
On Pseudorandomness with respect to Deterministic ObserversOded Goldreich�Department of Computer ScienceWeizmann Institute of ScienceRehovot, Israel.oded@wisdom.weizmann.ac.il Avi WigdersonThe Hebrew University, JerusalemandThe Institute for Advanced Study, Princetonavi@math.ias.eduMay 4, 2000AbstractIn the theory of pseudorandomness, potential (uniform) observers are modeled as probabilisticpolynomial-time machines. In fact many of the central results in that theory are proven viaprobabilistic polynomial-time reductions. In this paper we show that analogous deterministicreductions are unlikely to hold. We conclude that randomness of the observer is essential to thetheory of pseudorandomness.What we actually prove is that the hypotheses of two central theorems (in the theory ofpseudorandomness) hold unconditionally when stated with respect to deterministic polynomial-time algorithms. Thus, if these theorems were true for deterministic observers, then theirconclusions would hold unconditionally, which we consider unlikely. For example, it wouldimply (unconditionally) that any unary language in BPP is in P .The results are proven using diagonalization and pairwise independent sample spaces.

Keywords: Pseudorandomness, Computational Di�culty, Derandomization, Unary Languages,Diagonalization, Pairwise Independent Sample Spaces.�Supported by MINERVA Foundation, Germany. 0



IntroductionThe theory of pseudorandomness, initiated by Blum, Goldwasser, Micali, and Yao [6, 2, 12],is one of the fundamental achievements of complexity theory. The pivot of this approachis the suggestion to view objects as equal if they cannot be told apart by any e�cientprocedure (i.e., polynomial-time ones). In particular, a distribution that cannot be e�cientlydistinguished from the uniform distribution will be considered as being \random" (or rather\random for all practical purposes", or \pseudorandom"). Some fundamental results in thistheory are su�cient conditions for e�ective pseudorandomness, discussed below.We probe the meaning of \e�cient procedures" in the de�nition of allowed observers;speci�cally, whether the observers are allowed to be probabilistic or not. In the case observersare nonuniform circuits, the distinction makes no di�erence. However, when observers areuniform machines, only the (natural) case in which they are probabilistic polynomial timemachines was considered so far. A natural question that arises is why not to identify e�cientprocedures with deterministic polynomial-time algorithms.Putting aside the philosophical (or conceptual) question of which choice is \correct",one may ask whether the choice is important from a technical point of view. That is,do the known results, which are stated in terms of probabilistic observers, hold also withrespect to deterministic observers. We stress that the known results are of the form ife�cient procedures cannot do A then e�cient procedures cannot do B, and they hold whene�cient procedures are identi�ed with probabilistic polynomial-time algorithms. We askwhether analogous results hold when e�cient procedures are identi�ed with deterministicpolynomial-time algorithms.Two such results (for probabilistic observers) that we focus on, are stated informallybelow.Thm. A: unpredictability implies pseudorandomness [12]1. If each next-bit in a dis-tribution is unpredictable by e�cient procedures then the distribution is pseudorandom(i.e., indistinguishable from random by e�cient procedures).Thm. B: hardness implies pseudorandomness [8]2. If there exists an exponential-timecomputable predicate that is in-approximable by e�cient procedures then every languagein BPP has a deterministic sub-exponential simulation that is correct \on average".The current proofs of these results make essential use of randomized reductions, and thusfail to establish analoguous statements for deterministic observers.In this paper we provide some evidence towards the essential role of randomness in theseproofs by establishing, (without use of any intractability assumptions), the hypotheses ofthese two theorems. Loosely speaking, without using any intractability assumption, we1. construct distributions with polynomial-size support that are (next-bit) unpredictabil-ity by deterministic polynomial-time algorithms;2. present an exponential-time computable predicate that is in-approximable by deter-minstic polynomial-time algorithms.1The theorem does not appear in [12], but was stated by Yao in oral presentations of his work.2We refer to a speci�c incarnation of the general paradigm (cf., for example, [2, 12, 9]).1



Thus, we establish the hypotheses of Thm. A and B for the case in which e�cient is under-stood as deterministic polynomial-time. If the analogous theorems would hold in such a casethen we would obtain (without use of any intractability assumptions) non-trivial pseudoran-dom generators and derandomization results. For example, as the reader can verify, it wouldfollow that every unary language in BPP has a non-trivial derandomization3. We mentionthat BPP contains some unary languages that are not known to be in P: for example,consider the set f1n : PrimePar(n)g, where PrimePar(n) = 1 if the number of primes in theinterval [2n; 2n + n3] is odd (and PrimePar(n) = 0 otherwise).4Caveat: In both cases we allow the construct (distribution or predicate) to be more complexthan the adversary. This is in agreement with the approach of Nisan and Wigderson [9], butnot with the approach of Blum, Micali and Yao [2, 12]. Recall that the former approachsu�ces for derandomization of probabilistic complexity classes, which is our main focus here.Comment: Derandomization of randomized complexity classes is typically acheived bypseudorandomness w.r.t nonuniform circuits (cf., for example, [12, 9, 7]). In such a caseone can (non-trivially) simulate the randomized algorithm by a deterministic one so that thelatter yields the correct output on every input. When using pseudorandomness w.r.t uniformprobabilistic machines, the resulting simulation is only correct \on the average" (cf., forexample, [4, Prop. 3.3] and [8]). Speci�cally, no probabilistic polynomial-time algorithm mayoutput (with non-negligible probability) an instance on which the simulation fails.5 In ourcontext, when using pseudorandomness w.r.t uniform deterministic machines, the resultingsimulation is only correct in the sense that no deterministic polynomial-time algorithm mayoutput an instance on which the simulation fails. Thus, for unary languages, the simulationis always correct.Techniques: The results are proven using diagonalization and pairwise independent samplespaces. The same technique was used (for a similar purpose) in [8].1 Hard predicatesFor technical reasons we start with the result mentioned second in the introduction.Theorem 1 There exists an exponential-time computable predicate P so that for every de-terministic polynomial-time machine M and all su�ciently large n's, it holds thatPr[M(Un) = P (Un)] < 12 + 2�n=33Indeed, this paper came about when naively trying to prove UBPP = P by establishing (1) above, and attemptingto use the deterministic analog of Theorem A.4Recall the famous Number Theoretic conjecture by which, for all large x, there exists a prime in the interval[x; x + O(log2 x)]. Thus, it seems appealing to conjecture that for in�nitely many n's PrimePar(n) = 1 (resp.,PrimePar(n) = 0). Deciding membership in the set f1n : PrimePar(n)g is Cook-reducible to testing primality, andthus the former set is in ZPP � BPP (see [1, 5, 10, 11]). On the other hand, we know of no other way of decidingmembership in the former set.5Here and below, the machine trying to fail the simulator is given 1n as input and is required to generate aninstance of length n. 2



where Un denotes the uniform distribution over f0; 1gn.Recall that such a result for probabilistic polynomial-time machines would imply that BPPcan be simulated, correctly on the average, in deterministic sub-exponential time [8].Proof: We actually prove a stronger result: we construct a predicate that is inapprox-imable even by exponential-time machines, where this exponent is smaller than the oneallowed to evaluate of the predicate. Speci�cally, for inputs of length n, the predicate willbe inapproximable in time 2n but computable in time 2O(n).Consider an enumeration of (modi�ed)6 deterministic machines running within time 2non input of length n, and suppose that for input length n we wish to fool m = m(n) < 2n=3machines upto error � = 2�n=3. (As usual (when applying idagonalization), it su�ces to havem : N ! N be an arbitrary unbounded function; the condition m(n) < 2n=3 will be used atthe very end of our proof.)Let M be one of the abovementioned m machines, and N = 2n. Consider the vectorvM 2 f0; 1gN representing the output of M on each of the possible n-bit long strings; thatis, vM [x] def= M(x), for x 2 f0; 1gn. Our aim is to �nd a vector u that has low correlationwith all the vM 's. That is, �nd u 2 f0; 1gN so that, for all M 's,Pr[vM [Un] = u[Un]] < 12 + 2�n=3 (1)Once such a u is found, we set P (x) def= u[x], and the theorem follows.We will select u from a small sample space of pairwise-independent N -bit sequences.We use the fact that there exists such sample spaces of size N2 that can be constructed inpoly(N)-time (see [3]). Going over all elements of the sample space, we may check whethereach element u satis�es Eq. (1), for each of the m machines, within poly(N)-time.7 Thus, itis only left to show that a pairwise-independent N -bit long sequence satis�es Eq. (1) withprobability strictly greater than 1�m�1.Claim: Let v 2 f0; 1gN be arbitrary, and u be a sequence ofN uniformly-distributed pairwise-independent bits. Then the probability that u and v agree on more than (0:5+ �) �N entriesis strictly less than 1�2N .Proof: For each x 2 f0; 1gn, we de�ne a 0-1 random variable �x so that �x def= 1 if v[x] = u[x]and �x def= 0 otherwise. Since v is �xed and u is a sequence of N = 2n uniformly-distributedpairwise-independent bits, it follows that the �x's are pairwise-independent and E(�x) = 0:5for each �x. Using Chebyshev's Inequality, we havePr 24������ Xx2f0;1gn �x � 0:5 �N ������ � � �N35 � Var(Px �x)(�N)2< 1�2N6Recall that one cannot e�ectively enumerate machines running within some given time bound. Yet, one canenumerate all machines, and modify each machine in the enumeration so that the running-time of the modi�edmachine respects the given time bound and so that the modi�ed machine maintains the functionality of the originalone in case the original respects the time bound. This is done by incorporating a time-out mechanism.7Recall that the running time of each machine is bounded by 2n = N .3



and the claim follows. 2Using �2N = 2n=3 > m in the above claim, we conclude that a pairwise-independent samplespace contains an N -bit long sequence u that satis�es Eq. (1) for each of the m machines,and the theorem follows.2 Next-bit unpredicabilityWe say that the set S = [n2NSn, where Sn � f0; 1gn, is polynomial-time constructible if thereexists a polynomial-time algorithm that on input 1n outputs the list of all strings in Sn.Theorem 2 For every polynomial p, there exists a polynomial-time constructible set S =[n2NSn so that for every deterministic algorithm of running-time p, the following holds: oninput 1n and a pre�x of a string uniformly selected in Sn, the algorithm predicts the next bitin the string with probability at most 12 + 1p(n) .Recall that such a result for probabilistic polynomial-time machines would imply a deter-ministic polynomial-time program that, on input 1n and a logarithmically long random seed,produces n-bit sequences that cannot be distinguished from random ones by probabilisticmachines running in time p(n). This would in turn imply that BPP can be simulated,correctly on the average, in deterministic polynomial-time.Proof: Consider an enumeration of (modi�ed) deterministic machines running within timep(n) on input of length n, and suppose that we wish to foolm = m(n) < p(n) machines fromguessing the next bit better than 0:5 + �, where � = 1=p(n). Let M be one of the machineswe wish to fool.We construct Sn in (roughly) n iterations, so that in iteration i we construct Sn;i � f0; 1gi.We start with Sn;` = f0; 1g`, where ` = 2 log2(m=�) and L = 2`. In the i + 1st iteration,we consider the vector vM 2 f0; 1gL representing the output of M on each of the L possiblei-bit long strings; that is, vM [j] = M [x(j)], where x(j) is the jth string in Sn;i � f0; 1gi. (Thisrepresents M 's guess of the i+1st bit of a string uniformly selected in Sn, based on the i-bitlong pre�x of that string.) Our aim is to �nd a vector u 2 f0; 1gL that has low correlationwith all the vM 's (i.e., u agrees with each vM on at most an 0:5 + � fraction of the entries).Once such a vector u is found, we extend Sn;i into Sn;i+1 in the natural manner; that is,Sn;i+1 def= fx(j)u[j] : where x(j) is the jth string in Sn;ig � f0; 1gi+1 (2)It follows that Sn def= Sn;n satis�es the unpredictability requirement; that is, for each of theabove M 's, the probability that M correctly predicts the next bit in a sequence uniformlyselected in Sn is at most 0:5 + �.It remains to specify how a suitable vector u 2 f0; 1gL is found, in each iteration. Thisis done analogously to the way described in the proof of Theorem 1. We stress two points:1. To prove an analogous claim regarding the density of suitable vectors u in the samplespace, we need �2L > m to hold. This is indeed the case, by our choice of L = 2` =22 log2(m=�) = m2�2 . 4



2. The vector u can be found in time poly(L) �m � p(n), where the �rst factor accountsfor the construction and the size of the sample space, and the last for the running timeof each machine M . By our choice of parameters, poly(L) �m � p(n) is a polynomial inp(n), and so is polynomial in n.Thus, our entire construction operates in time polynomial in n, and the theorem follows.3 Open ProblemsIn contradiction to the feelings expressed above, it may be that the distribution ensembleconstructed in the proof of Theorem 2 has stronger pseudorandom features than stated. Inparticular, we propose the following open problem.Open Problem 3 Is the distribution ensemble constructed in the proof of Theorem 2 pseu-dorandom with respect to deterministic algorithms running in time p. That is, is it the casethat for every deterministic algorithm A of running-time p, and for all su�ciently large n'sit holds that jPr[A(Un) = 1]� Pr[A(Xn) = 1]j < 1p(n)where Un and Xn denote the uniform distribution over f0; 1gn and Sn, respectively.Indeed, an a�rmative answer to this question will be a of great interest, but an negativeanswer will be interesting too. In the latter vein it may be even interesting to show thatensemble constructed in the proof of Theorem 2 is easy to predict via probabilistic algorithmsrunning in time p. Indeed, it would be more interesting (to say the very least) to prove theopposite, but we don't expect this to be doable.8AcknowledgementsWe thank Luca Trevisan for a helpful discussion.References[1] L.M. Adleman and M. Huang. Primality Testing and Abelian Varieties Over FiniteFields. Springer-Verlag LNCS (Vol. 1512), 1992.[2] M. Blum and S. Micali. How to Generate Cryptographically Strong Sequences of Pseudo-Random Bits. SIAM J. on Comput., Vol. 13, pages 850{864, 1984.[3] B. Chor and O. Goldreich. On the Power of Two{Point Based Sampling. Jour. ofComplexity, Vol 5, 1989, pages 96{106.8Recall that the ensemble is unpredictable via probabilistic polynomial-time algorithms i� it is pseudorandomwith respect to such algorithms. 5



[4] O. Goldreich. Modern Cryptography, Probabilistic Proofs and Pseudorandomness. Al-gorithms and Combinatorics series (Vol. 17), Springer, 1999.[5] S. Goldwasser and J. Kilian. Primality Testing Using Elliptic Curves. J. of the ACM,Vol. 46, pages 450{472, 1999.[6] S. Goldwasser and S. Micali. Probabilistic Encryption. J. of Comp. and Sys. Sci.,Vol. 28, No. 2, pages 270{299, 1984.[7] R. Impagliazzo and A. Wigderson. P=BPP if E requires exponential circuits: Deran-domizing the XOR Lemma. In 29th STOC, pages 220{229, 1997.[8] R. Impagliazzo and A. Wigderson. Randomness vs. Time: De-randomization under auniform assumption. In 39th FOCS, pages 734{743, 1998.[9] N. Nisan and A. Wigderson. Hardness vs Randomness. J. of Comp. and Sys. Sci.,Vol. 49, No. 2, pages 149{167, 1994.[10] M.O. Rabin. Probabilistic Algorithm for Testing Primality. Journal of Number Theory,Vol. 12, pages 128{138, 1980.[11] R. Solovay and V. Strassen. A Fast Monte-Carlo Test for Primality. SIAM J. onComput., Vol. 6, pages 84{85, 1977. Addendum in SIAM J. on Comput., Vol. 7, page118, 1978.[12] A.C. Yao. Theory and Application of Trapdoor Functions. In 23rd FOCS, pages 80{91,1982.

6


