INTRODUCTION TO MANIFOLDS - V

ALGEBRAIC LANGUAGE IN GEOMETRY (CONTINUED).

Everywhere below $F: M \to N$ is a smooth map, and $F^*: C^{\infty}(M) \to C^{\infty}(N)$ the associated homomorphism of commutative algebras, $F^*g = g \circ F \iff (F^*g)(x) = g(F(x))$.

Let $x \in M$ be a point of a smooth manifold, and $\mathfrak{m}_x \subseteq C^{\infty}(M)$ the corresponding maximal ideal:

$$\mathfrak{m}_x = \{ f \in C^\infty(M) \colon f(x) = 0 \}$$

 \heartsuit Definition.

$$\mathfrak{m}_x^2 := \left\{ \sum_{\alpha} f_{\alpha} g_{\alpha}, \quad f_{\alpha}, g_{\alpha} \in \mathfrak{m}_x \right\}.$$

In the same way higher powers \mathfrak{m}_x^k of a maximal ideal are defined.

Problem 1.

$$\mathfrak{m}_x^2 = \left\{ f \in C^\infty(M) : f(y) = O(|y-x|^2) \right\} = \begin{vmatrix} \text{functions without free} \\ \text{and linear terms in} \\ \text{the Taylor expansion} \\ \text{centered at } x. \end{vmatrix} \square$$

♣ Problem 2. If $F: M \to N$ a smooth map, F(a) = b, then $F^*\mathfrak{m}_b^k \subseteq \mathfrak{m}_a^k$ for any natural k. \Box

♣ Problem 3. $(F^*)^{-1}\mathfrak{m}_a^k = \mathfrak{m}_b^k$. □

♣ Problem 4. A tuple of functions $f_1, \ldots, f_k \in \mathfrak{m}_a \subseteq C^{\infty}(M)$ has rank¹ < k at the point $a \iff \exists c_1, \ldots, c_k \in \mathbb{R}$: $\sum_k c_k f_k \in \mathfrak{m}_a^2$. \Box

Problem 5.

$$\operatorname{rank}_{a}(F^{*}f_{1},\ldots,F^{*}f_{k}) \leq \operatorname{rank}_{F(a)}(f_{1},\ldots,f_{k}).$$

\clubsuit Problem 6. Give an example of the sharp inequality in the above formula. \Box

Typeset by $\mathcal{A}_{\mathcal{M}} \mathcal{S}\text{-}T_{\mathrm{E}} X$

 $^{^1{\}rm The}$ rank of a system of functions at a certain point is by definition the rank of the Jacobian matrix evaluated at this point.

Theorem. If the morphism F^* is surjective, then the corresponding map is an $immersion^2$,

$$a \in M$$
 rank_a $F = \dim M$,

and $a \neq b \implies F(a) \neq F(b)$. \Box

- **\clubsuit** Problem 7. Prove that the inverse is true provided that M is compact. \Box
- **\$** Problem 8. Give a counterexample if M is not compact. \Box

A

♣ Problem 9. If F is a surjective map (i.e. F(M) = N), then F^* is an injective morphism. Prove. $\square^{3} \bigstar$

 \clubsuit Problem 10. Is the inverse true? Prove that it is, provided that M is compact. \Box

Inspired by the above Theorem, one could think that if the morphism F^* is surjective, then the map F is a submersion, that is, the rank of its differential at any point is equal to $\dim N$.

 \clubsuit Problem 11. Prove that such a naiveness is unjustified. \Box

COTANGENT SPACE

Let $a \in M, b \in N$ be a pair of points, F(a) = b.

Problem 12. Prove that the quotient spaces

$$T_a^*M = \mathfrak{m}_a/\mathfrak{m}_a^2, \qquad T_b^*N = \mathfrak{m}_b/\mathfrak{m}_b^2$$

are linear spaces, their dimensions are equal to the dimensions of M (resp., N), and F^* induces the linear map

$$T_h^*F: T_h^*N \to T_a^*M.$$

 \heartsuit Definition. The space $T_a^*M = \mathfrak{m}_a/\mathfrak{m}_a^2$ is called the cotangent space to the manifold M at the point a. The union of all cotangent spaces,

$$T^*M = \bigcup_{a \in M} T^*_a M,$$

is the cotangent bundle of M.

 \clubsuit Problem 13. Differentials of smooth functions at a point *a* are in one-to-one correspondence with elements of the cotangent space $T_a^*M^4$.

\$ Problem 14. Prove that a derivative $D \in Der(C^{\infty}(M))$ induces a linear functional on any cotangent space:

$$D \longrightarrow D_a \colon T_a^* M \to \mathbb{R},$$
$$D_a \colon df(a) \mapsto (L_v f)(a), \ v \longleftrightarrow D.$$

 $^{^2\}mathrm{The}$ rank of a map is the rank of its differential.

 $^{{}^{3}}g_{1}(b) \neq g_{2}(b), \ F^{*}g_{1} = F^{*}g_{2} \implies a \notin F(M).$ ⁴But globally this is not so, beware!

 \heartsuit **Definition.** A tangent space to a manifold M at a point a is the dual space,

$$T_a M = (\mathfrak{m}_a/\mathfrak{m}_a^2)^*.$$

The tangent and cotangent bundles and all other elements of geometric picture of the World can be introduced in terms of the structural ring $C^{\infty}(M)$ of a manifold M.

LOOKING FORWARD...

Let $A = C^{\infty}(M)$ be the structural algebra, and $I \subseteq A$ an ideal consisting of functions which vanish on a closed subset $Z \subseteq M$. Assume whatever regularity you want about Z and prove ...

♣ Problem 15. The space $C^{\infty}(Z)$ is isomorphic to the quotient space $C^{\infty}(M)/I$. This isomorphism is an isomorphism of algebras. \Box

A Problem 16. Let $I = \mathfrak{m}_a$ be a maximal ideal. What is then the local ring

$$C^{\infty}(M)/\mathfrak{m}_a = A_a?$$

Prove that it is a one-dimensional linear space. \Box

♣ Problem 17. Let $M = \mathbb{R}^n$, and $F : \mathbb{R}^n \to \mathbb{R}^k$ a smooth map, $F = (f_1, \ldots, f_k)$, and rank_a F = k everywhere. What is the ideal $I = \langle f_1, \ldots, f_k \rangle$? and the quotient space A/I? \Box

4 Problem 18. If $Z = \{ g_1 = \cdots = g_s = 0 \} \subseteq N$ is a smooth submanifold, then what is the quotient space

$$C^{\infty}(M)/\langle F^*g_1,\ldots,F^*g_s\rangle$$

and which conditions you should impose for your statement to be true? \Box

 \heartsuit **Definition.** The local algebra of a map $F \colon M \to N$ at a point $b \in N$ is the quotient space

$$A_b = C^{\infty}(M) / F^* \mathfrak{m}_b$$

♣ Problem 19. Prove that if $F^{-1}(b)$ consists of isolated nondegenerate preimages, then their number is equal to the dimension of the local algebra. \Box

A very instructive example: compute

 $\dim_{\mathbb{R}} C^{\infty}(\mathbb{R})/F^*\mathfrak{m}_0, \qquad F\colon x\mapsto x^2.$

How can you explain the answer?

All these matters will be discussed later!

/black/users2/yakov/pub, filename 6.ppt

 $\label{eq:entropy} \ensuremath{\textit{E-mail}}\ address: \ yakov@wisdom.weizmann.ac.il, \ mtwiener@weizmann.weizmann.ac.il \ mtwiener@weizmann.ac.il \ mtwiener@weizmann.weizmann.ac.il \ mtwiener@weizmann.ac.il \ mtw$