
Complete Fairness in Secure Two-Party Computation
∗

S. Dov Gordon
Dept. of Computer Science

University of Maryland

gordon@cs.umd.edu

Carmit Hazay
Dept. of Computer Science

Bar-Ilan University

harelc@cs.biu.ac.il

Jonathan Katz
Dept. of Computer Science

University of Maryland

jkatz@cs.umd.edu

Yehuda Lindell
Dept. of Computer Science

Bar-Ilan University
lindell@cs.biu.ac.il

ABSTRACT

In the setting of secure two-party computation, two mutu-
ally distrusting parties wish to compute some function of
their inputs while preserving, to the extent possible, various
security properties such as privacy, correctness, and more.
One desirable property is fairness, which guarantees that if
either party receives its output, then the other party does
too. Cleve (STOC 1986) showed that complete fairness can-
not be achieved in general in the two-party setting; specif-
ically, he showed (essentially) that it is impossible to com-
pute Boolean XOR with complete fairness. Since his work,
the accepted folklore has been that nothing non-trivial can
be computed with complete fairness, and the question of
complete fairness in secure two-party computation has been
treated as closed since the late ’80s.

In this paper, we demonstrate that this widely held folk-
lore belief is false by showing completely-fair secure pro-
tocols for various non-trivial two-party functions including
Boolean AND/OR as well as Yao’s “millionaires’ problem”.
Surprisingly, we show that it is even possible to construct
completely-fair protocols for certain functions containing an
“embedded XOR”, although in this case we also prove a lower
bound showing that a super-logarithmic number of rounds
are necessary. Our results demonstrate that the question of
completely-fair secure computation without an honest ma-
jority is far from closed.

Categories and Subject Descriptors

C.2.0 [Computer-Communication Networks]: General;
F.m [Theory of Computation]: Miscellaneous

∗
This work was supported by US-Israel Binational Science Founda-

tion grant #2004240. The third author was also supported by NSF

CAREER award #0447075.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’08, May 17–20, 2008, Victoria, British Columbia, Canada.
Copyright 2008 ACM 978-1-60558-047-0/08/05 ...$5.00.

General Terms

Theory, Security

Keywords

Fairness, cryptography, secure computation

1. INTRODUCTION
In the setting of secure computation, a set of parties wish

to run some protocol for computing a function of their inputs
while preserving, to the extent possible, security properties
such as privacy, correctness, input independence, etc. These
requirements, and more, are formalized by comparing a real-
world execution of the protocol to an ideal world where there
is a trusted entity who performs the computation on behalf
of the parties. Informally, a protocol is “secure” if for any
real-world adversary A there exists a corresponding ideal-
world adversary S (corrupting the same parties as A) such
that the result of executing the protocol in the real world
with A is computationally indistinguishable from the result
of computing the function in the ideal world with S .

One desirable property is fairness which, intuitively, means
that either everyone receives the output, or else no one does.
Unfortunately, it has been shown by Cleve [10] that com-
plete fairness1 is impossible to achieve in general when a
majority of parties is not honest (which, in particular, in-
cludes the two-party setting). Specifically, Cleve ruled out
completely-fair coin tossing, which implies the impossibility
of computing Boolean XOR with complete fairness. Since
Cleve’s work, the accepted folklore has been that nothing
non-trivial can be computed with complete fairness without
an honest majority, and researchers have simply resigned
themselves to being unable to achieve this goal. Indeed, the
standard formulation of secure computation (see [15]) posits
two ideal worlds, and two corresponding definitions of se-
curity: one that incorporates fairness and is used when a
majority of the parties are assumed to be honest (we refer
to the corresponding definition as “security with complete
fairness”), and one that does not incorporate fairness and
is used when an arbitrary number of parties may be cor-
rupted (we refer to the corresponding definition as “security
1
Throughout this discussion, we refer to the notion of complete fair-

ness where honest parties receive their entire output if the adversary
receives its own output. Notions of partial fairness have also been

considered; see below.

413

with abort”, since the adversary in this case may abort the
protocol when it receives its output).

Protocols achieving security with complete fairness when
a majority of parties are honest are known for arbitrary func-
tionalities, [5, 8, 2, 26] (assuming a broadcast channel), as
are protocols achieving security with abort for any number
of corrupted parties [16, 15] (under suitable cryptographic
assumptions, and continuing to assume a broadcast chan-
nel). Since the work of Cleve, however, there has been no
progress towards a better understanding of complete fair-
ness without an honest majority. That is, no impossibility
results have been shown for other functionalities, nor have
any completely-fair protocols been constructed. (Feasibility
results for authenticated broadcast [24, 11] could be viewed
as an exception, but broadcast is anyway trivial in the two-
party setting.) In short, the question has been treated as
closed for over two decades.

Our results. Cleve’s work shows that certain functions
cannot be computed with complete fairness without an hon-
est majority. As mentioned above, however, the prevailing
“folklore” interpretation of this result is that nothing non-
trivial can be computed with complete fairness without an
honest majority. Surprisingly, we show that this folklore is
false by demonstrating that many interesting functions can
be computed with complete fairness in the two-party case.
We demonstrate two protocols for two classes of Boolean
functions. Our first protocol implies, among other things:

Theorem (Under suitable assumptions) there is a constant-
round protocol for securely computing the two-party Boolean
OR and AND functions with complete fairness.

Note that OR and AND are non-trivial: they cannot be com-
puted with information-theoretic privacy [9] and are com-
plete for secure computation with abort [19, 20, 4].

Our first protocol also yields completely-fair computa-
tion of Yao’s millionaires’ problem (i.e., the “greater than”
function) for polynomial-size domains. More generally, our
first protocol can be applied to obtain completely-fair se-
cure computation of any function (over polynomial-size do-
mains) that does not contain an embedded XOR, i.e., inputs
x0, x1, y0, y1 such that f(xi, yj) = i⊕ j.

Given the class of functions for which our first protocol
applies, and the fact that Cleve’s result rules out completely-
fair computation of XOR, a natural conjecture might be that
any function containing an embedded XOR cannot be com-
puted with complete fairness. Our second protocol shows
that this conjecture is false:

Theorem (Under suitable cryptographic assumptions) there
exist two-party functions containing an embedded XOR that
can be securely computed with complete fairness.

Our second protocol is more general than our first (in the
sense that any function that can be computed with com-
plete fairness using our first protocol can also be computed
with complete fairness using our second protocol), but we
consider both protocols to be of independent interest. Fur-
thermore, the round complexity of our protocols is incompa-
rable: the number of rounds in the first protocol is linear in
the size of the domain of the function being computed, and
in the second protocol it is super-logarithmic in the security
parameter. We show that the latter is inherent for functions
containing an embedded XOR:

Theorem Let f be a function with an embedded XOR. Then
any protocol securely computing f with complete fairness (as-
suming one exists) requires ω(log n) rounds.

Our proof of the above is reminiscent of Cleve’s proof [10],
but proceeds differently: Cleve only considered bias whereas
we must jointly consider both bias and privacy (since, for
certain functions containing an embedded XOR, it may be
possible for an adversary to bias the output even in the ideal
world). This makes the proof considerably more complex.

Related work. Questions of fairness, and possible relax-
ations thereof, have been studied since the early days of se-
cure computation [27, 13, 3, 17]. One of the main techniques
to result from this line of work is “gradual release” [22, 12,
3, 17, 6, 25, 14] which, informally, guarantees that at any
point in the protocol both the adversary and the honest par-
ties can obtain their output by investing a “similar” amount
of work. Gradual release is applicable to general functional-
ities, but achieves only partial fairness. In contrast, we are
interested in obtaining complete fairness, exactly as in the
case of an honest majority. To the best of our knowledge,
ours are the first positive results for completely-fair secure
computation without an honest majority.

2. DEFINITIONS
We denote the security parameter by n. We use the stan-

dard definitions of secure multi-party computation (see [15])
for both“security with complete fairness” and“security with
abort”. We stress, however, that we will be considering se-
curity with complete fairness even though we are in the two-
party setting (this is not standard). Our protocols will rely
on information-theoretic MACs, defined and constructed in
the standard way.

Functionalities. In the two-party setting, a functionality
F = {fn}n∈N is a sequence of randomized processes, where
each fn maps pairs of inputs to pairs of outputs (one for each
party). We write fn = (f1

n, f2
n) if we wish to emphasize the

outputs of each party. The domain of fn is Xn × Yn, where
Xn (resp., Yn) denotes the possible inputs of the first (resp.,
second) party. If Xn and Yn are of size polynomial in n,
then we say that F is defined over polynomial-size domains.
If each fn is deterministic, we will refer to each fn (and also
the collection F) as a function.

3. FAIRNESS FOR THE MILLIONAIRES’

PROBLEM (AND MORE)
In this section, we describe a protocol for securely com-

puting the classic millionaires’ problem (and related func-
tionalities) with complete fairness. Specifically, we look at
functions defined by a lower-triangular matrix, as in the fol-
lowing table:

y1 y2 y3 y4 y5 y6

x1 0 0 0 0 0 0
x2 1 0 0 0 0 0
x3 1 1 0 0 0 0
x4 1 1 1 0 0 0
x5 1 1 1 1 0 0
x6 1 1 1 1 1 0

Let F = {fn}n∈Ndenote a function of the above form, where
m = m(n) is the size of the domain of each input. (In

414

ShareGen

Inputs: Let the inputs to ShareGen be xi and yj with 1 ≤ i, j ≤ m. (If one of the received inputs is not in
the correct domain, then both parties are given output ⊥.) The security parameter is n.

Computation:

1. Define values a1, . . . , am and b1, . . . , bm in the following way:

• Set ai = bj = f(xi, yj), where xi and yj are the parties’ inputs.

• For ℓ ∈ {1, . . . , m}, ℓ 6= i, set aℓ = null.

• For ℓ ∈ {1, . . . , m}, ℓ 6= j, set bℓ = null.

(Technically, ai, bi are represented as 2-bit values with, say, 00 interpreted as ‘0’, 11 interpreted as ‘1’,
and 01 interpreted as ‘null’.)

2. For 1 ≤ i ≤ m, choose (a
(1)
i , a

(2)
i) and (b

(1)
i , b

(2)
i) as random secret sharings of ai and bi, respectively.

(I.e., a
(1)
i is random and a

(1)
i ⊕ a

(2)
i = ai.)

3. Compute ka, kb ← Gen(1n). For 1 ≤ i ≤ m, let tai = Macka
(i‖a

(2)
i) and tbi = Mackb

(i‖b
(1)
i).

Output:

1. P1 receives the values a
(1)
1 , . . . , a

(1)
m and (b

(1)
1 , tb1), . . . , (b

(1)
m , tbm), and the MAC-key ka.

2. P2 receives the values (a
(2)
1 , ta1), . . . , (a

(2)
m , tam) and b

(2)
1 , . . . , b

(2)
m , and the MAC-key kb.

Figure 1: Functionality ShareGen.

general, the domains need not be the same size; we make
this assumption for simplicity.) For some fixed value of n,
let X = {x1, . . . , xm} denote the valid inputs for the first
party and let Y = {y1, . . . , ym} denote the valid inputs for
the second party. (We leave the security parameter implicit
when this will not cause confusion.) By suitably ordering
these elements, we may write fn as follows:

fn(xi, yj) =

�
1 if i > j
0 if i ≤ j

.

Viewed in this way, fn is exactly the millionaires’ prob-
lem or, equivalently, the “greater than” function. In the
full version of this work, we show that any function with
a polynomial-size domain that does not have an embed-
ded XOR is essentially equivalent to the function fn defined
above (in the sense that such a function can be transformed
into one of this type without any loss). The remainder of this
section is thus devoted to a proof of the following theorem
(where we assume that the function is already transformed
to the above form):

Theorem 1. Let m = poly(n) and let F = {fn} be any
function with domain size m that does not have an embedded
XOR. Then, assuming the existence of enhanced trapdoor
permutations, there exists a protocol that securely computes
F = {fn} with complete fairness.

Our protocol requires Θ(m) rounds, which explains why
we require m = poly(n). When m = 2, we obtain a protocol
for computing Boolean AND (and, by symmetry, OR) with
complete fairness. For the remainder of this section, we write
f in place of fn.

3.1 The Protocol
Intuition. At a high level, our protocol works as follows.
Say the input of P1 is xi, and the input of P2 is yj . Following
a constant-round “pre-processing” phase, the protocol pro-
ceeds in a series of m iterations, where P1 learns the output
value f(xi, yj) in iteration i, and P2 learns the output in
iteration j. (I.e., the iteration in which a party learns the

output depends on the value of its own input.) If one party
(say, P1) aborts after receiving its iteration-k message, and
the second party (say, P2) has not yet received its output,
then P2 “assumes” that P1 learned its output in iteration k,
and so computes f on its own using input xk for P1. (In this
case, that means that P2 would output f(xk, yj).)

The fact that this approach gives complete fairness can be
intuitively understood as follows. Say P1 is malicious, and
uses xi as its effective input. There are two possibilities: P1

either aborts before iteration i, or after iteration i. (If P1

never aborts then fairness is trivially achieved.) In the first
case, P1 never learns the correct output and so fairness is
clearly achieved. In the second case, P1 obtains the output
f(xi, y) in iteration i and then aborts in some iteration k ≥ i.
We consider two sub-cases depending on the value of P2’s
input y = yj :

• If j < k then P2 has already received its output in a
previous iteration and fairness is achieved.

• If j ≥ k then P2 has not yet received its output. Since
P1 aborts in iteration k, P2 will (locally) compute and
output f(xk, y) = f(xk, yj). We claim that f(xk, yj) =
f(xi, yj), and so the output of P2 is equal to the output
obtained by P1 (and fairness is achieved). Here we rely
on the specific properties of f : since j ≥ k ≥ i we have
f(xi, yj) = 0 = f(xk, yj). This is the key observation
that enables us to obtain fairness for this function.

We formalize the above in our proof, where we demonstrate
an ideal-world simulator corresponding to the actions of any
malicious P1. Of course, we also consider the case of a ma-
licious P2.

Formal description of the protocol. Let (Gen, Mac, Vrfy)
be a message authentication code (MAC). We assume it is
an m-time MAC with information-theoretic security, though
a computationally-secure MAC would also suffice.

We will rely on a sub-protocol for securely computing a
randomized functionality ShareGen defined in Figure 1. In
our protocol, the parties will compute ShareGen as a re-

sult of which P1 obtains shares a
(1)
1 , b

(1)
1 , a

(1)
2 , b

(1)
2 , . . . and

415

Protocol 1

Inputs: Party P1 has input x and party P2 has input y. The security parameter is n.

The protocol:

1. Preliminary phase:

(a) Parties P1 and P2 run protocol π for computing ShareGen, using their respective inputs x, y, and
security parameter n.

(b) If P1 receives ⊥ from the above computation (because P2 aborts the computation or uses an invalid
input in π) it outputs f(x, y1) and halts. Likewise, if P2 receives ⊥, it outputs f(x1, y) and halts.
Otherwise, the parties proceed.

(c) Denote the output of P1 from π by a
(1)
1 , . . . , a

(1)
m , (b

(1)
1 , tb1), . . . , (b

(1)
m , tbm), and ka.

(d) Denote the output of P2 from π by (a
(2)
1 , ta1), . . . , (a

(2)
m , tam), b

(2)
1 , . . . , b

(2)
m , and kb.

2. For i = 1; : : : ;m do:P2 sends the next share to P1:

(a) P2 sends (a
(2)
i , tai) to P1.

(b) P1 receives (a
(2)
i , tai) from P2. If Vrfyka

(i‖a
(2)
i , tai) = 0 (or if P1 received an invalid message, or

no message), then P1 halts. If P1 has already determined its output in some earlier iteration, then
it outputs that value. Otherwise, it outputs f(x, yi−1) (if i = 1, then P1 outputs f(x, y1)).

(c) If Vrfyka
(i‖a

(2)
i , tai) = 1 and a

(1)
i ⊕ a

(2)
i 6= null (i.e., x = xi), then P1 sets its output to be

a
(1)
i ⊕ a

(2)
i (and continues running the protocol).P1 sends the next share to P2:

(a) P1 sends (b
(1)
i , tbi) to P2.

(b) P2 receives (b
(1)
i , tbi) from P1. If Vrfykb

(i‖b
(1)
i , tbi) = 0 (or if P2 received an invalid message, or no

message), then P2 halts. If P2 has already determined its output in some earlier iteration, then it
outputs that value. Otherwise, it outputs f(xi, y).

(c) If Vrfykb
(i‖b

(1)
i , tbi) = 1 and b

(1)
i ⊕b

(2)
i 6= null (i.e., y = yi), then P2 sets its output to be b

(1)
i ⊕b

(2)
i

(and continues running the protocol).

Figure 2: Protocol for computing f .

P2 obtains shares a
(2)
1 , b

(2)
1 , a

(2)
2 , b

(2)
2 , (The functionality

ShareGen also provides the parties with MAC keys and tags
so that if a malicious party modifies the share it sends to
the other party, then the other party will almost certainly
detect it. If such manipulation is detected, it will be treated
as an abort.) The parties then exchange their shares one-by-
one in a sequence of m iterations. Specifically, in iteration i

party P2 sends a
(2)
i to P1, and then P1 sends b

(1)
i to P2.

Let π be a constant-round protocol that securely computes
ShareGen with abort. Such a protocol can be constructed us-
ing standard tools for secure two-party computation, assum-
ing the existence of enhanced trapdoor permutations [21].
Our protocol for computing f is given in Figure 2.

Theorem 2. If (Gen, Mac, Vrfy) is an i.t.-secure, m-time
MAC, and π securely computes ShareGen with abort, then
Protocol 1 securely computes {fn} with complete fairness.

Proof. Let Π denote Protocol 1. We analyze Π in a
hybrid model where the parties have access to a trusted
party computing ShareGen. (Note: since π securely com-
putes ShareGen with abort, the adversary may abort the
trusted party computing ShareGen before it sends output to
the honest party.) We prove that an execution of Π in this
hybrid model is statistically-close to an evaluation of f in the
ideal model (with complete fairness), where the only differ-
ence occurs due to MAC forgeries. This suffices to prove the
theorem [7]. We first analyze the case when P1 is corrupted:

Claim 1. For every non-uniform, polynomial-time adver-
sary A corrupting P1 and running Π in a hybrid model with

access to an ideal functionality computing ShareGen (with
abort), there exists a non-uniform, probabilistic polynomial-
time adversary S corrupting P1 and running in the ideal
world with access to an ideal functionality computing f (with
complete fairness), such thatn

idealf,S(x, y, n)
o

x∈X,y∈Y,n∈N
s
≡
n
hybrid

ShareGen
Π,A (x, y, n)

o
x∈X,y∈Y,n∈N.

Proof. Let P1 be corrupted by A. We construct a sim-
ulator S given black-box access to A:

1. S invokes A on the input x, the auxiliary input, and
the security parameter n.

2. S receives the input x′ of A to the computation of the
functionality ShareGen.

(a) If x′ 6∈ X, then S hands ⊥ to A as its output
from the computation of ShareGen, sends x1 to
the trusted party computing f , outputs whatever
A outputs, and halts.

(b) If x′ ∈ X, then S chooses uniformly-distributed

shares a
(1)
1 , . . . , a

(1)
m and b

(1)
1 , . . . , b

(1)
m . In addition,

it generates keys ka, kb ← Gen(1n) and computes

tb
i = Mackb

(i‖b
(1)
i) for every i. Finally, it hands A

the strings a
(1)
1 , . . . , a

(1)
m , (b

(1)
1 , tb

1), . . . , (b
(1)
m , tb

m),
and ka as its output from ShareGen.

416

3. If A sends abort to the trusted third party comput-
ing ShareGen, then S sends x1 to the trusted party
computing f , outputs whatever A outputs, and halts.
Otherwise, S proceeds as below.

4. Let i (with 1 ≤ i ≤ m) be the index such that x′ = xi

(such an i exists since x′ ∈ X).

5. To simulate iteration j, for j = 1, . . . , i− 1, simulator
S works as follows:

(a) S chooses a
(2)
j such that a

(1)
j ⊕ a

(2)
j = null, and

computes the tag ta
j = Macka

(j‖a
(2)
j). Then S

gives A the message (a
(2)
j , ta

j).

(b) S receives A’s message (b̂
(1)
j , t̂b

j) in the jth itera-
tion. Then:

i. If Vrfykb
(j‖b̂

(1)
j , t̂b

j) = 0 (or the message is
invalid, or A aborts), then S sends xj to the
trusted party computing f , outputs whatever
A outputs, and halts.

ii. If Vrfykb
(j‖b̂

(1)
j , t̂b

j) = 1, then S proceeds to
the next iteration.

6. To simulate iteration i, simulator S works as follows:

(a) S sends xi to the trusted party computing f , and
receives back the output z = f(xi, y).

(b) S chooses a
(2)
i such that a

(1)
i ⊕a

(2)
i = z, and com-

putes the tag ta
i = Macka

(i‖a
(2)
i). Then S gives

A the message (a
(2)
i , ta

i).

(c) S receives A’s message (b̂
(1)
i , t̂b

i) in this iteration.

If Vrfykb
(i‖b̂

(1)
i , t̂b

i) = 0 (or the message is invalid,
or A aborts), then S outputs whatever A out-

puts and halts. If Vrfykb
(j‖b̂

(1)
j , t̂b

j) = 1, then S
proceeds to the next iteration.

7. To simulate iteration j, for j = i + 1, . . . , m, simulator
S works as follows:

(a) S chooses a
(2)
j such that a

(1)
j ⊕ a

(2)
j = null, and

computes the tag ta
j = Macka

(j‖a
(2)
j). Then S

gives A the message (a
(2)
j , ta

j).

(b) S receives A’s message (b̂
(1)
j , t̂b

j) in the current it-

eration. If Vrfykb
(j‖b̂

(1)
j , t̂b

j) = 0 (or the message
is invalid, or A aborts), then S outputs whatever

A outputs and halts. If Vrfykb
(j‖b̂

(1)
j , t̂b

j) = 1,
then S proceeds to the next iteration.

8. If S has not halted yet, at this point it outputs what-
ever A outputs and halts.

We analyze the simulator S described above. In what fol-

lows we assume that if Vrfykb
(j‖b̂

(1)
j , t̂b

j) = 1 then b̂
(1)
j = b

(1)
j

(meaning that A sent the same share that it received). It
is straightforward to prove that this is the case with all but
negligible probability by relying on the security of the MAC.
Under this assumption, we show that the distribution gen-
erated by S is identical to the distribution in a hybrid exe-
cution between A and an honest P2.

Let y denote the input of P2. It is clear that the view of
A in an execution with S is identical to its view in a hy-
brid execution with P2; the only difference is that the initial
shares given to A are generated by S without knowledge

of z = f(x′, y), but since these shares are uniformly dis-
tributed the view of A is unaffected. Therefore, what is left
to demonstrate is that the joint distribution of A’s view and
P2’s output is identical in the hybrid world and the ideal
world. We show this now by separately considering three
different cases:

1. Case 1 — S sends x1 to the trusted party because x′ 6∈
X, or because A aborted the computation of ShareGen:
In the hybrid world, P2 would have received ⊥ from
ShareGen, and would have then output f(x1, y) as in-
structed by Protocol 1. This is exactly what P2 out-
puts in the ideal execution with S because, in this
case, S sends x1 to the trusted party computing f . If
the above does not occur, let xi be defined as in the
description of the simulator.

2. Case 2 — S sends xj to the trusted party, for some
j < i: This case occurs when A aborts the protocol in
iteration j (either by refusing to send a message, send-
ing an invalid message, or sending an incorrect share).
There are two sub-cases depending on the value of P2’s
input y. Let ℓ be the index such that y = yℓ. Then:

(a) If ℓ ≥ j then, in the hybrid world, P2 would not
yet have determined its output (since it only de-
termines its output once it receives a valid mes-
sage from P1 in iteration ℓ). Thus, as instructed
by Protocol 1, P2 would output f(xj , y). This is
exactly what P2 outputs in the ideal world, be-
cause S sends xj to the trusted party in this case.

(b) If ℓ < j then, in the hybrid world, P2 would have
already determined its output f(x′, y) = f(xi, yℓ)
in the ℓth iteration. In the ideal world, P2 will
output f(xj , yℓ), since S sends xj to the trusted
party. Since j < i we have ℓ < j < i and so
f(xj , yℓ) = f(xi, yℓ) = 1. Thus, P2’s output
f(xi, y) in the hybrid world is equal to its out-
put f(xj , y) in the ideal execution with S .

3. Case 3 — S sends xi to the trusted party: Here, P2

outputs f(xi, y) in the ideal execution. We show that
this is identical to what P2 would output in the hybrid
world. There are two sub-cases depending on P2’s in-
put y. Let ℓ be the index such that y = yℓ. Then:

(a) If ℓ < i, then P2 would have already determined
its output f(x′, y) = f(xi, y) in the ℓth iteration.
(The fact that we are in Case 3 means that A did
not send an incorrect share prior to iteration i.)

(b) If ℓ ≥ i, then P2 would not yet have determined
its output. There are two sub-cases:

i. A sends correct shares in iterations j = i, . . . , ℓ
(inclusive). Then P2 would determine its out-

put as b
(1)
ℓ ⊕b

(2)
ℓ = f(x′, y) = f(xi, y), exactly

as in the ideal world.

ii. A sends an incorrect share in iteration ζ, with
i ≤ ζ < ℓ. By the specification of Protocol 1,
party P2 would output f(xζ , y) = f(xζ , yℓ).
However, since ζ < ℓ we have f(xζ , yℓ) = 0 =
f(xi, yℓ). Thus, P2 outputs the same value in
the hybrid and ideal executions.

A proof for the case when P2 is corrupted is similar to the
above, and is given in the full version of this work.

417

ShareGen′

Inputs: Let the inputs to ShareGen′ be x ∈ X and y ∈ Y . (If one of the received inputs is not in the correct
domain, then both parties are given output ⊥.) The security parameter is n.

Computation:
1. Define values a1, . . . , am and b1, . . . , bm in the following way:

• Choose i∗ according to a geometric distribution with parameter α (see text).

• For i = 1 to i∗ − 1 do:

– Choose ŷ ← Y and set ai = f(x, ŷ).

– Choose x̂← X and set bi = f(x̂, y).

• For i = i∗ to m, set ai = bi = f(x, y).

2. For 1 ≤ i ≤ m, choose (a
(1)
i , a

(2)
i) and (b

(1)
i , b

(2)
i) as random secret sharings of ai and bi, respectively.

(E.g., a
(1)
i is random and a

(1)
i ⊕ a

(2)
i = ai.)

3. Compute ka, kb ← Gen(1n). For 1 ≤ i ≤ m, let tai = Macka
(i‖a

(2)
i

) and tbi = Mackb
(i‖b

(1)
i

).

Output:

1. Send to P1 the values a
(1)
1 , . . . , a

(1)
m and (b

(1)
1 , tb1), . . . , (b

(1)
m , tbm), and the MAC-key ka.

2. Send to P2 the values (a
(2)
1 , ta1), . . . , (a

(2)
m , tam) and b

(2)
1 , . . . , b

(2)
m , and the MAC-key kb.

Figure 3: Functionality ShareGen′, parameterized by a value α.

4. FAIRNESS FOR SOME FUNCTIONS

WITH AN EMBEDDED XOR
In this section we present a protocol for completely-fair

secure computation of a more general class of functions, in-
cluding certain functions with an embedded XOR. For sim-
plicity, we consider functions F defined over a finite domain,
i.e., F = {fn} where fn = f for all n (however, our result
generalizes to the case of functions with a polynomial-size
domain). We require f : X × Y → {0, 1} to be a single-
output, Boolean function, where X is the set of inputs for
the first party and Y is the set of inputs for the second party.

The protocol, described in full in the following section,
is parameterized by a constant α > 0 that depends on the
particular function f being computed. After describing the
protocol in generic terms, we prove security of the protocol
(instantiated with a particular value of α) for a specific func-
tion f . In the full version of this work, we describe a general
class of functions for which the protocol can be applied to
obtain complete fairness.

4.1 The Protocol
Intuition. As in the protocol of the previous section, the
parties begin by running a “preliminary”phase during which
values a1, b1, . . . , am, bm are generated based on the parties’
respective inputs x and y, and shares of the {ai, bi} are dis-
tributed to each of the parties. (As before, this phase will be
carried out using a standard protocol for secure two-party
computation, where one party can abort the execution and
prevent the other party from receiving any output.) In con-
trast to our earlier protocol, the values a1, b1, . . . , am, bm

are now generated probabilistically as follows: first, a value
i∗ ∈ {1, . . . , m} is chosen according to a geometric distri-
bution (see below). For i < i∗, the value ai (resp., bi) is
chosen in a manner that is independent of P2’s (resp., P1’s)
input. (Specifically, we set ai = f(x, ŷ) for randomly-chosen
ŷ ∈ Y , and analogously for bi.) For all i ≥ i∗, the values
ai and bi are set equal to f(x, y). As in the previous proto-
col, following the preliminary phase the parties interact for
m iterations where they exchange their shares one-by-one,
with P1 reconstructing ai and P2 reconstructing bi in iter-

ation i. At the end of the protocol, P1 outputs am and P2

outputs bm. If a party (say, P1) ever aborts, then the other
party (P2 in this case) outputs the last value it successfully
reconstructed; i.e., if P1 aborts before sending its iteration-i
message, P2 outputs bi−1. (This assumes i > 1. See the
formal description of the protocol for further details.)

If m = ω(log n), we have am = bm = f(x, y) with all
but negligible probability and so correctness holds. Fairness
is more difficult to see and, of course, cannot hold for all
functions f , since some functions cannot be computed fairly.
But as intuition for why the protocol achieves fairness for
certain functions, we observe that: (1) if a malicious party
(say, P1) aborts in some iteration i < i∗, then P1 has not yet
obtained any information about P2’s input and so fairness
is trivially achieved. On the other hand, (2) if P1 aborts in
some iteration i > i∗ then both P1 and P2 have received the
correct output f(x, y) and fairness is obtained. The worst
case, then, occurs when P1 aborts exactly in iteration i∗, as
it has then learned the correct value of f(x, y) while P2 has
not. However, P1 cannot identify iteration i∗ with certainty
(this holds even if it knows the other party’s input y) and,
even though it may guess i∗ correctly with non-negligible
probability, the fact that it can never be sure whether its
guess is correct will suffice to ensure fairness. (This intuition
merely provides a way of understanding the protocol; the
formal proof validates this intuition.)

Formal description of the protocol. Let m = ω(log n).
As in Section 3, we use an m-time MAC with information-
theoretic security. We also, again, rely on a sub-protocol π
computing a functionality ShareGen′ that generates shares
(and associated MAC tags) for the parties; see Figure 3.
(As before, π securely compute ShareGen′ with abort.) We

continue to let a
(1)
1 , b

(1)
1 , a

(1)
2 , b

(1)
2 , . . . denote the shares ob-

tained by P1, and let a
(2)
1 , b

(2)
1 , a

(2)
2 , b

(2)
2 , . . . denote the shares

obtained by P2.
Functionality ShareGen′ generates a value i∗ according to

a geometric distribution with parameter α. This is the prob-
ability distribution on N = {1, 2, . . .} given by repeating a
Bernoulli trial (with parameter α) until the first success. In
other words, i∗ is determined by tossing a biased coin (that

418

Protocol 2

Inputs: Party P1 has input x and party P2 has input y. The security parameter is n.

The protocol:

1. Preliminary phase:

(a) P1 chooses ŷ ∈ Y uniformly at random, and sets a0 = f(x, ŷ). Similarly, P2 chooses x̂ ∈ X
uniformly at random, and sets b0 = f(x̂, y).

(b) Parties P1 and P2 run protocol π for computing ShareGen′, using their respective inputs x, y and
security parameter n.

(c) If P1 receives ⊥ from the above computation, it outputs a0 and halts. Likewise, if P2 receives ⊥
then it outputs b0 and halts. Otherwise, the parties proceed to the next step.

(d) Denote the output of P1 from π by a
(1)
1 , . . . , a

(1)
m , (b

(1)
1 , tb1), . . . , (b

(1)
m , tbm), and ka.

(e) Denote the output of P2 from π by (a
(2)
1 , ta1), . . . , (a

(2)
m , tam), b

(2)
1 , . . . , b

(2)
m , and kb.

2. For i = 1; : : : ;m do:P2 sends the next share to P1:

(a) P2 sends (a
(2)
i , tai) to P1.

(b) P1 receives (a
(2)
i , tai) from P2. If Vrfyka

(i‖a
(2)
i , tai) = 0 (or if P1 received an invalid message, or

no message), then P1 outputs ai−1 and halts.

(c) If Vrfyka
(i‖a

(2)
i

, tai) = 1, then P1 sets ai = a
(1)
i
⊕ a

(2)
i

(and continues running the protocol).P1 sends the next share to P2:

(a) P1 sends (b
(1)
i

, tbi) to P2.

(b) P2 receives (b
(1)
i , tbi) from P1. If Vrfykb

(i‖b
(1)
i , tbi) = 0 (or if P2 received an invalid message, or no

message), then P2 outputs bi−1 and halts.

(c) If Vrfykb
(i‖b

(1)
i , tbi) = 1, then P2 sets bi = b

(1)
i ⊕ b

(2)
i (and continues running the protocol).

3. If all m iterations have been run, party P1 outputs am and party P2 outputs bm.

Figure 4: Generic protocol for computing a function f .

is heads with probability α) until the first head appears,
and letting i∗ be the number of tosses performed. We re-
mark that, as far as ShareGen′ is concerned, if i∗ > m then
the exact value of i∗ is unimportant, and so ShareGen′ can
be implemented in strict (rather than expected) polynomial
time. Furthermore, when α is constant and m = ω(log n),
then i∗ ≤ m with all but negligible probability. Our second
protocol is given in Figure 4.

4.2 Proving Fairness for a Particular Func-
tion

Protocol 2 does not guarantee complete fairness for all
functions f . Rather, what we claim is that for certain func-
tions f and particular associated values of α, the protocol
provides complete fairness. In the full version of this work
we describe a general class of functions for which this is the
case. Here, we prove security of the protocol for the follow-
ing particular function f :

y1 y2

x1 0 1
x2 1 0
x3 1 1

We deliberately chose a function that is simple, yet non-
trivial. In particular, we chose a function that has an em-
bedded XOR in order to demonstrate that the presence of
an embedded XOR is not a barrier to achieving complete
fairness. For this f , we set α = 1/5 in Protocol 2. (In fact,
any α ≤ 1/5 would work.) We explain how we arrived at
this value of α in the full version.

Theorem 3. If (Gen, Mac, Vrfy) is an i.t.-secure, m-time
MAC, and π securely computes ShareGen′ with abort, then
Protocol 2, with α = 1/5, securely computes f with complete
fairness.

Proof Idea: Due to space limitations, we are not able to
include the complete proof. We therefore provide an outline
of the proof that highlights some of the main ideas. We refer
the reader to the full version of this work for further details.

As in the previous section, we analyze Protocol 2 (with
α = 1/5) in a hybrid model where there is a trusted party
computing ShareGen′. (Again, we stress that since π securely
computes ShareGen′ with abort, the adversary may abort the
trusted party computing ShareGen′ before it sends output to
the honest party.) We prove that an execution of Protocol 2
in this hybrid model is statistically-close to an evaluation
of f in the ideal model (with complete fairness), where the
only differences can occur due to MAC forgeries.

The case where P2 is corrupted is fairly straightforward
since, in every iteration, P2 sends its share first. We there-
fore focus on the case of a corrupted P1. We construct a
simulator S given black-box access to A. For readability,
we ignore the presence of the MAC tags and keys, and as-
sume that a MAC forgery does not occur. When we say A
“aborts”, we include in this the event that A sends an invalid
message, or a message whose tag does not pass verification.

1. S invokes A on the input2 x′, the auxiliary input, and
the security parameter n. The simulator also chooses

2
To simplify notation, we reserve x for the value input by A to the

computation of ShareGen′.

419

x̂ ∈ X uniformly at random (it will send x̂ to the
trusted party, if needed).

2. S receives the input x of A to the computation of the
functionality ShareGen′.

(a) If x 6∈ X, then S hands ⊥ to A as its output
from the computation of ShareGen′, sends x̂ to
the trusted party computing f , outputs whatever
A outputs, and halts.

(b) If x ∈ X, then S chooses uniformly-distributed

shares a
(1)
1 , . . . , a

(1)
m and b

(1)
1 , . . . , b

(1)
m . Then, S

gives these shares to A as its output from the
computation of ShareGen′.

3. If A aborts the trusted party computing ShareGen′,
then S sends x̂ to the trusted party computing f , out-
puts whatever A outputs, and halts. Otherwise, S
proceeds as below.

4. Choose i∗ according to a geometric distribution with
parameter α. Then branch depending on the value
of x:

If x = x3:

5. For i = 1 to m:

(a) S sets a
(2)
i = a

(1)
i ⊕ 1 and gives a

(2)
i to A.

(b) If A aborts and i ≤ i∗, then S sends x̂ to the
trusted party computing f . If A aborts and i > i∗

then S sends x = x3 to the trusted party comput-
ing f . In either case, S then outputs whatever A
outputs and halts.

If A does not abort, then S proceeds to the next
iteration.

6. If S has not halted yet, then if i∗ ≤ m it sends x3 to
the trusted party computing f while if i∗ > m it sends
x̂. Finally, S outputs whatever A outputs and halts.

If x ∈ {x1, x2}:

7. Let x̄ be the “other” value in {x1, x2}; i.e., if x = xc

then x̄ = x3−c.

8. For i = 1 to i∗ − 1:

(a) S chooses ŷ ∈ Y uniformly at random, computes

ai = f(x, ŷ), and sets a
(2)
i = a

(1)
i ⊕ ai. It gives

a
(2)
i to A. (A fresh ŷ is chosen in every iteration.)

(b) If A aborts, then:

i. If ai = 0, then with probability 1/3 send x̄
to the trusted party computing f , and with
probability 2/3 send x3.

ii. If ai = 1, then with probability 1/3 send x
to the trusted party computing f ; with prob-
ability 1/2 send x̄; and with probability 1/6
send x3.

In either case, S then outputs whateverA outputs
and halts.

If A does not abort, S proceeds to the next iter-
ation.

9. For i = i∗ to m:

(a) If i = i∗ then S sends x to the trusted party
computing f and receives z = f(x, y).

(b) S sets a
(2)
i = a

(1)
i ⊕ z and gives a

(2)
i to A.

(c) If A aborts, then S outputs whatever A outputs
and halts. If A does not abort, then S proceeds.

10. If S has not yet halted, and has not yet sent anything
to the trusted party computing f (this can only happen
if i∗ > m and A has not aborted), then it sends x̂ to
the trusted party. Then S outputs whatever A outputs
and halts.

We will show that the distribution generated by S in an
ideal-world execution with a trusted party computing f is
identical to the distribution in a hybrid execution between
A and an honest P2. (Recall we are ignoring here the pos-
sibility that A outputs a MAC forgery; this introduces only
a negligible statistical difference.)

Observe that the case of x = x3 is straightforward: here,
S does not need to send anything to the trusted party until
after A aborts, since ai = 1 for all i. (This is because
f(x3, y) = 1 for all y ∈ Y ; note that this is the first time
in the proof we rely on specific properties of f .) For the
remainder of the proof, we therefore focus our attention on
the case when x ∈ {x1, x2}. Even for this case we will
not be able to give the complete proof; instead, to provide
some intuition, we show that S as above provides a good
simulation for one (natural) particular adversary.

Specifically, let us consider a hybrid-world adversary A
that sends its input x ∈ {x1, x2} to the trusted party com-
puting ShareGen′, does not abort the trusted party, and then

computes a1 after receiving a
(2)
1 from P2. If a1 = 0, it aborts

immediately; otherwise, it runs the protocol honestly to the
end. We now analyze the joint distribution of A’s view (that
we will denote by viewA) and P2’s output (that we will de-
note by out2) in both the hybrid world and the ideal world,
given our simulator S as described above. We perform this
analysis for all possible values of the parties’ inputs.

Case 1: x = x1 and y = y1. Note that f(x, y) = 0. We
look first at the hybrid world. The probability that a1 = 0
is α + 1

2
· (1 − α) = 3

5
, and in this case P1 aborts before

P2 has received any shares. If P1 aborts then, according to
the protocol, P2 outputs b0 = f(x̂, y1) where x̂ is chosen
uniformly from X. So Pr[out2 = 0] = 1

3
and we conclude

that

Pr[(viewA,out2) = (0, 0)] =
3

5
·
1

3
=

1

5
(1)

and

Pr[(viewA, out2) = (0, 1)] =
3

5
·
2

3
=

2

5
. (2)

(We do not explicitly include in viewA the shares A received
from ShareGen′, since these are simply random values.)

The probability that a1 = 1 is 1
2
· (1 − α) = 2

5
. When

a1 = 1 then A runs the protocol honestly to completion,
and out2 = f(x, y) = 0.

Let us now look at the ideal-world execution of S with a
trusted party computing f . We first examine the case when
a1 = 0. This can happen in two ways:

420

• With probability α = 1/5, we have i∗ = 1. In this case
the simulator sends x1 to the trusted party, learns the
correct value of f(x1, y1) = 0, and sets a1 = 0. Note
that here we also have out2 = f(x1, y1) = 0.

• With probability 1− α = 4/5, we have i∗ > i. In this
case the simulator generates a1 by choosing random ŷ
and setting a1 = f(x1, ŷ); thus, a1 is a random bit. If
it turns out that a1 = 0 (which occurs with probability
1
2
), then A aborts right away; in response, S sends x2

to the trusted party with probability 1
3

and sends x3 to
the trusted party with the remaining probability (see
step 8(b)(i)). In either eventuality, we have out2 = 1
(since f(x2, y1) = f(x3, y1) = 1).

Combining the above, we see that

Pr[(viewA,out2) = (0, 0)] = Pr[i∗ = 1] =
1

5

and

Pr[(viewA,out2) = (0, 1)] =
1

2
· Pr[i∗ > 1] =

1

2
·
4

5
=

2

5
,

in agreement with Eqs. (1) and (2).
We have a1 = 1 with probability 1

2
· Pr[i∗ > 1] = 2

5
.

When this occurs, A will never abort and so we have out2 =
f(x1, y1) = 0. Furthermore, it can be verified that the view
of A in this case is distributed identically to the view of A
in the hybrid world, conditioned on a1 = 1.

Case 2: x = x1 and y = y2. The analysis is similar to
the above. Here, f(x, y) = 1. Now, in the hybrid world, the
probability that a1 = 0 is 1

2
· (1 − α) = 2

5
, and A aborts

immediately when this happens. When A aborts, P2 out-
puts b0 = f(x̂, y2) where x̂ is chosen uniformly from X. So
Pr[out2 = 0] = 1

3
and we conclude that

Pr[(viewA,out2) = (0, 0)] =
2

5
·
1

3
=

2

15
(3)

and

Pr[(viewA, out2) = (0, 1)] =
2

5
·
2

3
=

4

15
. (4)

We have a1 = 1 with probability α+ 1
2
·(1−α) = 3

5
. When

a1 = 1 then A runs the protocol honestly to completion, and
out2 = f(x, y) = 1.

In the ideal world, we first examine the case when a1 = 0.
This can only happen when i∗ > 1, and so occurs with
probability 2

5
. Once A aborts, S sends x2 to the trusted

party with probability 1
3

and sends x3 to the trusted party
with the remaining probability (see step 8(b)(i)); thus, we
have Pr[out2 = 0] = 1

3
. We therefore conclude that

Pr[(viewA,out2) = (0, 0)] =
2

5
·
1

3
=

2

15

and

Pr[(viewA,out2) = (0, 1)] =
2

5
·
2

3
=

4

15
,

in agreement with Eqs. (3) and (4).
In the ideal world, it also holds that Pr[a1 = 1] = 3

5
.

Conditioned on this event, A never aborts and so out2 =
f(x1, y2) = 1. Furthermore, it can be verified that the view
of A in this case is distributed identically to the view of A
in the hybrid world, conditioned on a1 = 1.

Case 3: x = x2 and y = y1. Here, f(x, y) = 1. In the
hybrid world, the probability that a1 = 0 is 1

2
· (1− α) = 2

5
,

and A aborts immediately when this happens. When A
aborts, P2 outputs b0 = f(x̂, y1) where x̂ is chosen uniformly
from X. So Pr[out2 = 0] = 1

3
, and Eqs. (3) and (4) hold

here as well.
We have a1 = 1 with probability α+ 1

2
·(1−α) = 3

5
. When

a1 = 1 then A runs the protocol honestly to completion, and
out2 = f(x, y) = 1.

In the ideal world, a1 = 0 occurs with probability 2
5
.

When A aborts, S sends x1 to the trusted party with prob-
ability 1

3
and sends x3 to the trusted party with the remain-

ing probability; thus, we have Pr[out2 = 0] = 1
3

and so

Pr[(viewA, out2) = (0, 0)] = 2
15

and Pr[(viewA, out2) =

(0, 1)] = 4
15

, just as in the hybrid world.

In the ideal world, it also holds that Pr[a1 = 1] = 3
5
.

Conditioned on this event, A never aborts and so out2 =
f(x1, y2) = 1. Once again, it can be verified that the view
of A in this case is distributed identically to the view of A
in the hybrid world, conditioned on a1 = 1.

Case 4: x = x2 and y = y2. Now f(x, y) = 0. In the
hybrid world, the probability that a1 = 0 is α+ 1

2
·(1−α) = 3

5
.

When this occurs, P2 outputs b0 = f(x̂, y1) where x̂ is chosen
uniformly from X. So Pr[out2 = 0] = 1

3
and Eqs. (1)

and (2) hold here as well.
The probability that a1 = 1 is 1

2
· (1 − α) = 2

5
. When

a1 = 1 then A runs the protocol honestly to completion,
and out2 = f(x, y) = 0.

In the ideal world, a1 = 0 can happen in two ways:

• With probability α = 1/5, we have i∗ = 1. In this case
the simulator sends x2 to the trusted party, learns the
correct value of f(x1, y1) = 0, and sets a1 = 0. Here,
out2 = f(x2, y2) = 0.

• With probability 1 − α = 4/5, we have i∗ > i. In
this case S generates a1 by choosing random ŷ and
setting a1 = f(x1, ŷ); thus, a1 is a random bit. If
a1 = 0, then A aborts; in response, S sends x1 to the
trusted party with probability 1

3
and sends x3 to the

trusted party with the remaining probability (cf. step
8(b)(i)). In either eventuality, we have out2 = 1 (since
f(x1, y2) = f(x3, y2) = 1).

We thus see that Pr[(viewA,out2) = (0, 0)] = 1
5
, and

Pr[(viewA, out2) = (0, 1)] = 2
5
, as in the hybrid world.

The probability that a1 = 1 is 1
2
· Pr[i∗ > 1] = 2

5
. When

this occurs, A will never abort and so we have out2 =
f(x1, y1) = 0. Furthermore, it can be verified that the view
of A in this case is distributed identically to the view of A
in the hybrid world, conditioned on a1 = 1.

5. BOUNDING THE ROUND COMPLEXITY
Since Cleve’s impossibility proof [10] rules out complete

fairness for Boolean XOR, one might conjecture that any
function containing an embedded XOR (i.e., for which there
exist inputs x0, x1, y0, y1 such that f(xi, yj) = i⊕j) cannot
be securely computed with complete fairness. In the pre-
vious section we have shown that this is not the case. The
protocol shown there, however, requires ω(log n) rounds and
one might wonder whether this can be improved. (In par-
ticular, Protocol 1 required O(1) rounds when the input do-

421

mains were of fixed size.) The following theorem shows that
the round complexity of our protocol is optimal:

Theorem 4. Let f be a function with an embedded XOR.
Then any protocol securely computing f with complete fair-
ness (assuming one exists) requires ω(log n) rounds.

A proof appears in the full version of this work.

6. CONCLUSIONS AND OPEN QUESTIONS
We have shown the first positive results for secure two-

party computation of non-trivial functionalities with com-
plete fairness. Our results re-open a line of research that
was previously thought to be closed. A host of interesting
questions remain:

• Can the round complexity of our first protocol be im-
proved, or can a lower bound be shown?

• We currently only know how to show impossibility of
complete fairness for functionalities that imply coin
tossing. Can further impossibility results be shown?
Ultimately, of course, we would like a complete char-
acterization of when complete fairness is possible.

• We currently only have feasibility results for single-
output, Boolean functions defined over polynomial-size
domains. Relaxing any of these restrictions in a non-
trivial way (or proving the impossibility of doing so)
would be an interesting next step.

• What can be said with regard to complete fairness in
the multi-party setting, without an honest majority?
(This question is interesting both with and without the
assumption of a broadcast channel.) Though initial
feasibility results have recently been shown [18], the
previous questions apply here as well.

7. REFERENCES
[1] D. Beaver. Foundations of Secure Interactive

Computing. In Crypto ’91, Springer-Verlag (LNCS
576), pages 377–391, 1991.

[2] D. Beaver. Secure Multi-Party Protocols and
Zero-Knowledge Proof Systems Tolerating a Faulty
Minority. Journal of Cryptology 4(2):75–122, 1991.

[3] D. Beaver and S. Goldwasser. Multiparty
Computation with Faulty Majority. In 30th FOCS,
pages 468–473, 1989.

[4] A Beimel, T. Malkin, and S. Micali. The
All-or-Nothing Nature of Two-Party Secure
Computation. In Crypto ’99, Springer-Verlag (LNCS
1666), pages 80–97, 1999.

[5] M. Ben-Or, S. Goldwasser, and A. Wigderson.
Completeness Theorems for Non-Cryptographic
Fault-Tolerant Distributed Computation. In 20th
STOC, pages 1–10, 1988.

[6] D. Boneh and M. Naor. Timed Commitments. In
Crypto 2000, Springer-Verlag (LNCS 1880), pages
236–254, 2000.

[7] R. Canetti. Security and Composition of Multiparty
Cryptographic Protocols. Journal of Cryptology 13(1):
143–202, 2000.

[8] D. Chaum, C. Crépeau, and I. Damg̊ard. Multi-party
Unconditionally Secure Protocols. In 20th STOC,
pages 11–19, 1988.

[9] B. Chor and E. Kushilevitz. A Zero-One Law for
Boolean Privacy. SIAM Journal of Discrete Math
4(1):36–47, 1991.

[10] R. Cleve. Limits on the Security of Coin Flips when
Half the Processors are Faulty. In 18th STOC, pages
364–369, 1986.

[11] D. Dolev and H. Strong. Authenticated Algorithms for
Byzantine Agreement. SIAM Journal on Computing,
12(4):656–666, 1983.

[12] S. Even, O. Goldreich, and A. Lempel. A Randomized
Protocol for Signing Contracts. Communications of
the ACM 28(6):637–647, 1985.

[13] Z. Galil, S. Haber, and M. Yung. Cryptographic
Computation: Secure Fault Tolerant Protocols and
the Public Key Model. In Crypto ’87, Springer-Verlag
(LNCS 293), pages 135–155, 1988.

[14] J. Garay, P. MacKenzie, M. Prabhakaran, and
K. Yang. Resource Fairness and Composability of
Cryptographic Protocols. In 3rd TCC, Springer-Verlag
(LNCS 3876), pages 404–428, 2006.

[15] O. Goldreich. Foundations of Cryptography: Volume
2. Cambridge University Press, 2004.

[16] O. Goldreich, S. Micali, and A. Wigderson. How to
Play any Mental Game — A Completeness Theorem
for Protocols with Honest Majority. In 19th STOC,
pages 218–229, 1987.

[17] S. Goldwasser and L. Levin. Fair Computation of
General Functions in Presence of Immoral Majority.
In Crypto ’90, Springer-Verlag (LNCS 537), pages
77–93, 1990.

[18] S.D. Gordon and J. Katz. Complete Fairness in
Multi-Party Computation Without an Honest
Majority. Manuscript in submission.

[19] J. Kilian. A General Completeness Theorem for
Two-Party Games. In 23rd STOC, pages 553–560,
1991.

[20] J. Kilian. More General Completeness Theorems for
Secure Two-Party Computation. In 32nd STOC,
pages 316–324, 2000.

[21] Y. Lindell. Parallel Coin-Tossing and Constant-Round
Secure Two-Party Computation. Journal of
Cryptology 16(3): 143–184, 2003.

[22] M. Luby, S. Micali and C. Rackoff. How to
Simultaneously Exchange a Secret Bit by Flipping a
Symmetrically-Biased Coin. In 24th FOCS, pages
11–21, 1983.

[23] S. Micali and P. Rogaway. Secure Computation.
Unpublished manuscript, 1992. Preliminary version in
Crypto ’91, Springer-Verlag (LNCS 576), pages
392–404, 1991.

[24] M. Pease, R. Shostak, and L. Lamport. Reaching
Agreement in the Presence of Faults. Journal of the
ACM 27(2):228–234, 1980.

[25] B. Pinkas. Fair Secure Two-Party Computation. In
Eurocrypt 2003, Springer-Verlag (LNCS 2656), pages
87–105, 2003.

[26] T. Rabin and M. Ben-Or. Verifiable Secret Sharing
and Multi-party Protocols with Honest Majority. In
21st STOC, pages 73–85, 1989.

[27] A. Yao. How to Generate and Exchange Secrets. In
27th FOCS, pages 162–167, 1986.

422

