
INTRODUCTION TO MANIFOLDS — IV

Appendix: algebraic language in Geometry

1. Algebras.

♥ Definition. A (commutative associatetive) algebra (over reals) is a lin-
ear space A over R, endowed with two operations, + and ·, satisfying the natural
axioms of arithmetics: (A, +) is an additive Abelian (=commutative) group with
the neutral element denoted by 0, while (A, ·) is a commutative semigroup. If there
is a ·-neutral element, then it is denoted by 1, though existence of such an element
is not usually assumed.

♦ Example. The basic example is that of real numbers. Another elementary exam-
ples: matrices Matn(R). Other examples follow.

The Principal Example. Let M be a smooth n-dimensional
manifold, and A = C∞(M) the space of al smooth functions
on it. Then if one sets

(f + g)(x) = f(x) + g(x),

(f · g)(x) = f(x)g(x),

(λf)(x) = λf(x),

then al the axioms will be satisfied.

Now the principal wisdom comes.

The main idea of algebraic approach to geometry is to
study properties of the manifold via algebraic properties
of the algebra (ring) C∞(M).

2. Reconstruction of points.

♥ Definition. An ideal I of an algebra A is a subalgebra with the property

A · I ⊆ I,

which is to be understood as

∀a ∈ A, ∀u ∈ I au ∈ I.

♣ Problem 1. Prove that 1 ∈ I =⇒ I = A.
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♣ Problem 2. Prove that { 0 } is always an ideal in any algebra.
The principal example of an ideal is the following one.

♣ Problem 3. If Z ⊆ M is a closed subset, then

IZ = { f ∈ C∞(M) : f |Z ≡ 0 }

is an ideal in A = C∞(M).

♣ Problem 4. If Z ⊂ M is not a closed set, and Z is its closure, then

IZ = IZ .

An ideal is called maximal one, if there is no other ideal with the property

I ( I ′ ( A.

♣ Problem 5. Prove that for two subsets Z ⊆ W ⊆ M

A = I∅ ⊇ IZ ⊇ IW ⊇ IM = { 0 } .

♥ Definition. With any ideal I ⊆ A = C∞(M) one may associate its zero locus

V (I) = {x ∈ M : ∀f ∈ I f(x) = 0 } .

Theorem. If an ideal is maximal, then its zero locus is a point.

Points of a manifold M are in one-to-one correspondence
with maximal ideals of the algebra C∞(M).

♥ Definition. A family f1, . . . , fα, . . . is a basis of an ideal I (which eventually
may coincide with the whole algebra), if

∀f ∈ I ∃c1, . . . , cn ∈ A (n < ∞) : f =
n∑
α

cαfα.

One says that the ideal is generated by fα. The most interesting case is when the
basis consists of a finite number of elements.

♣ Problem 6. An ideal I0 ⊆ C∞(Rn) is generated by the functions

x1, . . . , xn : Rn → R.
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3. Maps = automorphisms of algebras. If F : M1 → M2 is a smooth map be-
tween two (different) manifolds, and Ai = C∞(Mi) are the corresponding algebras,
i = 1, 2, then the map

F ∗ : A2 → A1

is a (homo)morphism of algebras:

F ∗(λf + µg) = λF ∗f + µF ∗g, F ∗(fg) = F f F ∗g.

♣ Problem 7. If a morphism is given, how one can reconstruct the map?

♣ Problem 8. If m : A2 → A1 is a morphism, and I1 ⊆ A1 is an ideal, then the
full m-preimage m−1(I1) ⊂ A2 is an ideal. Prove.

♣ Problem 9. Is it true, that the preimage of a maximal ideal is a maximal ideal
again?

♣ Problem 10. How the answer to the previous prolem may be interpreted in
geometric terms?

♣ Problem 11. Prove that a map F is a diffeomorphism if and only if the mor-
phism F ∗ is an isomorphism (that is, bijective and invertible).

♣ Problem 12. Formulate the properties of a map F being injective and surjec-
tive in terms of the morphism F ∗.

♥ Definition. A vector field is a linear operator (not a morphism!) of the algebra
A = C∞(M)

D : C∞(M) → C∞(M)

which satisfies the Leibnitz identiy:

D(fg) = f Dg + g Df.

♥ Definition. An operator with the above property is called differentiation of
the algebra A. The set of all such operators is denoted by Der(A).

Tautology. If A = C∞(M), then Der(A) ' X(M).

As you already know, a vector field v generates a one-
parameter subgroup of the group Diff∞(M) of diffeomor-
phisms of M (the flow maps), which corresponds to a one-
parameter group mt : A → A of isomorphisms, mt = (vt)∗.
It turns out that the following formula makes sense:

mt = exp(tD) = id +tD +
t2

2!
D2 + · · ·+ tn

n!
Dn + · · · ,

which produces the same result.

♣ Problem 13. How do you understand such a mystic formula?
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♦ Example. If M = R1, and D = ∂
∂x , then the associated vector field is constant,

the corresponding flow maps are shifts, (vtf)(a) = f(a + t), and the boxed formula
means that

f(a + t) =
∞∑

k=0

f (k)(a)
k!

.

Apparently, this is ”true”!

”Theorem”. If D is a differentiation (Leibnitz holds!) then the morphism mt is
a homomorphism:

exp(tD)(f + g) = exp(tD)f + exp(tD)g,

exp(tD)(fg) = (exp(tD)f) · (exp(tD)g) .

♣ Problem 14. Give a correct formulation of the above ”Theorem”.
On the contrary, if mt is a one-parameter group of automorphisms of an algebra

A, then the operator

D =
d

dt

∣∣∣∣
t=0

mt

appears (the value Df is defined as the derivative of the map t 7→ f(t) = mtf at
t = 0).

♣ Problem 15. Prove that if everything is well defined, then the above formula
yields an element from Der(A).

4. Action of morphisms on vector fields. If F : M1 → M2 is a diffeomorphism,
and v ∈ X(M1) a vector field, then the push forward of such a field is defined (see
above). How to make this definition algebraic?

If Ai = C∞(Mi), i = 1, 2, are two algebras, and m : A2 → A1 a morphism, then
The natural idea would be to define for any D ∈ Der(A) the push forward m∗D by
the identity

(m∗D)f = D(m(f)).

♣ Problem 16. What is wrong with such a definition?

If D ∈ Der(A1), and m : A2 → A1 is an isomorphism of alge-
bras, then the result of conjugation,

D 7→ adm D = m−1 ◦D ◦m,

is a differentiation of A1. If Ai = C∞(Mi), D ∼ v, v ∈ X(M1),
and m = F ∗, where F : M1 → M2 is a diffeomorphism, then
adm D ∼ F∗v.

♣ Problem 17. Prove the above wisdom.
The problem of integrating ordinary differential equations also acquires within

this framework a purely algebraic nature. Let D ∈ Der(A).
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Find an epimorphism m : A → C∞(R) such that

adm D =
∂

∂x
.

Another way to prove the boxed exponential formula is to apply the existence
result for ODE’s to the scalar case, wor which the formula is trivially ”true”: it holds
for D = ∂

∂x , therefore it must ”hold” in the same sense for any other differentiation.

Theorem. If D1, D2 ∈ Der(A), and mt = exp(tD2), then

lim
t→0

m−tD1m
t −D1

t
=

d

dt

∣∣∣∣
t=0

m−tD1m
t = D2D1 −D1D2 ∈ Der(A).
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