INTRODUCTION TO MANIFOLDS - I

SUPPLEMENTARY PROBLEMS

MATRIX MANIFOLDS

\$ Problem 1. Let $M = \operatorname{Mat}_{n \times n} \simeq \mathbb{R}^{n^2}$ be the set of all square matrices. Prove that the map

$$\operatorname{Ad}_C \colon A \mapsto C^{-1}AC, \quad \det C \neq 0,$$

defines a diffeomorphism of the manifold M onto itself.

\$ Problem 2. The same question about the manifold $N \subset M$ of matrices of determinant 1.

Problem 3. The same question but for the map

$$M \ni A \mapsto B^{-1}AC, \quad \det B, \det C \neq 0.$$
 (1)

\$ Problem 4. Prove that for any two matrices of the same rank there exists a diffeomorphism $M \to M$ of the form (1) taking one into the other.

Problem 5. Prove that

$$\det(E + \varepsilon B) = 1 + \varepsilon \operatorname{tr} B + O(\varepsilon^2).$$

Using the previous problem, deduce the formula for the first order term in the expansion $\det(A + \varepsilon B)$, when $\det A \neq 0$.

\$ Problem 6. Prove that the set of matrices $M_r \subset M$ of the rank $r \leq n$ is a smooth submanifold in M. Is this submanifold closed? Compute its dimension. (Answer: $n^2 - (n - r)^2 = 2nr - r^2$.)

PARTITION OF UNITY

Everywhere below M stands for a smooth n-dimensional manifold.

\$ Problem 7. Construct a C^{∞} -smooth function $f \colon \mathbb{R} \to \mathbb{R}$ such that f(x) > 0 if x > 0 and f(x) = 0 when $x \leq 0$. Why such an example is impossible in the analytic category?

Problem 8. Construct a function which will be positive only on the interval $(0,1) \subset \mathbb{R}$, and identically zero outside.

Problem 9. Construct a smooth nonnegative function which is equal to 1 on (-1, 1) and vanishes outside (-2, 2).

Typeset by $\mathcal{A}_{\mathcal{M}} \mathcal{S}\text{-}T_{E} X$

\$ Problem 10. The same question about a function $\varphi : \mathbb{R}^n \to \mathbb{R}_+$, equal to 1 for ||x|| < 1 and vanishing for $||x|| \ge 2$.

\$ Problem 11. Prove that on a smooth manifold M^n for any two points $x \neq y$ there exists a nonnegative function which is identically equal to 1 near x and to zero near y.

\$ Problem 12. Prove that for any point x there is a neighborhood $U, M \supseteq U \ni x$, diffeomorphic to \mathbb{R}^n .

\$ Problem 13. Construct a diffeomorphism $\mathbb{R}^{n+1} \supset \mathbb{S}^n - (\text{North Pole}) \rightarrow \mathbb{R}^n$. (Answer: stereographic projection.)

\$ Problem 14. Prove that for any point $x \in M$ there exists a neighborhood U and a smooth map $f: M \to \mathbb{S}^n$ which is a diffeomorphism between U and \mathbb{S}^n – (North Pole).

\$ Problem 15. Prove that for any compact manifold M there exists an injective smooth map $f: M \to \mathbb{R}^N$ for a sufficiently big N, which has rank n everywhere on M (the Whitney embedding theorem in the weakest form).

A Problem 16. Prove that for any discrete set of points $x_1, x_2, \dots \in M$ there exist a smooth function $f: M \to \mathbb{R}$ which has nondegenrate local minima at these points, $f(x_i) = 0$, and positive outside of the set.

/black/users2/yakov/pub, filename 2.ppt

E-mail address: yakov@wisdom.weizmann.ac.il, mtwiener@weizmann.weizmann.ac.il