HOMOTOPY FORMULA. COHOMOLOGY.

ANALYSIS versus TOPOLOGY

1. Homotopy formula.

 \heartsuit **Definition.** The Lie derivative of a differential form $\omega \in \Lambda^d(M)$ of any degree d on a manifold M^n along a vector field v is

$$\boldsymbol{L}_{\boldsymbol{v}}\,\boldsymbol{\omega} = \lim_{t \to 0} \frac{1}{t} (g^{t*}\boldsymbol{\omega} - \boldsymbol{\omega}),$$

where g^t is the flow of the field v, and g^{t*} is the associated pullback action:

$$g^{t*}\omega(v_1,\ldots,v_d)=\omega(g^t_*v_1,\ldots,g^t_*v_d).$$

 \heartsuit **Definition.** If v is a vector field, then for any singular d-dimensional polyhedron σ its v-trace $H_v(\sigma)$ is the saturation of σ by pgase curves of the field v defined for $t \in [0, 1]$:

$$\boldsymbol{H}_{v}(\sigma) = \bigcup_{\substack{x \in \sigma, \\ t \in [0,1]}} g^{t}(x),$$

where g^t is the flow of v.

\$ Problem 1. Prove that $H_v(\sigma)$ is a (d+1)-dimensional singular polyhedron.

 \heartsuit **Definition.** We supply $H_v(\sigma)$ with the orientation in the following way: if e_1, \ldots, e_d is the declared-to-be-positive basis of vectors tangent to σ , then the (d + 1)-tuple v, e_1, \ldots, e_d is the basis orienting $H_v(\sigma)$.

Fubini Theorem for differential forms. If $\sigma^d \subseteq M^n$ is a *d*-dimensional chain, and $\omega \in \Lambda^{d+1}$ a differential (d+1)-form, then

$$\int_{\boldsymbol{H}_{v}(\sigma)} = \int_{0}^{1} dt \, \int_{\sigma} g^{t*}(\boldsymbol{i}_{v}\,\omega).$$

Proof. It is sufficient to prove this formula for a single "cell" $(D, f: D \to M), D$ being a convex polytop in \mathbb{R}^d . Let $\widetilde{D} = [0, 1] \times D$ be the Cartesian product in \mathbb{R}^{d+1} , oriented according to the above definition, and $F: \widetilde{D} \to M$ be the map,

$$F: (t, u) \mapsto g^t(f(u)), \qquad u \in D.$$

Then $F(\widetilde{D}) = \boldsymbol{H}_{v}(\sigma)$, where $\sigma = f(D)$, and

$$\int_{\boldsymbol{H}_v(\sigma)} \omega = \int_{\widetilde{D}} F^* \omega.$$

Applying the Fubini theorem to the function a(t, u) which is the only coefficient of the form $F^*\omega = a(t, u) dt \wedge du_1 \wedge \cdots \wedge du_d$, we obtain the required identity. \Box

Typeset by $\mathcal{A}_{\mathcal{M}} \mathcal{S}\text{-}T_{\!E} X$

Corollary.

$$\int_{\boldsymbol{H}_{\varepsilon v}(\sigma)} \omega = \int_{\sigma} \boldsymbol{i}_{v} \, \omega + O(\varepsilon) \qquad \text{as } \varepsilon \to 0$$

♣ Problem 2. What is geometrically the set $H_{\varepsilon v}(\sigma)$ for small ε ?

The geometric homotopy formula. For any chain σ

$$g_v^1 \sigma - \sigma = \partial(\boldsymbol{H}_v(\sigma)) + \boldsymbol{H}_v(\partial \sigma).$$

Proof. The boundary of the polytop $\tilde{D} = [0, 1] \times D$ (see the proof above) is the side "surface" $[0, 1] \times \partial D$ and the two copies of D. The orientation convention implies that

$$\partial D = \{1\} \times D - \{0\} \times D - [0,1] \times \partial D,$$

which immediately yields the above formula after application of the map $F : (t, u) \mapsto g^t \circ f(u)$. \Box

The analytic homotopy formula.

$$\boldsymbol{L}_{\boldsymbol{v}}\,\boldsymbol{\omega} = \boldsymbol{i}_{\boldsymbol{v}}\,d\boldsymbol{\omega} + d\,\boldsymbol{i}_{\boldsymbol{v}}\,\boldsymbol{\omega}.$$

Proof. Consider the flow map of the field εv for small ε and apply the above results. \Box

Corollary. If $h^t: M \to M$ is a family of smooth maps of a manifold M to itself differentiably depending on the parameter $t \in [0,1]$ (a homotopy between h^1 and h^0), and ω is a closed form $(d\omega = 0)$, then

$$(h^1)^*\omega - (h^0)^*\omega = \text{an exact form.}$$

Corollary: the Poincaré lemma. If M is a star-shaped domain in \mathbb{R}^n , then any closed form is exact.

Indeed, there exists a homotopy between the identical map id and a constant map $M \to O.$

2. Cohomology.

 \heartsuit **Definition.** The k-th de Rham cohomology of a smooth manifold is the quotient space

$$H^{k}(M) = Z^{k}(M)/B^{k}(M) = (\text{closed } k\text{-forms})/(\text{exact } k\text{-forms})$$

where

$$Z^{k}(M) = \left\{ \omega \in \Lambda^{k}(M) \colon d\omega = 0 \right\},$$
$$B^{k}(M) = \left\{ \omega \in \Lambda^{k}(M) \colon \exists \theta \in \Lambda^{k-1}(M), \ d\theta = \omega \right\}.$$

By definition, we put $H^0(M) = Z^0(M) = \{ f \in C^{\infty}(M) : df = 0 \}$. Each $H^k(M)$ is a linear space over reals.

♣ Problem 3. Prove that for a smooth manifold M

 $\dim H^0(M) =$ the number of connected components of M.

♣ Problem 4. Prove that dim $H^1(\mathbb{S}^1) = 1$.

‡ Problem 5. Prove that dim $H^1(C) = \dim H^1(\mathbb{S}^1)$, where $C = \mathbb{R}^1 \times \mathbb{S}^1$ is the standard cylinder.

& Problem 6. Compute the cohomology of the Möbius band.

& Problem 7. Prove that dim $H^1(\mathbb{S}^2) = 0$, dim $H^2(\mathbb{S}^2) = 1$.

& Problem 8. Compute the cohomology of the projective plane $\mathbb{R}P^2$.

/black/users2/yakov/pub, filename 8.ppt E-mail address: yakov@wisdom.weizmann.ac.il, mtwiener@weizmann.weizmann.ac.il