INTRODUCTION TO MANIFOLDS - III

Algebra of vector fields. Lie derivative(s).

1. Notations. The space of all C^{∞}-smooth vector fields on a manifold M is denoted by $X(M)$. If $v \in X(M)$ is a vector field, then $v(x) \in T_{x} M \simeq \mathbb{R}^{n}$ is its value at a point $x \in M$.

The flow of a vector field v is denoted by v^{t} :

$$
\forall t \in \mathbb{R} \quad v^{t}: M \rightarrow M
$$

is a smooth map (automorphism) of M taking a point $x \in M$ into the point $v^{t}(x) \in M$ which is the t-endpoint of an integral trajectory for the field v, starting at the point x.
\& Problem 1. Prove that the flow maps for a field v on a compact manifold M form a one-parameter group:

$$
\forall t, s \in \mathbb{R} \quad v^{t+s}=v^{t} \circ v^{s}=v^{s} \circ v^{t}
$$

and all v^{t} are diffeomorphisms of M.
\& Problem 2. What means the formula

$$
\left.\frac{d}{d s}\right|_{s=0} v^{s}=v
$$

and is it true?
2. Star conventions. The space of all C^{∞}-smooth functions is denoted by $C^{\infty}(M)$. If $F: M \rightarrow M$ is a smooth map (not necessary a diffeomorphism), then there appears a contravariant map

$$
F^{*}: C^{\infty}(M) \rightarrow C^{\infty}(M), \quad F^{*}: f \mapsto F^{*} f, \quad F^{*}(x)=f(F(x))
$$

If $F: M \rightarrow N$ is a smooth map between two different manifolds, then

$$
F^{*}: C^{\infty}(N) \rightarrow C^{\infty}(M)
$$

Note that the direction of the arrows is reversed!
\& Problem 3. Prove that $C^{\infty}(M)$ is a commutative associative algebra over \mathbb{R} with respect to pointwise addition, subtraction and multiplication of functions. Prove that F^{*} is a homomorphism of this algebra (preserves all the operations). If $F: M \rightarrow N$, then $F^{*}: C^{\infty}(N) \rightarrow C^{\infty}(M)$ is a homomorphism also.

Another star is associated with differentials: if $F: M_{1} \rightarrow M_{2}$ is a diffeomorphism, then

$$
F_{*}: X\left(M_{1}\right) \rightarrow X\left(M_{2}\right), \quad v \mapsto F_{*} v, \quad\left(F_{*} v\right)(x)=\frac{\partial F}{\partial x}(x) \cdot v(x)
$$

is a covariant (acts in the same direction) map which is:
(1) additive: $F_{*}(v+w)=F_{*} v+F_{*} w$;
(2) homogeneous: $\forall f \in C^{\infty}(M) \quad F_{*}(f v)=\left(F^{*}\right)^{-1} f \cdot F_{*} v$. (explain this formula!),
Why F_{*} is in general not defined, if F is just a smooth map and not a diffeomorphism?

3. Vector fields as differential operators.

\bigcirc Definition. If $v \in X(M)$, then the Lie derivative L_{v} is

$$
L_{v}: C^{\infty}(M) \rightarrow C^{\infty}(M), \quad L_{v} f=\lim _{t \rightarrow 0} \frac{1}{t}\left(\left(v^{t}\right)^{*} f-f\right)
$$

In coordinates:

$$
L_{v} f(a)=\lim _{t \rightarrow 0} \frac{f(a+t v+o(t))-f(a)}{t}=\sum_{j=1}^{n} \frac{\partial f}{\partial x_{j}}(a) v_{j} .
$$

Properties of the Lie derivative:
(1) $L_{v}: C^{\infty}(M) \rightarrow C^{\infty}(M)$ is a linear operator:

$$
L_{v}(f+g)=L_{v} f+L_{v} g, \quad L_{v}(\lambda f)=\lambda L_{v} f
$$

(2) the Leibnitz identity holds:

$$
L_{v}(f g)=L_{v} f \cdot g+f \cdot L_{v} g
$$

(3) The Lie derivative linearly depends on v :

$$
\forall f \in C^{\infty}(M), v, w \in X(M) \quad L_{f v}=f L_{v}, \quad L_{v+w}=L_{v}+L_{w}
$$

\& Problem 4. Prove that the Lie derivative is local: for any function $f \in C^{\infty}(M)$ and any vector field v the value $L_{v} f(a)$ depends only on $v(a)$, so that for any other field w such that $w(a)=v(a), L_{v} f(a)=L_{w} f(a)$.
Theorem. Any differential operator, that is, a map $D: C^{\infty}(M) \rightarrow C^{\infty}(M)$ satisfying

$$
D(f+g)=D f+D g, \quad D(\lambda f)=\lambda D f, \quad D(f g)=f D g+D f \cdot g, \quad(\text { DiffOper })
$$

is a Lie derivative along a certain vector field $v \in X$.
Idea of the proof. In local coordinates any function can be written as

$$
f(x)=f(a)+\sum_{k=1}^{n}\left(x_{k}-a_{k}\right) f_{k}(x), \quad f_{k}(a)=\frac{\partial f}{\partial x_{k}}(a)
$$

Applying the Leibnitz identity, we conclude that $D=L_{v}$, where v is the vector field with components $v_{k}=D\left(x_{k}-a_{k}\right)$.

Thus sometimes the notation

$$
v=\sum_{k=1}^{n} v_{k}(x) \frac{\partial}{\partial x_{k}}
$$

is used: such a notation understood as a differential operator, is a vector field from the geometric point of view.
4. Commutator. If $v, w \in X(M)$, then $D=L_{v} L_{w}-L_{w} L_{v}$ is a differential operator. Indeed, the Leibnitz formula is trivially satisfied, therefore $D=L_{u}$, where $u \in X(M)$.
\& Problem 5. Check it!
\checkmark Definition. If $L_{u}=L_{v} L_{w}-L_{w} L_{v}$, then u is a commutator of v and w :

$$
u=[v, w] .
$$

In coordinates:

$$
\begin{aligned}
& L_{u} f=L_{v}\left(\sum_{k} \frac{\partial f}{\partial x_{k}} w_{k}\right)-L_{w}(\cdots)= \\
& \sum_{k, j}\left(\frac{\partial^{2} f}{\partial x_{k} \partial x_{j}} w_{k} v_{j}+\frac{\partial f}{\partial x_{k}} \frac{\partial w_{k}}{\partial x_{j}} v_{j}\right)-(\cdots)= \\
& \\
& \quad \sum_{j}\left(\sum_{k} \frac{\partial w_{j}}{\partial x_{k}} v_{k}-\sum_{k} \frac{\partial v_{j}}{\partial x_{k}} w_{k}\right) \frac{\partial f}{\partial x_{j}},
\end{aligned}
$$

therefore

$$
[v, w]=\sum_{j}\left(\sum_{k} \frac{\partial w_{j}}{\partial x_{k}} v_{k}-\sum_{k} \frac{\partial v_{j}}{\partial x_{k}} w_{k}\right) \frac{\partial}{\partial x_{j}}
$$

\& Problem 6.

$$
\left.\frac{\partial^{2}}{\partial s \partial t}\right|_{s=0, t=0}\left(f \circ v^{t} \circ w^{s}-f \circ w^{s} \circ v^{t}\right)=L_{[v, w]} f .
$$

\& Problem 7.

$$
[v, w]=-[w, v]
$$

\& Problem 8. Prove the Jacobi identity

$$
[[u, v], w]+[[v, w], u]+[[w, u], v]=0
$$

5. Lie derivation of vector fields.

\bigcirc Definition. The Lie derivative of a vector field w along another field v is

$$
L_{v} w=\lim _{t \rightarrow 0} \frac{1}{t}\left(v_{*}^{t} w-w \circ v^{t}\right)
$$

\& Problem 9. Check that the above definition makes sense.

Properties of the Lie derivative: if $v, w \in X(M), f \in$

 $C^{\infty}(M)$, then:(1) $L_{v} v=0$.
(2) L_{v} is linear map from $X(M)$ to itself.
(3) $L_{v}(f w)=\left(L_{v} f\right) w+f L_{v} w$ (the Leibnitz property).

Theorem.

$$
L_{v} w=[v, w] \quad(\text { or }[w, v] ?)
$$

Proof. Let

$$
a=\left.\frac{\partial^{2}}{\partial s \partial t}\right|_{s=0, t=0}\left(f \circ v^{t} \circ w^{s}-f \circ w^{s} \circ v^{t}\right) .
$$

Then

$$
a=\lim _{t \rightarrow 0} \frac{1}{t}\left(\left.\frac{\partial}{\partial s}\right|_{s=0}(\cdots)\right),
$$

but

$$
\left.\frac{\partial}{\partial s}\right|_{s=0} v^{t} \circ w^{s}=v_{*}^{t} w,
$$

therefore

$$
\left.\frac{\partial}{\partial s}\right|_{s=0} f \circ v^{t} \circ w^{s}=L_{v_{*}^{t} w} f
$$

while

$$
\left.\frac{\partial}{\partial s}\right|_{s=0} f \circ w^{s} \circ v^{t}=L_{w \circ v^{t}} f
$$

and finally

$$
a=L_{L_{v} w} f .
$$

\& Problem 10. Is the Lie derivative of a vector field local in the following sense: if two fields $v_{1}, v_{2} \in X(M)$ are coinciding on an open neighborhood of a certain point $a \in M$, then for any other field $v \in X(M)$

$$
\left(L_{v_{1}} w\right)(a)=\left(L_{v_{2}} w\right)(a) .
$$

Is it true that the above value is determined by the (common) value $v_{i}(a)$?

```
/black/users2/yakov/pub, filename 4.ppt
```

E-mail address: yakov@wisdom.weizmann.ac.il, mtwiener@weizmann.weizmann.ac.il

