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1 IntroductionA popular methodology for designing cryptographic protocols consists of the following two steps.One �rst designs an ideal system in which all parties (including the adversary) have oracle accessto a truly random function, and proves the security of this ideal system. Next, one replaces therandom oracle by a \good cryptographic hashing function" (such as MD5 or SHA), providing allparties (including the adversary) with a succinct description of this function. Thus, one obtainsan implementation of the ideal system in a \real-world" where random oracles do not exist. Thismethodology, explicitly formulated by Bellare and Rogaway [1] and hereafter referred to as therandom oracle methodology, has been used in many works (see, for example, [9, 28, 17, 25, 1, 21, 2,26]).Although the random oracle methodology seems to be useful in practice, it is unclear how to putthis methodology on �rm grounds. One can indeed make clear statements regarding the operationof the ideal system, but it is not clear what happens when one replaces the random oracle by afunction that has a succinct description available to all parties. What one would have liked is (atleast a de�nition of) a class of functions that, when used to replace the random oracle, maintainsthe security of the ideal scheme. The purpose of this work is to point out fundamental di�culties inproceeding towards this goal. We demonstrate that the traditional approach of providing a singlerobust de�nition that supports a wide range of applications is bound to fail. That is, one cannotexpect to see de�nitions such as of pseudorandom generators or functions [3, 29, 13], and generalresults of the type saying that these can be used in any application in which parties are restrictedmerely by computing resources. Speci�cally, we identify a speci�c property of the random oracle,that seems to capture one aspect of the random oracle methodology (and in particular seems tounderline heuristics such as the Fiat{Shamir transformation of a three-round identi�cation schemeinto a signature scheme in the [9]). We show that even a minimalistic formulation of this property,called correlation intractability, cannot be obtained by any fully speci�ed function (or functionensemble).To demonstrate the implications of the above to the security of cryptographic systems, we showthat systems whose security relies on the \correlation intractability" of their oracle may be secure inthe Random Oracle Model, and yet be insecure when implemented using any fully speci�ed function(or function ensemble). In particular, we describe schemes for digital signatures and public-keyencryption that are secure in the Random Oracle Model, but for which any implementation yieldsinsecure schemes. This refutes the belief that a security proof in the Random Oracle Model meansthat there are no \structural 
aws" in the scheme.1.1 The SettingFor the purpose of the following discussion, a cryptographic system consists of a set of parties,which are modeled by probabilistic polynomial time interactive Turing machines. A cryptographicapplication comes with a security requirement specifying the adversary's abilities and when the latteris considered successful. The abilities of the adversary include its computational power (typically,an arbitrary polynomial-time machine) and the ways in which it can interact with the other parties.The success of the adversary is de�ned by means of a predetermined polynomial-time predicate ofthe application's global view.1 A system is considered secure if any adversary with the given abilitieshas only a negligible probability of success.1 The application's global view consists of the initial inputs of all the parties (including the adversary), theirinternal coin tosses, and all the messages which were exchanged among them.1



1.1.1 The Random Oracle ModelIn a scheme that operates in the RandomOracle Model, all parties (including the adversary) interactwith one another as usual interactive machines, but in addition they can make oracle queries. It ispostulated that all oracle queries, regardless of the identity of the party making them, are answeredby a single function, denoted O, that is uniformly selected among all possible functions. The setof possible functions is determined by a length function, `out(�), and by the security parameter ofthe system. Speci�cally, given security parameter k we consider functions mapping f0; 1gpoly(k)to f0; 1g`out(k). A set of interactive oracle machines as above corresponds to an ideal system forone speci�c application. Security of an ideal system is de�ned as usual. That is, an ideal systemis considered secure if any adversary with the given abilities (including oracle access) has only anegligible probability of success. Here the probability is taken also over the choices of the randomoracle.1.1.2 Implementing an ideal systemLoosely speaking, by \implementing" a particular ideal system we mean using an easy-to-evaluatefunction f instead of the random oracle. That is, whenever the ideal system queries the oraclewith a value x, the implementation instead evaluates f(x). Formally de�ning this notion, however,takes some care. Below we brie
y examine (and discard of) the notion of implementation by asingle function, and then present the notion of implementation by a function ensemble, which isthe notion we use throughout the paper.Implementation by a single function. In accordance with the above discussion, each idealsystem (for some speci�c application), �, is transformed into a real system (for the same applica-tion) by transforming each interactive oracle machine, into a standard interactive machine in thenatural manner. That is, each oracle call is replaced by the evaluation of a �xed function f on thecorresponding query.2The above system is called an implementation of � using function f . The adversary, attackingthis implementation, may mimic the behavior of the adversary of the ideal system, by evaluatingf at arguments of its choice, but it needs not do so. In particular, it may obtain some globalinsight into the structure of the function f , and use this insight towards its vicious goals. Animplementation is called secure if any adversary attacking it may succeed only with negligibleprobability, where the success event is de�ned exactly as in the ideal system (i.e., it is de�ned bythe same polynomial-time computable predicate of the application's global view).Using this notion of an implementation, we would like to say that a function f is a \goodimplementation of a random oracle" if for any ideal system �, security of � implies security ofthe implementation of � using f . It is very easy to see, however, that no (single) polynomial-time computable function can provide a good implementation of a random oracle. Consider, forexample, a candidate function f . Then, a (contrived) application for which f does not providea good implementation consists of an oracle machine (representing an honest party) that uponreceiving a message m, makes query m to the oracle and reveals its private input if the oracleanswers with f(m). Suppose that the adversary is deemed successful whenever the honest partyreveals its private input. Clearly, this ideal system is secure (in the Random Oracle Model),2 Formally, the function f also takes as input the security parameter k, so that the function fk(�) def= f(k; �) mapsf0; 1gpoly(k) to f0; 1g`out(k). 2



since the random oracle will return the value f(m) only with negligible probability; however, itsimplementation using f is certainly not secure.Implementation by a function ensemble. In face of the failure of the above naive attempt,a more sophisticated interpretation is indeed called for. Here one considers the substitution of therandom oracle by a function randomly selected from a collection of functions. In this setting, wehave a \system set-up" phase, in which the function is selected once and for all, and its descriptionis available to all parties.3 After this set-up phase, this function is used in place of the randomoracle just as above. A little more precisely, we consider a function ensemble F = fFkjk 2 Ng,where Fk = ffs :f0; 1gpoly(k)!f0; 1g`out(k)gs2f0;1gk ;such that there exists a polynomial time algorithm that, on input s and x, returns fs(x). Theimplementation of an ideal system, �, by the function ensemble F is obtained as follows. Onsecurity parameter k, we uniformly select s 2 f0; 1gk , and make s available to all parties includingthe adversary. Given this initialization phase, we replace each oracle call of an interactive oraclemachine by the evaluation of the function fs on the corresponding query. The resulting system iscalled an implementation of � using function ensemble F .Again, the adversary may (but need not necessarily) mimic the behavior of the adversary inthe Random Oracle Model by evaluating fs at arguments of its choice. Such a real system iscalled secure if any adversary attacking it has only a negligible probability of success, where theprobability is taken over the random choice of s as well as the coins of all the parties. As before, wewould like to say that an ensemble F provides a \good implementation of a random oracle" if forevery ideal system �, if � is secure then so is the implementation of � using F . Notice that in thiscase, the contrived example from above does not work anymore, since the success event must beindependent of the random choice of s. Nonetheless, this work implies that no function ensemblecan provide a good implementation of a random oracle. We elaborate in the next subsection.1.2 Our Results1.2.1 Correlation intractability.One property we certainly expect from a good implementation of a random oracle is that it shouldbe infeasible to �nd inputs to the function that stand in some \rare" relationship with the cor-responding outputs. Indeed, many applications of the random-oracle methodology (such as theFiat-Shamir heuristic) assume that it is infeasible to �nd an input-output pair that stands in aparticular relations induced by the application. Trying to formulate this property, we may requirethat given the description of the function it is hard to �nd a sequence of preimages that togetherwith their images (under this function) satisfy some given relation. Clearly, this can only hold forrelations for which �nding such sequences is hard in the Random Oracle Model. That is, if it ishard to �nd a sequence of preimages that together with their images under a random oracle satisfyrelation R, then given the description of a \good" function fs it should be hard to �nd a sequenceof preimages that together with their images under fs satisfy R.In fact, we mainly consider the task of �nding a single preimage that together with its imagesatis�es some property. Loosely speaking, a relation is called evasive if when given access to arandom oracle O, it is infeasible to �nd a string x so that the pair (x;O(x)) is in the relation. (For3 In the sequel we consider examples of public key signature and encryption schemes. In these schemes, theinitialization (set-up) step is combined with the key-generation step of the original scheme.3



instance, the relation f(x; 0`out(k)) : x 2 f0; 1g�g is evasive. The relation f(x; 0y) : x 2 f0; 1g�; y 2f0; 1g`out(k)�1g is not.) A function ensemble F (as above) is called correlation intractable if for everyevasive relation, given the description of a uniformly selected function fs 2 Fk it is infeasible to�nd an x such that (x; fs(x)) is in the relation. We show thatInformal Theorem 1.1 There exist no correlation intractable function ensembles.Restricted correlation intractability. The proof of the above negative result relies on the factthat the description of the function is shorter than its input. Thus we also investigate the casewhere one restricts the function fs to inputs whose length is less than the length of s. We showthat the negative result can be extended to the case where the function description is shorter thanthe sum of the lengths of the input and output of the function. (Furthermore, if one generalizesthe notion of correlation intractability to relations on sequences of inputs and outputs, then thenegative result holds as long as the total length of all the inputs and outputs is more than the lengthof the function description.) This still leaves open the possibility that there exist function ensemblesthat are correlation intractable with respect to input-output sequences of a-priori bounded totallength. See further discussion in Section 5.1.2.2 Failure of the Random Oracle MethodologyUpon formulating the random oracle methodology, Bellare and Rogaway did warn that a proofof security in the Random Oracle Model should not be taken as guarantee to the security ofimplementations (in which the Random Oracle is replaced by functions such as MD5) [1]. However,it is widely believed that a security proof in the Random Oracle Model means that there are no\structural 
aws" in the scheme. That is, any attack against an implementation of this schememust take advantage of speci�c 
aws in the function that is used to implement the oracle. In thiswork we demonstrate that these beliefs are false. Speci�cally, we show thatInformal Theorem 1.2 There exists encryption and signature schemes that are secure in theRandom Oracle Model, but have no secure implementation in the real model (where a Ran-dom Oracle does not exist). That is, implementing these secure ideal schemes, using any functionensemble, results in insecure schemes.The encryption and signature schemes presented to prove Theorem 1.2 are \unnatural". We do notclaim (or even suggest) that a statement as above holds with respect to schemes presented in theliterature. Still, the lesson is that the mere fact that a scheme is secure in the Random Oracle Modeldoes not necessarily imply that a particular implementation of it (in the real world) is secure, oreven that this scheme does not have any \structural 
aws". Furthermore, unless otherwise justi�ed,such ideal scheme may have no secure implementations at all.In fact, our techniques are quite general and can be applied to practically any cryptographicapplication. That is, given an ideal cryptographic application A, we can construct an ideal cryp-tographic application A0 such that A0 is just as secure as A (in the Random Oracle Model), butA0 has no secure implementation. Hence, in this sense, security of an ideal system in the RandomOracle Model is a bad predictor of the security of an implementation of the system in real life.
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1.3 TechniquesOur proof of Theorem 1.2 uses in an essential way non-interactive CS-proofs (in the RandomOracle Model), as de�ned and constructed by Micali [21].4 Interestingly, we only use the factthat non-interactive CS-proofs exist in the Random Oracle Model, and do not care whether or notthese ideal CS-proofs have an implementation using any function ensembles (nor if non-interactiveCS-proofs exists at all outside of the Random Oracle Model). Speci�cally, CS-proofs are used to\e�ectively verify" any polynomial-time veri�able statement within time that is bounded by one�xed polynomial. Furthermore, we use the fact that the de�nition of CS-proofs guarantees that thecomplexity of generating such proofs is polynomial in the time required for ordinary veri�cation.See further discussion in Section 2.2.1.4 Related WorkCorrelation intractability. Our de�nition of correlation-intractability is related to a de�nitionby Okamoto [25]. Using our terminology, Okamoto considers function ensembles for which it isinfeasible to form input-output relations with respect to a speci�c evasive relation [25, Def. 19](rather than all such relations). He uses the assumption that such function ensembles exists, for aspeci�c evasive relation in [25, Thm. 20].Special-purpose properties of the Random Oracle Model. First steps in the directionof identifying and studying useful special-purpose properties of the Random Oracle Model havebeen taken by Canetti [4]. Speci�cally, Canetti considered a property called \perfect one-wayness",provided a de�nition of this property, constructions which possess this property (under some rea-sonable assumptions), and applications for which such functions su�ce. Additional constructionshave been suggested by Canetti, Micciancio and Reingold [6]. Another context where speci�c prop-erties of the random oracle where captured and realized is the signature scheme of Gennaro, Haleviand Rabin [10].Relation to Zero-Knowledge proofs. Following the preliminary version of the current work [5],Hada and Tanaka observed that the existence of even restricted correlation intractable functions(in the non uniform model) would be enough to prove that 3-round auxiliary-input zero-knowledgeAM proof systems only exist for languages in BPP [18]. (Recall that auxiliary-input zero-knowledgeis seemingly weaker than black-box zero-knowledge, and so the result of [18] is incomparable toprior work of Goldreich and Krawczyk [14] that showed that constant-round auxiliary-input zero-knowledge AM proof systems only exist for languages in BPP.)Relation to \magic functions". More recently, Dwork et. al. investigated the notion of \magicfunctions", which is related to our correlation intractable functions [8]. Like correlation intractabil-ity, the de�nition of \magic functions" is motivated by the quest to capture the properties that arerequired from the hash function in the Fiat-Shamir heuristic. Correlation intractability seems likea general and natural property, but is not known to be either necessary or su�cient for the Fiat-Shamir heuristic (which is a special case of the random oracle methodology). In contrast, \magicfunctions" are explicitly de�ned as \functions that make the Fiat-Shamir heuristic work". In their4 The underlying ideas of Micali's construction [21] can be traced to Kilian's construction [20] and to the Fiat{Shamir transformation [9] (which is sound in the Random Oracle Model).5



paper [8], Dwork et. al. demonstrated a relation between \magic functions" and 3-round zero-knowledge, which is similar to the relation between correlation intractability and zero-knowledgeexhibited in [18]. Speci�cally, they showed that the existence of \magic functions" implies thenon-existence of some kind of 3-round zero-knowledge proof systems, as well as a weakened versionof a converse theorem.1.5 OrganizationSection 2 presents syntax necessary for the rest of the paper as well as review the de�nition of CS-proofs. Section 3 discusses the reasoning that led us to de�ne the correlation intractability property,and prove that even such a minimalistic de�nition cannot be met by a function ensemble. Section 4presents our main negative results { demonstrating the existence of secure ideal signature andencryption schemes that do not have secure implementations. Restricted correlation intractabilityis de�ned and studied in Section 5. Three di�erent perspectives on the results obtained in thispaper are presented in Section 6.2 PreliminariesWe consider probability spaces de�ned over executions of probabilistic machines. Typically, weconsider the probability that an output generated by one machine M1 satis�es a condition thatinvolves the execution of a second machine M2. For example, we denote by Pr[y  M1(x) ; jyj=jxj&M2(y)=1] the probability that on input x, machine M1 outputs a string that has length jxjand is accepted by machine M2. That is, y in the above notation represents a random variable thatmay be assigned arbitrary values in f0; 1g�, conditions are made regarding this y, and we considerthe probability that these conditions are satis�ed when y is distributed according to M1(x).2.1 Function EnsemblesTo make the discussion in the Introduction more precise, we explicitly associate a length function,`out : N!N, with the output of the random oracle and its candidate implementations. We alwaysassume that the length functions are super-logarithmic and polynomially bounded (i.e. !(log k) �`out(k) � poly(k)). We refer to an oracle with length function `out as an `out-oracle. On securityparameter k, each answer of the oracle is a string of length `out(k). A candidate implementationof a random `out-oracle is an `out-ensemble as de�ned below.De�nition 2.1 (function ensembles) Let `out : N!N be a length function. An `out-ensemble isa sequence F = fFkgk2N of families of functions, Fk = ffs : f0; 1g�!f0; 1g`out(k)gs2f0;1gk , so thatthe following holdsLength requirement. For every s 2 f0; 1gk and every x 2 f0; 1g�, jfs(x)j = `out(k).E�ciency requirement. There exists a polynomial-time algorithm Eval so that for every s; x 2f0; 1g�, it holds that Eval(s; x) = fs(x).In the sequel we often call s the description or the seed of the function fs.Remark 2.2 The length of the seed in the above de�nition serves as a \security parameter" andis meant to control the \quality" of the implementation. It is important to note that although fs(�)is syntactically de�ned on every input, in a cryptographic applications it is only used on inputs oflength at most poly(jsj). We stress that all results presented in this paper refer to such usage.6



Remark 2.3 One may even envision applications in which a more stringent condition on theuse of fs holds. Speci�cally, one may require that the function fs be only applied to inputs oflength at most `in(jsj), where `in : N!N is a speci�c (polynomially bounded) length function (e.g.,`in(k) = 2k). We discuss the e�ects of making such a stringent requirement in Section 5.2.2 CS ProofsOur construction of signature and encryption schemes that are secure in the Random Oracle Modelbut not in the \real world" uses CS-proofs as de�ned and constructed by Micali [21]. Below, webrie
y recall the relevant de�nitions and results.A CS-proof system consists of a prover, Prv, that is trying to convince a veri�er, Ver, of thevalidity of an assertion of the type machine M accepts input x within t steps.5 The central featureof CS-proofs is that the running-time of the prover on input x is (polynomially) related to theactual running time of M(x) rather than to the global upper bound t; furthermore, the veri�er'srunning-time is poly-logarithmic related to t. (These conditions are expressed in the additionale�ciency requirements in De�nition 2.4 below.)In our context, we use non-interactive CS-proofs that work in the Random Oracle Model; thatis, both prover and veri�er have access to a common random oracle. The prover generates an allegedproof that is examined by the veri�er. A construction for such CS-proofs was presented by Mi-cali [21], using ideas that can be traced to Kilian's construction [20], and requires no computationalassumptions. Following is the formulation of CS-proofs, as de�ned in [21].In the formulation below, the security parameter k is presented in unary to both parties, whereasthe global time bound t is presented in unary to the prover and in binary to the veri�er. This allowsthe (polynomial-time) prover to run in time polynomial in t, whereas the (polynomial-time) veri�ermay only run in time that is poly-logarithmic in t. (Observe that it is not required that t is boundedabove by a polynomial in jxj. In fact, in our arguments, we shall use a slightly super-polynomialfunction t (i.e., t(n) = nlogn).) Finally, we mention that both the prover and the veri�er in thede�nition below are required to be deterministic machines. See some discussion in Remark 2.6below.De�nition 2.4 (Non-interactive CS proofs in the Random Oracle Model) A CS-proof sys-tem consists of two (deterministic) polynomial-time oracle machines, a prover Prv and a veri�erVer, which operate as follows:� On input (1k; hMi; x; 1t) and access to an oracle O, the prover computes a proof � = PrvO(1k; hMi; x; 1t)such that j�j = poly(k; jhMij; jxj; log t).� On input (1k; hMi; x; t; �), with t encoded in binary, and access to O, the veri�er decideswhether to accept or reject the proof � (i.e., VerO(1k; hMi; x; t; �) 2 faccept; rejectg).The proof system satis�es the following conditions, where the probabilities are taken over the randomchoice of the oracle O:Perfect completeness: For any M;x; t such that machine M accepts the string x within t steps, andfor any k, PrO " �  PrvO(1k; hMi; x; 1t);VerO(1k; hMi; x; t; �) = accept # = 15 When t is presented in binary, such valid assertions form a complete language for the class (deterministic)exponential time. 7



Computational soundness: For any polynomial time oracle machine Bad and any input w =(hMi; x; 1t) such that M does not accepts x within t steps, it holds thatPrO " �  BadO(1k; hMi; x; 1t);VerO(1k; hMi; x; t; �) = accept # � poly(k + jwj)2kAdditional e�ciency conditions:6 The running-time of the prover Prv on input (1k; hMi; x; 1t) is(polynomially) related to the actual running time of M(x), rather than to the global upperbound t. That is, there exists a �xed polynomial p(�), such thatTPRV �1k; hMi; x; 1t� � p(k;minft; TM (x)g)where TA(x) denotes the running time of machine A on input x.Remark 2.5 (Oracle output length) The above de�nition does not specify the output lengthof the oracle (i.e., the length of the answers to the oracle queries). In some cases it is convenientto identify this output length with the security parameter, but in many case we do not follow thisconvention (e.g., in Proposition 2.8 below). In any case, it is trivial to implement an oracle withone output length given an oracle with di�erent output length, so we allow ourselves to ignore thisissue.Remark 2.6 (Deterministic veri�er) Recall that De�nition 2.4 mandates that both the proverand veri�er are deterministic. Indeed this deviates from the tradition (in this area) of allowingthe veri�er to be probabilistic; but Micali's construction (in the Random Oracle Model) happensto employ a deterministic veri�er (cf. [21]). This issue is not essential to our main results, butplays an important role in the proof of Proposition 5.7 (due to K. Nissim). We note that whenworking in the RandomOracle Model (and only caring about completeness and soundness), one mayassume without loss of generality that the prover is deterministic (because it can obtain adequaterandomness by querying the oracle). This does not hold with respect to the veri�er, since its cointosses must be unknown to the prover.Theorem 2.7 (Micali [21]) There exists a non-interactive CS proof system in the Random OracleModel.For the proof of our construction (Theorem 4.4), we will need a di�erent soundness conditionthan the one from above. Speci�cally, we need to make sure that given the machine M (and thecomplexity bound t), it is hard to �nd any pair (x; �) such that M does not accept x within tsteps and yet Ver will accept � as a valid CS-proof to the contrary. One way to obtain thissoundness property from the original one, is by postulating that when the veri�er is given a prooffor an assertion w = (hMi; x; t), it uses security parameter k + jwj (rather than just k). Using astraightforward counting argument we get:Proposition 2.8 Let (Prv;Ver) be a CS proof system. Then for every polynomial time oraclemachine Bad, there exists a polynomial q(�), such that for every k it holds that�bad(k) def= PrO 264 (�;w) BadO(1k); where w = (hMi; x; t);s.t. machine M does not accept x within t stepsand yet VerO(1k+jwj; w; �) = accept 375 � q(k)2k6 By the above, the running time of Prv on input (1k; hMi; x; 1t) is at most poly(k; jhMij; jxj; t), whereas therunning time of Ver on input (1k; hMi; x; t; �) is at most poly(k; jhMij; jxj; j�j; log t). The following condition provideeven lower running time bound for the prover. 8



3 Correlation IntractabilityIn this section we present and discuss the di�culty of de�ning the intuitive requirement that afunction ensemble \behaves like a random oracle" even when its description is given. In particular,we show that even some minimalistic de�nitions cannot be realized.An obvious failure. We �rst comment that an obvious maximalistic de�nition, which amountto adopting the pseudorandom requirement of [13], fails poorly. That is, we cannot require thatan (e�cient) algorithm that is given the description of the function cannot distinguish its input-output behavior from the one of a random function, because the function description determinesits input-output behavior.Towards a minimalistic de�nition. Although we cannot require the value of a fully speci�edfunction to be \random", we may still be able to require that it has some \unpredictability prop-erties". For example, we may require that, given a description of a family and a function chosenat random from a this family, it is hard to �nd two preimages that the function maps to the sameimage. Indeed, this sound de�nition coincides with the well-known collision-intractability property[7]. Trying to generalize, we may replace the \equality of images" relation by any other relationamong the pre-images and images of the function. Namely, we would like to say that an ensembleis correlation intractable if for any relation, given the description of a randomly chosen function,it is infeasible to �nd a sequence of preimages that together with their images satisfy this relation.This requirement, however, is still unreasonably strong since there are relations that are easy tosatisfy even in the Random Oracle Model. We therefore restrict the above infeasibility requirementby saying that it holds only with respect to relations that are hard to satisfy in the Random OracleModel. That is, if it is hard to �nd a sequence of preimages that together with their images undera random function satisfy relation R, then given the description of a randomly chosen function fsit should be hard to �nd a sequence of preimages that together with their images under fs satisfyR. This seems to be a minimalistic notion of correlation intractable ensemble of functions, yet weshow below that no ensemble can satisfy it. In fact, in the de�nition below we only consider thetask of �nding a single preimage that together with its image satis�es some property. Namely,instead of considering all possible relations, we only consider binary ones. Since we are showingimpossibility result, this syntactic restriction only strengthens the result.3.1 Actual De�nitionsWe start with a formal de�nition of a relation that is hard to satisfy in the random oracle model.De�nition 3.1 (Evasive Relations) A binary relation R is said to be evasive with respect tolength function `out if for any probabilistic polynomial time oracle machine MPrO [x MO(1k); (x;O(x))2R] = negl(k)where O : f0; 1g� ! f0; 1g`out(k) is a uniformly chosen function and negl(�) is a negligible function.77 A function � :N!R is negligible if for every positive polynomial p and all su�ciently large n's, �(n) < 1=p(n).
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A special case of evasive relations consists of R's for which there exists a negligible function negl(�)so that for all k maxx2f0;1g� ( Pry2f0;1g`out(k)[(x; y)2R ]) = negl(k)(All the binary relations used in the sequel falls into this category.) The reason such an R is evasiveis that any oracle machine, M , making at most poly(k) queries to a random O satis�esPrO [x MO(1k); (x;O(x))2R] � poly(k) � maxx2f0;1g�f PrO [(x;O(x))2R] g� poly(k) � negl(k)We are now ready to state our minimalistic de�nition of a correlation intractable ensemble:De�nition 3.2 (Correlation intractability) Let `out : N ! N be length function, and let F bean `out-ensemble.� Let R � f0; 1g� � f0; 1g� be a binary relation. We say that F is correlation intractable withrespect to R if for every probabilistic polynomial-time machine M it holds thatPrs2f0;1gk[x M(s); (x; fs(x)) 2 R] = negl(k)where negl(�) is a negligible function, and the probability is taken over the choice of s 2 f0; 1gkand the coins of M .� We say that F is correlation intractable if it is correlation intractable with respect to everyevasive (w.r.t. `out) relation,Remark 3.3 In the above de�nition we quantify over all evasive relations. A weaker notion, calledweak correlation intractability, is obtained by quantifying only over all polynomial-time recognizableevasive relations (i.e., we only consider those relations R such that there exists a polynomial timealgorithm that, given (x; y), decides whether or not (x; y) 2 R). In the sequel we consider bothnotions.3.2 Correlation-intractable ensembles do not existTheorem 3.4 There exist no correlation intractable ensembles, not even in the weak sense.Proof: Let `out be a length function and let F = ffsg be an `out-ensemble. We de�ne the binaryrelation: RF def= [k n(s; fs(s)) : s 2 f0; 1gko (1)Clearly, this relation is polynomial-time recognizable, since fs can be computed in polynomialtime. Also, the relation is evasive (w.r.t. `out) since for every x 2 f0; 1g� there is at most oney 2 f0; 1g`out(k) satisfying (x; y) 2 RF , 8 and soPry [(x; y) 2 RF ] � 2�`out(k) = 2�!(log k) = negl(k) :8Such a y exists if and only if `out(jxj) = `out(k). 10



On the other hand, consider the machine I that computes the identity function, I(x) = x for all x.It violates the correlation intractability requirement, since for all k,Prs2f0;1gk[(I(s); fs(I(s))) 2 RF ] = Prs2f0;1gk[(s; fs(s)) 2 RF ] = 1 :In fact, since RF is polynomial-time recognizable, even the weak correlation intractability of F isviolated.4 Failure of the Random Oracle MethodologyThis section demonstrates that the security of a cryptographic scheme in the Random Oracle Modeldoes not always imply its security under some speci�c choice of a \good hash function" that is usedto implement the random oracle. To prove this statement we construct signature and encryptionschemes, which are secure in the Random Oracle Model, yet for which any implementation of therandom oracle yield insecure schemes. Put in other words, although the ideal scheme is secure, anyimplementation of it is necessarily insecure.The underlying idea is to start with a secure scheme (which may or may not use a randomoracle) and modify it to get a scheme that is secure in the Random Oracle Model, but such that itssecurity is easily violated when trying to replace the random oracle by any ensemble. This is doneby using evasive relations as constructed in Theorem 3.4. The modi�ed scheme starts by tryingto �nd a preimage that together with its image yields a pair in the evasive relation. In case theattempt succeeds, the scheme does something that is clearly insecure (e.g., output the secret key).Otherwise, the scheme behaves as the original (secure) scheme does. The former case (i.e., �ndinga pair in the relation) will occur rarely in the Random Oracle Model, thus the scheme will maintainits security there. However, it will be easy for an adversary to make sure that the former casealways occurs under any implementation of the Random Oracle Model, thus no implementationmay be secure. We start with the case of a signature scheme, and present the construction in threesteps.� In the �rst step we carry out the above idea in a naive way. This allows us to prove a weakerstatement, saying that for any function ensemble F , there exists a signature scheme that issecure in the Random Oracle Model, but is not secure when implemented using F .This, by itself, means that one cannot construct a function ensemble that provides secureimplementation of any cryptographic scheme that is secure in the Random Oracle Model.But it does not rule out the possibility (ruled out below) that for any cryptographic schemethat is secure in the Random Oracle Model there exists a secure implementation (via adi�erent function ensemble).� In the second step we use diagonalization techniques to reverse the order of quanti�ers.Namely, we show that there exists a signature scheme that is secure in the Random OracleModel, but for which any implementation (using any function ensemble) results in an inse-cure scheme. However, the scheme constructed in this step utilizes signing and veri�cationprocedures that run in (slightly) super-polynomial time.� In the third step we use CS-proofs [21] to get rid of the super-polynomial running-time (ofthe legitimate procedures), hence obtaining a standard signature scheme that is secure inthe Random Oracle Model, but has no secure implementation. Speci�cally, in this step we11



use CS-proofs as a tool to \diagonalize against all polynomial-time ensembles in polynomialtime". (As noted by Silvio Micali, this technique may be useful also in other settings wherediagonalization techniques are applied.)The reader is referred to [16] for basic terminology regarding signature schemes and correspondingnotions of security. As a starting point for our constructions, we use a signature scheme, denotedS = (G;S; V ), where G is the key-generation algorithm, S is the signing algorithm, and V is theveri�cation algorithm. We assume that the scheme (G;S; V ) is existentially unforgeable underadaptive chosen message attack, in the Random Oracle Model. We do not need to rely on any com-putational assumptions here, since one-way functions are su�cient for constructing secure signatureschemes [23, 27], and the random oracle can be used to implement one-way functions without anyassumptions.9Conventions. In the three steps below we assume, without loss of generality, that the securityparameter (i.e., k) is implicit in the keys generated by G(1k). Also, let us �x some length function`out : N!N, which would be implicit in the discussions below (i.e., we assume that the randomoracles are all `out-oracles, the relations are evasive w.r.t. `out, etc.).4.1 First StepDe�nition. Let S = (G;S; V ) be a signature scheme (which may or may not use a randomoracle), and let R be any binary relation, which is evasive w.r.t. length function `out. Then, bySR = (G;SR; VR) we denote the following modi�cation of S which utilizes a random `out-oracle:Modi�ed signature, SOR (sk;msg), of message msg using signing key sk:1. If (msg;O(msg))2R, output (sk;msg).2. Otherwise (i.e., (msg;O(msg)) 62R), output SO(sk;msg).Modi�ed veri�cation, V OR (vk;msg; �), of alleged signature � to msg using veri�cation key vk:1. If (msg;O(msg))2R then accept2. Otherwise output V O(vk;msg; �).The key-generation algorithm, G, is the same as in the original scheme S. Item 1 in the sign-ing/veri�cation algorithms is a harmful modi�cation to the original signature scheme. Yet, if R isevasive, then it has little e�ect on the ideal system, and the behavior of the modi�ed scheme is\indistinguishable" from the original one. In particular,Proposition 4.1 Suppose that R is evasive (w.r.t. `out) and that S is existentially unforgeable un-der a chosen message attack in the Random Oracle Model. Then SR is also existentially unforgeableunder a chosen message attack in the Random Oracle Model.Proof: The intuition is that since R is evasive, it is infeasible for the forger to �nd a messagem so that (m;O(m)) 2 R. Thus, a forgery of the modi�ed scheme must be due to Item (2), whichyields a breaking of the original scheme.9 Alternatively, we could use an `ordinary' signature scheme, but then our Theorem 4.4 would be conditioned onthe existence of one-way functions. 12



Formally, let AR be an adversary who mounts an adaptive chosen message attack on SR, andwhose success probability in obtaining an existential forgery (in the Random Oracle Model) is�frg = �frg(k). Assume, toward contradiction, that �frg is not negligible in the security parameter k.Denote by REL the event in which during an execution of AR, it hands out a message m forwhich (m;O(m)) 2 R (either as a query to the signer during the chosen message attack, or asthe message for which it found a forgery at the end), and let �rel = �rel(k) be the probability ofthat event. Using the hypothesis that R is evasive, we prove that �rel is negligible in the securityparameter k. Suppose, to the contrary, that �rel is not negligible. Then, we can try to e�ciently�nd pairs (x;O(x)) 2 R by choosing a key-pair for S, and then implementing the attack, playingthe role of both the signer algorithm and the adversary AR. With probability �rel, one of AR'smessages during this attack satis�es (m;O(m))2R, so just choosing at random one message thatwas used and outputting it yields a success probability of �rel=q (with q being the number of di�erentmessages that are used in the attack). If �rel is not negligible, then neither is �rel=q, contradictingthe evasiveness of R.It is clear that barring the event REL, the execution of AR against the original scheme S wouldbe identical to its execution against SR. Hence the probability that AR succeeds in obtaining anexistential forgery against S is at least �frg � �rel. Since �rel is negligible, and �frg is not, then AR'sprobability of obtaining an existential forgery against S is also not negligible, contradicting theassumed security of S.The modi�cation enables to break the modi�ed scheme when implemented with a real ensemble F ,in the case where R is the relation RF from Proposition 3.4. Indeed, as corollary to Propositions 3.4and 4.1, we immediately obtain:Corollary 4.2 For every e�ciently computable `out-ensemble F , there exists a signature schemethat is existentially unforgeable under a chosen message attack in the Random Oracle Model, yetwhen implemented with F , the resulting scheme is totally breakable under an adaptive chosen mes-sage attack, and existentially forgeable under a key-only attack.Proof: When we use an ensemble F to implement the random oracle in the scheme SR, we obtainthe following real scheme (which we denote S 0R = (G0; S0R; V 0R)):G0(1k): Uniformly pick s 2 f0; 1gk , set (sk, vk)  Gfs(1k), and output (hsk; si; hvk; si).S0R(hsk; si;msg): Output SfsR (sk;msg).V 0R(hvk; si;msg; �): Output V fsR (vk;msg; �).Consider now what happens when we use the ensemble F to implement the the scheme SRF (recallthe de�nition of RF from Eq. (1)). Since RF is evasive, then from Proposition 4.1 we infer that theSRF is secure in the Random Oracle Model. However, when we use the ensemble F to implementthe scheme, the seed s becomes part of the public veri�cation-key, and hence is known to theadversary. The adversary can simply output the pair (s; �), which will be accepted by V 0RF asa valid message-signature pair (since (s; fs(s)) 2 RF ). Hence, the adversary achieves existentialforgery (of S 0RF ) under key-only attack. Alternatively, the adversary can ask the legitimate signerfor a signature on s, hence obtaining the secret signing-key (i.e., total forgery).
13



4.2 Second StepEnumeration. For this (and the next) subsection we need an enumeration of all e�ciently com-putable function ensembles. Such enumeration is achieved via an enumeration of all polynomial-time algorithms (i.e., candidates for evaluation algorithms of such ensembles). Several standardtechnicalities arise. First, enumerating all polynomial-time algorithms is problematic since thereis no single polynomial that bounds the running time of all these algorithms. Instead, we �xan arbitrary super-polynomial proper complexity function10, t : N! N (e.g., t(n) = nlogn), andenumerate all algorithms of running-time bounded by t. The latter is done by enumerating allpossible algorithms, and modifying each algorithm by adding a time-out mechanism that termi-nates the execution in case more than t(jinputj) steps are taken. This modi�cation does not e�ectthe polynomial-time algorithms. Also, since we are interested in enumerating `out-ensembles, wemodify each function by viewing its seed as a pair hs; xi (using some standard parsing rule11) andpadding or truncating its output to length `out(jsj). Again, this modi�cation has no e�ect on the`out-ensembles.Let us denote by F i the ith function ensemble according to the above enumeration, and denoteby f is the function indexed by s from the ensemble F i. Below we again use some standard rule forparsing a string � as a pair hi; si and viewing it as a description of the function f is.Universal ensemble. Let U = fUkgk2N denote the \universal function ensemble" that is inducedby the enumeration above, namely Uk = fuhi;sighi;si2f0;1gk and uhi;si(x) = f is(x). There exists amachine that computes the universal ensemble U and works in slightly super-polynomial time, t.Universal relation. Denote by RU the universal relation that is de�ned with respect to theuniversal ensemble U similarly to the way that RF is de�ned with respect to any ensemble F . Thatis: RU def= [k n�hi; si; f is(hi; si)� : hi; si 2 f0; 1gkoOr, in other words: (x; y) 2 RU () y = ux(x)(i.e., x = hi; si and y = f is(x))Modi�ed signature scheme. Let S = (G;S; V ) be a signature scheme (as above). We thendenote by Su = (G;Su; Vu) the modi�ed signature scheme that is derived by using RU in place ofR in the previous construction. Speci�cally:SOu (sk;msg) def=1. If (msg;O(msg)) 2 RU (i.e., if msg = hi; si and O(msg) = f is(msg)) then output (sk;msg).2. Otherwise, output SO(sk;msg)V Ou (vk;msg; �) def=1. If (msg;O(msg)) 2 RU then accept.2. Otherwise, output V O(vk;msg; �).10 Recall that t(n) is a proper complexity function (or time-constructible) if there exists a machine that computest(n) and works in time O(t(n)). This technical requirement is needed to ensure that the enumeration itself iscomputable in time O(t(n)).11 For example, using a pre�x-free code C, we can encode a pair (s; x) by C(s) concatenated with x.14



We note that since these signature and veri�cation algorithms need to compute U , they both runin time O(t), which is slightly super-polynomial.Proposition 4.3 Suppose that S is existentially unforgeable under a chosen message attack in theRandom Oracle Model. Then Su is also existentially unforgeable under a chosen message attack inthe Random Oracle Model, but implementing it with any function ensemble yields a scheme that istotally breakable under chosen message attack and existentially forgeable under key-only attack.Proof: Since RU is evasive, then from Proposition 4.1 it follows that Su is secure in the RandomOracle Model. On the other hand, suppose that one tries to replace the random oracle in thescheme by an ensemble F i (where i be the index in the enumeration). An adversary, given a seed sof a function in F i can then set msg = hi; si and output the pair (msg; �), which would be acceptedas a valid message-signature pair by Vu. Alternatively, it can ask the signer for a signature on thismessage msg, and so obtain the secret signing-key.4.3 Third stepWe now use CS-proofs to construct a new signature scheme that works in the Random OracleModel. This construction is similar to the one in Subsection 4.2, except that instead of checkingthat (msg;O(msg)) 2 RU , the signer/veri�er gets a CS-proof of that claim, and it only needs toverify the validity of that proof. Since verifying the validity of a CS-proof can be done much moree�ciently than checking the claim \from scratch", the signing and veri�cations algorithms in thenew scheme may work in polynomial time. On the other hand, when the scheme is implementedusing the function ensemble F i, supplying the adequate CS-proof (i.e., for (msg; f is(msg)) 2 RU )only requires polynomial-time (i.e., time polynomial in the time it takes to evaluate f is). This yieldsthe following:Theorem 4.4 There exists a signature scheme that is existentially unforgeable under a chosenmessage attack in the Random Oracle Model, but such that when implemented with any functionensemble, the resulting scheme is existentially forgeable using key-only attack and totally breakableunder chosen message attack.We note again that unlike the \signature scheme" presented in Subsection 4.2, the signature schemepresented below works in polynomial-time.Proof: Below we describe such a signature scheme. For this construction we use the followingingredients.� S = (G;S; V ) is a signature scheme, operating in the Random Oracle Model, that is existen-tially unforgeable under a chosen message attack.� A �xed (and easily computable) parsing rule which interpret messages as triples of stringsmsg = hi; s; �i.� The algorithms Prv and Ver of a CS-proof system, as described in Section 2.2 above.� Access to three independent random oracles. This is very easy to achieve given access to oneoracle O; speci�cally, by setting O0(x) def= O(01x), O00(x) def= O(10x) and O000(x) def= O(11x).Below we use oracle O000 for the basic scheme S, oracle O00 for the CS-proofs, and oracle O0for our evasive relation. We note that if O is an `out-oracle, then so are O0;O00 and O000.15



� The universal function ensemble U from Subsection 4.2, with proper complexity bound t(n) =nlog n. We denote by MU the universal machine that decides the relation RU . That is, oninput (hi; si; y), machineMU invokes the ith evaluation algorithm, and accepts if f is(hi; si) = y.We note that MU works in time t in the worst case. More importantly, if F i is a functionensemble that can be computed in time pi(�) (where pi is some polynomial), then for anystrings s; y, on input (hi; si; y), machine MU works for only poly(jij) � pi(jsj) many steps.12Using all the above, we describe an ideal signature scheme S 0u = (G;S0u; V 0u). As usual, the keygeneration algorithm, G, remains unchanged. The signature and veri�cation algorithms proceed asfollows.S0uO(sk;msg) def=1. Parse msg as hi; s; �i, and set x = hi; si and y = O0(x). Let n = j(x; y)j.2. Apply VerO00 to verify whether � is a valid CS-proof, with respect to the oracle O00 andsecurity parameter 1n+k, for the claim that the machine MU accepts the input (x; y)within time t(n).(The punch-line is that we do not directly check whether the machine MU accepts theinput (x; y) within time t(n), but rather only if � is a valid CS-proof of this claim.Although t(n) = nlog n, this CS-proof can be veri�ed in polynomial-time.)3. If � is a valid proof, then output (sk;msg).4. Otherwise, output SO000(sk;msg).V 0uO(vk;msg; �) def=1+2. As above3. If � is a valid proof, then accept4. Otherwise, output V O000(vk;msg; �).The computation required in Item 2 of the signature and veri�cation algorithms can be executedin polynomial-time. The reason being that (by de�nition) verifying a CS-proof can be done inpolynomial-time, provided the statement can be decided in at most exponential time (which is thecase here since we have t(n) = O(nlog n)). It is also easy to see that for every pair (sk; vk) outputby G, and for every msg and every O, the string S0uO(sk;msg) constitutes a valid signature of msgrelative to vk and the oracle O.To show that the scheme is secure in the Random Oracle Model, we �rst observe that onsecurity parameter 1k it is infeasible to �nd a string x so that (x;O0(x)) 2 RU , since RU is evasive.By Proposition 2.8, it is also infeasible to �nd (x; �) such that (x;O0(x)) 62 RU and yet � is avalid CS-proof of the contrary relative to O00 (with security parameter 1jxj+`out(k)+k). Thus, it isinfeasible for a polynomial-time adversary to �nd a message that would pass the test on Item 2 ofthe signature/veri�cation algorithms above, and so we infer that the modi�ed signature is securein the Random Oracle Model.We now show that for every candidate implementation, F , there exists a polynomial-timeadversary e�ecting total break via a chosen message attack (or, analogously, an existential forgeryvia a \key only" attack). First, for each function fs 2 F , denote f 0s(x) def= fs(01x), f 00s (x) def= fs(10x),and f 000s (x) def= fs(11x). Then denote by F 0 the ensemble of the f 0s functions.12 The point is merely that, for every �xed i, the expression poly(jij) � pi(jsj) is bounded by a polynomial in jsj.16



Suppose that F 0 is the ith function ensemble in the enumeration mentioned above, namelyF 0 = F i. Given a randomly chosen k-bit seed s, the adversary generate a message msg = hi; s; �iso that � is a CS-proof (w.r.t the adequate security parameter) for the true statement that MUaccepts the input (x; y) within t(jxj + jyj) steps, where x = hi; si and y = f 0s(x). Recall that theabove statement is indeed true (since f 0s � f is), and hence the adversary can generate a proof for itin time which is polynomial in the time that it takes to compute f is. (By the perfect completenessproperty of the CS-proof system, the ability to prove correct statements holds for any choice ofthe random oracle, and in particular when it is equal to f 00s .) Since this adversary is speci�callydesigned to break the scheme in which the random oracle is implemented by F , then the index i {which depends only on the choice of F { can be incorporated into the program of this adversary.By the e�ciency condition of CS-proofs, it is possible to �nd � (given an oracle access to f 00s )in time polynomial in the time that it takes MU to accept the input (x; y). Since F i is polynomial-time computable, then MU works on the input (x; y) = (hi; si; y) in polynomial time, and thus thedescribed adversary also operates in polynomial-time.By construction of the modi�ed veri�cation algorithm, � is a valid signature on msg = hi; s; �i,and so existential forgery is feasible a-priori. Furthermore, requesting the signer to sign the messagemsg yields the signing key, and thus total forgery.Remark 4.5 It is immaterial for the above argument whether CS-proofs can be implemented inthe \real world" (i.e., without access to random oracles). Speci�cally, it doesn't matter if one cancheat when the oracle is substituted by a candidate function ensemble, as in this case (i.e., in thereal world implementation) it is su�cient for the adversary to invoke the proof system on validstatements. We do rely, however, on the perfect completeness of CS-proofs that implies that validstatements can be proven for any possible choice of oracle used in the proof system.4.4 EncryptionThe construction presented for signature schemes can be adapted to public-key encryption schemesin a straightforward way, yielding the following theorem:13Theorem 4.6(a) Assume that there exists a public key encryption scheme that is semantically secure in theRandom Oracle Model. Then there exists a public key encryption scheme that is semanticallysecure in the Random Oracle Model but is not semantically secure when implemented withany function ensemble.14(b) Assume that there exists a public key encryption scheme that is secure under adaptive chosenciphertext attack in the Random Oracle Model. Then there exists a scheme that is secureunder adaptive chosen ciphertext attack in the Random Oracle Model, but implementing itwith any function ensemble yields a scheme that is not semantically secure, and in which achosen ciphertext attack reveals the secret decryption key.Proof: In this proof we use the same notations as in the proof of Theorem 4.4. Let E = (G;E;D)be an encryption scheme that is semantically secure in the Random Oracle Model, and we modify13 Similarly, we can adapt the argument to shared-key (aka private-key) encryption schemes. See Remark 4.8.14Here we refer to semantic security as de�ned by Goldwasser and Micali in [15], and not to the seemingly weakerde�nition presented in [11, 12]. Goldwasser and Micali allow the message space to depend on the public-key, whereasthis is not allowed in [11, 12]. 17



it to get another scheme E 0 = (G;E0;D0). The key generation algorithm remains unchanged, andthe encryption and decryption algorithms utilize a random oracle O, which is again viewed as threeoracles O0;O00 and O000.Modi�ed encryption, E0ekO(msg), of plaintext msg using the public encryption-key ek:1. Parse msg as hi; s; �i, set x = hi; si and y = O0(x), and let n = j(x; y)j.2. If � is a valid CS-proof, w.r.t oracle O00 and security parameter 1n+k, for the assertionthat MU accepts the pair (x; y) within t(n) steps, then output (1;msg).3. Otherwise (i.e., � is not such a proof), output (2; EO000ek (msg)).Modi�ed decryption, D0dkO(c), of ciphertext c using the private decryption-key dk:1. If c = (1; c0), output c0 and halt.2. If c = (2; c0), output DO000dk (c0) and halt.3. If c = (3; c0) then parse c0 as hi; s; �i, and set x = hi; si, y = O0(x), and n = j(x; y)j. If �is a valid CS-proof, w.r.t oracle O00 and security parameter 1n+k, for the assertion thatMU accepts the pair (x; y) within t(n) steps, then output dk and halt.4. Otherwise output �.The e�ciency of this scheme follows as before. It is also easy to see that for every pair (ek;dk)output by G, and for every plaintext msg, the equality D0dkO(E0ekO(msg)) = msg holds for everyO. To show that the scheme is secure in the Random Oracle Model, we observe again that itis infeasible to �nd a plaintext that satis�es the condition in Item 2 of the encryption algorithm(resp., a ciphertext that satis�es the condition in Item 3 of the decryption algorithm). Thus, themodi�ed ideal encryption scheme (in the Random Oracle Model) inherits all security features ofthe original scheme.Similarly, to show that replacing the random oracle by any function ensemble yields an insecurescheme, we again observe that for any such ensemble there exists an adversary who { given theseed s { can generate a plaintext msg (resp., a ciphertext c) that satis�es the condition in Item 2of the encryption algorithm (resp., the condition in Item 3 of the decryption algorithm). Hence,such an adversary can identify when msg is being encrypted (thus violates semantic security), orask for a decryption of c, thus obtaining the secret decryption key.Remark 4.7 As opposed to Theorem 4.4, here we need to make computational assumptions,namely, that there exist schemes that are secure in the Random Oracle Model. (The result in [19]imply that it is unlikely that such schemes are proven to exists without making any assumptions.)Clearly, any scheme which is secure without random oracles is also secure in the Random OracleModel. Recall that the former exist, provided trapdoor permutations exist [15, 29].Remark 4.8 The constructions presented above can be adapted to yield many analogous results.For example, a result analogous to Theorem 4.6 holds for shared-key (aka private-key) encryptionschemes. In this case no computational assumptions are needed since secure shared-key encryptionis known to exist in the Random Oracle Model. Similarly, we can prove the existence of a CS-proofin the Random Oracle Model that has no implementations (via any function ensemble). In fact, asremarked in the Introduction, the same technique can be applied to practically any cryptographicapplication. 18



5 Restricted correlation intractabilityFaced with the negative result of Theorem 3.4, one may explore restricted (and yet possibly useful)versions of the correlation intractability property. One possibility is to put more stringent con-straints on the use of the ensemble in a cryptographic scheme, and then to show that as long asthe ensemble is only used in this restricted manner, it is guaranteed to maintain some aspects ofcorrelation intractability.In particular, notice that the proof of Theorem 3.4 relies heavily on the fact that the input tofs can be as long as the seed s, so we can let the input to the function fs be equal to s. Thus, oneoption would be to require that we only use fs on inputs that are shorter than s. Speci�cally, werequire that each function fs will only be applied to inputs of length `in(jsj), where `in : N!N issome pre-speci�ed function (e.g. `in(k) = k=2). The corresponding restricted notion of correlationintractability is derived from De�nition 3.2:De�nition 5.1 (restricted correlation intractability) Let `in; `out : N!N be length functions.A machine M is called `in-respecting if jM(s)j = `in(jsj) for all s 2 f0; 1g�.� A binary relation R is evasive with respect to (`in; `out) if for any `in-respecting probabilisticpolynomial-time oracle machine MPrO [x MO(1k); (x;O(x))2R] = negl(k)where O : f0; 1g`in(k) ! f0; 1g`out(k) is a uniformly chosen function and negl(�) is a negligiblefunction.� We say that an `out-ensemble F is (`in; `out)-restricted correlation intractable (or just `in-correlation intractable, for short), if for every `in-respecting probabilistic polynomial-timemachine M and every evasive relation R w.r.t. (`in; `out), it holds thatPrs2f0;1gk[x M(s); (x; fs(x)) 2 R] = negl(k)Weak `in-correlation intractability is de�ned analogously by considering only polynomial-time rec-ognizable R's.The rest of this section is dedicated to demonstrating impossibility results for restricted corre-lation intractable ensembles, in some cases. We also highlight cases where existence of restrictedcorrelation intractable ensembles is left as an open problem.5.1 Negative results for short seedsThe proof ideas of Theorem 3.4 can be easily applied to rule out the existence of certain restrictedcorrelation intractable ensembles where the seed is too short.Proposition 5.2(a) If `in(k) � k�O(log k) for in�nitely many k's, then there exists no ensemble that is (`in; `out)-correlation intractable, even in the weak sense.(b) If `in(k) + `out(k) � k + !(log k), there exists no ensemble that is (`in; `out)-correlation in-tractable. 19



Proof: The proof of (a) is a straightforward generalization of the proof of Theorem 3.4. Actually,we need to consider two cases: the case `in(k) � k and the case k � O(log k) � `in(k) < k. In the�rst case, we proceed as in the proof of Theorem 3.4 (except that we de�ne RF def= f(x; fs(x)) : s 2f0; 1g�; x = s0`in(jsj)�jsjg). In the second case, for every ensemble F , we de�ne the relationRF def= f(x; fxz(x)) : x; z 2 f0; 1g� ; jxj = `in(jxzj)gWe show that RF is evasive by showing that, for every k 2 N and x 2 f0; 1g`in(k), there exist atmost polynomially (in k) many y's such that (x; y) 2 RF . This is the case since (x; y) 2 RF impliesthat there exists some z such that `in(jxzj) = jxj and y = fxz(x). But using the case hypothesiswe have jxj = `in(jxzj) � jxzj � O(log jxzj), which implies that jzj = O(log(jxzj)) and hence alsojzj = O(log jxj). Next, using the other case hypothesis (i.e., k > `in(k) = jxj), we conclude thatjzj = O(log k). Therefore, there could be at most polynomially many such z's, and so the upperbound on the number of y's paired with x follows. The evasiveness of RF as well as the assertionthat RF is polynomial-time computable follow (assuming that the function `in itself is polynomial-time computable). On the other hand, consider the machine M that, on input s, outputs the`in(jsj)-bit pre�x of s. Then, for every s 2 f0; 1g�, we have (M(s); fs(M(s))) 2 RF .For the proof of (b), assume that `in(k) < k (for all but �nitely many k's). We start by de�ningthe \inverse" of the `in function `�1in (n) def= minfk : `in(k) = ng(where, in case there exists no k such that `in(k) = n, we de�ne `�1in (n) = 0). By de�nition itfollows that k � `�1in (`in(k)), for all k's (because k belongs to the set fk0 : `in(k0) = `in(k)g), andthat `in(`�1in (n)) = n, whenever there exists some k for which n = `in(k). Next we de�neRF def= n(x; fxz(x)) : x; z 2 f0; 1g� ; jxj+ jzj = `�1in (jxj)oThis relation is well de�ned since, by the conditions on the lengths of x and z, we have `in(jxzj) =`in(`�1in (jxj)) = jxj and so the function fxz is indeed de�ned on the input x. In case `in(k) �k � !(log k), this relation may not be polynomial-time recognizable. Still, it is evasive w.r.t.(`in; `out), since with security parameter k we have for every x 2 f0; 1g`in(k)���ny 2 f0; 1g`out(k) : (x; y) 2 RFo��� = ���nfxz(x) : jzj = `�1in (`in(k))� `in(k)o \ f0; 1g`out(k)���� 2`�1in (`in(k))�`in(k)� 2k�`in(k)Using k�`in(k) � `out(k)�!(log k), we conclude that the set of y's paired with x forms a negligiblefraction of f0; 1g`out(k), and so that RF is evasive. Again, the machine M , that on input s outputsthe `in(jsj)-bit pre�x of s, satis�es (M(s); fs(M(s))) 2 RF , for all s's.Open Problems: Proposition 5.2 still leaves open the question of existence of (`in; `out)-restrictedcorrelation intractable ensembles, for the case `in(k) + `out(k) < k +O(log k).15 We believe that itis interesting to resolve the situation either way: Either provide negative results also for the above15 In fact such ensembles do exist in case k � 2`in(k) � `out(k) (since the seed may be used to directly specify all thefunction's values), but we dismiss this trivial and useless case.20



special case, or provide a plausible construction. Also open is the sub-case where `in(k)+ `out(k) =k+!(log k) but one considers only weak (`in; `out)-restricted correlation intractability. (Recall thatCase (b) of Proposition 5.2 is proven using relations which are not known to be polynomial-timerecognizable.)We comment that even if restricted correlation intractable ensembles exist, then they are verynon-robust constructs. For example, even if the ensemble F = ffs : jsj = kgk is correlation in-tractable with respect to some length functions (`in; `out), the ensemble that is obtained by applyingmany independent copies of F and concatenating the results may not be. That is, for m :N!N,de�ne Fm def= ff 0hs1;:::;sm(k)i : js1j = � � � = jsm(k)j = kgk2N ; (2)where, for hx1; :::; xm(k)i 2 f0; 1gm(k)�`in(k),f 0hs1;:::;sm(k)i(hx1; :::; xm(k)i) def= hfs1(x1); ::::; fsm(k)(xm(k))i : (3)Then, for su�ciently large m (e.g., m(k) � k=`in(k) will do), the \direct product" ensemble Fm isnot correlation intractable (not even in the restricted sense). That is,Proposition 5.3 Let `in; `out : N!N be length functions so that `in(k) � k, and let m : N!N bea polynomially-bounded function so that m(k) � k=`in(k). Let F be an arbitrary function ensemble,and Fm be as de�ned in Eq. (2) and (3). Then, Fm is not correlation intractable, not even in the(`min ; `mout)-restricted sense, where `min(m(k) � k) def= m(k) � `in(k) and `mout(m(k) � k) def= m(k) � `out(k).Proof: We assume, for simplicity thatm(k) = k=`in(k) (and so `in(k) = k=m(k) and `min(m(k)�k) =k). Given Fm as stated, we again adapt the proof of Theorem 3.4. This time, using `in(k) � k, wede�ne the relationRFm def= [k � (s; hfs(s0); ti) : jsj = k; s0 is the `in(k)-pre�x of s; jtj = (m(k) � 1) � `out(k) 	Notice that in this de�nition we have jsj = k`in(k) � `in(k) = m(k) � `in(k) = `min(m(k) � k), and alsojfs(s0)j+ jtj = m(k) � `out(k) = `mout(m(k) � k), so this relation is indeed (`min ; `mout)-restricted.Again, it is easy to see that RF is polynomial-time recognizable, and it is evasive since everystring x 2 f0; 1gk is coupled with at most a 2�`out(k) fraction of the possible (m(k) �`out(k))-bit longstrings, and `out(k) = !(log k) = !(log(m(k) � k)). (Here we use the hypothesis m(k) = poly(k).)On the other hand, consider a (real-life) adversary that given the seed s = hs1; :::; sm(k)i 2f0; 1gm(k)�k for the function f 0hs1;:::;sm(k)i, sets the input to this function to be equal to s1. Denotingthe `in(k)-pre�x of s1 (equiv., of s) by s01, it follows that fs1(s01) is a pre�x of f 0hs1;:::;sm(k)i(s1) andso (s1; f 0hs1;::::;sm(k)i(s1)) 2 RF . Thus, this real-life adversary violates the (restricted) correlationintractability of Fm.5.2 Correlation intractability for multiple invocationsRecall that Proposition 5.2 does not rule out the existence of restricted ensembles having seedsthat are longer than the sum of lengths of their inputs and outputs. However, even for thisspecial case the only thing that is not ruled out is a narrow de�nition that refers to formingrare relationships between a single input-output pair. In fact, if one generalizes the de�nition ofcorrelation intractability so as to consider evasive relations over unbounded sequences of inputsand outputs, then the negative result in Proposition 5.2 can be extended for arbitrary `in and `out.That is, 21



De�nition 5.4 (multi-invocation restricted correlation intractability) Let `in; `out : N!Nbe length functions. We consider probabilistic polynomial-time oracle machines which on input 1khave oracle access to a function O : f0; 1g`in(k) ! f0; 1g`out(k).� A relation R over pairs of binary sequences is evasive with respect to (`in; `out) (or (`in; `out)-evasive) if for any probabilistic polynomial-time machine M as above it holds thatPrO "(x1; :::; xm) MO(1k) ; jx1j = : : : = jxmj = `in(k)and ((x1; :::; xm); (O(x1); :::;O(xm))2R # = negl(k)As usual, O : f0; 1g`in(k) ! f0; 1g`out(k) is a uniformly chosen function.� We say that an `out-ensemble F is (`in; `out)-restricted multi-invocation correlation intractable(or just `in-multi-invocation correlation intractable, for short), if for every (`in; `out)-evasiverelation R and every probabilistic polynomial-time machine M it holds thatPrs2f0;1gk "(x1; :::; xm) M(s) ; jx1j = : : : = jxmj = `in(k)and ((x1; :::; xm); (fs(x1); :::; fs(xm))2R # = negl(k)Proposition 5.5 Let `in; `out : N!N be arbitrary length functions, with `in(k) � 2 + log k and`out(k) � 1. Then there exist no (`in; `out)-restricted multi-invocation correlation intractable func-tion ensembles.Proof: For simplicity, we consider �rst the case `out(k) � 2. Let F be an `out-ensemble. Adaptingthe proof of Theorem 3.4, we de�ne the relationRF def= [k (((x1; : : : ; xk); (fs(x1); : : : ; fs(xk))) : xi = (i; si); with si 2 f0; 1gand s = s1 : : : sk )(Notice that since `in(k) > 1 + log k, the xi's are indeed in the range of the function fs.) Clearly,this relation is polynomial-time recognizable. To see that this relation is evasive, notice that forany �xed k-bit seed s = s1 : : : sk, we havePrO [O(i; si) = fs(i; si) for i = 1 : : : k] = 2�`out(k)�kHence, the probability that there exists a seed s for which O(i; si) = fs(i; si) holds, for i = 1; :::; k,is at most 2k � 2�`out(k)�k � 2�k. It follows thatPrO [9x1; :::; xk ((x1; : : : ; xk); (O(x1); : : : ;O(xk))) 2 RF ] � 2�kHowever, the corresponding multi-invocation restricted correlation intractability condition does nothold: For any s = s1 : : : sk 2 f0; 1gk , setting xi = (i; si) we get ((x1; :::; xk); (fs(x1); :::; fs(xk))) 2RF .To rule out the case `out(k) = 1, we rede�ne RF so that ((x1; :::; x2k); (fs(x1); :::; fs(x2k))) 2 RFif xi = (i; si) for i = 1; :::; k and xi = (i; 0) for i = k + 1; :::; 2k.
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Discussion: Propositions 5.2, 5.3 and 5.5 demonstrate that there is only a very narrow mar-gin in which strict correlation-intractability may be used. Still, even ensembles that are (strict)correlation-intractable with respect to relations of a-priori bounded total length (of input-outputsequences) may be useful in some applications. Typically, this may hold in applications wherenumber of invocations of the cryptosystem is a-priori bounded (or where the security of the systemdepends only on an a-priori bounded partial history of invocations; e.g., the current one). We notethat the Fiat-Shamir heuristic for transforming interactive identi�cation protocols into signatureschemes [9] does not fall into the above category, since the function's seed needs to be �xed with thepublic key, and used for signing polynomially many messages, where the polynomial is not a-prioriknown.5.3 Correlation intractability for given, polynomial-time relationsIn all our negative results, the evasive relation demonstrating that a certain function ensemble isnot correlation-intractable is more complex than the function ensemble itself. A natural restrictionon correlation-intractability is to require that it holds only for relations recognizable within certain�xed polynomial time bounds (or some �xed space bound), and allowing the function ensemble tohave a more complex polynomial-time evaluation algorithm. We stress that, in both the de�nitionof evasiveness and correlation-intractability, the adversary that generates the inputs to the relationis allowed arbitrary (polynomial) running time; this time may be larger than both the time toevaluate the function ensemble and the time to evaluate the relation. Such a restricted notion ofcorrelation-intractability may su�ce for some applications, and it would be interesting to determinewhether function ensembles satisfying it do exist. Partial results in this direction were obtained byNissim [24] and are described next:Proposition 5.6 ([24]) Let `in; `out : N!N be arbitrary length functions, with k � `out(k) �(`in(k)+!(log k)).16 Then, for every binary relation R that is evasive with respect to (`in; `out) andrecognizable in polynomial-time, there exists a function ensemble FR = ffsg that is correlation-intractable with respect to R; that is, for every `in-respecting probabilistic polynomial-time machineM it holds that Prs2f0;1gk[x M(s); (x; fs(x)) 2 R] = negl(k)We note that the postulated construction uses a seed length that is longer than `in + `out. Thus,this positive result capitalizes on both restrictions discussed above (i.e., both the length and thecomplexity restrictions).Proof: Let t = `in(k) + !(log k). For every seed s = (s1; :::; st) 2 f0; 1gt�`out(k), we de�nefs : f0; 1g`in(k) ! f0; 1g`out(k) so that fs1;:::;st(x) equals si if i is the smallest integer such that(x; si) 62 R. In case (x; si) 2 R holds for all i's, we de�ne fs1;:::;st(x) arbitrarily.Let R(x) def= fy : (x; y) 2 Rg, and Sk def= fx 2 f0; 1g`in(k) : jR(x)j � 2`out(k)=2g (S stands for\Small image"). Since R is evasive, it is infeasible to �nd an x 2 f0; 1g`in(k) not in Sk. Thus, forevery probabilistic polynomial-time M , Prs2f0;1gk [M(s) 62 Sk] = negl(k). On the other hand, theprobability that such M(s) outputs an x 2 Sk so that (x; fs(x)) 2 R is bounded above by17Prs2f0;1gk[9x 2 Sk s.t. (x; fs(x)) 2 R] � Prs2f0;1gk[9x 2 Sk 8i (x; si) 2 R]16 Recall that (`in; `out)-restricted correlation-intractable ensembles exist for k � 2`in(k) � `out(k); see Footnote 15.17 For the �rst inequality, we use the fact that if there exists an i such that (x; si) 62 R then (x; fs(x)) 62 R.23



� jSkj �maxx2Sk nPrs [8i (x; si) 2 R]o� 2`in(k) � (1=2)t = negl(k)Combining the two cases, the proposition follows.Considering the notion of multi-invocation correlation-intractability when restricting the com-plexity of the relation (and allowing the function ensemble to be more complex), Nissim has obtainedanother impossibility result [24]:Proposition 5.7 ([24]) There exists an evasive relation R that is recognizable in polynomial-timeso that no function ensemble F = ffsg is multi-invocation correlation-intractable with respect to R;that is, for every function ensemble F = ffsg there exists a polynomial-time machine M such thatPrs [(x1; :::; xt) M(s) ; ((x1; :::; xt); (fs(x1); :::; fs(xt))2R ] = 1Furthermore, for some universal polynomial p, which is independent of F , it holds that t < p(jx1j).We stress that the above assertion includes even function ensembles that have (polynomial-time)evaluation algorithms of running time greater than the time it takes to recognize t-tuples of corre-sponding length is the relation. Furthermore, it includes function ensembles having seeds of lengthexceeding the total length of pairs in the relation.Proof Sketch: We follow the ideas underlying the proof of Theorem 4.4. Speci�cally, using theuniversal machine MU and the algorithms (Prv and Ver) of a CS-proof system, we consider arelation R that contains pairs of binary sequences, so that ((x; �; q1:::; qm); (y; �; a1:::; am)) 2 R ifthese strings describe an accepting execution of the CS-veri�er with respect to machine MU . Thatis, we require that the following conditions hold:1. All the strings y; �; a1:::; am have the same length. Below we denote this length by `out,jyj = j�j = ja1j = � � � = jamj = `out.2. The string � is an alleged CS-proof for the assertion that the machine MU accepts the input(x; y) within t(n) = nlogn steps, where n def= jxj+ jyj.3. Given access to an oracle that on queries qi returns answers ai, and given security parametern+ `out and input w = (hMU i; (x; y); t(n)), the CS veri�er Ver accepts the CS-proof � afterquerying the oracle on q1 : : : qm (in this order), and obtaining the corresponding answersa1 : : : am.(Here we use the fact that the veri�er is deterministic, and thus its queries are determinedby its input and the answers to previous queries.)Recall that, by de�nition, m is bounded by a �xed polynomial in n. In fact, in Micali's con-struction [21], m is poly-logarithmic in n. We comment that, assuming the existence of suitablecollision-intractable hash functions, one may obtain m = 1 (cf. [22]. In addition, one may need tomake some minor modi�cation in the above construction.)As in the proof of Theorem 4.4, using the computational soundness of CS-proofs, it can be shownthat the above relation is evasive. By the additional e�ciency conditions of CS-proofs, it follows thatthe relation is recognizable in polynomial-time. On the other hand, as in the proof of Theorem 4.4,for every function ensemble F i = ff isg there exists a polynomial-time adversary A, that on input s24



produces a sequence (x; �; q1; :::; qm) so that ((x; �; q1; :::; qm); (f is(x); f is(�); f is(q1); :::; f is(qm))) 2 R.This is done as follows: First A sets x = hi; si, y = f is(x), and n def= jxj+ jyj. Next, A constructs aCS-proof that indeedMU accepts (x; y) within nlog n steps, and sets � to equal this proof. (This steptakes time polynomial in the evaluation time of f is(x).) Note that since (x; y) is indeed accepted byMU (in less than nlogn steps), the veri�er accept � as a proof no matter how the oracle is determined(since perfect completeness holds). Finally, the adversary invokes the veri�er (on input consistingmainly of (x; y) and �), and (by emulating the oracle) determines interactively the oracle queriesand answers of the veri�er; that is, for every j = 1; :::;m, the adversary determines the jth querymade by the veri�er, sets qj to equal this query, and provides the veri�er with the answer f is(qj).26 ConclusionsThe authors have di�erent opinions regarding the Random Oracle Methodology. Rather than tryingto strike a mild compromise, we prefer to present our disagreements in the most controversial form.6.1 Ran's ConclusionsReal-life cryptographic applications are complex objects. On top of the \cryptographic core,"these applications typically involve numerous networking protocols, several other applications, user-interfaces, and in fact also an entire operating-system. The security of an application depends onthe security of all these components operating in unison. Thus, in principle, the best way to gainassurance in the security of a cryptographic application is to analyze it as a single unit, bones andfeathers included.However, analyzing an entire system is prohibitively complex. Moreover, we often feel thatthe \essence" of a cryptographic application can be presented in a relatively simple way withoutgetting into many details, which, we feel, are \extraneous" to the actual security. Consequently,we often make abstractions of a cryptographic application by leaving many details \outside themodel". Nonetheless, some caution is needed when making abstractions: While good abstractionsare important and useful, bad abstractions can be dangerous and misleading. Thus, it is crucial tomake sure that one uses a sound abstraction, or one that helps to distinguish between good andbad applications.One popular abstraction is to treat computers in a network as interactive Turing machineswho run one speci�c (and relatively simple) algorithm, and assume that delivery of messages isdone simply by having one machine write values on the tapes of another machine. We are thensatis�ed with de�ning and analyzing security of a protocol in this abstract model. In other words,this abstraction implicitly uses the following methodology (which I'll call the \Interactive Turingmachine methodology"): Design and analyze a protocol in the \idealized system" (i.e., using Turingmachines). Next, come up with an \implementation" of the idealized protocol by adding thecomponents that deal with the networking protocols, the operating system, the user interfaces, etc.Now, \hope" that the implementation is indeed secure.We widely believe that this methodology is sound, in the sense that if an idealized protocol issecure then there exist secure implementations of it. Furthermore, security of an idealized protocolis a good predictor for the feasibility of �nding a good implementation to it. (Of course, �ndingsecure implementations to secure idealized protocols is a far-from-trivial task, and there is probablyno single automatic method for securely implementing any idealized protocol. But this does notundermine the soundness of the \Interactive Turing machine methodology".)25



The Random Oracle Methodology is, in essence, another proposed abstraction of cryptographicapplications. It too proposes to de�ne and analyze security of protocols in an idealized model, thenperform some transformation that is \outside the formal model", and now \hope" that the resultingimplementation is secure. At �rst glance it looks like a great abstraction: It does away with speci�cimplementation issues of \cryptographic hash functions" and concentrates on designing protocolsassuming that an \ideal hash function" is available. Indeed, protocols that were designed usingthis methodology are remarkably simple and e�cient, while resisting all known attacks.However, as shown in this work, and in sharp contrast to the \Interactive Turing machinemethodology", the Random Oracle Methodology is not sound. Furthermore, it is a bad predictorto the security of implementations: Not only do there exist idealized protocols that have no secureimplementations, practically any idealized protocol can be slightly \tweaked" so that the tweakedprotocol remains just as secure in the idealized model, but has no secure implementations. Thisleaves us no choice but concluding that, in spite of its apparent successes, the Random OracleMethodology is a bad abstraction of protocols for the purpose of analyzing security.The loss of reductions to hard problems. The above argument should provide su�cientmotivation to be wary of security analyses in the Random Oracle Model. Nonetheless, let ushighlight the following additional disturbing aspect of such analysis.One of the great contributions of complexity-based modern cryptography, developed in the pastquarter of a century, is the ability to base the security of many varied protocols on a small number ofwell-de�ned and well-studied complexity assumptions. Furthermore, typically the proof of securityof a protocol provides us with a method for transforming adversary that breaks the security of thesaid protocol into an adversary that refutes one of the well-studied assumptions. In light of ourinability to prove security of protocols from scratch, this methodology provides us with the \nextbest" evidence for the security of protocols.The Random Oracle Methodology does away with these advantages. Assume that an idealizedprotocol A is proven secure in the Random Oracle Model based on, say, the Di�e-Hellman assump-tion, and that someone comes up with a way to break any implementation of A. This does notnecessarily mean that it is now possible to break Di�e-Hellman! Consequently, the reducibilityof the security of A to the hardness of Di�e-Hellman is void. This brings us back to a situationwhere the security of each protocol is a \stand-alone" problem and is, in essence, unrelated to thehardness of known problems.Possible alternative directions. In spite of its shortcomings, the Random Oracle Methodologyseems to generate simple and e�cient protocols against which no attacks are known. One possibledirection towards providing formal justi�cation for some of these protocols is to identify useful,special-purpose properties of the random oracle, which can be also provided by a fully speci�edfunction (or function ensemble) and so yield secure implementations of certain useful ideal systems.First steps in this direction were taken in [4, 6, 10]. Hopefully, future works will push this directionfurther.6.2 Oded's ConclusionsMy starting point is that within the domain of science, every deduction requires a rigorous justi�ca-tion.18 In contrast, unjusti�ed deductions should not be allowed; especially not in a subtle research18 This does not disallow creative steps committed in the course of research, without proper justi�cation. Suchunjusti�ed steps are the fuel of progress. What I refer to are claims that are supposed to re
ect valid facts. Such26



area such as Cryptography. Furthermore, one should refrain from making statements that are likelyto mislead the listener/reader, such as claiming a result in a restricted model while creating theimpression that it holds also in a less restricted model. The presentation of such a result shouldclearly state the restrictions under which it holds, and refrain from creating the impression that theresult extends also to a case where these restrictions are waived (unless this is indeed true (and onecan prove it)). Needless to say, it is perfectly ok to conjecture that a restricted result extends alsoto a case when these restrictions are waived, but the stature of such a statement (as a conjecture)should be clear.The above abstract discussion directly applies to security in the Random Oracle Model. Deduc-ing that the security of a scheme in the Random Oracle Model means anything about the securityof its implementations, without proper justi�cation, is clearly wrong.19 This should have been clearalso before the current work. It should have also been clear that no proper justi�cation of deductionfrom security in the Random Oracle Model to security of implementations has been given (so far).The contributions of the current work are two-fold:1. This work uncovers inherent di�culties in the project of providing conditions that would allow(justi�able) deduction from security in the Random Oracle Model to security of implementa-tions. Such a project could have proceeded by identifying properties that characterize proofsof security in the Random Oracle Model, and (justi�ably) deducing that the such schemesmaintain their security when implemented with ensembles satisfying these properties. Theproblem with this project is that correlation intractability should have been (at the very least)one of these properties, but (as we show) no function ensemble can satisfy it.2. As stated above, deducing that the security of a scheme in the Random Oracle Model meansanything about the security of its implementations, without proper justi�cation, is clearlywrong. The current work presents concrete examples in which this unjusti�ed deductionleads to wrong conclusions. That is, it is shown that not only that unjusti�ed deductionregarding the Random Oracle Model may lead to wrong conclusions, but rather than in somecases indeed this unjusti�ed deduction does lead to wrong conclusions. Put in other words,if one needs a concrete demonstration of the dangers of unjusti�ed deduction when appliedto the Random Oracle Model, then this work provides it.The bottom-line: It should be clear that the Random Oracle Methodology is not sound; thatis, the mere fact that a scheme is secure in the Random Oracle Model cannot be taken as evidence(or indication) to the security of (possible) implementations of this scheme. Does this mean thatthe Random Oracle Model is useless? Not necessarily: it may be useful as a test-bed (or as a sanitycheck).20 Indeed, if the scheme does not perform well on the test-bed (resp., fails the sanity check)then it should be dumped. But one should not draw wrong conclusions from the mere fact that ascheme performs well on the test-bed (resp., passes the sanity check). In summary, the RandomOracle Methodology is actually a method for ruling out some insecure designs, but this method isnot \complete" (i.e., it may fail to rule out insecure designs).21claims should be fully justi�ed, or o�ered as conjectures.19 Using the Random Oracle Model as a justi�cation to the feasibility of meeting some security requirements iseven \more wrong".20 This explains the fact the Random Oracle Methodology is in fact used in practice. In also explains why manyreasonable schemes, the security of which is still an open problem, are secure in the Random Oracle Model: goodsuggestions should be expected to pass a sanity check.21 Would I, personally, endorse this method is a di�erent question. My answer is very much time-sensitive: Giventhe current misconceptions regarding the Random Oracle Model, I would suggest not to include, in currently published27



6.3 Shai's ConclusionsThe negative results in this work (and in particular Theorems 4.4 and 4.6) leave me with an uneasyfeeling: adopting the view that a good theory should be able to explain \the real world", I wouldhave liked theoretical results that explain the apparent success of the random oracle methodologyin devising useful, seemingly secure, cryptographic schemes. (Indeed, this was one of the originalmotivations for this work.) Instead, in this work we show that security of cryptographic schemesin the Random Oracle Model does not necessarily imply security in \the real world". Trying toresolve this apparent mismatch, one may come up with several di�erent explanations. Some ofthose are discussed below:� The current success of this methodology is due to pure luck: all the current schemes that areproven secure in the Random Oracle Model, happen to be secure also in the \real world" forno reason. However, our \common sense" and sense of esthetics must lead us to reject suchexplanation.� The current apparent success is a mirage: some of the schemes that are proven secure in theRandom Oracle Model are not really secure, and attacks on them may be discovered in thefuture.This explanation seems a little more attractive than the previous one. After all, a securityproof in the Random Oracle Model eliminates a broad class of potential attacks (i.e., the onesthat would work also in the Random Oracle Model), and in many cases it seems that attacksof this type are usually the ones that are easier to �nd. Hence, it makes sense that if thereexists a \real life" attack on a scheme which is secure in the Random Oracle Model, it may beharder { and take longer { to �nd this attack. Still, the more time passes without publishedattacks against \real life" schemes which are proven secure in the Random Oracle Model, theless likely this explanation would become.� Another possible explanation is that the random oracle methodology works for the currentpublished schemes, due to some speci�c features of these schemes that we are yet to identify.That is, maybe it is possible to identify interesting classes of schemes, for which security inthe Random Oracle Model implies the existence of a secure implementation.22Identifying such interesting classes, and proving the above implication, is an important { andseemingly hard { research direction. (In fact, it even seems to be hard to identify classesof schemes for which this implication makes a reasonable computational assumption.) Toappreciate the di�culty in proceeding towards this goal, recall that the techniques in thework can be used to \tweak" almost any cryptographic scheme into one which is secure in theRandom Oracle Model but has no secure implementation. Hence, any classi�cation as abovemust be re�ned enough to separate the original scheme (for which we want to prove thatsecurity in the Random Oracle Model implies security in the real world) from the \tweaked"one (for which this implication does not hold).My bottom line is that at the present time, the random oracle methodology seems to be avery useful \engineering tool" for devising schemes. As a practical matter, I would much ratherwork, proofs of security in the Random Oracle Model. My rationale is that the dangers of misconceptions (regardingsuch proofs) seem to out-weight the gain of demonstrating that the scheme passed a sanity check. I hope that in thefuture such misconceptions will be less prevailing, at which time it would be indeed recommended to report on theresult of a sanity check.22One particularly silly example are schemes that do not use the oracle. Another, more interesting example, areschemes that only use the \perfect one-way" property of the oracle; see [4, 6].28
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