
Accelerating Smart Play-Out ?

David Harel1, Hillel Kugler2, Shahar Maoz1, and Itai Segall1

1 The Weizmann Institute of Science, Israel
{dharel,shahar.maoz,itai.segall}@weizmann.ac.il

2 Microsoft Research, Cambridge, UK
hkugler@microsoft.com

Abstract. Smart play-out is a method for executing declarative scenario-
based specifications, which utilizes powerful computation methods to
compute safe supersteps, thus helping to avoid violations that may be
caused by näıve execution. Major challenges for smart play-out are per-
formance and scalability. In this work we show how to accelerate smart
play-out by adapting and applying ideas inspired by formal verification
and compiler optimization. Specifically, we present an algorithm that can
reduce the size of the specification considered for smart play-out, while
maintaining soundness and completeness. Experimental results show sig-
nificant performance improvements and thus open the way to the appli-
cation of smart play-out to large scenario-based programs.

1 Introduction

Scenario-based modeling using various variants of sequence diagrams has at-
tracted intensive research efforts in recent years (see, e.g., [1–5]). In this paper,
we focus on the language of live sequence charts (LSC), which has been suggested
in [3] as a highly expressive extension of message sequence charts (MSCs) [6].
LSC has been endowed with an operational semantics termed play-out, where a
specification consisting of a set of charts is executed directly [4]. In the original
play-out algorithm, non-determinism is solved ad-hoc without considering the
future effects of its choices. To help alleviate this, smart play-out was proposed
in [7], where formal reasoning (originally, model-checking) is used to compute
safe execution paths. In [8] we prove smart play-out to be PSPACE-hard for the
general case, and NP-hard if multiple copies of the same chart are not allowed.

In this paper we introduce an algorithm that accelerates smart play-out of
scenario-based specifications. The algorithm exploits special syntactic and se-
mantic properties of the language in order to reduce the size of the specification
before smart play-out is computed. It consists of several steps, each aimed at
identifying different types of constructs that may be temporarily removed from
the specification without affecting correctness. First, entire charts are removed
? This research was partially supported by the John von Neumann Minerva Center

for the Development of Reactive Systems at the Weizmann Institute of Science, and
by an Advanced Research Grant from the European Research Council (ERC) under
the European Community’s 7th Framework Programme (FP7/2007-2013).



2

in a cone-of-influence-like iterative fixpoint algorithm [9], computing a safe ap-
proximation (an over approximation) of the set of charts that may influence the
current computation. Second, constructs within the remaining LSCs are pre-
computed or eliminated using an approach inspired by compiler optimization
methods, such as constant propagation and early evaluation. All these result
in an overall smaller specification that is then used as the input for the smart
play-out computation.

The algorithm takes advantage of the following typical features of LSC spec-
ifications. First, the breakdown of the specification into user-friendly intuitive
scenarios often creates redundancies that can be removed without affecting the
execution. Second, intentional under-specification can sometimes be abstracted
away from the smart play-out mechanism and be left for the näıve implemen-
tation. Third, the execution paths we are looking for are typically rather short
and local, involving only a subset of the specification, especially in large sys-
tems. Finally, the specification may be exponentially more succinct than the
state space of the model it induces; we benefit from attacking the problem al-
ready at the level of the specification, before the input model for smart play-out
is constructed.

Our work can be viewed as an adaptation and application of well-known
program analysis and abstraction techniques from the domains of compiler op-
timization and formal verification to our specific need, which is the acceleration
of smart execution of scenario-based specifications.

A technical report with additional details and proofs is available [10].

2 Preliminaries

LSC [3] is an extension of message sequence charts (MSC) [6]. Both contain
vertical lines, termed lifelines, which denote objects, and events, which involve
one or more of these objects. The most basic construct of the language are
messages: a message is denoted by an arrow between two lifelines (or from a
lifeline to itself), representing the event of the source object sending a message
to the target object. More advanced constructs, like conditions, if-then-else,
loops, etc., can also be expressed. A typical LSC consists of a prechart (denoted
by a blue dashed hexagon), and a main chart (denoted by a solid frame). Roughly,
the intended semantics is that whenever the prechart is satisfied in a run of the
system, eventually the main chart must also be satisfied (see Fig. 1).

LSCs are multi-modal; almost any construct in the language can be either cold
(usually denoted by the color blue) or hot (denoted by red), with a semantics of
“may happen” or “must happen”, respectively. If a cold element is violated (say
a condition that is not true when reached), this is considered a legal behavior
and some appropriate action is taken. Violation of a hot element, however, is
considered a violation of the specification and is not allowed to happen in an
execution.



3

2.1 An example

An example specification, consisting of six LSCs, is given in Fig. 1. It describes a
simple telephone system with three objects – a phone, an operator, and a logger.
The operator may wish to force low-priority calls to disconnect (e.g., due to a
system overload). The LSC HangupAllLowPri, in Fig. 1(a), refers to the operator
notifying the phone that a low-priority hangup is called for. Specifically, the
LSC states that if the phone sends the message InCall to the operator, and the
operator sends HangupLowPri to itself, then the operator sends HangupLowPri
to the phone.

Fig. 1(b) shows LSC CheckPri, where the phone checks whether it is in a
low-priority mode. The LSC uses an if-then-else construct, represented by two
sequential boxes, with a condition at the beginning of the first box. It states that
if the message HangupLowPri is sent from the operator to the phone (note that
this is the same message sent in the main chart of the previous LSC; the process
of deciding at runtime that the messages are the same is termed unification),
then if the property LowPri of the telephone is true, it should send hangup to
itself. Otherwise, it sends NoLowPri to the operator, and the operator replies
with an Ack.

Fig. 1(c) shows LSC Hangup, which describes the hangup process. It states
that whenever the phone sends Hangup to itself, it sends StartHangup to the
logger, then sends InCall(False) to itself, and CallTime(0) to itself. The log-
ger also sends LogHangup to itself. Finally, the phone sends EndHangup to the
logger. Two features worth noting in this LSC are the following: (1) The partial
order of an LSC is defined by the lifelines (from top to bottom) and the mes-
sages (and other multi-lifeline constructs) that synchronize between lifelines.
Therefore, in this example, no explicit order is defined between the LogHangup
message and the two messages InCall(False) and CallTime(0), while these
two must be executed in this order. The message EndHangup, appearing on both
lifelines, is executed last. (2) Some messages change object properties. For ex-
ample, InCall(False) changes the property InCall of the phone to be false.
Similarly, CallTime(0) sets Tel1.CallT ime to be 0.

The LSC Logger, in Fig. 1(d), specifies how the logger replies to the tele-
phone: If the phone sends StartHangup to the logger, the Logger.On condition
is checked. If it is true, the execution continues, and the logger sends Ack to the
phone. If the Logger.On is false, then being a cold condition, the chart exits
gracefully and the Ack is not sent. The LSC NotifyHangup, in Fig. 1(e), spec-
ifies the notification to the operator that the hangup has completed. Finally,
the LSC CorrectLogging, given in Fig. 1(f), is an anti-scenario; it states that
the scenario in which the three messages, StartHangup from the phone to the
logger, EndHangup from the phone to the logger, and Ack from the logger to the
phone, are sent in this order is forbidden.

Throughout the paper, we consider a generalization of this example specifica-
tion, for n phones, in which the six LSCs are replicated n times. In replica i, the
object Tel1 is replaced by Teli. Note that LSCs, in general, support symbolic in-
stances (lifelines that represent entire classes rather than concrete objects), with



4

(a) The HangupAllLowPri LSC (b) The CheckPri LSC

(c) The Hangup LSC (d) The Logger LSC

(e) The NotifyHangup LSC (f) The CorrectLogging LSC

Fig. 1. A 6-LSC specification for a simple phone system in which the operator may
decide to hang up low priority calls.



5

which this replication could have been avoided [4]. However, since as of now
none of the currently known smart play-out implementations supports symbolic
instances, we avoid using them in this paper.

2.2 Play-out

An operational semantics and an execution technique termed play-out were de-
fined for the LSC language in [4]. Play-out remembers at each point in time the
set of active LSCs (those for which the prechart has already completed, but the
main chart hasn’t), and for each such LSC it holds the current cut (listing what
has already happened, and what has not). At each step, the play-out mechanism
chooses one message that is enabled in some LSC (i.e., it appears directly after
the current cut), and does not violate any other chart (a message is violating if
it appears in an active chart but is not enabled in it), and executes it.

The original play-out mechanism of [4] is näıve, in the sense that there is
no look-ahead when selecting the action to be executed. Thus, non-determinism
is solved ad-hoc without considering the long-term consequences of the choice.
Two “smart” techniques have been suggested thus far to partly address this
issue: (1) model-checking based play-out, termed smart play-out [7], and (2) AI
planning-based play-out, termed planned play-out [11]. In this paper we use the
term smart play-out to refer to the general idea of smart look-ahead execution
of scenario-based programs, and not only to the specific model-checking based
implementation thereof.

While näıve play-out chooses its steps one by one, smart play-out reacts to an
external event by seeking a sequence of system events that drive the specification
to completion. The problem of smart play-out can be defined as follows: given a
specification and a current configuration (the set of current cuts, together with
the current state of all objects and variables), find a sequence of legal steps
that lead the system to a stable state, i.e., one in which no main charts remain
active. This sequence of steps is termed a superstep. Both known smart play-
out implementations solve this by reduction: they translate a given specification
and configuration into a model, and then use powerful computational methods
(model-checking or planning) in order to find an appropriate path in this model.
When found, such a path is translated back into a superstep in the original
specification. The model created by both algorithms is proportional in size to
that of the LSC specification, which refers to the number of lifeline locations
in it. Thus, any reduction in the size of the LSC specification fed to a smart
play-out algorithm will yield a smaller model created by them, which in turn
may result in better running time.

3 Accelerating Smart Play-Out

We now show how to reduce the size of the specification before smart play-
out is computed, by exploiting the special structure of LSCs, and details of
its operational semantics. Our algorithm identifies constructs that are either



6

irrelevant to the current superstep, or are unnecessary input for smart play-
out. These constructs are then temporarily removed from the specification.

Fig. 2. An overview of the accel-
eration algorithm.

The algorithm consists of four steps. The
first three are performed iteratively, until a
fixpoint is reached, and then the last one
is applied; see Fig. 2. Intuitively, Activation
Closure detects charts that cannot partici-
pate in the superstep, Early Evaluation pre-
evaluates conditions and assignments when-
ever possible, Unreachable Elimination re-
moves superfluous unreachable constructs,
and finally Construct Elimination eliminates
constructs for which no reasoning is needed
to order them correctly during execution of
the superstep. Note that each step acts on
the result of the previous steps, which will, in
general, be a smaller specification. Thus, for
example, a construct that is reachable in the
original specification may become unreach-
able by some early evaluation, and will be
removed by later steps.

3.1 The example

We refer here to the example from Fig. 1, expanded to support three phones
by replicating all six LSCs three times, and replacing the Tel1 object with Tel1,
Tel2, and Tel3 in each replica. We denote the copy number of each LSC by a
subscript (e.g., Hangup1 denotes the Tel1 copy of LSC Hangup). Also, we denote

the event of object o1 sending message msg to object o2 by o1
msg−−−→ o2.

We consider the following initial configuration: Phone 1 is in a low priority
call (i.e., the message InCall was sent from Tel1 to Operator, and Tel1.LowPri
is true). Phone 2 is in a high priority call (i.e., the message InCall was sent
from Tel2 to Operator, and Tel2.LowPri is false). Phone 3 is not in a call (i.e.,
the message InCall was never sent from Tel3 to the Operator).

Now, suppose the operator decides it must hang up all low priority calls,
i.e., the message HangupLowPri is sent from the operator to itself. At this point
some main charts become active, and smart play-out starts. The initial con-
figuration is as follows: two main charts are active – HangupAllLowPri1 and
HangupAllLowPri2 – and all other charts are closed. Recall that Tel1.LowPri
is true and Tel2.LowPri is false. Also assume that Logger.on is true.

3.2 Activation Closure

Consider the message Operator
HangupLowPri−−−−−−−−−−−→ Operator in the example. It

does not appear in any main chart, and therefore will never be sent again



7

throughout the superstep. Since LSC HangupAllLowPri3 is not active, we can
conclude that it will never become active in the superstep (as one of its prechart
messages will not be sent). Therefore this LSC can be safely removed from the

specification. Now we know that Operator
HangupLowPri−−−−−−−−−−−→ Tel3 will not be

sent, since it appears in no main chart of the remaining specification, and hence
CheckPri3 can be removed.

The Activation Closure step removes from the specification LSCs that can
not become active in the superstep by computing the least fixpoint of LSCs, such
that for every LSC in the activation closure, each message in its prechart appears
in some main chart in the closure (regardless of their order in the prechart).

We ignore here the case where advanced constructs such as if-then-else,
appear in the prechart. To adapt the method to the more general case, one
needs to add an LSC to the activation closure not only if its entire prechart is
contained in the set of possible messages, but even if some set of messages that
could satisfy the prechart is contained in it.

3.3 Early Evaluation

Now consider phones 1 and 2. Their value of LowPri cannot change throughout
the superstep (there is no main chart message that changes them in the speci-
fication). Therefore, the condition of the if-then-else construct in CheckPri1

and CheckPri2 can be evaluated in advance. This will be carried out by the
Early Evaluation step.

More generally, the Early Evaluation step locates properties that will not be
changed during any superstep, and pre-evaluates all conditions and assignments
that use their value. This step does not affect the set of legal supersteps.

3.4 Unreachable Elimination

Following the early evaluation of conditions, some parts of the LSC may become
unreachable. In our example, the “else” part in CheckPri1 and the “if” part in
CheckPri2 are both unreachable now, and can be removed. This will be done by
the Unreachable Elimination step.

Note that even if a message is unreachable in one LSC, it may be executed
by another chart, so that unreachable messages can still cause chart violations if
executed when not enabled, and one needs to take extra care when eliminating
messages. Therefore, we eliminate a message only if all its appearances in main
charts are unreachable. To avoid changing the partial order of the LSC, elim-
inated constructs are replaced by an appropriate synchronization construct (a
constant true condition covering the relevant lifelines). The Unreachable Elimi-
nation step does not affect the set of legal supersteps.

3.5 Repeating Steps 1-3

Applying the steps on the example as above may lead to the conclusion that

Tel2
Hangup−−−−−−→ Tel2 will not be sent. Therefore by rerunning Activation Closure



8

we can conclude that Hangup2, for example, can now also be removed. This
illustrates why the first three steps are executed repeatedly until a fixpoint is
reached.

In general, the set of messages appearing in main charts of the Activation
Closure dictates which properties may be modified in the superstep, thus af-
fecting the Early Evaluation and Unreachable Elimination steps. In turn, those
steps affect the Activation Closure computation, by removing messages from
the charts. Therefore, the three steps need to be computed iteratively until a
(greatest) fixpoint is reached.

Since each step removes only elements (or entire LSCs) that will never take
part in any superstep and does not change the set of legal supersteps, the same
applies to the repeated execution.

Note that in our example, Activation Closure is exact; all LSCs in the final
specification will take part in the superstep. In the general case, this is not
necessarily true. Activation Closure calculates a safe approximation of the set of
LSCs that may participate in the execution, and not necessarily the exact set.

3.6 Construct Elimination

All steps mentioned so far eliminate constructs that cannot participate in the
superstep. The purpose of the Construct Elimination step is to identify (and
eliminate) constructs that may participate in the superstep, but for which the
exact timing is not important.

For example, consider the message Logger
LogHangup−−−−−−−−→ Logger. It appears in

one main chart only, Hangup1 (we have already removed Hangup2 and Hangup3),
and does not change any object property. Therefore, there is no real need for
smart evaluation in determining when to send it; sending it whenever it is en-
abled is fine. This is the purpose of the last step, Construct Elimination, which
identifies constructs for which no smart evaluation is needed and removes them.

The most important part of this step is identifying constructs that are redun-
dant in terms of the smart play-out computation. For example, a message that
changes no properties and appears only once in the (already reduced) specifica-
tion can be sent whenever it is enabled, without the need for any smart ordering.
These messages are removed by the Construct Elimination step. Similarly, this
step identifies redundant conditions, subcharts and entire LSCs, and removes
them.

3.7 Superstep Reconstruction

The output of our algorithm is a new specification and initial configuration,
which can then be given as input to any smart play-out method. However, in
general, a superstep found by this combined method, though legal in the modified
specification, is not necessarily legal in the original one.

Consider the result of applying the algorithm to the example, as shown in
Section 3.1. As we saw, the Activation Closure step removed the LSCs related to



9

phone 3. These LSCs will never become active in this superstep, therefore there
is nothing to do regarding them in the superstep reconstruction. Similarly, the
modifications performed by Early Evaluation and Unreachable Elimination do
not affect the set of legal supersteps, and their modifications need not be taken
into account in the superstep reconstruction.

However, the last step, Construct Elimination, does affect the set of super-
steps and we must take its modifications into account when constructing a le-
gal superstep for the original specification. In the example above we saw that

Logger
LogHangup−−−−−−−−→ Logger is removed from the specification by this step. As

opposed to previous steps, this is not because it will not participate in any su-
perstep but because it is easy to decide when to execute it: it can be executed
whenever enabled. For example, consider the LSC Hangup1, and suppose the mes-

sage Logger
LogHangup−−−−−−−−→ Logger is the only one removed from it. Now consider

a superstep found by applying smart play-out to the modified specification. This

superstep may activate this LSC and then send the message Tel1
StartHangup−−−−−−−−−−→

Logger. As a result, the message Logger
LogHangup−−−−−−−−→ Logger becomes enabled

(in the original specification); since it was removed by Construct Elimination,
we know it should be executed (näıvely) whenever enabled, therefore we should
now execute it and advance the cut accordingly.

This example is representative of the general rule that constructs removed
by Construct Elimination should be executed whenever enabled. Therefore, in
order to reconstruct a legal superstep in the original specification, one merely
needs to start executing the superstep found for the new one. Following each
step, the list of eliminated constructs should be checked. Any construct that was
eliminated and is now enabled can, and should, be safely executed.

3.8 Complexity

It is easy to see that all steps of our algorithm take time polynomial in the size
of their input (the LSC specification). Moreover, the number of times they are
performed is linear in the size of the specification (each iteration must remove
at least one construct in order for a fixpoint not to be reached). Therefore, the
entire algorithm is in PTIME.

Clearly, the algorithm is heuristic. On some specifications it may work very
well, while on others it might not change the specification at all. Section 4 shows
cases for which the algorithm yields a significant improvement in running time,
as well as a case for which no improvement is achieved.

4 Experimental Results

Consider a parameterized generalization of the example introduced in Section 2,
containing n phones, and an initial configuration where half of the phones are in
call, and half of those are low priority. Fig. 3 plots the running time (log scale) of



10

model-checking-based smart play-out on a standard PC, as a function of n, for
four different specifications: (1) The original specification with no acceleration,
(2) the specification after applying Activation Closure only, (3) the specification
with the first three steps applied iteratively until a fixpoint is reached, and (4)
the specification with the complete acceleration algorithm applied. It is evident
from the figure that each step adds a significant improvement to the running
time, and allows a better scale-up of the size of the specification.

Interestingly, by a slight modification of the initial configuration, in which we
set logger.On to be false (instead of true as in the previous run), the acceleration
algorithm ends up with an empty specification: it removes all constructs, as it
finds that non of them is crucial for the smart play-out algorithm. This means
that all supersteps from the initial state are correct, and any naive play-out
would succeed in this case. We are thus able to completely avoid running the
model-checker; smart play-out computation time reduces to zero.

Fig. 3. Running time as a function of the number of phones, for different setups. Smart
play-out runs that did not terminate within one hour were aborted, thus the maximum
number of phones that could be handled within this time frame are 4 (no optimization),
8 (Activation Closure only), 10 (first 3 steps) and 16 (full optimization).

We have also applied our algorithm to two previously published specifications:
(1) The Depannage telecommunication system described in [12]. Two subsets of
the specification were executed. For the first, the acceleration saved 36% of the
running time (21 seconds instead of 33), and for the second, the algorithm ended
with an empty specification (smart play-out computation time reduces to zero).
(2) The elevator example presented in [11]. The algorithm made no changes to
the specification, thus no improvement was achieved in running time.

In all experiments, the running time of the algorithm itself was negligible.



11

5 Related and Future Work

In model-checking, the cone of influence method [9] attempts to locate only
those variables that affect variables referred to in the specification, and remove
all other variables. Thus, parts of our method may be viewed as a variant of the
cone of influence method.

The Early Evaluation step can be viewed as a special case of constant prop-
agation [13], which is used in compiler optimization to pre-evaluate expressions
for which the value is known in advance.

Our work may also be viewed as a mix of static and dynamic forward program
slicing [14], but applied to models rather than to code. In this sense, the reduced
specification represents a safe approximation of the minimal forward model slice
required for a correct superstep computation.

In this paper we focus on execution of LSCs, an extension of MSC. We believe
some of the ideas presented here may be adapted to accelerate execution and
simulation of other variants of MSCs, see, e.g., [1, 15].

Our algorithm uses ideas from static analysis of code, such as early evaluation
of conditions [16]. Additional ideas could probably be adapted to our needs. For
example, we could probably conduct better data-flow and control-flow analysis
to identify which messages are dependent on which others, and thus gain better
knowledge for the acceleration process. Clearly, there is a trade-off between the
power of the acceleration method and its own running time. The goal is to find
the best possible approximation of the minimal specification needed for the smart
play-out method. The better the approximation, the less running time will be
needed for the smart play-out itself.

Some limitations of our approach are worth noting. In the Activation Closure
step we do not consider the order of messages but only whether they are included
in the LSCs or not. This results in an over approximation; in the worst case the
fixpoint may include all LSCs in the specification, even though only a small sub-
set of them may participate in one of the possible supersteps. Other limitations
relate to data; e.g., we ignore the value assigned in property set messages so we
may fail to identify some conditions that can be evaluated early.

In model-checking, partial order reduction [9] reduces the state-space to be
explored by identifying transitions that result in the same state when executed
in different orders. Similarly, some steps of scenario-based specifications, when
executed in different order, may result in the same global system state. Therefore,
methods and ideas similar to those used in partial order reduction may help in
improving smart play-out as well. Note that our Construct Elimination step may
have the effect of a partial order reduction.

Our method reduces the size of the LSC specification, which in turn reduces
the size of the model given to the smart play-out techniques. However, smart
play-out efficiency may be improved also by adding constraints, such as anti-
scenarios or forbidden elements. This would make the LSC specification larger
but could induce a smaller state-space for applying smart play-out.

As mentioned above, our algorithm computes a safe approximation of the
minimal forward model slice required for a correct superstep computation, for



12

the purpose of smart play-out acceleration. However, this model slice can also
be used for model comprehension, since presenting it to the user may aid in
focusing on the more important LSCs, modulo a given configuration. Developing
techniques for presenting scenario-based model slices to the user, textually or
visually, is an interesting direction for future work.
Acknowledgments We thank Moshe Vardi for his advice on this work. We
thank Andrew Phillips for comments on a draft of this paper.

References

1. Alur, R., Etessami, K., Yannakakis, M.: Inference of Message Sequence Charts.
IEEE Trans. Software Eng. 29(7) (2003) 623–633

2. Broy, M.: A semantic and methodological essence of message sequence charts. Sci.
Comput. Program. 54(2-3) (2005) 213–256

3. Damm, W., Harel, D.: LSCs: Breathing Life into Message Sequence Charts. J. on
Form. Meth. in Sys. Design 19(1) (2001) 45–80

4. Harel, D., Marelly, R.: Come Let’s Play: Scenario-Based Programming Using LSCs
and the Play-Engine. Springer-Verlag (2003)

5. Uchitel, S., Kramer, J., Magee, J.: Synthesis of behavioral models from scenarios.
IEEE Trans. Software Eng. 29(2) (2003) 99–115

6. ITU: International Telecommunication Union Recommendation Z.120: Message
Sequence Charts. Technical report (1996)

7. Harel, D., Kugler, H., Marelly, R., Pnueli, A.: Smart Play-out of Behavioral Re-
quirements. In: Proc. 4th Int. Conf. on Formal Methods in Computer-Aided Design
(FMCAD’02). Volume 2517 of LNCS., Springer (2002) 378–398

8. Harel, D., Kugler, H., Maoz, S., Segall, I.: How Hard is Smart Play-Out? On
the Complexity of Verification-Driven Execution. In: Perspectives in Concurrency
Theory (Festschrift for P.S. Thiagarajan), University Press (India) (2009) 208–230

9. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press (1999)
10. Harel, D., Kugler, H., Maoz, S., Segall, I.: Accelerating smart play-out. Technical

report, Weizmann Institute of Science (2009)
11. Harel, D., Segall, I.: Planned and Traversable Play-Out: A Flexible Method for

Executing Scenario-Based Programs. In: Proc. 13th Int. Conf. on Tools and Al-
gorithms for the Construction and Analysis of Systems (TACAS’07). Volume 4424
of LNCS., Springer (2007) 485–499

12. Combes, P., Harel, D., Kugler, H.: Modeling and Verification of a Telecommuni-
cation Application using Live Sequence Charts and the Play-Engine Tool. Int. J.
Soft. Sys. Mod. (SoSyM) 7(2) (2008) 157–175

13. Callahan, D., Cooper, K.D., Kennedy, K., Torczon, L.: Interprocedural Constant
Propagation. In: Proc. SIGPLAN Symp. on Compiler Construction (CC’86), ACM
(1986) 152–161

14. Korel, B., Yalamanchili, S.: Forward Computation of Dynamic Program Slices. In:
Proc. ACM SIGSOFT Int. Symp. on Software Testing and Analysis (ISSTA’94),
ACM (1994) 66–79

15. Krüger, I.: Capturing Overlapping, Triggered, and Preemptive Collaborations Us-
ing MSCs. In: Proc. 6th Int. Conf. on Fundamental Approaches to Software Engi-
neering (FASE’03). Volume 2621 of LNCS., Springer (2003) 387–402

16. Pezzé, M., Young, M.: Software Testing and Analysis: Process, Principles and
Techniques. John Wiley & Sons (2008)


