
INTRODUCTION TO MANIFOLDS — II

Tangent Bundles

1. Tangent vectors, tangent space.

Let Mn be a smooth n-dimensional manifold, endowed with an atlas of charts
x : U → Rn, y : V → Rn, . . . , where M = U ∪ V ∪ · · · are domains of the corre-
sponding charts.

♥ Definition. Two smooth curves ϕi : (−ε, ε) → M , i = 1, 2, passing through
the same point p ∈ M , are said to be 1-equivalent, ϕ1 ∼ ϕ2, if in some chart
x : U → Rn

‖x(ϕ1(t))− x(ϕ2(t))‖ = o(t) as t → 0+. (1)

♣ Problem 1. Prove that the condition (1) is actually independent of the choice
of the chart.

♥ Definition. The tangent space to the manifold M at the point p is the quo-
tient space C1(R1,M)/ ∼ by the equivalence (1).

Notations: the equivalence class of a curve ϕ will be denoted by [ϕ]p. Instead
of saying that a curve ϕ belongs to a certain equivalence class v = [·]p, we say that
the curve ϕ is tangent to the vector v.

♣ Problem 2. Prove that the tangent space at each point is isomorphic to the
arithmetic space Rn.

Solution. Fix any chart x around the point p and consider the maps ĩso, iso
defined as

ĩso : Rn → C∞(R,M), v = (v1, . . . , vn) 7→ ϕv(·), ϕv(t) = x−1(x(p) + tv) (2)

iso(v) = [ĩso(v)]p. (3)

This map is injective (prove!). To prove its surjectivity, for any smooth curve ϕ
consider its x-coordinate representation,

x(ϕ(t)) = x(p) + tv + · · · ,

existing by virtue of differentiability of the latter. Then ĩso(v) ∼ ϕ.

Remark. This is a good example of abstract nonsense! The idea is that you associate
with each curve its linear terms, the coordinate system being fixed. Then any curve
is uniquely defined by its linear terms up to the 1-equivalence, since the definition
(1) was designed especially for this purpose!
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2 TANGENT BUNDLES

♥ Definition. The string of real numbers (v1, . . . , vn) is called the coordinate
representation of the tangent vector [ϕ]p in the coordinate system x.

♣ Problem 3. If Mn is a hypersurface in Rn+1, then the tangent space is well de-
fined by geometric means. Prove that this “geometric” tangent space is isomorphic
to the one defined by the abstract definition above. A good exercise for practicing
in abstract nonsense!

Important note: The coordinate system x occurs in the construction of iso-
morphisms (2), (3) in the most essential way! If another coordinate system is
chosen, then the isomorphisms will be completely different.

♣ Problem 4. Let v = [ϕ]p ∈ TpM be a tangent vector associated with a tuple
(v1, . . . , vn) in a coordinate system x, and y another coordinate system around the
same point, with the transition functions h: y = h(x) ⇐⇒ x = h−1(y). Find the
coordinate representation of the same vector in the new coordinates y.

♣ Problem 5. Prove that the tangent space possesses the natural linear struc-
ture. (Warning: you have to formalize, what does this mean!)

Notations: the tangent space at a point p ∈ M is denoted by TpM .

Remark. If some two points p, q belong to the same coordinate neighborhood x
and (v1, . . . , vn) is a tuple of reals, then one can take two vectors with the same
coordinates, but attached to different points p and q. These two vectors must be
considered as tt different! In other words, TpM∩TqM = ∅, if p 6= q. This seemingly
contradicts the geometric intuition, but is much more convenient for other means.

♣ Problem 6. Prove that in general two vectors attached to different points
but having the same coordiantes in a certain chart, become different in another
coordinate system.

♥ Definition. The tangent bundle of the manifold M is another manifold TM ,
which is defined (as the point set) as

TM =
⋃

p∈M

TpM.

The structure of a smooth manifold is defined on TM explicitly. If {Uα } is an
atlas of charts, xα : Uα → Rn, with the transition functions hαβ , then we define the
charts Vα covering TM in the following way,

Vα =
⋃

p∈Uα

TpM ⊆ TM,

and introduce the coordinate functions Xα : Vα → R2n by the formulas

v ∈ TpM, p ∈ Uα =⇒ Xα(v) = (xα
1 , . . . , xα

n, vα
1 , . . . , vα

n), (4)

where (vα
1 , . . . , vα

n) is the coordinate representation of the vector v in the coordinate
system xα.
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Immediately the following series of questions arises.

♣ Problem 7. Prove that each of the maps Xα is one-to-one, and all the charts
Vα constitute a covering of TM .

♣ Problem 8. Write down explicitly the transition functions between the charts
Xα, Hαβ = Xβ ◦ (Xα)−1, and prove that they are differentiable. What is the
guaranteed order of their smoothness?

♦ Example. The tangent bundle to the Euclidean space Rn is the Euclidean space
R2n. More generally, if U ⊆ Rn is an open domain, then TU ' U × Rn.

♦ Example. The tungent bundle TS1 to the circle S1 is the cylinder S1 × R1.

♣ Problem 9. Is it true that TM is always diffeomorphic to M × Rn?

2. Tangent maps

Let Mm, Nn be two smooth manifolds, TM and TN their tangent bundles, and
f : M → N a smooth map.

♣ Problem 10. If there are two 1-equivalent curves, ϕ1 and ϕ2 passing through
the same point p ∈ M , then the two curves f ◦ ϕi, i = 1, 2, are also 1-equivalent.
Prove this. Is the converse true?

♥ Definition. The differential of the map f at the point p ∈ M is the map
taking a tangent vector [ϕ]p ∈ TpM to the vector [f ◦ϕ]q ∈ TqN , where q = f(p) ∈
N is the image of the point p. The differential is denoted by

f∗p : TpM → Tf(p)N, v 7→ f∗pv.

♣ Problem 11. Prove that the differential is a linear map (in which sense?).
This explains why in the previous formula we did not use parentheses around the
argument v.

♥ Definition. The tangent map (sometimes it is also called differential) to (of)
the map f is the map

f∗ : TM → TN, (p, v) 7→ (f(p), f∗pv).

Another possible notations for the tangent map: Df , Tf , ∂f
∂p , f ′, in short, almost

all symbols used for derivatives in elementary calculus.

♣ Problem 12. Prove that if f is a diffeomorphism between M and N , then f∗
is a diffeomorphism between the corresponding tangent bundles.

♣ Problem 13. Let S1 ' { z ∈ C : |z| = 1 } be the unit circle, and f : S1 → S1

the map z 7→ z2. Compute its differential.
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The tangent bundle is a certain way to associate with any
point of a smooth manifold M , a linear space TpM which
differentiably depends on the point p. The linear struc-
ture on this space is canonical, that is, defined without
any reference to the coordinates. All additional geometric
structures on manifolds (differential forms, Riemann met-
ric, volumes, symplectic structure etc are based on such a
fundamental structure associated with a manifold.

3. Vector fields

There exists the natural projection π : TM → M , which is a smooth map (prove!)
taking each pair (p, v), v ∈ TpM into the point p at which the latter is attached.

♥ Definition. A section of the tangent bundle is a smooth map u : M → TM
which satisfies the identity π ◦ u = idM .

(Another excellent example of jabberwocky: a section u is a certain way to asso-
ciate a vector u(p) with any point p in such a way that it would depend differentiably
on the point p.)

A section of the tangent bundle is usually called a vector
field on the manifold M . The notion of a vector field
is a substitute to the notion of an ordinary differential
equation on manifolds.

♥ Definition. An integral curve (sometimes phase curve) of a vector field u
is a smooth map

ϕ : R1 ⊇ I → M, t 7→ ϕ(t),

such that
∀t ∈ I [ϕ]p = u(p), where p = f(t).

Again an abstract nonsense: an integral curve is a curve which is tangent to the
vector field u at all points of the former.

♣ Problem 14. Prove that a smooth vector field u in any coordinate neighbor-
hood is determined by n smooth functions u1(x1, . . . , xn), . . . , un(x1, . . . , xn), and
a curve determined by its coordinate representation as

t 7→ x(t) = (x1(t), . . . , xn(t)), t ∈ I

is integral if and only if it satisfies the differential equation

ẋi = ui(x1, . . . , xn), i = 1, . . . , n. (5)

♣ Problem 15. How would you define a nonautonomous differential equation?
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The same vector field in different coordinates gives rise to
different differential equations, though proprties of these
equations remain the same up to a diffeomorphism. So
a great idea comes: one has to study vector fields in a
coordinate system in which the corresponding differential
equations would have the simplest form. In short, it is
useful to look for possible transformations of a given ODE.

♣ Problem 16. Find a formula for change of variables in ordinary differential
equations.

The principal result concerning differential equations of the form (5) is the exis-
tence/uniqueness theorem.

Theorem. If the right hand side parts of a differential equation (5) in a certain
domain U ⊆ Rn are sufficiently smooth, then for any point a ∈ U and for all
sufficiently small values of t ∈ (R1, 0) there exists a unique solution to (5) starting
at a, that is, a smooth vector function

ϕa : t 7→ (x1(t), . . . , xn(t)) ∈ U

satisfying the equation (5) and the initial condition

ϕa(0) = a.

The function
F : R× U 3 (t, a) 7→ ϕa(t) ∈ U

is defined on an open subset of Rn+1 and smooth on it (whenever defined). Such a
function is called the flow map of the equation (5).

♣ Problem 17. Prove that for any smooth vector field aand any point on the
manifold, there exists a unique (up to change of the domain) integral curve passing
through the point.

♣ Problem 18. Prove that if M is a compact manifold, then such a curve is
defined globally: there exists a map ϕ : R1 → M with ϕ(0) = a and tangent to the
field everywhere.

The principal uniqueness/existence theorem can be reformulated for manifolds
in another, much more spectacular way.

Rectification Theorem. If u is a smooth vector field on a manifold, and p ∈ M
is a point such that u(p) 6= 0, then there exists a coordinate system x around the
point p such that in this coordinate system the field u is parallel: all the vectors
u(p′) for p′ in the range of the chart, correspond to the same tuple of reals, say,
(1, 0, . . . , 0).

Remark. A point at which a field vanishes, is called singular point of the vector
field.
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♣ Problem 19. Is the notion of singuar point invariantly defined?
The Rectification theorem in turn implies the existence theorem: one should

apply it to the vector field on R×M = M̃ given by the formula ṽ(t, p) = (1, u(p))
(how do you write the last formula in Jabberwocky?)
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