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Abstract

A 1-local 2d-regular 2n-vertex graph is represented by d bijections over {0, 1}n such that
each bit in the output of each bijection is a function of a single bit in the input. An explicit
construction of 1-local expanders was presented by Viola and Wigderson (ECCC, TR16-129,
2016), and the goal of the current work is to de-construct it; that is, make its underlying ideas
more transparent.

Starting from a generic candidate for a 1-local expander (over {0, 1}n), we first observe that
its underlying bijections consists of pairs of (“relocation”) permutations over [n] and offsets
(which are n-bit long strings). Next, we formulate a natural problem regarding “coordinated
random walks” (CRW) on the corresponding (n-vertex) “relocation” graph, and prove the fol-
lowing two facts:

1. Any solution to the CRW problem yields 1-local expanders.

2. Any constant-size expanding set of generators for the symmetric group (over [n]) yields a
solution to the CRW problem.

This yields an alternative construction and different analysis than the one used by Viola and
Wigderson. Furthermore, we show that solving (a relaxed version of) the CRW problem is
equivalent to constructing 1-local expanders.

An early version of this work appeared as TR16-152 of ECCC; it was written in a rather laconic
style and reflected the train of thoughts of the author. The current version was significantly revised,
adding various clarifications and elaborations with the aim of better serving a wider readership.

1 Introduction

Expander graphs are families of regular graphs of fixed degree and constant “expansion” factor
(equiv., logarithmic mixing time), where the family consists of graphs for varying number of vertices.
Expander graphs exist in abundance (i.e., a random O(1)-regular graph is an expander, w.v.h.p.)
and have numerous applications in the theory of computation (see, e.g., [3]). Hence, explicit
constructions of expanders are of great interest to this field, and the more explicit the construction –
the better.

A strong notion of explicitness refers to the computation of the neighborhoods in the expander.
Specifically, given the label of a vertex v and an index i, the task is to find the ith neighbor of v.
It is also desirable to have 2d-regular expanders that can be represented by d simple permutations
of the vertex set, where each permutation corresponds to a collection of disjoint cycles that covers
the vertex-set. But, how simple can these bijections be?
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It turns out that these bijections can be extremely simple. Specifically, considering graphs over
the vertex set {0, 1}n, Viola and Wigderson [6] showed that each bit in the output of each of the
corresponding bijections may depend on a single bit in the input (i.e., the label of the vertex); that
is, these bijections are 1-local. Recall that a function f : {0, 1}n → {0, 1}n is called t-local if each
bit in its output depends on at most t bits in its input. The aforementioned result of Viola and
Wigderson [6] asserts:

Theorem 1 (a construction of 1-local expanders [6]): There exists a constant d and a set of d
explicit 1-local bijections, {f1, ..., fd : {0, 1}n → {0, 1}n}n∈N, such that the 2d-regular 2n-vertex

graph that consists of the vertex set {0, 1}n and the edge multi-set
⋃

i∈[d]{{x, fi(x)} : x ∈ {0, 1}n}
is an expander.

Indeed, by association, we refer to a regular 2n-vertex graph as in Theorem 1 by the term 1-local;
that is, a 2d-regular graph G = ({0, 1}n, E) is called 1-local if E =

⋃
i∈[d]{{x, fi(x)} : x ∈ {0, 1}n}

such that each fi is a 1-local bijection. (By saying that the foregoing bijections are explicit, we
mean that they can be evaluated in poly(n)-time, where throughout the paper we think of n as
varying.)

1.1 Initial observations, which should not be skipped

We first observe that each 1-local bijection fi : {0, 1}n → {0, 1}n is determined by a permutation
of the bit locations π(i) : [n] → [n], called the relocation (permutation), and an offset s(i) ∈ {0, 1}n

such that fi(x) = xπ(i) ⊕ s(i), where xπ(i) = xπ(i)(1) · · · xπ(i)(n); that is, fi(x) is the string obtained

by relocating the bits of x according to π(i) and offsetting the result by s(i) (equiv., the jth bit of

fi(x) equals the sum of the π(i)(j)
th

bit of x and the jth bit of s(i)).
Obtaining a 1-local expander requires using both the offsets (i.e., s(i)’s) and the relocation

permutations, because without the offsets the fi’s maintain the Hamming weight of the vertex (and
so the 2n-vertex graph is not even connected), whereas without the permutations the 2n-vertex
graph decomposes into even smaller connected components (i.e., each of size at most 2d). On the
other hand, using both offsets and relocations, it is quite easy to obtain 1-local 4-regular graphs
with polylogarithmic mixing time (equiv., the rate of convergence is bounded away from 1 by the
reciprocal of a polylogarithmic function in the size of the graph (see Section 1.3)).

Observation 2 (the “shuffle exchange” graph is a 1-local “weak expander”):1 Let f1(x) = sh(x)
and f2(x) = x ⊕ 0n−11, where sh(x1 · · · xn) = (x2 · · · xnx1) is a cyclic shift that corresponds to

the relocation permutation π(i) = (i mod n) + 1. Then, the 4-regular 2n-vertex 1-local graph that

consists of the vertex set {0, 1}n and the edge multi-set
⋃

i∈[2]{{x, fi(x)} : x ∈ {0, 1}n} has second

(normalized) eigenvalue 1 − Θ(1/n2).

(Indeed, in this graph, x is connected to x ⊕ 0n−11 by two parallel edges, and the other pairs of
edges (i.e., {x, sh(x)} and {x, sh−1(x)} for each x) may also be non-distinct.)

1A similar result holds for the 4-regular graph that uses the bijections f1(x) = sh(x) and f2(x) = sh(x) ⊕ 0n−11.
Note that, when taking an n-step random walk on the 2-regular directed graph in which edges are directed from each
vertex x to the vertices sh(x) and sh(x) ⊕ 0n−11, the final vertex is uniformly distributed (regardless of the start
vertex). However, there is a fundamental difference between random walks on directed graphs and random walks on
the underlying undirected graphs. For further discussion, see Section 1.4.
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Proof Sketch: We claim that taking a random walk of length t = O(t′ · n2) on this graph yields
a distribution that is 2−t′-close to uniform, whereas the rate of convergence (a.k.a. the second
eigenvalue) is closely related to the distance from uniformity (see Section 1.3). Specifically, it
follows that the convergence rate is at least 2−(t′−n)/t, which equals 21/O(n2) = 1 − Ω(n−2) for
sufficiently large t′ (e.g., t′ > 2n).

The foregoing claim is proved by observing that during a t-step random walk, with probability
at least 1 − 2−t′ , each position in the original string appeared at the rightmost position at some
time during the walk (and that at the next step the corresponding value is randomized, since at
that step f2 is applied with probability one half).2

The relocation graph. The foregoing argument refers implicitly to a random walk on the n-
vertex cycle, which represents the shift relocation permutation (i 7→ (i mod n) + 1) used in the
1-local 2n-vertex graph (considered in Observation 2). In general, we shall consider the n-vertex
graph that corresponds to the relocation permutations of the 1-local 2n-vertex graph that we wish
to analyze. Hence, we shall be discussing two graphs: The 2n-vertex graph with transitions that
are 1-local, and an n-vertex graph that describes the relocation permutations used in the 1-local
graph.

Definition 3 (a generic 1-local graph and the corresponding relocation graph): Let π(1), ..., π(d) :
[n] → [n] be d permutations and s(1), ..., s(d) ∈ {0, 1}n.

1. The 1-local graph associated with π(1), ..., π(d) and s(1), ..., s(d) is the 2d-regular 2n-vertex graph

that consists of the vertex set {0, 1}n and the edge multi-set

⋃

i∈[d]

{
{x, xπ(i) ⊕ s(i)} : x ∈ {0, 1}n

}
(1)

where xπ = xπ(1) · · · xπ(n).

2. The relocation graph associated with π(1), ..., π(d) is the 2d-regular n-vertex graph that consists

of the vertex set [n] and the edge multi-set
⋃

i∈[d]{{j, π(i)(j)} : j ∈ [n]}.

The mapping x 7→ xπ(i) ⊕ s(i) (resp., j 7→ π(i)(j)) is called a forward transition, whereas the reverse

mapping y 7→ (y ⊕ s(i))π(−i) (resp., k 7→ π(−i)(k)) is called a reverse transition, where π(−i) denotes

the inverse of π(i).

Note that ((xπ(i)⊕s(i))⊕s(i))π(−i) = (xπ(i))π(−i) = x and ((y⊕s(i))π(−i))π(i)⊕s(i) = (y⊕s(i))⊕s(i) = y.
The proof of Observation 2 is based on the fact that the corresponding relocation graph (i.e.,

the n-cycle) has cover time O(n2). Using an n-vertex expander as the relocation graph, and relying

2After i steps, the jth bit in the original string (which is originally located at position j) is located at position
(j − 1 +

P

k∈[i] Xk mod n) + 1, where the Xk’s are the {0,±1}-indicators of the chosen transitions (i.e., Xk = 1

(resp. Xk = −1) if the transition sh (resp., sh−1) was taken in the kth step and Xk = 0 otherwise (i.e., if the offset
0n−11 was applied)). Note that each block of t/t′ = O(n2) random variables has absolute value of at least 2n with
probability at least 1/2. Hence, looking at t′ partial sums that correspond to t′ such disjoint blocks, we observe that

the probability that all these partial sums are in the interval [−n, n] is at most 2−t′ . Finally, note that if any of these
partials sums has value outside [−n, n], then in the corresponding O(n2) steps each original bit position appeared in
the rightmost location.
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on the fact that it has cover time Õ(n), we may infer that the corresponding 1-local 2n-vertex graph
has spectral gap 1/Õ(n) (see Appendix). It turns out that we need a relocation graph that has a
stronger “mixing” property than a standard expander, and studying this property is the core of
the current work. In addition, we need to use offsets that are not of Hamming weight 1. In fact,
we need to use offsets that have Hamming weight Ω(n).

Proposition 4 (using only light offsets can not yield an expander): Consider a 2d-regular 2n-

vertex graph as in Definition 3, and suppose that |s(i)| = o(n) for all i ∈ [d]. Then, this 1-local

2n-vertex graph is not an expander.

The proof of Proposition 4 appears in the appendix, where it is also shown that using also offsets
of Hamming weight n − o(n) does not help. In view of the above, we must use at least one offset
that has Hamming weight in [Ω(n), n − Ω(n)].

1.2 Our main results

As further discussed in Section 1.3, expander graphs have the salient property by which a random
walk of logarithmic length end in a vertex that is almost uniformly distributed on the vertex set,
regardless of the start vertex. Our plan is to show that a 2n-vertex 1-local graph is an expander
by showing that a random walk of length t = ω(n) ends in a vertex that is exp(−Ω(t))-close to be
uniformly distributed in {0, 1}n.

As stated above, we will show this by relying on the hypothesis that the corresponding n-vertex
relocation graph has a property that is stronger than standard expansion. The stronger property
that we shall use refers to “coordinated (t-step) random walks” that start at the n different vertices,
where the t-step random walks are specified by t indices that determine the choices of neighbors
at each step. That is, the sequence (σ1, ..., σt) corresponds to t-step walks that in the ith step
move to the σth

i neighbor of the current vertex. Hence, by coordinated random walks of length t
on a 2d-regular n-vertex graph, we mean selecting uniformly one sequence (σ1, ..., σt) ∈ [2d]t, and
considering the n corresponding walks (such that the jth walk starts at vertex j).

A standard property of a single random walk refers to the number of times that the walk hits
a set of constant density. In a standard n-vertex expander, the fraction of hits in a sufficiently
long random walk (i.e., one of Ω(log n) length) closely approximates the density of the set (with
probability that is exponential in the length of the walk). The property that we shall consider for
coordinated random walks of length t ≥ (1 + Ω(1)) · n is that the matrix describing the hitting
pattern of the n coordinated walks has full rank with probability 1− exp(−Ω(t−n)). That is, for a
fixed set T (of constant density), we consider a random Boolean t-by-n matrix such that the (i, j)th

entry is 1 if and only if the jth walk hits the set T in the ith step. This property is the pivot of our
results. Specifically, we prove the following two facts:

Graphs satisfying the coordinated random walks property yield 1-local expanders (see Theorem 8): If the

n-vertex relocation graph satisfies the foregoing property (of coordinated random graphs), then the

corresponding 1-local 2n-vertex graph coupled with adequate offsets is an expander. (Actually, given
a 2d-regular n-vertex relocation graph, we consider a 8d-regular 2n-vertex 1-local graph, where each
relocation permutation is coupled with four offsets (and the offsets are easily computed based on
the permutations).)
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Obtaining graphs that satisfy the coordinated random walks property (see Theorem 9): Any constant-

size expanding set of generators for the symmetric group (over [n]) yields an n-vertex (relocation)
graph that satisfies the foregoing property (of coordinated random graphs).

Lastly, a result of Kassabov [4], which was also used in [6], asserts that the symmetric group
has an explicit generating set that is expanding and of constant size.

Combining these three results, we obtain an alternative proof of Theorem 1. In addition, we
show that constructing an n-vertex graph that satisfies (a relaxed version of) the foregoing property
is equivalent to constructing 1-local 2n-vertex expanders.

Organization of the rest of this paper. Sections 1.3 and 1.4 provide necessary background
and a useful clarification towards the rest of the paper. The main results (i.e., Theorems 8 and 9)
are proved in Sections 2 and 3, respectively. Specifically, in Section 2 we present the coordinated
random walks (CRW) property and show that satisfying it yields 1-local expanders, and in Section 3
we show that any constant size set of expanding generators for the symmetric group over [n]
yields an n-vertex O(1)-regular graph that satisfies the CRW property. In Section 4 we prove
the aforementioned equivalence (between a relaxed version of the CRW property and constructing
1-local expanders), and in Section 5 we generalize the main results to non-binary alphabets.

1.3 The algebraic definition of expansion and the convergence rate perspective

The combinatorial definition of expansion, which refers to the relative size of neighborhoods of sets
of vertices (e.g., the number of vertices that neighbor the set but are not in it as a function of the size
of the set), has a strong intuitive appeal. The same holds with respect to the algebraic definition,
which refers to the (normalized) second eigenvalue of the corresponding adjacency matrix, provided
that one realizes that the (normalized) second eigenvalue represents the rate at which a random
walk on a regular graph converges to the uniform distribution. Indeed, in this work we shall use
the term convergence rate when referring to this eigenvalue. In an expander the convergence rate
is a constant smaller than 1, whereas in a general (regular and non-bipartite) N -vertex graph the
convergence rate is upper-bounded by 1 − 1

poly(N) .
When trying to estimate the convergence rate of a regular graph, it is useful to consider a

sufficiently long random walk and relate the convergence rate to the distance of the distribution of
its end-vertex from the uniform distribution over the vertex-set. Specifically, consider an N -vertex

regular graph, and let λ denote its convergence rate and ∆
(p)
t denote the distance (in norm Lp) of

the uniform distribution from the distribution of the final vertex in a t-step random walk that starts

at the worst possible vertex. Then, the following two facts relate λt and ∆
(p)
t (up-to a slackness of

poly(N)):3

1. The distance is upper-bounded in terms of the convergance rate: ∆
(1)
t ≤

√
N ·∆(2)

t ≤
√

N ·λt.

2. The distance is lower-bounded in terms of the convergance rate: N−1 · λt ≤ ∆
(2)
t ≤ ∆

(1)
t .

3The first inequality (i.e., ∆
(2)
t ≤ λt) is well-known and extensively used. It captures the fact that the corresponding

linear operator shrinks each vector that is orthogonal to the uniform one. The second inequality (i.e., ∆
(2)
t ≥ λt/N)

is far less popular. It can be proved by considering a random walk that starts in a probability distribution that is
described by the vector u+v2, where u = (1/N, ..., 1/N) is the uniform distribution and v2 is a vector in the direction
of the second eigenvector such that no coordinate in v2 has value lower than −1/N .
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Hence, for sufficiently large t (i.e., t ≫ log N), it holds that λ ≈ (∆
(1)
t )1/t.

We shall use λ ≤ (N · ∆(1)
t )1/t quite extensively. In fact, we have already used it in the proof

of Observation 2, where, using N = 2n and t = O(t′ · n2), we showed that ∆
(1)
t ≤ 2−t′ and (using

t′ ≥ 2n) inferred that λ ≤ (2n · 2−t′) = 21/O(n2) = 1 − Ω(n−2). In the following sections, for

sufficiently large t, we shall show that ∆
(1)
t = exp(−Ω(t)), and infer that λ = exp(−Ω(1)) < 1 (i.e.,

the convergence rate is upper-bounded by a constant smaller than 1).

1.4 A technical source of complication

As commented in Footnote 1, the proof of Observation 2 is less simple than it could have been
because we have to account for both forward and reverse transitions. Unfortunately, the same
phenomenon occurs in the proofs of our main results. In other words, it would have been simpler
to analyze a random walk on the directed graph that corresponds to forward transitions only (and,
ditto, of course, for the directed graph of reverse transitions). We may refer to such directed walks
in the warm-ups, but we cannot reduce the analysis to them. Such a reduction would require a
de-composition result that is not true in general but may be true in some special cases (and in
particular in those that are of interest to us here).

Open Problem 5 (de-composing random walks on regular graphs): For a function f : (0, 1) →
(0, 1), we say that a class of 2d-regular graphs defined by d bijections on their vertex-sets is f -good
if for every graph in the class the following holds: If the convergence rate of the directed graph

containing only forward transitions is at most λ, then the convergence rate of the undirected graph

is at most f(λ). We ask:

1. Is the class of 1-local graphs f -good for some f?

2. Which natural classes of graphs are f -good for some f?

Note that Item 1 can only hold with f(λ) = 1−Ω(1− λ)2. This is the case because for the 1-local
2n-vertex graph of Observation 2 the convergence rate of the directed graph is 1−Θ(1/n), whereas
the convergence rate of the graph itself is 1 − Θ(1/n2). (An 3n-step random walk on the directed
graph yields an almost uniformly distributed vertex, whereas an o(n2)-step random walk on the
graph itself is unlikely to reach a vertex that is at Hamming distance at most n/3 from the start
vertex.)

2 A sufficient condition: The coordinated random walks property

As stated upfront, a 1-local 2d-regular 2n-vertex graph is associated with d relocation permuta-
tions and d offsets, which means that constructing 1-local expander graphs reduces to constructing
suitable relocation graphs and offsets. In this section we identify a property of the relocation graph
(equiv., of the d relocating permutations) that suffices for showing that the corresponding 1-local
graph is an expander. In Section 2.1 we present the basic intuition, while referring to a random walk
on the directed graph of forward transitions only. The actual analysis is presented in Section 2.2,
and it is intended to be understood also when skipping Section 2.1.
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2.1 The intuition

The general problem we face is of finding relocation graphs and offsets that yield 1-local expanders.
For sake of simplicity, we consider the case of using a single non-zero offset s ∈ {0, 1}n, since
it turns out that this suffices. As a warm-up towards the actual problem, we consider a generic
1-local (4d-regular) graph with d relocation permutations, π(1), ..., π(d) : [n] → [n] and 2d forward
transitions such that the 2i − 1st (resp., the 2ith) transition is x 7→ xπ(i) ⊕ s (resp., x 7→ xπ(i)).
Indeed, we use each relocation permutation both with the offset s and without it; that is, the set
of corresponding bijections is {f(σ,b) : {0, 1}n → {0, 1}n}(σ,b)∈[d]×{0,1} such that f(σ,1)(x) = xπ(σ) ⊕ s
and f2σ(x) = xπ(σ) .

We shall consider a t-step random walk (on the 1-local graph) that uses only the forward
transitions (and starts at the vertex 0n). Such a walk is specified by a sequence of pairs, denoted
((σ1, b1), ..., (σt, bt)) ∈ ([d] × {0, 1})t, such that at the ith step the (2σi − bi)

th forward transition is
used (so that the result is moving from the current vertex v to the vertex vπ(σi) ⊕sbi , where s0 = 0n

and s1 = s). Hence, in the ith step, the label of the current vertex is permuted (according to π(σi))
and then offset by s if bi = 1 (and is only permuted otherwise).

Actually, it is instructive to say that, in the ith step, the offset s(i) def
= sπ(σi)◦···◦π(σ1) is added

to the initial label (i.e., 0n) if and only if bi = 1. Hence, the label of the final vertex in the walk
equals

∑
i∈[t]:bi=1 s(i) permuted according to π(σt) ◦ · · · ◦ π(σ1). Note that, for any fixed sequence

(σ1, ...., σt) ∈ [d]t, we get a distribution that depends only on the random bi’s, since the s(i)’s
depend only on the sequence σ1, ..., σt (and on s). The punch-line is that this distribution (i.e.,∑

i∈[t]:bi=1 s(i) for random bi’s) is uniform over {0, 1}n if and only if the t-sequence (s(1), ..., s(t))
spans {0, 1}n.

Focusing on the question of whether or not the t-sequence (s(1), ..., s(t)) spans {0, 1}n, we observe
that this question refers to a property of the corresponding walk on the relocation graph, since the
s(i)’s are determined by the sequence σ1, ..., σt (and s). Specifically, for each j ∈ [n], we consider
a walk that starts at vertex j and proceeds according to the sequence (σ1, ..., σt) ∈ [d]t. After i
steps, this (jth) walk is at vertex π(σi) ◦ · · · ◦ π(σ1)(j). Now, the key observation is that the jth bit
of s(i) = sπ(σi)◦···◦π(σ1) is 1 if and only if this walk hits the set of vertices T = {k : sk = 1} (i.e.,
iff π(σi) ◦ · · · ◦ π(σ1)(j) ∈ T ). Hence, (s(1), ..., s(t)) spans {0, 1}n if and only if the t-by-n Boolean
matrix that describes the hitting pattern in T if full rank.

That is, for every sequence σ = (σ1, ..., σt), we consider a t-by-n Boolean matrix B = B(σ)

such that the (i, j)th entry in this matrix is 1 if and only if the walk that starts at j and proceeds
according to σ hits T in the ith step (i.e., iff π(σi) ◦ · · · ◦ π(σ1)(j) ∈ T ). The foregoing observation is
that, when letting s(i) = sπ(σi)◦···◦π(σ1) , it holds that (s(1), ..., s(t)) spans {0, 1}n if and only if B(σ)

is full rank.
To summarize, we are looking at coordinated random walks on the relocation graph. These

walks start at different vertices j ∈ [n] but proceed according to a single random sequence σ =
(σ1, ..., σt) ∈ [d]t. For a fixed set T , we are interested in the event that the corresponding matrix
(i.e., B(σ)) has full rank (i.e., its rows span {0, 1}n). Whenever this happens, the corresponding
random walk on the 1-local graph, which is further randomized by the choice of the bi’s, is uniformly
distributed over {0, 1}n. The property that we wish to hold is that, with probability at least
1 − exp(−Ω(t)) over the choice of σ, the matrix B(σ) has full rank.
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2.2 The actual analysis

It turns out that it suffices to use a single non-zero offset s ∈ {0, 1}n (of Hamming weight ap-
proximately n/2), along with the offsets that are derived from it when considering also the reverse
transitions. That is, for each relocation permutation π : [n] → [n], we consider the four transitions
x 7→ (x ⊕ sb)π ⊕ sc, where b, c ∈ {0, 1} and s0 = 0n (and s1 = s). (Note that such a generic
transition can be viewed as x 7→ xπ ⊕ (sπ)b ⊕ sc, and that the reverse transition has the form
y 7→ (y⊕ sc)π−1 ⊕ sb = yπ−1 ⊕ (sπ−1)c ⊕ sb.)4 In other words, referring to Definition 3 and assuming
that d is a multiple of 4, we postulate that for some s ∈ {0, 1}n \ {0n} and every i ∈ [d/4] and
b, c ∈ {0, 1} it holds that π(4i−2b−c) = π(4i) and s(4i−2b−c) = (sπ(4i))b ⊕ sc.

Note that in this case, for every i, taking at random one of the four corresponding (forward)
transitions has the effect of randomizing the vertex label by the offset s (by virtue of the random
value of c ∈ {0, 1}), and the same holds when taking the reverse transition (by virtue of the random
value of b ∈ {0, 1}). When taking a random walk on this graph, we consider only the randomizing
effect of this offset (i.e., of the choice of c in a forward move, and the choice of b in a reverse move).5

To clarify the above and motivate the following property, suppose that we take t = Ω(n) random
steps on the 1-local graph, and consider the t-by-n Boolean matrix describing the activity status
of the location to which each of the initial positions is moved during these t steps, where an initial
position is said to be currently active if it currently reside in a location in {k : sk =1}. That is, fixing
the choice of relocation permutations (but leaving the choice of the b’s and c’s undermined), the
(i, j)th entry in the matrix indicate whether or not, in the ith step of the fixed random walk being
considered, the jth initial location is mapped to an active location (i.e., a 1-entry in the offset s).
Later, when considering the effect of using random b’s and c’s, this will have the effect of flipping
all active locations (together) with probability 1/2.

Note that the foregoing matrix, which is defined based on a fixed random walk on the 1-local
2n-vertex graph, describes n coordinated walks on the n-vertex relocation graph, each starting at a
different vertex of the graph and all proceeding according to the same sequence of (random) choices.
(Note that each step on the n-vertex relocation graph, which has degree 2d/4, only determines
i ∈ [d/4] and the direction of the transition (i.e., forward or backward), while leaving the choice of
the corresponding bits b and c unspecified.)

The punch-line is that, if the foregoing t-by-n matrix has full rank, then the t random choices

of whether to apply the offset s (which are governed by the random choice of the corresponding
bits b and c) correspond to a random linear combination of the t rows of the matrix, which yields a

uniformly distributed n-bit long string. In this case, the corresponding random walk on the 2n-vertex
graph yields a uniform distribution (since the resulting n-bit string is added to the initial vertex in
the walk). That is, fixing a random walk on the n-vertex relocation graph, we observe that if the
matrix that corresponds to this walk has full rank, then the final vertex in the corresponding random
walk on the 1-local 2n-vertex graph is uniformly distributed in {0, 1}n, since it is (essentially) a

4In contrast, if we were to use only the transitions x 7→ xπ ⊕ sc, then the reverse transitions would have had the
form y 7→ (y ⊕ sc)π−1 = yπ−1 ⊕ (sπ−1)c, which would have hindered the argument that follows (i.e., the proof of
Theorem 8); see also the following paragraph. Of course, the issue would not have arose if we were analyzing random
walks on the directed graph of forward transitions only (see Sections 1.4 and 2.1).

5If we are currently at vertex x and take the forward transition associated with (π, b, c), then we move to vertex
xπ ⊕ (sπ)b ⊕ sc, and the foregoing randomization effect refers to the addition of the offset s (to (x ⊕ sb)π), which
occurs if and only if c = 1. Likewise, if we are currently at vertex y and take the reverse transition associated with
(π, b, c), then we move to vertex (y ⊕ sc)π−1 ⊕ sb, and the foregoing randomization effect refers to the addition of the
offset s (to (y ⊕ sc)π−1), which occurs if and only if b = 1.
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random linear combination of the rows of the matrix (where the randomization is due to the choices
of the corresponding b’s and c’s).

The foregoing motivates the definition of the following property, where we are actually interested
in the case that the gσ’s are the relocation permutations and their inverses (in an d-regular relocation
(undirected) graph).6

Definition 6 (a property of coordinated random walks):7 For d = O(1), consider a d-regular n-

vertex directed graph such that for every σ ∈ [d] the function gσ : [n] → [n] that maps each vertex

to its σth neighbor is a bijection.

• For an integer t, consider a random sequence σ = (σ1, ..., σt) ∈ [d]t and the n corresponding

coordinate random walks (CRW) such that the jth walk starts at vertex j and moves in the ith

step to the σth
i neighbor of the current vertex.

• For a set T ⊆ [n], consider a t-by-n Boolean matrix B(σ) = B
(σ)
T such that its (i, j)th entry

indicates whether the jth walk passed through T in its ith step; that is, the (i, j)th is 1 if and

only if gσi(· · · (gσ1(j) · · ·)) ∈ T .

The desired CRW property is that for some set T , with probability at least 1 − 2−n−Ω(t) over the

choice of σ ∈ [d]t, the corresponding matrix B
(σ)
T has full rank (over GF(2)).8 In this case we say

that the CRW property holds w.r.t T .

Obviously, the CRW property mandates t ≥ n. Furthermore, the proof of Proposition 4 actually
shows that the CRW property mandates that the set T must have size in [Ω(n), n−Ω(n)]. We are
definitely not concerned of these restrictions.

Intuitively, the CRW property postulates that, with extremely high probability, the coordi-
nated random walks are “linearly independent” with respect to hitting the set T . The allowed
failure probability is exp(−Ω(t)), which is extremely low given that the probability space is of size
exp(O(t)).

Standard expanders may not satisfy the CRW property. We note that using an arbitrary
expander graph and an arbitrary set T of size ≈ n/2 will not do: Indeed, in this case, each column
in the matrix corresponding to a random walk has approximately t/2 1-entries (w.v.h.p.), but this
matrix may not have full rank. For example, consider an n-vertex expander that consists of two
n/2-vertex expanders that are connected by a matching, and let T be the set of vertices in one of

6Indeed, Definition 6 is stated in more general terms that fit an arbitrary directed graph that is described in
terms of d directed cycle covers; that is, each gσ describes a collection of directed cycles that cover all the graph’s
vertices, and the formulation refers to random walks in the direction of the edges. The special case we are interested
in refers to the case that g2σ′ is the inverse of g2σ′−1; in this case, the directed graph consists of anti-parallel edges
that correspond to the forward and reverse transitions, and a random walkmay take forward and reverse transitions
(by picking either g2σ′ or g2σ′−1).

7An alternative way of defining the matrix B(σ) proceeds by considering a sequence of permutations over [n],
denoted π0, π1, ..., πt, such that π0 is the identity permutation, and πi(j) = gσi

(πi−1(j)). The ith row of B(σ) is then
defined as the T -indicator of πi; that is, the (i, j)th entry in the matrix is 1 if and only if πi(j) ∈ T .

8The failure bound is set to τ = 2−n−Ω(t) in order to facilitate deriving an upper bound on the convergence rate
of the corresponding 1-local graph. Specifically, we shall use (2n · τ )1/t < 1. An alternative formulation that will
support this application is to require error probability at most exp(−Ω(t)) for some t = ω(n) (or error probability at
most 2−ct for some constant c > 0 and some t ≥ 1+c

c
· n).
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these two expanders. Then, w.r.t this T , coordinated walks on this graph always yields a Boolean
matrix of rank at most two, since all the (coordinated) walks that start at vertices in T (resp., in
[n] \ T ) always move together to T or to [n] \ T . (Nevertheless, it may be that for every n-vertex
expander, there exists a set T such that the CRW property holds.)

So what does satisfy the CRW property? Indeed, the question we consider is the following.

Open Problem 7 (the CRW problem): For which graphs and which sets T ’s does the CRW prop-

erty (as in Definition 6) hold?

A partial answer to this question is postponed to Section 3, and is revisited in Section 4. But
before proceeding there, we establish the usefulness of the CRW property for constructing 1-local
expanders.

The CRW property implies 1-local expanders. As outlined above, any 2d-regular relocation
graph that satisfies the CRW property yields an 8d-regular 1-local 2n-vertex expander. Let us
formally state and prove this claim.

Theorem 8 (graphs satisfying the CRW property yield 1-local expanders): Let π(1), ..., π(d) : [n] →
[n] be d permutations and s ∈ {0, 1}n. If the 2d-regular n-vertex graph with the edge multi-set⋃

i∈[d]{{j, π(i)(j)} : j ∈ [n]} satisfies the CRW property with respect to the set {j ∈ [n] : sj = 1},
then the 8d-regular 2n-vertex 1-local graph with the edge multi-set

⋃

i∈[d],b,c∈{0,1}

{
{x, (x ⊕ sb)π(i) ⊕ sc} : x ∈ {0, 1}n

}
(2)

is an expander.

Indeed, the 8d-regular 1-local graph given by Eq. (2) is not the 1-local graph that correspond to the
foregoing 2d-regular relocation graph (per Definition 3), but it does correspond to the 8d-regular
relocation graph with the edge multi-set

⋃
i∈[d],b,c∈{0,1}{{j, π(i,b,c)(j)} : j ∈ [n]}, where π(i,b,c) = π(i)

for every i ∈ [d] and b, c ∈ {0, 1}. Needless to say, the difference between these two relocation
graphs is immaterial.

Proof: Recall that a t-step random walk on the 2d-regular relocation graph is specified by a
sequence (σ1, ..., σt) ∈ [2d]t, whereas a random walk on the 8d-regular 1-local graph is specified by
a sequence ((σ1, b1, c1), ..., (σt, bt, cy)) ∈ ([2d]×{0, 1}2)t. By the hypothesis, for some t = Ω(n), the
t-by-n matrix that corresponds to a random walk on the n-vertex relocation graph has full rank
with probability at least 1 − 2−n−Ω(t). Fixing an arbitrary walk σ = (σ1, ..., σt) ∈ [2d]t on this

n-vertex graph such that B(σ) = B
(σ)
{j∈[n]:sj=1} has full rank, for each i ∈ [t], we consider the residual

random choices of bi, ci ∈ {0, 1} for the ith step of the corresponding random walk on the 2n-vertex
graph. Specifically, we consider a random process that selects these bits uniformly, in two stages.

• In the first stage, for every i ∈ [t], if the ith transition is in the forward direction, we select bi

at random, otherwise we select ci at random.

• In the second stage, we make the remaining choices; that is, for every i ∈ [t], if the ith

transition is in the forward direction, we select ci at random, otherwise we select bi at random.
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Fixing any sequence of choices for the first stage, the label of the final vertex is a random variable
that depends only on the random choices made in the second stage. The key observation is that
these random choices have the effect of randomizing the vertex-label by adding to it a corresponding
random linear combination of the rows of the matrix B(σ). Specifically, row i is taken to this linear
combination if and only if the relevant ci or bi equals 1 (where for a forward direction ci determines
whether the current label is offset by s, and for the reverse direction this choice is determined by
bi).

Detailed (alas tedious) analysis: Denoting the initial vertex in the walk on the 1-
local graph by v0, the ith vertex in the walk, denoted vi, satisfies vi = (vi−1 ⊕ sbi)π ⊕ sci

(resp., vi = (vi−1 ⊕ sci)π−1 ⊕ sbi) if σi indicates a forward (resp., reverse) transition
according to π. Denoting by πi the relocation permutation applied in the ith step of the
walk (i.e., πi = π (resp., πi = π−1) if σi indicates a forward (resp., reverse) transition
according to π), note that

vi = (vi−1)πi ⊕ (sπi)
xi ⊕ syi ,

where (xi, yi) = (bi, ci) if the ith step takes a forward transition and (xi, yi) = (ci, bi)
otherwise. Note that the xi’s were fixed in the first stage, whereas the πi’s were fixed
at the onset. In contrast, the yi’s are selected at random in the second stage. In both
cases (i.e., regardless if (xi, yi) = (bi, ci) or (xi, yi) = (ci, bi)), the ith row in the matrix,
denoted ri, equals s(πi◦···◦π1)−1 , where πi ◦ · · · ◦ π1 is the composition of the relocation
permutations applied in the i first steps. Hence,

(vi)(πi◦···◦π1)−1 = (vi−1)(πi−1◦···◦π1)−1 ⊕ (s(πi−1◦···◦π1)−1)xi ⊕ (s(πi◦···◦π1)−1)yi

= (vi−1)(πi−1◦···◦π1)−1 ⊕ (s(πi−1◦···◦π1)−1)xi ⊕ ryi
i .

It follows that (vt)(πt◦···◦π1)−1 = v0 ⊕w ⊕⊕
i∈[t] r

yi
i , where w =

⊕
i∈[t](s(πi−1◦···◦π1)−1)xi .

This means that the label of the vertex reached by this random walk is the sum of an
already fixed value (i.e., v0 ⊕ w) and the random linear combination of the rows of the
matrix (i.e.,

⊕
i∈[t] r

yi
i , where the yi’s are uniformly distributed).

Hence, in this case (i.e., B(σ) has full rank), the corresponding random walk on the 2n-vertex
graph yields a uniform distribution (regardless of the start vertex). It follows that the distribution
of the label of the final vertex is 2−n−Ω(t)-close to the uniform distribution, which implies that
the converagence rate of the 2n-vertex graph is bounded away from 1 (i.e., it is at most (2n ·
2−n−Ω(t))1/t = 2−Ω(1)), which means that this 1-local graph is an expander.

3 Constructions that satisfy the CRW property

For the benefit of the reader, we distinguish between the main result of this section (presented in
Section 3.1) and two secondary comments that follow its presentation (in Section 3.2).

3.1 The main result of this section

Recall that Kassabov’s result [4], which was also used in [6], asserts that the symmetric group has
an explicit generating set that is expanding and of constant size.9 We shall show that using this

9Indeed, this refers to a third graph, which is the corresponding Cayley graph with n! vertices (i.e., the vertices
are all the possible permutations over [n]). To reduce confusion, in the main text (unlike in footnotes), we shall not
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set of permutations (i.e., as our set of relocating permutations) along with the set T = [n′] such
that n′ ≈ n/2 is odd (e.g., odd n′ ∈ {⌊n/2⌋, ⌊n/2⌋ + 1}) yields an n-vertex graph that satisfies
the coordinated random walks property (of Definition 6). (In fact, our result is more general.)
Combined with Theorem 8, this yields an alternative proof of Theorem 1.

Theorem 9 (graphs satisfying the CRW property): Let Π = {π(i) : i ∈ [d]} be a generating set of

the symmetric group of n elements and suppose that Π is expanding.10 Then, the n-vertex graph

that consists of the vertex set [n] and the edge multi-set
⋃

i∈[d]{{j, π(i)(j)} : j ∈ [n]} satisfies the

coordinated random walks property of Definition 6 with respect to any set of odd size n′ ≈ n/2.

Proof: For a sufficiently large t and any set T of size n′, consider a random t-by-n Boolean matrix
that corresponds to coordinated random walks (from all possible start vertices) on the n-vertex

graph; that is, for any σ ∈ [2d]t, we consider the matrix B = B
(σ)
T . We shall show that, for

every non-empty set J ⊆ [n], with probability at least 1 − exp(−Ω(t) + O(n log n)), the sum of
columns of B in positions J is non-zero. (This establishes CRW property for any sufficiently large
t = Ω(n log n).)11

Claim 9.1 (the distribution of a specific linear combination of the columns): For every non-empty

set J ⊆ [n], with probability at least 1− exp(−Ω(t)+ O(n log n)) over the choice of a t-step random

walk on the n-vertex graph, the sum (mod 2) of the corresponding matrix’s columns in positions J
is non-zero.

Proof: For J = [n] this follows from the fact that n′ is odd. Otherwise (i.e., for J ⊂ [n]), we shall
prove the claim by using the correspondence between random walks on the n-vertex graph and
random walks on the set of all permutations where in a random step the current permutation is
composed with the selected generator.12 That is, selecting the σth neighbor in the random walk
on the n-vertex graph, a choice that determines a transition (i.e., ⌈σ/2⌉ ∈ [d]) as well as the
direction (i.e., forward or reverse) in which the transition is applied, corresponds to selecting the
⌈σ/2⌉th generating permutation and moving by composing it or its inverse (according to the value
of σ mod 2).

In our argument, we shall refer to a set of permutations over [n], denoted Symn, and consider
the set of permutation, denoted W , consisting of permutations having an J-image that contains an
odd number of elements of T ; that is, π ∈ W if and only if |{j ∈ J : π(j) ∈ T}| is odd. The claim
will follow by proving the following two facts:

1. |W | ≈ |Symn|/2.

2. A random walk σ ∈ [2d]t on the relocation graph corresponds to a matrix B
(σ)
T with columns

in positions J summing up to the all-zero vector if and only if the random walk on Symn does
not visit W .

refer explicitly to this graph, but rather refer to the generating set of the symmetric group, and refer to its vertices
as to states.

10That is, letting Symn denote the symmetric group of n elements, we consider the Cayley graph consisting of the
vertex set Symn and the edge multi-set

S

i∈[d]{{π, π(i) ◦ π} : π ∈ Symn}, where ◦ denote composition of pemutations.
The hypothesis postulates that this Cayley graph is an expander.

11We comment that the CRW property can be established for any sufficiently large t = Ω(n); see Claim 9.2..
12That is, we use the correspondence between (coordinated) random walks on the n-vertex graph and random

walks on the n!-vertex Cayley graph.
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We first show that W has density approximately half within the set of all n! permutations over
[n]. This can be shown by considering, w.l.o.g., the case of |J | ≤ n/2 (or else consider [n] \ J).
The easy case is when |J | = o(n1/2). In this case, for a uniformly selected π ∈ Symn, the set

π(J)
def
= {π(j) : j ∈J} is close to a sample of |J | independent points in [n], and so the probability

that |π(J) ∩ T | is odd is approximately 1/2 (since |T | = n′ ≈ n/2). Turning to the case of
|J | ≥ 2n1/3, we let J ′ be an n1/3-subset of J and J ′′ = J \J ′. Using |J | ≤ n/2, it follows that, with

very high probability, |π(J ′′)∩T |
|J ′′| ≈ |T |

n ≈ 1/2 holds, which implies that |T\π(J ′′)|
|[n]\π(J ′′)| ≈ 1/2. It follows

that conditioned on the values of π(J ′′), the set π(J ′) is close to a sample of |J ′| independent points
in [n] \ π(J ′′), and so the probability that |π(J ′) ∩ T | is odd is approximately 1/2, assuming the

foregoing (extremely likely) event (of |T\π(J ′′)|
|[n]\π(J ′′)| ≈ 1/2). This establishes Fact 1.

We now turn to the proof of Fact 2. The key observation is that the coordinated random walks

σ on the n-vertex graph yield a Boolean matrix B
(σ)
T such that the sum of its columns in positions

J is zero (mod 2) if and only if the corresponding walk on the set of n! permutations does not
pass through states in W , where the latter walk starts at the identity permutation. To see this,
consider the sequence of permutation, denoted π1, ..., πt, that are selected during the random walk
(as determined by the sequence σ ∈ [2d]t; i.e., πi is determined by σi (as specified above)). Then, in
the ith step of the coordinated walks, the jth walk is in position k = πi(· · · (π1(j) · · ·)), whereas the

(i, j)th entry in B
(σ)
T is 1 if and only if πi(· · · (π1(j) · · ·)) ∈ T (i.e., if and only if k ∈ T ). Hence, the

sum of the entries (of B
(σ)
T ) in row i and columns in J is 1 (mod 2) if and only if πi ◦ · · · ◦ π1 ∈ W .

This establishes Fact 2.
Having established both facts, we now establish the claim by upper-bounding the probability

that a t-step random walk on the set of n! permutations does not pass through states in W . By the
expansion property of the generating set for the symmetric group, the probability that this walk
does not pass through a fixed set of constant density is at most exp(−Ω(t−O(n log n))), where the
first O(log(n!)) = O(n log n) steps are taken for convergence to the uniform distribution and the
remaining steps are used for hitting attempts.

Using a union bound (over all non-empty sets J ⊂ [n]), we conclude that, with probability at least
1−(2n−2)·exp(−Ω(t)+O(n log n)), the corresponding t-by-n Boolean matrix has full rank. Taking
t = Ω(n log n), the theorem follows.

Conclusion: Indeed, as stated upfront, applying Theorem 8 to the n-vertex graph (and set)
analyzed in Theorem 9 implies that any constant-size generating set for the symmetric group that
is expanding yields a 1-local expander. Using Kassabov’s construction of such a set [4], yields an
alternative proof of Theorem 1.

3.2 Secondary comments

In this section, we make two comments about Theorem 9. The first comment refers to its proof,
and the second comment refers to its converse (i.e., we show that a converse of a weak form of
Theorem 9 fails).

For sake of elegancy: As noted in Footnote 11, the probability bound of Claim 9.1 can be
tightened. Specifically, the error bound of exp(−Ω(t)+O(n log n)) can be improved to exp(−Ω(t)+
O(n)), which is optimal.
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Claim 9.2 (the distribution of linear combinations of the columns, revisited): Let T be an odd set

of size n′ ≈ n/2. Then, with probability at least 1 − exp(−Ω(t) + O(n)) over the choice of a t-step
random walk σ on the n-vertex graph, for every non-empty set J ⊆ [n], the sum (mod 2) of the

columns of B
σ)
T in positions J is non-zero.

Proof Sketch: We proceed as in the proof of Claim 9.1, but consider random walks (on the set of
all permutations) that start at a state that is uniformly distributed in a specific set S (rather than
start at the identity permutation). The set S is the set of all permutations such that each location
in T holds an element of T ; that is, π ∈ S if and only if {i ∈ T : π(i)} = T . Using |T | = n′ ≈ n−|T |,
observe that S has density approximately (n′!)2

n! , which is approximately 2−n.
The key observation is that the Boolean matrix that represents coordinated random walks on

the n-vertex graph equals (up to a permutation of its columns) the matrix that represents the same
walks on any isomorphic copy of that graph that leaves T invariant (i.e., rather than walking on an
n-vertex graph G = ([n], E), we walk on its isomorphic copy φ(G) = ([n], {{φ(i), φ(j)} : {i, j}∈E}),
where φ : [n] → [n] is a permutation such that φ(j) ∈ T for every j ∈ T ). That is, if the matrix B
represents coordinated random walks on the original graph and φ : [n] → [n] is a permutation that

leaves T invariant, then the matrix obtained by permuting the columns of B according to φ represents

coordinated random walks on the isomorphic copy of the original graph obtained by relabeling its

vertices according to φ. (This is the case because the jth column in B indicates whether the walk
on G that starts at vertex j hits T in each of the t steps, but this column also indicates whether
the same walk on φ(G) that starts at φ(j) hits φ(T ) = T in each of the t steps.)

Now, since B is full rank if and only if permuting its columns yields a full rank matrix, we
may consider random walks on such random isomorphic copies of the original graph (i.e., copies
obtained by relabeling it using a random permutation that leaves T invariant). Hence, we may
analyze the matrix that corresponds to a random walk (on the set of n! permutations) that starts
at a state that is uniformly distributed in S (rather than starting at the identity permutation).
That is, the probability that the matrix B (which represents coordinated random walks on the
original graph) is full rank equals the probability that a corresponding random walk on the set of
permutations misses one of the WJ ’s (defined as in the proof of Claim 9.1), when starting from a
uniformly distributed state in S.

Indeed, for every non-empty J ⊂ [n], we consider the corresponding set WJ , which is the set of
all permutations π such that |π(J) ∩ T | is odd. By the expansion property of the generating set
for the symmetric group and the fact that S has density Ω(2−n), a t-step random walk that starts
in uniformly distributed state in S passes via WJ with probability at least 1− exp(−Ω(t−O(n))),
where the first O(n) steps are taken for convergence to the uniform distribution and the remaining
steps are used for hitting WJ . Hence, with probability at least 1 − (2n − 2) · exp(−Ω(t − O(n))),
a random walk that starts at a state that is uniformly distributed in S avoids none of the WJ ’s.
In this case, for every non-empty set J ⊆ [n], the sum of columns (of the corresponding matrix) in
positions J is non-zero.

The CRW property does not imply that the set of relocations is an expanding set of
generators for Symn. Interpreted in terms of sets of permutations over [n], the CRW property
asserts that a random walk on this set passes a specific statistical test (which is specified by the
corresponding set T ). Theorem 9 asserts that if a set of permutations is expanding, then the CRW
property is satisfies for any set T of odd size n′ ≈ n/2. This holds also if n′ ≈ n/4 (or any odd value
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in [0.01n, 0.99n]).13 A weaker implication only asserts that if a set of permutations is expanding,
then the CRW property is satisfies for some set T of odd size n′ ≈ n/4. Here we show that the
converse of the latter implication does not hold.14 In other words, we show that the fact that a

relocation graph satisfies the CRW property (with respect to some set of vertices) does not imply

that the corresponding set of permutations generates the symmetric group (let alone in an expanding
manner).

Theorem 10 (on the converse of Theorem 9): There exists a set of permutations, {π(i) : i ∈ [3d]},
over [2n] that does not generate the symmetric group of 2n elements such that the 2n-vertex graph

consisting of the vertex set [2n] and the edge multi-set
⋃

i∈[3d]{{j, π(i)(j)} : j ∈ [2n]} satisfies the

coordinated random walks property (of Definition 6) with respect to some set of odd size n′ ≈ n/2.

Proof Sketch: We start with a set of permutations Π = {π(i) : i ∈ [d]} that generates the
symmetric group of n elements and is expanding. We first extend each π(i) ∈ Π to the domain
[2n] such that π(i)(n + j) = n + π(i)(j) for every j ∈ [n] (and i ∈ [d]). Next, we add d copies
of the identity permutation and d copies of the permutation that switches [n] and [2n] \ [n]; that
is, for every i ∈ [d], we have π(d+i)(b · n + j) = b · n + j and π(2d+i)(b · n + j) = (1 − b) · n + j
for every j ∈ [n] and b ∈ {0, 1}. Denoting the resulting set of augmented permutations by Π′, we
consider the 2n-vertex 6d-regular relocation graph G′ that corresponds to it. This graph consists
of two copies of the 2d-regular n-vertex graph G that corresponds to Π, augmented by d self-loops
on each vertex (where each self-loop contributing two units to the vertex’s degree) and 2d copies
of a perfect matching that matches the two copies of each original vertex.

Note that Π′ does not generate the symmetric group of 2n elements; it rather generates a group
of 2 · (n!) ≪ (2n)! permutations; specifically, a permutation π′ : [2n] → [2n] is generated by Π′ if
and only if for some π ∈ Symn either π′(b ·n + j) = b ·n + π(j) or π′(b ·n + j) = (1− b) ·n + π(j) for
every (b, j) ∈ {0, 1} × [n]. The theorem follows by showing that the (2n-vertex) relocation graph
G′ satisfies the CRW property (with any set T ⊂ [n] of odd size n′ ≈ n/2).15 Hence, we focus on
proving the following claim.

Claim: For any set T ⊂ [n] of odd size n′ ≈ n/2, the 2n-vertex graph G′ satisfies the CRW property

with respect to T .

When analyzing t-step random walks on G′, we distinguish steps in which one of the first d
permutations is employed from steps in which one of the last 2d permutations is employed. We
call the latter steps semi-idle, since they either map each vertex to itself or map each vertex to its
sibling (i.e., its other copy).

The key observation is that t-step random walks on G′ correspond to t-step lazy random walks
on G in which the walk stays in the current vertex (i.e., is truly idle) with probability 2/3. Indeed,

13In this case, for any non-empty set J ⊂ [n], the density of the corresponding set W = WJ ⊆ Symn may reside in
[0.01, 0.99], which suffices for showing that this set is hit with probability 1 − exp(−Ω(t) + O(n)).

14Indeed, we leave open the possibility that the converse of Theorem 9 holds. We believe that even if the CRW
property is satisfies for any set T of odd size n′ ∈ [0.01n, 0.99n], then it does not necessarily hold that the foregoing
set of permutations is expanding.

15We stress that T is an arbitrary subset of size n′ of [n], whereas the vertex set is [2n]. Indeed, picking T of size
n′ arbitrarily in [2n] will fail; for example, if T = T ′ ∪ (n + T ′)∪ {n}, for any T ′ ⊆ [n− 1], then, for every non-empty
J ′ ⊆ [n], the sum of matrix’s columns with indices in J ′ ∪ (n + J ′) is exactly as in the case of T = {n}, since the
contributions of T ′ and n + T ′ cancel out (whereas, as shown in Proposition 4, the CRW cannot be satisfied with
sets of size o(n)).
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semi-idle steps (on G′) correspond to staying in place (on G), whereas in steps that are not semi-
idle (on G′) the walk moves on the two copies of G in the same manner and identically to the
movement of the corresponding walk on G itself. Furthermore, fixing a lazy random walk on G
leaves undetermined the type of semi-idle steps taken on the corresponding walk on G′: Each of
these steps can either be a truly idle step (i.e., stay in place) or a move to the sibling vertex (i.e.,
the corresponding vertex in the other copy of G).

Turning to the matrices that describe hitting T ⊂ [n], note that each row in the t-by-n matrix
B the describes a walk on G has exactly |T | = n′ ones, and the same holds for the matrix B′ in
walks on G′. Furthermore, each row in the t-by-2n matrix B′ (which corresponds to a walk on G′)
has either the form 0nr or the form r0n, where r is the corresponding row in the matrix B (which
represents the hitting pattern in the corresponding walk on G). The choice between 0nr and r0n

is determined by the number of steps (so far) in which the matching permutation (which moves
vertices to their sibling in the other copy of G) was selected.

Recall that Claim 9.1 asserts that, for every non-empty J ⊆ [n], with probability at least
1 − exp(−Ω(t − O(n log n))) over the walks on G, the sum of columns J in the matrix B (which
corresponds to a random walk on G) is a non-zero vector. Actually, the same argument applies
to a lazy random walk, by focusing on the non-idle steps. Moreover, it can be shown that this

vector, denoted v(J), has Hamming weight t′
def
= Ω(t), since expansion implies that, with extremely

high probability, sets of constant density are hit with constant frequency (rather than merely hit).
Furthermore, with probability at least 1 − exp(−Ω(t − O(n log n))), at least t′/2 of the 1-entries
in v(J) correspond to idle steps. Let us fix a (lazy) random walk on G that has the foregoing
properties, and let ri denote the ith row of the corresponding matrix B.

Turning to the corresponding t-by-2n matrix B′ that describes a random walk on G′, consider
an arbitrary non-empty set of columns J ⊂ [2n], and let J ′ = J ∩ [n] and J ′′ = {j −n : j ∈ J \ J ′}.
Then, for every i ∈ [t], if the sum of the entries in ri and columns J ′ is 1, then the sum of the
entries in row i and columns J of B′ is 1 if the ith row of B′ equals ri0

n. Similarly, if the sum of
the entries in ri and columns J ′′ is 1, then the sum of the entries in row i and columns J of B′ is 1
if the ith row of B′ equals 0nri. Recall that the latter event (i.e., where the ith row of B′ equals
ri0

n or 0nri) depends only on the choices made in the semi-idle steps.
Lastly, we focus on the rows of B that correspond to idle steps and whose sum in columns J ′

(resp., J ′′) equals 1. Recalling that if J ′′ 6= ∅ (resp., J ′′ 6= ∅), then B contains at least t′/2 = Ω(t)
such rows, we note that for each of these rows the sum of the entries in column J of B′ is 1 with
probability at least 1/2, since with probability 1/2 the ith row of B′ equals ri0

n (resp., 0nri). Hence,
B′ is full rank with probability at least 1−(2n−2) ·(2−Ω(t−O(n log n)) +2−t′/2), and the claim follows.

4 A sufficient and necessary condition: The relaxed CRW prop-

erty

We now turn back to the relation between the CRW property (of Definition 6) and 1-local expanders.
Recall that Theorem 8 asserts that graphs satisfying the CRW property yield 1-local expanders. A
natural question is whether this sufficient condition is necessary. Leaving this question open, we
shall show that a relaxed CRW property (of the n-vertex relocation graph) suffices and is necessary
for for obtaining a 1-local 2n-vertex expander.
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The relaxed CRW property uses a generalization of Definition 6 in which several subsets of [n]
are considered (rather than one), and at each step of the coordinated random walks hitting are
considered with respect to the most beneficial set. That is, given a coordinated random walk, we
can select which subset we consider at each step of the walk, and the corresponding row of the
matrix is determined accordingly. This freedom of choice is used when proving the “necessity”
direction, whereas it can handled in the “sufficiency” direction by using a large number of offsets
(i.e., exponential in the number of sets).

Definition 11 (a relaxed property of coordinated random walks): For d, d′ = O(1), consider a

d-regular n-vertex graph as in Definition 6, and d′ sets T1, ..., Td′ ⊆ [n].

• As in Definition 6, for t ≥ n, consider a random sequence σ = (σ1, ..., σt) ∈ [d]t and the n
corresponding coordinate random walks such that the jth walk starts at vertex j and moves in

the ith step to the σth
i neighbor of the current vertex.

• Fixing the random sequence σ, consider an arbitrary sequence τ = (τ1, ..., τt) ∈ [d′]t, and let

B(σ,τ) be the t-by-n Boolean matrix such that its (i, j)th entry indicates whether the jth walk

passed through Tτi in its ith step.

The relaxed CRW property asserts that, with probability at least 1 − 2−n−Ω(t) over the choice of

σ ∈ [d]t, there exists τ ∈ [d′]t such that the Boolean matrix B(σ,τ) has full rank.

(Indeed, Definition 6 corresponds to the special case of d′ = 1.)

Theorem 12 (constructing 1-local expanders is equivalent to constructing relocation graphs that
satisfy the relaxed CRW property (as in Definition 11)): Let π(1), ..., π(d) : [n] → [n] be permutations.

1. The relaxed CRW property is neccessary for 1-local expanders: If the 1-local 2d-regular 2n-

vertex graph associated with the permutations π(1), ..., π(d) and the offsets s(1), ..., s(d) ∈ {0, 1}n

is an expander, then the corresponding 2d-regular n-vertex relocation graph satisfies the relaxed

CRW property with respect to the sets T1, ..., T2d such that T2i = {j ∈ [n] : s
(i)
j = 1} and

T2i−1 = {π(i)(j) : s
(i)
j =1}.

2. The relaxed CRW property is sufficient for 1-local expanders: Suppose that the 2d-regular

n-vertex relocation graph associated with π(1), ..., π(d) satisfies the relaxed CRW property with

respect to the sets T1, ..., Td′ . Then, the 22d′+1 · d-regular 2n-vertex 1-local graph having the

edge multi-set ⋃

i∈[d],β,γ∈{0,1}d′

{
{x, (x ⊕ s(β))π(i) ⊕ s(γ)} : x ∈ {0, 1}n

}
(3)

is an expander, where for every α ∈ {0, 1}d′ the string s(α) ∈ {0, 1}n denotes the indicator

sequence of the set
⊕

i∈[d′]:αi=1 Ti ⊆ [n]; that is, the jth bit of s(α) is 1 if and only if j resides

in an odd number of subsets Ti such that αi = 1 (iff |{i ∈ [d′] : αi =1 &j ∈Ti}| is odd).

Theorem 8 is a special case of Part 2 (i.e., the case of d′ = 1). Note that the edge multi-set of

Eq. (3) may use (2d′ − 1) · d · 2d′ + 2d′ different offsets (i.e., the offsets s(γ) and s
(β)

π(i) ⊕ s(γ) for

i ∈ [d], γ ∈ {0, 1}d′ and β ∈ {0, 1}d′ \ {0n}).
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Proof: We start with the proof of Part 2, which generalizes the proof of Theorem 8. Specifically,
let σ = (σ1, ..., σt) ∈ [2d]t be a random walk on the relocation graph such that an even σi (resp., an
odd σi) indicates a forward (resp., reverse) transition using π(⌈σi/2⌉). Then, by the hypothesis, with
probability at least 1 − exp(−n − Ω(t)) over the choice of σ, there exists τ = (τ1, ...., τt) such that
B(σ,τ) is full rank. Recall that specifying a random walk on the 1-local graph requires specifying
also the random choices of βi, γi ∈ {0, 1}d′ for each step i ∈ [t]. We do so depending of the parity of
σi and the value of τi ∈ [d′]. Specifically, we consider the following two-stage process of determining
the sequence of auxiliary random choices of β1, ..., βt ∈ {0, 1}d′ and γ1, ..., γt ∈ {0, 1}d′ .

1. For every i ∈ [t] such that the ith step is a forward (resp., reverse) transition,

(a) select βi (resp., γi) uniformly in {0, 1}d′ , and

(b) for every k ∈ [d′] \ {τi}, select the bit γi,k (resp., βi,k) uniformly in {0, 1}.

2. For every i ∈ [d′] such that the ith step is a forward (resp., reverse) transition, select γi,τi

(resp., βi,τi) uniformly in {0, 1}.
Fixing a good σ and a corresponding good τ (i.e., choices such that B(σ,τ) is full rank), consider an
arbitrary fixing of the choices in Stage 1. Then, the label of the final vertex in the corresponding
random walk on the 1-local graph is a fixed string (determined by σ and the choices made in
Stage 1) that is offset by a random linear combination of the rows of B(σ,τ), where the random
linear combination is determined in Stage 2. (Specifically, if the ith step is a forward (resp., reverse)
transition, then the ith row is included in this offset if and only if γi,τi = 1 (resp., βi,τi = 1).) Thus,
when B(σ,τ) has full rank, the label of the final vertex is uniformly distributed in {0, 1}n, and Part 2
follows.

Turning to the proof of Part 1, we start by considering the 4d-regular 2n-vertex 1-local expander
obtained from the given 2d-regular 1-local expander by augmenting each transition of the form
x 7→ xπ ⊕ s with the transition x 7→ xπ. (The auxiliary graph is an expander because it contains
an expander as a subgraph.) Hence, a step on this auxiliary graph is specified by a pair (σ, b) ∈
[2d] × {0, 1}, where σ specifies a step on the original 1-local graph and b = 1 indicates that the
original offset is applied; that is, we shall refer to the edge multi-set

⋃
i∈[d],b∈{0,1}{{x, xπ(i) ⊕(s(i))b} :

x ∈ {0, 1}n}. Cosequently, a t-step random walk on the 4d-regular expander corresponds to a
sequence (σ1, b1), ..., (σt, bt) ∈ ([2d] × {0, 1})t, and the sequence σ1, ..., σt corresponds to a walk on
the n-vertex relocation graph.

We shall use our freedom to determine the τi’s based on the σi’s, and doing so we shall obtain a
matrix as in Definition 11, which we shall show to be of full-rank (with extremely high probability).
Specifically, we let τi = σi, while assuming (again, without loss of generality) that an even σi (resp.,
an odd σi) indicates a forward (resp., reverse) transition using π(⌈σi/2⌉). This assumption is made
only in order to match the 2d possible transitions with the 2d sets defined in the conclusion of Part 1.
Indeed, under this assumption, if σi = 2k (resp., σ = 2k− 1), then the ith step applied the forward
(resp., reverse) transition x 7→ xπ(k)⊕s(k) (resp., y 7→ (y⊕s(k))π(−k) , where π(−k) denotes the inverse

of π(k), whereas T2k = {j ∈ [n] : s
(k)
j = 1} and T2k−1 = {π(k)(j) : s

(k)
j = 1} = {j : s

(k)

π(−k)(j)
= 1}.

Hence, picking τi = σi, the ith row in B(σ,τ) = B(σ,σ) indicates hitting the set Tτi .
As said above, we claim that if a t-step random walk on the 4d-regular 1-local graph yields a

distribution that is exp(−Ω(t))-close to uniform (and t = Ω(n) is large enough), then the matrix

B(σ,σ) must have full rank with probability at least 1 − exp(−n − Ω(t)). This claim is shown as
follows.
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Let η denote the probability (over the choice of σ ∈ [2d]t) that the matrix B(σ,σ) does not
have full rank. Such a choice of σ determines both the permutation πσ that relates the original
locations to the final ones (i.e., πσ = π((−1)σt ·⌈σt/2⌉) ◦ · · · ◦ π((−1)σ1 ·⌈σ1/2⌉)) and a non-trivial linear
combination Jσ of the columns of the matrix that witnesses the hypothesis that the matrix is not
full rank. Hence, there exists a non-empty set J ⊆ [n] such that, with probability η′ ≥ η/(2n − 1)
over the choice of σ, the sum of the columns indexed by π−1

σ (J) (in the matrix B(σ,σ)) equals the
all-zero vector (e.g., π−1

σ (J) = Jσ), whereas in the remaining choices (of σ) this sum does not equals
the all-zero vector.16

Looking at the label of the final vertex vσ in a random walk σ on the 1-local 2n-vertex graph
that starts at the vertex 0n, we observe that vσ equals a random linear combination of the rows
of B(σ,σ) permuted by πσ; that is, (vσ)π−1

σ
equals a random linear combination of the rows of

B(σ,σ), where this random linear combination is determined by the sequence (b1, ..., bt) of choices
of whether or not to apply the original offset. This is the case since the ith row permuted by
π((−1)σi ·⌈σi/2⌉) ◦ · · · ◦π((−1)σ1 ·⌈σ1/2⌉) is the offset that is potentially added in the ith step of the walk,
whereas this offset is added if and only if bi = 1.

It follows that the sum of vσ’s bits in locations J (equiv., the sum of the bits of (vσ)π−1
σ

in

locations π−1
σ (J)) is zero with probability exactly η′ +(1− η′) · 0.5 = 0.5+0.5η′ , since this sum is 0

whenever the sum of the corresponding columns in B(σ,σ) is the all-zero vector (and is uniformly
distributed in {0, 1} otherwise).17 Hence, the total variation distance between the distribution of
the final vertex and the uniform distribution is at least 0.5η′.

Recalling that the hypothesis (i.e., that the 1-local graph is an expander) implies that η′ ≤
exp(−Ω(t)), it follows that η < 2n · η′ = exp(−n − Ω(t)), for sufficiently large t = Ω(n). This
establishes Part 1.

Conclusion. Theorem 12 asserts that constructing graphs that satisfy the relaxed CRW property
is equivalent to constructing 1-local expanders. One begging qurestion is whether the relaxed CRW
property is easier to achieve that the original CRW property. Lacking a positive answer, the raises
the following generalization of Problem 7.

Open Problem 13 (the CRW problem, revised): For which graphs and which sequences of sets

(T1, ..., Td′)’s does the relaxed CRW property (as in Definition 11) hold?

An appealing conjecture of Benny Applebaum is that every n-vertex expander graph yield a positive
instance of Problem 13; that is, there exists d′ = O(1) sets T1, ..., Td′ ⊂ [n] such that this n-vertex
graph satisfies the relaxed CRW property (of Definition 11) with respect to these Ti’s.

16The issue here is as follows: We know that for η fraction of the σ’s, there exists a Jσ 6= ∅ such that the sum of
these columns is the all-zero vector (and let Jσ = ∅ otherwise). However, these columns corresponds to locations in
the (label of the) initial vertex, whereas we want to analyze locations in the end vertex. Of course, locations Jσ in
the initial vertex correspond to locations πσ(Jσ) in the final vertex. Hence, there exists a non-empty J (representing
locations in final label) such that the sum of the columns in π−1

σ (J) (representing locations in initial label) equals
the all-zero vector with probability η′ ≥ η/(2n − 1). This lower bound is due to the event π−1

σ (J) = Jσ, but the sum
of these columns may be zero also otherwise. (For this reason, we define η′ as the probability that the sum of the
columns in π−1

σ (J) equals the all-zero vector rather than the probability that π−1
σ (J) = Jσ.) Needless to say, for the

rest of this probability space (of σ ∈ [2d]t), this sum is not the all-zero vector.
17If the sum of these columns is not the all-zero vector, then a random combination of its entries, as determined

by (b1, ..., bt), is uniformly distributed in {0, 1}.
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5 Generalization to non-binary alphabets

We generalize the main definitions to an arbitrary alphabet of prime size, which is identified with
the field GF(p). A function f : GF(p)n → GF(p)n is called t-local if each symbol in its output
depends on at most t symbol in its input. This yields a generalized notion of a 1-local graph.

Definition 14 (1-local graph, generalized): For a fixed d ∈ N and a fixed prime p, let {f1, ..., fd :
GF(p)n → GF(p)n}n∈N be 1-local bijections. Then, the corresponding 2d-regular pn-vertex 1-local
graph consists of the vertex set GF(p)n and the edge multi-set

⋃
i∈[d]{{x, fi(x)} : x ∈ GF(p)n}.

Note that each fi is determined by a permutation on the locations π(i) : [n] → [n], called the

relocation, and n bijections denoted h
(i)
1 , ..., h

(i)
n : GF(p) → GF(p) such that, for every j ∈ [n], the

jth bit of fi(x) equals h
(i)
j (xπ(i)(j)). Unlike in the binary case (i.e., p = 2), where each h

(i)
j is affine

(i.e., has the form h
(i)
j (z) = z ⊕ s

(i)
j ), these bijections are not necessarily affine functions. Still, we

shall focus on the case that they are affine. Generalizing Theorems 8 and 9, we obtain.

Theorem 15 (a construction of generalized 1-local expanders): For every constant prime p, there

exists a set of d = O(p2) explicit 1-local bijections, {f1, ..., fd : GF(p)n → GF(p)n}n∈N, such

that the 2d-regular pn-vertex graph that consists of the vertex set GF(p)n and the edge multi-set⋃
i∈[d]{{x, fi(x)} : x ∈ GF(p)n} is an expander. Furthermore, for each i ∈ [d], there exists a

permutation π(i) : [n] → [n] and an offset s(i) ∈ GF(p)n such that fi(x) = xπ(i) + s(i).

iff π(i)(j) = k. The expansion feature holds also for varying p = p(n), but in that case the graph is
not of constant degree.

Proof: The overall plan is to use a straightforward generalization of the CRW property for rank
defined over GF(p), and prove adequate generalizations of Theorems 8 and 9. Specifically, we first
show that any n-vertex graph that satisfies the generalized CRW property yields a 1-local pn-vertex
expander, and then show that any generating set for the symmetric group of n elements that is
expanding yields an n-vertex graph that satisfies the generalized CRW property (with respect to
any set of size n′ ≈ n/2 such that n′ 6≡ 0 (mod p)).

Definition 15.1 (a property of coordinated random walks, generalized): For a d-regular n-vertex

graph as in Definition 6, a set T ⊆ [n] and t = Ω(n), consider coordinated random walks and Boolean

matrices just as in Definition 6. The generalized CRW property postulates that, with probability at

least 1 − p−n · exp(−Ω(t)), such a random matrix has full rank when the arithmetics is in GF(p).

We stress that although these random matrices have entries in {0, 1}, we consider their rank over
GF(p).

Claim 15.2 (Theorem 8, generalized): Let π(1), ..., π(d) : [n] → [n] be d permutations and s =
(s1, ...., sn) ∈ {0, 1}n ⊆ GF(p)n. If the 2d-regular n-vertex graph with the edge multi-set

⋃
i∈[d]{{j, π(i)(j)} :

j ∈ [n]} satisfies the generalized CRW property (of Definition 15.1) with respect to the set {j ∈ [n] :
sj =1}, then the 2p2d-regular pn-vertex graph with the edge multi-set

⋃

i∈[d],b,c∈GF(p)

{{x, (x − b · s)π(i) + c · s} : x ∈ GF(p)n}

is an expander, where b · (s1, ..., sn) = (bs1, ..., bsn).
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Proof Sketch: We mimic the proof of Theorem 8, while noting that in the ith step the vertex’s label
is randomized by an offset that is a random GF(p)-multiple of the ith row in the corresponding
matrix; specifically, in a forward direction the randomization is performed by the value of c (i.e.,
adding the offset c · s), whereas in a reverse direction the randomization is performed by the value
of b (i.e., subtracting the offset −b ·s). Hence, if the matrix has full rank over GF(p), then the label
of the final vertex is uniformly distributed in GF(p)n (since it is randomized by a random linear
combination of the rows of the matrix).

Claim 15.3 (Theorem 9, generalized): Let Π = {π(i) : i ∈ [d]} be a generating set of the symmetric

group of n elements and suppose that Π is expanding. Then, the n-vertex graph that consists of

the vertex set [n] and the edge multi-set
⋃

i∈[d]{{j, π(i)(j)} : j ∈ [n]} satisfies the generalized CRW

property of Definition 15.1 with respect to any set T of size n′ ≈ n/2 such that n′ 6≡ 0 (mod p).

Proof Sketch: Here we mimic the proof of Theorem 9. Specifically, we consider all (non-zero) linear
combinations L : [n] → GF(n) of the columns of a matrix that corresponds to a random walk, and
upper bound the probability that each such linear combination yields the all-zero vector. That
is, fixing any set T of size n′, for every such linear combination L, we consider the set WL of
permutations π ∈ Symn such that

∑
i∈[n]:π(i)∈T L(i) 6≡ 0 (mod p). Once we show that each WL

has constant density, the claim follows as in the binary case by using t = Ω(n log(np)), where here
we use a union bound on all (non-zero) L’s. Hence, we focus on proving that for each non-zero
L : [n] → GF(p), the set WL has constant density in Symn.

The case of non-zero constant functions L : [n] → GF(p) is handled by the hypothesis that n′ 6≡ 0
(mod p), which implies that WL = Symn, and so we focus on non-constant functions L. In this case,
one may show that WL has density at least 0.5− o(1), but we use a simpler argument to show that
it has density at least 0.25 − o(1). Specifically, considering any i1, i2 ∈ [n] such that L(i1) 6= L(i2),
we observe that Prπ[|{π(i1), π(i2)} ∩ T |= 1] > 0.5 − o(1). On the other hand, conditioned on the

values of π on I
def
= [n] \ {i1, i2} and on the foregoing event (i.e., |{π(i1), π(i2)} ∩ T |=1), the value

of
∑

i∈[n]:π(i)∈T L(i) is a random variable that equals
∑

i∈I:π(i)∈T L(i) + L(i1) with probability 1/2
(when π(i1) ∈ T ) and equals

∑
i∈I:π(i)∈T L(i) + L(i2) otherwise. Recalling that L(i1) 6= L(i2), we

get

Prπ:[n]→[n]




∑

i∈[n]:π(i)∈T

L(i) 6≡ 0 (mod p)


 > (0.5 − o(1)) · 1

2

and the claim follows.

Combining Claims 15.3 and 15.2, we get.

Corollary 15.4 (obtaining generalized 1-local expanders): Let Π = {π(i) : i ∈ [d]} be a generating

set of the symmetric group of n elements and suppose that Π is expanding. Then, for any n′ ≈ n/2
such that n′ 6≡ 0 (mod p), the 2p2d-regular pn-vertex graph with the edge multi-set

⋃

i∈[d],b,c∈GF(p)

{
{x, (x − bn′

0n−n′
)π(i) + cn′

0n−n′} : x ∈ GF(p)n
}

is an expander.

Using Kassabov’s result [4] (which asserts that the symmetric group has an explicit generating set
that is expanding and of constant size), the theorem follows.
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Comment: The foregoing generalizes to any finite field; that is, p may be a prime power. For
p = qe, where q is prime, we select n′ ≈ n/2 such that n′ 6≡ 0 (mod q), and proceed as above (while
noting that in the proof of Claim 15.3 the reductions mod p actually refer to doing arithmetics in
GF(p)).
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Appendix: Secondary Observations

A natural way of trying to improve over Observation 2 is to use relocation graphs that have shorter
cover time. The natrual choice is to use n-vertex expander graphs.18

Observation 16 (using an expander for the relocation graph): Let π(1), ..., π(d) : [n] → [n] be

bijections that represent the edges of an 2d-regular expander, and id : [n] → [n] denote the iden-

tity bijection. Then, the 1-local 2n-vertex graph associated with the 2d relocation permutation

π(1), ..., π(d), id, ..., id and the 2d offsets 0n, ..., 0n, 0n−11, ..., 0n−11 (i.e,., the ith bijection is x 7→ xπ(i)

if i ∈ [d] and x 7→ x ⊕ 0n−11 otherwise) has second (normalized) eigenvalue 1 − Θ(1/n log n).

Proof Sketch: In this case, a random walk of length t = O(t′ · n log n) on the n-vertex graph
visits all vertices with probability at least 1 − 2−t′ (since its cover time is O(n log n) and we have
t′ “covering attempts”).19 It follows that taking a random walk of length O(t′ · n log n) on the
1-local graph yields a distribution that is 2−t′-close to uniform, since (with probability 1 − 2−t′)
each position in the original n-bit string is mapped to the rightmost position at some time, and at
the next step the corresponding value is “randomized” (since the offset is applied with probability
1/2).

Proposition 4 (restated): Consider a 2d-regular 2n-vertex graph as in Definition 3, and suppose

that for every i ∈ [d] either |s(i)| = o(n) or |s(i)| = n − o(n). Then, this 1-local 2n-vertex graph is

not an expander.

Proof: For starters, we assume that |s(i)| = o(n) for every i ∈ [d]. We first consider an auxiliary
4d-regular 2n-vertex graph in which, for each i ∈ [d], the ith relocation permutation (i.e., π(i)) is
coupled both with the offset s(i) and with the all-zero offset.

The key observation is that, during a random walk on the 1-local 2n-vertex graph, bits in the
label of the current vertex get randomized by the offsets with too small probability, since at each
step only o(n) locations are randomized. Specifically, for a t-step random walk that starts at the
vertex 0n, consider the event this walk does not randomize position j ∈ [n] (in the initial n-bit
string); that is, the corresponding walk on the n-vertex relocation graph that starts at vertex

18We assume that the edges of this 2d-regular expander can be represented by d permutations, as in the definition
of a relocation graph.

19The cover time bound was established in [1, 2, 5].
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j ∈ [n] does not go through any vertex in the set S
def
=

⋃
i∈[d]{k : s

(i)
k = 1}. This event occurs

with probability at least η = exp(−o(t))/n, since the probability that a walk of length t that
starts at a random vertex on any regular n-vertex graph misses a set of o(n) vertices is at least
(1 − o(1))t = exp(−o(t)).20

Note that randomized bit positions are reset to 1 with probability exactly 1/2 (by virtue of the
auxiliary construction performed upfront), whereas non-randomized positions maintain the value 0.
Considering the expected number of ones in the label of the final vertex of a t-step random walk
(on the 2n-vertex graph), observe that if some bit is not randomized with probability η, then the
expected number of ones is at most (1− η) · 0.5 ·n + η · 0.5 · (n− 1) = (n− η)/2. It follows that the
total variation distance between the distribution of the final vertex and the uniform distribution is
at least η/2n = exp(−o(t) − log n).21 We stress that the foregoing holds for any t, which means
that we assume that n = o(t), let alone log n = o(t). Hence, the convergence rate of the 1-local
2n-verterx graph is not bounded away from 1 (since η = exp(−o(t)) whereas the convergence rate
λ must satisfy 2n · λt > η/2n).22 Lastly, we note that given that the auxiliary graph is not an
expander, the original graph (which is a subgraph of it) is also not an expander.

Turning to the case in which also offsets of Hamming weight n − o(n) exist, we note that this
is equivalent to using an offset of weight o(n) and complementing all bits in the resulting label.
Hence, such offsets can randomize many individual locations but cannot randomize all pairs of
locations (i.e., randomize each location independently of its paired location). Hence, we extend the
foregoing argument to pairs of locations.

We first observe that there are two positions j1 6= j2 such that with probabiliy η′ = exp(−o(t))
these position are always randomized together (i.e., in each steps either both j1 and j2 are in
locations that get randomized by some single offset or both are not in such locations).23 The
argument is completed by considering the expected number of pairs of positions that hold the same
value.
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