FORMS AND INTEGRATION - I

DIFFERENTIAL FORMS: DEFINITIONS

Part I: Linear Theory

Let $V \simeq \mathbb{R}^{n}$ be a linear space: we avoid the symbol \mathbb{R}^{n} since the latter implicitly implies some coordinates.
\checkmark Definition. An exterior k-form on V is a map

$$
\omega: \underbrace{V \times \cdot \times V}_{k \text { times }} \rightarrow \mathbb{R}, \quad\left(v_{1}, \ldots, v_{k}\right) \mapsto \omega\left(v_{1}, \ldots, v_{k}\right),
$$

which is:

- linear in each argument, and
- antisymmetric: if $\sigma \in S_{k}$ is a permutation on k symbols, and $|\sigma|= \pm 1$ its parity, then

$$
\omega\left(v_{\sigma(1)}, \ldots, v_{\sigma(k)}\right)=(-1)^{|\sigma|} \omega\left(v_{1}, \ldots, v_{k}\right)
$$

The space of all k-forms on V is denoted by $\wedge^{k}\left(V^{*}\right)$: it is a linear space over \mathbb{R}.
\diamond Example. Linear forms are 1-forms: $\wedge^{1}\left(V^{*}\right)=V^{*}$.
\diamond Example. If $\operatorname{dim} V=k$ and a coordinate system in V is chosen, and $v_{j}=$ $\left(v_{j 1}, \ldots, v_{j k}\right)$, then

$$
\omega\left(v_{1}, \ldots, v_{k}\right)=\operatorname{det}\left|\begin{array}{ccc}
v_{11} & \ldots & v_{k 1} \\
\vdots & \ddots & \vdots \\
v_{1 k} & \ldots & v_{k k}
\end{array}\right|
$$

is a k-form. We denote it by $\operatorname{det}_{x}, x$ explicitly indicating the coordinate system.
\& Problem 1. Prove that for any $u, v \in \mathbb{R}^{3}$ the two formulas,

$$
\omega_{2}=\operatorname{det}_{x}(u, \cdot, \cdot), \quad \omega_{1}=\operatorname{det}_{x}(u, v, \cdot)
$$

define 2 - and 1 -forms respectively.
In any coordinate system $\left(x_{1}, \ldots, x_{n}\right)$ on $V \simeq \mathbb{R}^{n}$ a k-form can be associated with a tuple of reals: if $\alpha:\{1, \ldots, k\} \rightarrow$ $\{1, \ldots, n\}$ is an index map, and $\left(\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right)$ a basis in V, then we define

$$
a_{\alpha}=\omega\left(\mathbf{e}_{\alpha(1)}, \ldots, \mathbf{e}_{\alpha(k)}\right)
$$

and consider the collection $\left\{a_{\alpha}\right\}$ with α ranging over all possible index maps.
\& Problem 2. Prove that the form is uniquely determined by its coefficients a_{α}.
\& Problem 3. How many independent coefficients there are among a_{α} ?
\& Problem 4. Compute $\operatorname{dim} \wedge^{k}\left(\mathbb{R}^{n}\right)$.
\& Problem 5. Prove that there are no nonzero k-forms on V if $k>\operatorname{dim} V$.
4 1- and 2-forms. Among all k-forms on an n-space, the cases of $k=1,2, n-1$ and n are of special importance.
\checkmark Definition. A 1-form is nonzero, if it is nonzero. A 2-form ω is nondegenerate, if

$$
\forall v \in V \exists u \in V: \omega(u, v) \neq 0
$$

\& Problem 6. Prove that a 2-form is nondegenerate, if and only if the matrix composed of its coefficients, is nondegenerate.

$$
\operatorname{det}\left|\begin{array}{ccc}
a_{11} & \ldots & a_{k 1} \\
\vdots & \ddots & \vdots \\
a_{1 k} & \ldots & a_{k k}
\end{array}\right| \neq 0
$$

\& Problem 7. Prove that the above property is independent of the choice of a coordinate system.
\& Problem 8. Prove that there are no nondegenerate 2-forms on an odd-dimensional space.
\& Problem 9. Prove that $\operatorname{dim} V=n \Longrightarrow \operatorname{dim} \wedge^{n}\left(V^{*}\right)=1$.
\& Problem 10. Prove that for a generic 2-form on an odd-dimensional space V, there exists exactly one vector (or, more precisely, the direction defined by this vector) such that

$$
\forall u \in V \quad \omega(v, u)=0
$$

There is an operation which takes k-forms into $(k-1)$ forms: if $v \in V$ is any vector, then the operation

$$
i_{v}: \omega \mapsto i_{v} \omega, \quad i_{v} \omega\left(v_{1}, \ldots, v_{k-1}\right)=\omega\left(v, v_{1}, \ldots, v_{k-1}\right),
$$

is a linear operator on k-forms. For some reasons this operator is called intrinsic antidifferentiation.

A Functorial properties of forms. Linear transformations of the space V induce linear transformations on the spaces $\wedge^{k}\left(V^{*}\right)$: if V, W are two (different, in general) linear spaces, and $A: V \rightarrow W$ is a linear map, then

$$
\times^{k} A: V \times \cdots \times V \rightarrow W \times \cdots \times W
$$

is a natural extension, and the operator $A^{*}: \wedge^{k}\left(W^{*}\right) \rightarrow \wedge^{k}\left(V^{*}\right)$ is a linear map defined via the diagram

which is to be commutative. The form $A^{*} \omega$ is the pullback of the form ω by the map A.
\& Problem 11. Write a normal formula defining the form $A^{*} \omega$.
\& Problem 12. If

$$
V \xrightarrow{A} W \xrightarrow{B} Z
$$

is a chain of maps, then $(A B)^{*}=B^{*} \circ A^{*}$.
4 Exterior multiplication $=$ wedge product. If $\omega_{1}, \ldots, \omega_{k}$ are k 1-forms on V, then the tensor product $s=\omega_{k} \otimes \cdots \otimes \omega_{k}$ can be defined on $V \times \cdots \times V$:

$$
s\left(v_{1}, \ldots, v_{k}\right)=\omega_{1}\left(v_{1}\right) \cdots \omega_{k}\left(v_{k}\right)
$$

\& Problem 13. Is s a k-form? Answer: no.
\checkmark Definition. If $\omega \in \wedge^{k}\left(V^{*}\right), \theta \in \wedge^{r}\left(V^{*}\right)$, then the exterior product

$$
\Omega=\omega \wedge \theta \in \wedge^{k+r}\left(V^{*}\right)
$$

is defined by the formula

$$
\Omega\left(v_{1}, \ldots, v_{k+r}\right)=\sum_{\sigma \in S_{k+r}}(-1)^{|\sigma|} \omega\left(v_{\sigma(1)}, \ldots, v_{\sigma(k)}\right) \cdot \theta\left(v_{\sigma(k+1)}, \ldots, v_{\sigma(k+r)}\right) .
$$

In other words: to compute the wedge product $\omega \wedge \theta$ on $k+r$ vectors $v_{1} \ldots, v_{k+r}$, split them in all possible ways into a group of k and the rest of r elements, compute the product of the values taken by ω on the first set and by θ on the second one, multiply by the parity of the permutation, and average over all permutations.

Notation:

$$
\wedge\left(V^{*}\right)=\prod_{k=1}^{\operatorname{dim} V} \wedge^{k}\left(V^{*}\right)
$$

The wedge product is a nice algebraic operation on $\wedge\left(V^{*}\right)$:

$$
\begin{gathered}
\omega \wedge \theta=(-1)^{\operatorname{deg} \omega \cdot \operatorname{deg} \theta} \theta \wedge \omega, \\
\omega \wedge\left(\theta_{1}+\theta_{2}\right)=\omega \wedge \theta_{1}+\omega \wedge \theta_{2} \\
\omega \wedge(\theta \wedge \psi)=(\omega \wedge \theta) \wedge \psi, \\
A^{*}(\omega \wedge \theta)=A^{*} \omega \wedge A^{*} \theta
\end{gathered}
$$

\& Problem 14. Let $\mathbf{e}^{j} \in \mathbb{R}^{n *}$ be basis covectors on \mathbb{R}^{n}. Then

$$
\operatorname{det}_{x}(\cdot)=\mathbf{e}^{1} \wedge \cdots \wedge \mathbf{e}^{n}
$$

The coordinate representation of any form ${ }^{1}$:

$$
\omega=\sum_{\alpha: \text { ordered }} a_{\alpha} \mathbf{e}^{\alpha(1)} \wedge \cdots \wedge \mathbf{e}^{\alpha(k)}
$$

A Appendix: exterior algebra and vector algebra in \mathbb{R}^{3}. In this subsection we consider $\mathbb{R}^{3}=\mathbb{E}^{3}$ being the Euclidean space, that is, with the scalar product $(u, v) \mapsto\langle u, v\rangle$.
\checkmark Definition. With each vector $v \in \mathbb{E}^{3}$ the following 1- and 2-form can be asociated:

$$
\wedge^{k}\left(\mathbb{E}^{3}\right) \ni \theta_{v}(u)=\langle v, u\rangle, \quad \wedge^{2}\left(\mathbb{E}^{3}\right) \ni \omega_{v}(u, w)=\text { Mixed product of }(v, u, w)
$$

The volume form $\operatorname{det} \in \wedge^{3}\left(\mathbb{E}^{3}\right)$ is also well defined in this case (how?)
\& Problem 15. Write these two forms in coordinates.
\& Problem 16.

$$
\forall u, v \in \mathbb{E}^{3} \quad \theta_{u} \wedge \theta_{v}=\omega_{u \times v}
$$

where $u \times v$ is the vector product (the cross product) in \mathbb{E}^{3}.
\& Problem 17.

$$
\theta_{u} \wedge \omega_{v}=\langle u, v\rangle \cdot \operatorname{det}
$$

References

[A] ■rnold V. I., Mathematical methods of Classical mechanics, 2nd ed. (Graduate Texts in Mathematics, vol. 60), Springer-Verlag, New-York, 1989, wislib code 531.01515 ARN. (in English)
/black/users2/yakov/pub, filename 7.ppt
E-mail address: yakov@wisdom.weizmann.ac.il, mtwiener@weizmann.weizmann.ac.il

[^0]
[^0]: ${ }^{1}$ An ordered α is a map $\alpha:\{1, \ldots, k\} \rightarrow\{1, \ldots, n\}$ with $\alpha(1)<\cdots<\alpha(k)$.

