is presented below.

Theorem 6.2 Our protocol, given a pseudorandom function family, is an efficient, (n—1)-
resilient PP protocol.

Proof: Let m denote our protocol (run for m rounds). Assume there exists a polytime
mobile adversary A such that

|Prob(A(m,PR) = 1) — Prob(A(7,R)=1)| > —

for some constant ¢ > 0 and some value of k. For simplicity we assume that A corrupts
exactly n — 1 parties at each round, and that A always runs the full m rounds before
outputting its guess. The proof can be easily generalized to all A. We show that Fj is not

pseudorandom. Specifically, we construct a distinguisher D that distinguishes with gap 2]160
between the case where its oracle is taken at random from F} and the case where its oracle
is a random function in F.

In order to describe the operation of D, we define hybrid probabilities as follows. First,
define m + 1 hybrid protocols, Hy,..., H,,, related to protocol 7. Protocol H; instructs

each party P, to proceed as follows.

e In rounds [ < ¢ party P, outputs a random value and sends a random value to each
other party P, (instead of f, ,(0) and f,_, (), respectively). In other words, P, uses
a random function from Fj instead of f. , for his computations.
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e In rounds [ > ¢ party P, executes the original protocol, 7.

Ofcourse, whenever a party is corrupted it follows the instructions of the adversary.

Distinguisher D, given oracle access to function ¢, operates as follows. First, D chooses
at random a round number [, €5 [0,...,m — 1]. Next, D runs adversary A on the follow-
ing simulated on-line attack on a network of n parties. The corrupted parties follow the
instructions of A. The (single) uncorrupted party at each round [, denoted P, proceeds
as follows.

1. In rounds I < ly, party P, outputs a random value and sends a random value to
each other party (as in the first steps of the hybrid interactions).

2. In round [y, party P.,) uses the oracle function g to compute its output and messages.
Namely, it outputs ¢(0) and sends ¢(j) to each other party P;.

3. In rounds I > Iy, party P, follows protocol 7.

(Note that D knows which parties are corrupted by A at each round.)

Once a round is completed, D reveals all the parties’ outputs of this round to A (as
expected by A in an on-line attack). When A asks for a test value v, D proceeds as follows.
First, D chooses a bit b € {0,1}. If b = 0, then D sets v to the actual corresponding
output of the party chosen by A. Otherwise, D sets v to a random value. Finally, if b = 0
then at the end of the simulated interaction D outputs whatever A outputs. If b = 1 then
D outputs the opposite value to whatever A outputs.

The operation of D can be intuitively explained as follows. It follows from a standard
hybrids argument that there must exist an ¢ such that either
|Prob(A(H;,PR) = 1)—Prob(A(H,41,PR) = 1)]is large or |Prob(A(H;,R) = 1)—Prob(A(H,;;1,R) =
1)] is large. Thus, if D chooses the “correct” values for [, and b it can use the output of A
to distinguish between the two possible distributions of its oracle. We show that a similar
distinction can be achieved if {, and b are chosen at random.

We analyze the output of D as follows. Let PR; = Prob(A(H;,PR) = 1). (Namely, PR;
is the probability that A outputs 1 after interacting with parties running protocol H; and
when the test value given to A is indeed the corresponding output value of the party that
A chose.) Similarly, let R; 2 Prob(A(H;,R) = 1). Let p (resp., ¢) be a random variable
distributed uniformly over F (resp., over F). Assume that D is given oracle access to
p. Then, at round /, party P,q,) outputs a random value and sends random values to all
the other parties. Thus, the simulated interaction of A is in fact an on-line attack of A on
protocol H;,. Therefore, if b = 0 (resp., if b = 1), then D outputs 1 with probability PRy,
(resp., 1 — Ry, ). Similarly, D is given oracle access to ¢ then the simulated interaction of A
is an on-line attack of A on protocol H; 4. In this case, if b = 0 (resp., if b = 1), then D
outputs 1 with probability PRy, 1 (resp., 1 — Ry,41). Thus,

1 m—1 1 m—1
Prob(D” = 1) — Prob(D? = 1) = 5 ;(PR +1=Ri) - o~ ; PRy +1-Ripy)
1 m—1
= om & [(PR; — Ri) = (PRiy1 — Rig)]
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Clearly, H, is the original protocol w. Thus, by the contradiction hypothesis, |PRy — Rg| >
7t. On the other end, in protocol H,, the parties output random values in all the m rounds,
thus PR,,, — R,, = 0. We conclude that [Prob(D? = 1) — Prob(D? = 1) > =~ - 2 =

2m ke 2k° "
Od

6.3.1 Insecure Links

When describing the model, we assumed that all the communication channels are secure
(i.e., private and authenticated). Here, we discuss the effect of insecure channels on our
protocol. We note that the protocol remains a PP protocol even if in each round [ only a
single uncorrupted party P; has a single channel which is secure in round / to a party P;
that wasn’t corrupted in round / — 1 (and P; had in round [ — 1 a secure channel to an
uncorrupted party, etc.).

This security requirement on the channels is minimal in the following sense. If no
randomness is allowed after the interaction begins then a mobile adversary that sees the
entire communication can continue simulating each party that has once been corrupted,
even after the adversary has left this party. Thus, after few rounds, the adversary will be
able to simulate all parties and predict the output of each party at each subsequent round.

6.4 On the Application to Secure Sign-On

In subsection 1.6.1 we discussed reconstructible protocols and described an application of our
PP protocol to proactive secure sign-on, using its reconstructability. However, as mentioned
there, the protocol described in Section 6.2 is reconstructible only if all the parties (servers)
follow their protocols at all times (that is, the adversary is only eavesdropping).

In this section we describe modifications of our protocol, aimed at two goals: one goal
is to make the protocol more efficient for the user; the other goal is to maintain the recon-
structability property for the case where the servers don’t follow their protocols.

We start by describing a variant of the protocol which is more efficient for the user. Using
the protocol described in Section 6.2, the user had to simulate the computation performed
by the servers step by step. In case that many rounds have passed since the last time the
user updated its keys, this may pose a considerable overhead. Using this variant, denoted
p, the user can compute its updated key simulating only one round of computation of the
servers. On the other hand, this variant has a weaker resilience property: it assures that
the servers’ keys be unpredictable by the adversary only if there exists a server that has
never been corrupted.

The variant is similar in structure to the original protocol with the following modifica-
tion. Fach P; has a master key which is never erased. This master key is set to be the initial
key, ki o (derived, say, from the password). The master key is used as the index for the
function at all the rounds. Namely, the key ;; at round [ is computed by x;; = @7_, fi, ()

It is also possible to combine the original protocol with the variant described above,
in order to reach a compromise between efficiency and security. We define a special type
of round: a major round. (For instance, let every 10th round be a major round.) The
parties now update their master keys, using the original protocol, only at major rounds. In
non-major rounds, the servers use their current master key as the index for the function.
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This combined protocol has the following properties. On one hand, the user has one
tenth of the rounds to simulate than in the original scheme. On the other hand, we only
need that in any period of 10 rounds there exists a server that has not been corrupted. We
believe that such versions may be a more reasonable design for actual implementations.

Next, we describe additions to the protocol, aimed at maintaining the reconstructability
property for the case where the servers don’t follow their protocols. We note that it is
possible to withstand crash failures of servers, if the servers cooperatively keep track of
which servers crashed at each round (this coordination can be done using standard consensus
protocols).

The following addition to the protocol handles the case of Byzantine faults, if variant
p described above is used. The only way an adversary controlling party P; could interfere
with the reconstructability of variant p is by sending a wrong value instead of f,. (i), to
some server P;. However, P; can, when unable to authenticate a user, compare each of the
fr, (%) values with the user, e.g. using the 2PP protocol [BGH*2], without exposing any of
the values. If there are more than half of the values which match, the server and the user
may use the exclusive or of these values only. This technique requires that at any round,
the majority of the servers are non-faulty (otherwise the server may end up using values
which are all known to the adversary). We note that this idea does not work if the basic
protocol (that of Section 6.2) is used instead of variant p.

6.5 An alternative definition of PP

We offer an alternative definition of a PP. This definition follows from Definition 6.1. Bor-
rowing from the theory of secure encryption functions, we call Definition 6.1 “PP in the
sense of indistinguishability” (or, in short, PP), whereas Definition 6.4 below is called
“semantic PP” (or, in short, SPP). We first recall the standard definition of polynomial
indistinguishability of distributions.

Definition 6.3 Let A = {A}}ren and B = { By, }ren be two ensembles of probability distri-
butions. We say that A and B are polynomially indistinguishable if there exists a constant
¢ > 0 such that for every polytime distinguisher D and for all large enough k,
|Prob(D(Ar) = 1) — Prob(D(B;) = 1)| < %
We colloquially let A, = B; denote “{A;} and {B;} are polynomially indistinguishable”.

Let a be some distributed randomized protocol, which is resilient against ¢-limited
mobile adversaries, for some value of t. We wish to adapt protocol a to a situation where
no randomness is available once the interaction starts. Namely, we want to construct a
protocol o’ in which the parties use randomness only before the interaction starts, and the
parties’ outputs of protocol o’ are “the same as” their outputs of protocol a.

A general framework for a solution to this problem proceeds as follows. The parties
run protocol a along with another deterministic protocol, w. Each party’s local input of
protocol 7 is chosen at random at the beginning of the interaction. In each round, each
party sets the random input of protocol « for this round to be the current output of protocol
7. We call 7 a semantically secure proactive pseudorandomness(SPP) protocol. We refer
to protocol a as the application protocol.
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We state the requirements from a SPP protocol 7. Informally, we want the following
requirement to be satisfied for every application . Whatever an adversary can achieve by
interacting with a combined with protocol 7 as described above, could also be achieved by
interacting with the original protocol @ when combined with a truly random oracle. More
formally,

e for an m-party randomized application protocol «, a mobile adversary A, an input
vector & = xy,...,2,,and 1 < i < n,let a(Z, A); denote party P;’s output of protocol
a with a random oracle when party P; has input z; and in the presence of adversary A.
Let a(&, A)o denote A’s output of this execution. Let a(Z, A) 2 a(@, A)g,...,a(Z, A),.

e For a randomized protocol e and a deterministic protocol © for which each party
has an output at each round, let ax denote the protocol in which « and 7 are run
simultaneously and each party at each round sets the random input of a to be the
current output of .

Definition 6.4 We say that an n party deterministic protocol 7 is a t-resilient SPP protocol
if for every (randomized) application protocol a and every t-limited mobile adversary A there
exists a t-limited mobile adversary A’ such that for every input vector & (for protocol o) we
have

(7, A') ~ a(7, A).

where the probabilities are taken over the inputs of ©# and the random choices of A and of
the oracle of a.

Theorem 6.5 If a protocol is a t-resilient PP protocol then it is a t-resilient SPP protocol.
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Conclusion

In this brief chapter we present a personal view of our work and try to point out its merits.
We also outline some directions for further research.

Merit of this work. An important contribution of this work is, in our opinion, the
precise and workable definitions of secure multiparty computation (presented in Chapter 2
and Section 4.1). These definitions allow us, for the first time, to have a clear and precise
notion of a secure multiparty protocol, and to prove security of our protocols.

We believe that without these definitions we would not have been able to come up with
protocols that solve the adaptive security problem and the problem of secure computation in
asynchronous networks. Hopefully, the framework and tools developed for these definitions
will prove helpful in formulating precise definitions of primitives encountered in the future.

The long-sought solution for the adaptive security problem (Chapter 3) allows us to
present secure solutions for an abundance of known protocol problems in the presence
of adaptive adversaries (which seem to be a better model of reality than non-adaptive
ones). Our solution stems from a better understanding of the nature of secure multiparty
computation. This understanding resulted in a better modeling of the degree of trust the
party have in each other, namely in the notion of a semi-honest party.

Our solution works only for non-erasing parties. Investigating this notion of semi-
honesty only slightly further, one finds out that in a very natural (arguably, even the
most natural) trust-model, namely that of honest-looking parties, we are unable to prove
adaptive security of practically any non-trivial protocol (unless a trusted dealer is available
in an initial preprocessing phase). This holds even in the presence of absolutely secure
channels. This surprising phenomenon should be taken into account whenever adaptive
adversaries are considered.

The main tool used in solving the adaptive security problem is non-committing encryp-
tion. The essence of these encryptions is separating encryption from commitment. Until
this work, encryption was thought of as an inevitably committing primitive (in the sense
that the ciphertext could serve as a commitment of the sender - and of the receiver - to
the plaintext). We showed that encryption can be done without commitment, and demon-
strated the benefits of this separation. We believe that non-committing encryption is of
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independent interest. In particular, non-committing encryption may prove to be a ‘more
secure’ way to encrypt data than standard encryption in many other scenarios.

In the chapter on asynchronous secure computation (Chapter 4) we define what it means
to securely compute (or, rather, approximate) a function in an asynchronous setting with
faults. We also show, in a detailed way, how known techniques for constructing protocols
for securely computing any function can be adapted to the asynchronous setting. Finally,
to the best of our knowledge this is the first (and so far only) place where a full proof of
security of a construction for securely computing any function appears, in any model of
computation. In particular, a security proof of the [BGW] construction can be extracted
from the proof presented here.

The chapter on asynchronous Byzantine agreement (Chapter 5) applies ideas and tech-
niques from secure multiparty computation to constructing the first asynchronous Byzantine
agreement (BA) protocol with optimal resilience and polynomial complexity. The construc-
tion is quite involved, using many layers and techniques. The main technical contributions
are, in our opinion, two: First, we adapt techniques from [RB, TRa] to construct the first
Asynchronous Verifiable Secret Sharing (AVSS) scheme with optimal resilience. Next, we
slightly modify the [F] scheme (which was never published and unaccessible) for reaching
BA given an AVSS scheme, and present it in a (hopefully) readable way. Indeed, this work
is the first accessible source to any asynchronous BA protocol with linear resilience and
polynomial complexity.

The chapter on proactive security (Chapter 6) introduces a new approach to maintaining
the security of computer systems in the presence of transient and repeated break-ins (or
failures). We hope and believe that this approach will become a standard in the effort to
protect computer systems. In fact, a number of works have already followed this approach

(e.g., [ChH, HIKY, CHH, HJJKY]).

Subsequent and future work. We mention two directions for subsequent research. The
first deals with an additional security requirements from multiparty protocols. Namely, we
require that the computation will not leave a ‘trace’ that can be later used against the
parties. An example is a ‘mafia’ that records the transcript and later uses it to ‘coerce’
parties to reveal their inputs. Some research in this direction has been done ([BT, SK,
CDNO, CG]J); however many questions remain open.

Another issue, not addressed in this work at all, is how to deal with unauthenticated
communication channels, that can be actively controlled by the adversary. In fact how,
again, to precisely define the problem? (Here additional definitional problems are encoun-
tered. For instance, the adversary may always prevent the parties from completing the
computation, by simply not delivering messages.) A somewhat restricted definition, as well
as a solution for a certain (quite powerful) adversary model is presented in [CHH]. Still,
many questions remain open.
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