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Abstract

A function on n variables is called a k-junta if it depends on at most k of its variables.
The problem of testing whether a function is a k-junta or is “far” from being a k-junta
is a central problem in property testing and is closely related to the problem of learning
high-dimensional data.

In this note, we give an informal presentation of three recent algorithms for testing
juntas efficiently.

1 Introduction

A function f : {0, 1}n → {0, 1} is said to be a k-junta if it depends on at most k variables.
Juntas provide a clean model for studying learning problems in the presence of many irrele-
vant features [5, 8], and have consequently been of particular interest to the computational
learning theory community [6, 8, 18, 16, 17].

As is typical in the machine learning setting, all learning results on k-juntas assume
that the unknown function is a k-junta. In practice, however, it is often not known a priori
whether a function being learned is a k-junta or not. It is therefore desirable to have an
efficient algorithm for testing whether a function is a k-junta or “far” from being a k-junta
before attempting to run any k-junta learning algorithm.

We consider the problem of testing k-juntas in the standard property testing framework
originally defined by Rubinfeld and Sudan [20]. In this framework, we say that a function
f is ε-far from being a k-junta if for every k-junta g, the functions f and g disagree on at
least an ε fraction of all inputs.

An ε-tester for k-juntas is an algorithm A that queries an unknown function f on q
inputs of its choosing, and then (1) accepts f with probability at least 2/3 when f is a
k-junta, and (2) rejects f with probability at least 2/3 when f is ε-far from being a k-junta.
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When the algorithm A chooses all its queries in advance (i.e., before observing the values
of the function on any of its previous queries), it is non-adaptive; otherwise it is adaptive.

The main question of interest when testing k-juntas is the following:

What is the minimum number of queries required to ε-test k-juntas?

This short note provides an informal introduction to three recent algorithms for testing
juntas with a very small number of queries. The goal of this note is to highlight the simplicity
and naturalness of the algorithms, and as a result many technical (but interesting!) details
are omitted from this presentation; for a more thorough presentation of the same topic, the
interested reader is referred to the original articles cited throughout.

Outline. We begin in Section 2 with an algorithm of Parnas, Ron, and Samorodnitsky [19]
that yields an efficient tester for 1-juntas. In Section 3, we see an algorithm of Fischer,
Kindler, Ron, Safra, and Samorodnitsky [13] for testing k-juntas with a number of queries
that is polynomial in k and independent of n. In Section 4, we present a recent algorithm [4]
for testing k-juntas with only O(k log k+k/ε) queries. Finally, we discuss some related work
and open problems in Section 5.

2 Testing 1-juntas

The first result explicitly related to testing juntas was obtained by Parnas, Ron, and
Samorodnitsky [19], who generalized a result of Bellare, Goldreich, and Sudan [2] on testing
long codes to obtain an algorithm for testing 1-juntas with only O(1/ε) queries.

The class of functions that are 1-juntas is very small: it contains only the constant
functions, the dictator functions, and the anti-dictator functions. The function f is a
dictator function if there is an index i ∈ [n] such that f(x) = xi for every input x ∈ {0, 1}n.
And f is an anti-dictator if the function f̄ defined by f̄(x) = 1−f(x) is a dictator function.

Parnas et al. introduced a simple but efficient algorithm for testing dictator functions
with only O(1/ε) queries [19]. This algorithm also yields a 1-junta tester: simply run the
dictator test on f and f̄ , and also test if f is constant; accept the function iff any of those
three tests accept. Testing constant functions can be trivially done with O(1/ε) queries, so
the resulting 1-junta tester also only requires O(1/ε) queries.

The dictator testing algorithm of Parnas et al. uses the fact that dictator functions are
the only non-zero functions that are both linear and monotone. Their test is the natural
one: test whether the function is linear (or at least, is not far from linear), test that it is not
the zero function, then test whether it is monotone. There is one twist to the algorithm:
in order to guarantee that it correctly rejects functions ε-far from dictator functions with
high probability, it also uses the self-correction property of nearly-linear functions.
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Dictator Test (f , ε)

1. Verify that f is linear using an ε-tester for linearity.
2. Using self-correction, verify that f(1) = 1.
3. For 64 randomly selected pairs x, y,

3.1. Verify with self-correction that f(x ∧ y) = f(x) ∧ f(y).
4. Accept the function iff all the above tests passed.

For more details on the algorithm and its analysis, readers are referred to the original
article of Parnas et al. [19]. More information on linearity and self-correction can also be
found in [9].

3 Testing k-juntas

The algorithm outlined in the previous section relies on special properties of 1-juntas, so it
cannot be generalized to test k-juntas for any k ≥ 2. Nonetheless, Fischer, Kindler, Ron,
Safra, and Samorodnitsky [13] showed that for any constant k, it is possible to test k-juntas
with a number of queries that is independent of n.

3.1 Algorithm

Fischer et al. [13] introduced multiple testing algorithms for testing k-juntas. In this section
we focus on their simplest algorithm. We briefly discuss some of its more query-efficient
variants in Section 3.3.

The algorithm for testing k-juntas relies on two basic components: the independence
test and the idea of partitioning the coordinates.

Independence Test. The independence test is a simple test for verifying that a given
function f does not depend on a set S ⊆ [n] of coordinates: it selects a random pair (x, y)
of inputs whose values differ only in the coordinates in S, and tests whether f(x) = f(y).

Independence Test (f , S)

1. Generate x, y ∈ {0, 1}n uniformly at random from all the pairs for
which xS̄ = yS̄ .

2. Accept iff f(x) = f(y).
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It is easy to verify that when f is independent of the coordinates in S, then the Inde-
pendence test always accepts. Conversely, Fischer et al. [13] showed that when f “strongly”
depends on the coordinates in S, then the test rejects with non-negligeable probability, so
running the independence test multiple times on S leads to a at least one rejection with
high probability. (This fact is discussed in more details in the next section.)

Partitioning. There is a very simple algorithm for testing whether a function is a k-
junta: run the independence test (sufficiently many times) on each singleton set S =
{1}, {2}, . . . , {n} and accept iff at most k of those sets are rejected. The resulting algo-
rithm is a valid k-junta tester, but has a very large query complexity. In order to reduce
the query complexity, Fischer et al. [13] showed that one can also test k-juntas by randomly
partitioning the coordinates into poly(k) buckets and running the independence test on
each bucket (a sufficient number of times).

k-Junta Test (f , ε)

1. Randomly partition the coordinates into O(k2) buckets.
2. Run the Independence Test Õ(k2/ε) times on each bucket.
3. Accept iff at most k buckets fail the independence test.

This k-junta testing algorithm has query complexity Õ(k4/ε). It is clear that it always
accepts k-juntas, since at most k buckets contain a relevant coordinate and those are the
only buckets that may be rejected by the independence test. In the next section, we briefly
discuss the methods that Fischer et al. used to show that the algorithm also correctly rejects
functions ε-far from k-juntas with high probability.

3.2 Analysis

Fischer et al. [13] used the influence of sets of variables to establish the correctness of their
junta testing algorithm.1 The influence of the set S ⊆ [n] in f is defined to be

Inff (S) = 2 Pr
x,y∈{0,1}n

[f(x) 6= f(xSyS̄)].

That is, the influence of S is proportional to the probability that re-randomizing the values
of the variables in S of a randomly chosen input changes the value of the function. (The
”2” multiplier normalizes the measure to lie in the interval [0, 1].)

The first key insight of Fischer et al. in the analysis of their algorithm is that the
probability that the Independence Test rejects a set S is exactly Inff (S)/2. The second

1In [13], the notion of influence is called variation, but is otherwise as described here.
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insight is that when a function is ε-far from being a k-junta, then a random partition of its
variables into O(k2) buckets leaves at least k + 1 buckets with influence at least O(ε/k2)
with high probability. Both of those facts are established through Fourier analysis; the
details can be found in the original work of Fischer et al. [13].

3.3 Improvements

The algorithm for testing k-juntas presented above is extremely elegant and simple, but it
does not have optimal query complexity: by querying carefully chosen sets of buckets, it
is possible to reduce the total number of queries required by the algorithm. This is just
what Fischer et al. [13] did, and as a result they introduced testers for k-juntas with query
complexity as low as Õ(k2/ε).

The junta-testing algorithms of Fischer et al. remained the most query-efficient ways
to test juntas until very recently, when the current author introduced an algorithm for
testing boolean functions for the property of being k-juntas with Õ(k3/2)/ε queries [3]. This
algorithm again used the independence test and the partitioning idea, but obtained a lower
query complexity by combining two distinct strategies: one designed to reject functions
with k + 1 variables with high influence, and a separate one to reject functions with many
variables with low but non-negligeable influence.

3.4 Lower bounds

In conjunction with their algorithms for testing k-juntas, Fischer et al. also introduced
the first non-trivial lower bound on the query complexity of the junta testing problem.
Specifically, they showed that for k = o(

√
n), non-adative algorithms for testing k-juntas

must make at least Ω̃(
√
k) queries [13]. This lower bound immediately implies a lower

bound of Ω(log k) queries for all adaptive k-junta testers as well.
Shortly afterwards, Chockler and Gutfreund [10] improved the lower bound and showed

that Ω(k) queries are needed to test k-juntas (adaptively or non-adaptively). As we will see
in the next section, this bound is nearly tight.

4 Testing k-juntas nearly optimally

4.1 Algorithm

The junta testing algorithm we saw in the previous section was based on the simple Inde-
pendence Test; the algorithm we will describe in this section is based on a different simple
but useful idea, due to Blum, Hellerstein, and Littlestone [7]: if we have two inputs x, y ∈ X
such that f(x) 6= f(y), then the set S of coordinates in which x and y disagree contains
a coordinate that is relevant in f . Furthermore, by performing a binary search over the
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hybrid inputs formed from x and y, we can identify the relevant coordinate with O(log |S|)
queries.

Just as the algorithm in the last section combined the Independence Test with the idea
of partitioning the variables to reduce the query complexity of the testing algorithm, we
build on the previous observation by noting that if we have a partition of the coordinates
into s parts and only care to identify a part that contains a relevant coordinate (rather than
the coordinate itself), then we can optimize the binary search to only take O(log s) queries.

The k-junta testing algorithm uses the optimized binary search in the obvious way. It
maintains a set S of coordinates that includes all the variables that are known to be relevant
to the function, and partitions the coordinates into a large number of sets. It then generates
pairs of inputs x, y ∈ X at random, and checks if f(x) 6= f(xSyS̄). When a pair that satisfies
the inequality is found, the algorithm uses a binary search to identify a set that contains a
relevant coordinate, and adds all the coordinates in that set to S. If the algorithm identifies
k + 1 different sets with relevant coordinates, it rejects the function; otherwise, it accepts
the function.

k-Junta Test (f , ε)

Additional parameters: s = O(k9/ε5), r = O(k log k/ε), S ← ∅

1. Randomly partition the coordinates in [n] into s sets I1, . . . , Is.
2. For each of r rounds,

2.1. Generate a pair (x, y) at random such that xS = yS .
2.2. If f(x) 6= f(y), then do a binary search to identify a set Ij

with a relevant variable and add Ij to S.
2.3. If S contains > k sets, quit and reject.

3. Accept.

Like the other two algorithms we have seen, it always accepts k-juntas, and once again
the non-trivial part of the analysis of the algorithm is the proof that functions ε-far from
k-juntas are rejected by the algorithm with high probability.

4.2 Analysis

The key to showing that functions ε-far from k-juntas are rejected with high probability is
the following lemma:

Lemma 4.1. Let f : {0, 1}n → {0, 1} be ε-far from being a k-junta, and let I be a sufficiently
fine partition of [n]. Then with high probability, for any set S formed by taking the union
of at most k parts of I, Inff (S) ≥ ε/2.
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Once the Lemma’s proof is complete, the rest of the analysis of the algorithm is straight-
forward: by the Lemma, when f is ε-far from being a k-junta and at most k sets with relevant
variables have been identified, the set of remaining variables has influence at least ε/2. So
each pair (x, y) sampled in step 2.1 will satisfy f(x) 6= f(y) with probability at least ε/2,
and with high probability at least k + 1 sets with relevant variables will be identified.

The proof of Lemma 4.1 can be completed with Fourier analysis. Alternatively, and more
generally, it can also be completed using the Efron-Stein decomposition of functions [12].
This is the approach taken in [4], and it enables the analysis of the algorithm to hold even
when the algorithm is testing non-boolean functions for the property of being k-juntas.2

5 Discussion and open problems

5.1 Closing the gap

The algorithm we saw in the last section and the lower bound of Chockler and Gutfreund [10]
mentioned previously almost determine the query complexity of the problem of testing
juntas: at least Ω(k) and at most O(k log k + k/ε) queries are required to ε-test k-juntas.

The obvious question that remains open is to close the gap completely. Besides being an
interesting question in its own right, closing the gap could also have some implications with
respect to property testing testing with quantum algorithms: Atıcı and Servedio have shown
that quantum algorithms can ε-test k-juntas with O(k/ε) queries [1], so an improvement of
the lower bound would establish a gap between the query complexity of testing juntas with
classical and quantum algorithms.

5.2 Adaptive vs. non-adaptive testing

Gonen and Ron [15], and Goldreich and Ron [14] recently began a systematic study of the
benefits of adaptivity for testing properties in the dense-graph model. Interestingly, they
showed that for some properties, there is a gap between the query complexity of the best
adaptive and non-adaptive testing algorithms, while for other properties no such gap exists.

The current gap between query complexity of the best adaptive and non-adaptive algo-
rithms for testing k-juntas (O(k log k+k/ε) and Õ(k3/2/ε), respectively) leaves an interesting
problem open: does adaptivity help when testing k-juntas?

5.3 Tolerant testing and testing by implicit learning

One last problem that is quite interesting is the question of determining the optimal query
complexity of a tolerant junta tester. Given 0 ≤ ε1 < ε2, an (ε1, ε2)-tolerant k-junta tester

2We note that the result in [4] was not the first one to generalize the analysis of a junta testing algorithm
to non-boolean functions; Diakonikolas et al. [11] did so as well with a more technically intricate argument.
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is a tester that, with high probability, accepts functions that are ε1-close to being k-juntas
and rejects functions that are ε2-far from being k-juntas.

One very compelling reason for examining tolerant junta testers is the work of Diakoniko-
las, Lee, Matulef, Onak, Rubinfeld, Servedio, and Wan on testing by implicit learning [11].
They showed that a tolerant junta tester can be used as a basic building block to obtain
efficient testing algorithms for a large class of properties related to the complexity of func-
tions; improvements on the query complexity of tolerant junta tester could potentially yield
improved query complexities on many of those properties as well.
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