HOMOTOPY FORMULA. COHOMOLOGY.

Analysis versus topology

1. Homotopy formula.

\checkmark Definition. The Lie derivative of a differential form $\omega \in \Lambda^{d}(M)$ of any degree d on a manifold M^{n} along a vector field v is

$$
\boldsymbol{L}_{v} \omega=\lim _{t \rightarrow 0} \frac{1}{t}\left(g^{t *} \omega-\omega\right)
$$

where g^{t} is the flow of the field v, and $g^{t *}$ is the associated pullback action:

$$
g^{t *} \omega\left(v_{1}, \ldots, v_{d}\right)=\omega\left(g_{*}^{t} v_{1}, \ldots, g_{*}^{t} v_{d}\right) .
$$

\checkmark Definition. If v is a vector field, then for any singular d-dimensional polyhedron σ its v-trace $\boldsymbol{H}_{v}(\sigma)$ is the saturation of σ by pgase curves of the field v defined for $t \in[0,1]:$

$$
\boldsymbol{H}_{v}(\sigma)=\bigcup_{\substack{x \in \sigma, t \in[0,1]}} g^{t}(x),
$$

where g^{t} is the flow of v.
\& Problem 1. Prove that $\boldsymbol{H}_{v}(\sigma)$ is a $(d+1)$-dimensional singular polyhedron.
\checkmark Definition. We supply $\boldsymbol{H}_{v}(\sigma)$ with the orientation in the following way: if e_{1}, \ldots, e_{d} is the declared-to-be-positive basis of vectors tangent to σ, then the ($d+$ $1)$-tuple v, e_{1}, \ldots, e_{d} is the basis orienting $\boldsymbol{H}_{v}(\sigma)$.
Fubini Theorem for differential forms. If $\sigma^{d} \subseteq M^{n}$ is a d-dimensional chain, and $\omega \in \Lambda^{d+1}$ a differential $(d+1)$-form, then

$$
\int_{\boldsymbol{H}_{v}(\sigma)}=\int_{0}^{1} d t \int_{\sigma} g^{t *}\left(\boldsymbol{i}_{v} \omega\right)
$$

Proof. It is sufficient to prove this formula for a single "cell" $(D, f: D \rightarrow M), D$ being a convex polytop in \mathbb{R}^{d}. Let $\widetilde{D}=[0,1] \times D$ be the Cartesian product in \mathbb{R}^{d+1}, oriented according to the above definition, and $F: \widetilde{D} \rightarrow M$ be the map,

$$
F:(t, u) \mapsto g^{t}(f(u)), \quad u \in D
$$

Then $F(\widetilde{D})=\boldsymbol{H}_{v}(\sigma)$, where $\sigma=f(D)$, and

$$
\int_{\boldsymbol{H}_{v}(\sigma)} \omega=\int_{\widetilde{D}} F^{*} \omega .
$$

Applying the Fubini theorem to the function $a(t, u)$ which is the only coefficient of the form $F^{*} \omega=a(t, u) d t \wedge d u_{1} \wedge \cdots \wedge d u_{d}$, we obtain the required identity.

Corollary.

$$
\int_{\boldsymbol{H}_{\varepsilon v}(\sigma)} \omega=\int_{\sigma} \boldsymbol{i}_{v} \omega+O(\varepsilon) \quad \text { as } \varepsilon \rightarrow 0
$$

\& Problem 2. What is geometrically the set $\boldsymbol{H}_{\varepsilon v}(\sigma)$ for small ε ?
The geometric homotopy formula. For any chain σ

$$
g_{v}^{1} \sigma-\sigma=\partial\left(\boldsymbol{H}_{v}(\sigma)\right)+\boldsymbol{H}_{v}(\partial \sigma)
$$

Proof. The boundary of the polytop $\widetilde{D}=[0,1] \times D$ (see the proof above) is the side "surface" $[0,1] \times \partial D$ and the two copies of D. The orientation convention implies that

$$
\partial \widetilde{D}=\{1\} \times D-\{0\} \times D-[0,1] \times \partial D,
$$

which immediately yields the above formula after application of the map $F:(t, u) \mapsto$ $g^{t} \circ f(u)$.
The analytic homotopy formula.

$$
\boldsymbol{L}_{v} \omega=\boldsymbol{i}_{v} d \omega+d \boldsymbol{i}_{v} \omega
$$

Proof. Consider the flow map of the field εv for small ε and apply the above results.
Corollary. If $h^{t}: M \rightarrow M$ is a family of smooth maps of a manifold M to itself differentiably depending on the parameter $t \in[0,1]$ (a homotopy between h^{1} and $\left.h^{0}\right)$, and ω is a closed form $(d \omega=0)$, then

$$
\left(h^{1}\right)^{*} \omega-\left(h^{0}\right)^{*} \omega=\text { an exact form }
$$

Corollary: the Poincaré lemma. If M is a star-shaped domain in \mathbb{R}^{n}, then any closed form is exact.

Indeed, there exists a homotopy between the identical map id and a constant map $M \rightarrow O$.

2. Cohomology.

\bigcirc Definition. The k-th de Rham cohomology of a smooth manifold is the quotient space

$$
H^{k}(M)=Z^{k}(M) / B^{k}(M)=(\text { closed } k \text {-forms }) /(\text { exact } k \text {-forms })
$$

where

$$
\begin{gathered}
Z^{k}(M)=\left\{\omega \in \Lambda^{k}(M): d \omega=0\right\}, \\
B^{k}(M)=\left\{\omega \in \Lambda^{k}(M): \exists \theta \in \Lambda^{k-1}(M), d \theta=\omega\right\} .
\end{gathered}
$$

By definition, we put $H^{0}(M)=Z^{0}(M)=\left\{f \in C^{\infty}(M): d f=0\right\}$. Each $H^{k}(M)$ is a linear space over reals.
\& Problem 3. Prove that for a smooth manifold M
$\operatorname{dim} H^{0}(M)=$ the number of connected components of M.
\& Problem 4. Prove that $\operatorname{dim} H^{1}\left(\mathbb{S}^{1}\right)=1$.
\& Problem 5. Prove that $\operatorname{dim} H^{1}(C)=\operatorname{dim} H^{1}\left(\mathbb{S}^{1}\right)$, where $C=\mathbb{R}^{1} \times \mathbb{S}^{1}$ is the standard cylinder.
\& Problem 6. Compute the cohomology of the Möbius band.
\& Problem 7. Prove that $\operatorname{dim} H^{1}\left(\mathbb{S}^{2}\right)=0, \operatorname{dim} H^{2}\left(\mathbb{S}^{2}\right)=1$.
\& Problem 8. Compute the cohomology of the projective plane $\mathbb{R} P^{2}$.

/black/users2/yakov/pub, filename 8.ppt

E-mail address: yakov@wisdom.weizmann.ac.il, mtwiener@weizmann.weizmann.ac.il

