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Abstract. We describdnterPlay, a simulation engine coordinator that supports co-
operation and interaction of multiple simulation and execution tools, thus helping to
scale-up the design and development cycle of reactive systems. InterPlay involves two
main ideas. In the first, we concentrate on the inter-object design approach involving
LSCs and the Play-Engine tool, enabling multiple Play-Engines to run in cooperation.
This makes possible the distributed design of large-scale systems by different teams, as
well as the refinement of parts of a system using different Play-Engines. The second
idea concerns combining the inter-object approach with the more conventional intra-
object approach, involving, for example, statecharts and Rhapsody. InterPlay makes it
possible to run the Play-Engine in cooperation with Rhapsody, and is very useful when
some system objects have clear and distinct internal behavior, or in an iterative devel-
opment process where the design is implementation-oriented and the ultimate goal is to
end up with an intra-object implementation.

1 Introduction

The goal of this work is to enrich the scale-up possibilities in the development cycle of re-
active systems, when working in an inter-object, scenario-based paradigm, such as that de-
scribed in [5]. We do this by introducing and implementing a methodology of distributed
design, which involves two related ideas. The methodology is intended to supply a new level
of flexibility in system development, and to help ensure that the various parts of a system
designed by different teams cooperate and integrate into a single working and harmonious
system.

The ideas are implemented in what we shall be callimigrPlay, a simulation engine co-
ordinatot that supports the cooperation and interaction of different simulation and execution
tools. These can support different design approaches to the modeling parts of a system or the
various levels of abstraction thereof.

There are many proposed approaches to distributed computing, and many feature plat-
form and language independence. This allows connecting applications spanning multiple
platforms and operating systems, which have been written by different companies in vari-
ous languages. Among such solutions are the following: RMI (Remoter Method Invocation)
for distributed Java applications [11]; DCGMvhich is most often associated with Microsoft
operating systems but is also supported on Unix, VMS and Macintosh [1]; CORBA [9]; and
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the more recent Web Services using the SOAP communication protocol [10]. While all these
approaches apply to the realm of implemented components, there appears to be no solution
to the problem of high-level model-driven distributed design that can offer independence of
vendors (supporting, e.g., both Rational Rose, and Rhapsody from I-Logix), of overall design
philosophy (supporting both an inter-object and an intra-object methodology), and of levels
of abstraction. InterPlay can be viewed as an attempt to address these kinds of independence
too.

Before discussing the two ideas manifested in InterPlay, we briefly recall the dual ap-
proaches to specifying reactive behavior, described, e.g., in [2,5]. The first approach is an
inter-object, scenario-based one, which is based on specifying cross-object scenarios of var-
ious modalities, one at a time. This approach is particularly natural for discussing behavior
and specifying requirements, and is exemplified by the languadigeofequence charts
(LSCs) [2] and theplay-in/out method with its supportinglay-Enginetool [5]. The second
approach is the more conventional intra-object one, which is usually state-based, and is nat-
urally suited for the specification of objects that have clear internal behavior. This approach
specifies all possible behaviors for each object in the system, and it leads directly to imple-
mentation. It is exemplified by the languagestdtecharts[3] and theRhapsodytool [4, 6],
or by conventional object-by-object code. The conceptual duality between these approaches
is illustrated visually in Figure 1.

LY

RIR l—/\_| .
N ,IL ((A
)

\

.
"~

~
fj

Fi I
‘m 4 i * /,;-“ 3 /
b y ;"/
v
. / K
\ \

Fig. 1. A visual description of the intra-object and inter-object design approaches respectively

Let us examine the design and development cycle of a system, observing how the two
approaches may be used within it. In the early stages of transforming the client’s require-
ments into a formal specification, the overall functionality of the system is the most impor-
tant. Here, the main logical components of the system will typically appear, with no specific
implementation-related details. This bird’s-eye point of view is best described using the inter-



object design approach, where we ignore inner mechanisms of system components and focus
on the overall behavior of the system, concentrating on interactions among the user, the en-
vironment and the system components. Complex systems may have a very large number of
objects, practically forcing the distribution of the specification effort — and later also the
design and implementation efforts — between multiple teams.

Accordingly, the first ability of InterPlay concentrates on the inter-object approach, and
enables multiple Play-Engines to run in cooperation. This makes it possible for different
teams to specify the inter-object behavior of different collections of objects, and then run
these specifications in a fully cooperative manner. It also makes it possible to refine parts
of the system using different Play-Engines. Technically, this is achieved by agtegnal
objects each team is assigned some part of the system (actually, a set of objects) to design
in detail. A particular team'’s objects may interact with other objects, to which the team refers
as external. These external objects are in factiterface of the other subsystems with
respect to the current team’s subsysfeml] other objects are ignored. The objects with
which the team'’s specification interacts are thus outside the assigned scope and responsibility
of the team, yet the team is aware of them, recognizing them as being designed and driven
by some other team. The first part of the InterPlay methodology allows these different parts
to be executed in tandem, by its ability to have multiple Play-Engines execute together. This
distributed design method is illustrated in Figure 2.
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Fig. 2. Distributed design with external objects: External objects are drawn as clouds and each external-
internal pair share the same color. Each team specifies a part of the system using the inter-object design
approach, and refers to other relevant objects as external.

Let us now turn to the second ability of InterPlay. Following detailed specifications and
refinement of requirements, we would like to carry out a transition to design and imple-
mentation. While the Play-Engine can indeed execute inter-object specifications, including
multiple engines playing together through InterPlay, this is still within the inter-object ap-
proach. There will often be objects that have clear and distinct internal behavior which we

3 For more details about external objects, interfaces and distribution to subsystems, see3Section



would like to specify in a more conventional state-based intra-object fashion, using, say, stat-
echarts or code. Moreover, the ultimate goal might be to end up with a complete intra-object
implementation, which could be achieved by an iterative development process, during which
objects will be gradually provided with intra-object implementation-oriented behavior. The
Play-Engine would be useful at the very beginning of this process, and a standard intra-object
tool like Rhapsody would be useful at the end, but we want something for the interim, when
we have a combination of inter-object and intra-object specifications.

The second feature of InterPlay allows just that: the cooperative executiomofeal
system, some parts being specified in a scenario-based fashion, e.g., in LSCs, and others
specified in an intra-object state-based fashion, e.g., in statecharts or code. Technically, In-
terPlay allows the Play-Engine and Rhapsody to execute simultaneously, each taking care of
some of the objects. Figure 3 illustrates this, by showing an inter-object specification, with
one object designed using the intra-object approach.

The two InterPlay ideas combined enable what we lzatlzontal scale-up whereby a
large system can be split up into parts, each specified in an inter-object or intra-object fashion,
at will, and then executed as a whole by Play-Engines cooperating among themselves and/or
cooperating with the Rhapsody tool. We view this as a crucial step towards the ability to
incorporate the inter-object approach into the development of large and complex systems.

[

Fig. 3. An inter-object specification with one object designed using the intra-object approach

The rest of this paper is organized as follows. Secigives a brief overview of the LSC
language and the Play-Engine, illustrated using a take-out service system, which serves as
a running example throughout the paper. Sec8atiscusses the changes introduced in the
Play-Engine to support InterPlay and explains their relevance to horizontal scale-up. Section
4 introduces in more detail the InterPlay tool and techniques. Seb&telaborates on the
take-out service example, illustrating the usefulness of InterPlay in integrating the various
parts of a system. Sectighconcludes with a discussion of future work, including related
research we are carrying out gartical scale-up



2 The Play-Engine and LSCs

This section provides a short introduction to the languadie®tequence chart¢LSCs) and
thePlay-Engine The discussion, however, is very brief, and we strongly suggest referring to
[5] for more details.

The language of LSCs [2] is a scenario-based visual formalism, which extends classical
message sequence charts (MSCs) with logical modalities, thus achieving a far greater expres-
sive power, comparable to that of temporal logic [7]. The Play-Engine supports LSCs, by
enabling a system designer to capture behavioral requirememplsying in behavior using
a graphical interface (GUI) of the target system or an abstract version thereof. As the behavior
is played in, the formalized behavior is automatically generated by the Play-Engine, in the
form of LSCs.

LSCs have two types of chartsniversal and existential. Universal charts are used to
specify restrictions over all possible system runs, and thus constrain the allowed behaviors.
A universal chart typically contains@echart, which specifies the scenario which, if suc-
cessfully executed, forces the system to satisfy the scenario given in the actual chart body.
Existential charts, on the other hand, specify sample interactions between the system and its
environment, and are required only to be satisfied by at least one system run. They thus do
not force the application to behave in a certain way in all cases, and can be used to specify
system tests, or simply to illustrate longer (non-restricting) scenarios that provide a broader
picture of the behavioral possibilities to which the system gives rise.

We borrow an LSC from our running example, a take-out system described in detail in
sectionb, to illustrate the main concepts and constructs of the language of LSCs.
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Fig. 4. An LSC example: Updating the occupancy of a restaurant



In the universal LSC of Figure 4, the prechart (top dashed hexagon) contains the event
of the user clicking thétnOper button. If this indeed occurs, the chart body then requires
the CustomerConrtol object to update the occupancy of the restaurant by means of a
method call that changes the number of customers in the restaurant. However, we want this
update to happen only after a fixed time interval — three clock ticks in our case. The chart
body consists of an unbounded loop construct (denoted by ), which is repeated infinitely
many times, unless interrupted. The loop contains an assignment in which the vBriable
assigned the current time. It is important to note that the assignment’s variable is local to the
containing chart and can be used for the specification of that chart only, as opposed to the
system'’s state variables, which may be used in several charts.

After the assignment comesdhat condition, requiring the time to advance 3 ticks before
continuing. Hot conditions are mandatory, and must always be true; if not, the requirements
are violated and the system aborts. However, when dealing with time, the system simply
waits until the specified condition holds. On the other hand,dbla condition is false, the
surrounding (sub)chart is exited. This is one example of the way the logical modalities are
incorporated into LSCs.

An LSC can havéorbidden elements listed in a separate area underneath the main chart.
Hot and cold elements work similarly there too; e.g., if a hot forbidden condition becomes
true, the requirements are violated and the system aborts, whereas a cold one becoming true
causes the chart or subchart which is its scope to be exited. In our example in Figure 4, there
is a cold forbidden message associated with the loop subchart, the effect being that if the user
presses thbtnOper button again the loop and the chart terminates.

We shall not discuss the play-in process here, but play-out is very relevant. In the play-out
phase the user plays the GUI application as he/she would have done when executing a system
model (or, for that matter, the final system) but limiting him/herself to ‘end-user’ and external
environment actions only. While doing so, the Play-Engine keeps track of the actions taken,
and causes other actions and events to occur as dictated by the LSCs, thus giving the effect
of working with a fully operational system or an executable model. It is actually an iterative
process, where after each step taken by the user, the play-engine comgupesstep which
is a sequence of events carried out by the system as response to the event input by the user.
Only those things it is required to do are actually done, while those it is forbidden to do
are avoided. This is a minimalistic, but completely safe, way for a system to behave exactly
according to the requirements. It is noteworthy that no code needs to be written in order to
play out the behavior, nor does one have to prepare a conventional intra-object system model,
as is required in most system development methodologies (e.g., using statecharts or some
other language for describing the full behavior of each object, as in the UML, for example).
We should also emphasize that the behavior played out is up to the user, and need not reflect
the behavior as it was played in; the user is not merely tracing scenarios, but is executing the
specified behavior freely, as he/she sees fit.

This ability to execute inter-object behavior without building a system model or writing
code leads to various improvements in building reactive systems. It enables executable re-
quirements, for example, whereby the Play-Engine becomes a sort of ‘universal reactive ma-
chine’, running the requirements that were played in via a GUI or written directly as £ SCs.

4 In principle this could have been done using any other sufficiently powerful scenario-based language,
such as timing diagrams or temporal logic.



You provide the global, declarative, inter-object ways you want your system to behave (or to
not behave), and the engine simulates these directly. It also allows for executable test-suites,
whose executions can then be compared with those of the actual implementation.

As we shall explain later, enabling the cooperation of multiple Play-Engines and these
cooperating with conventional tools, allows both distributed design and refinement of such
specifications, as well as the gradual introduction of implementation-oriented details in ad-
vanced design stages.

3 External Objects in Preparation for InterPlay

Some time ago we introduced external objects into LSCs and implemented them in the Play-
Engine along with their respective mechanisms; see Chapter 14 in [5]. However, that intro-
duction was made bearing in mind the idea presented here. In fact, on their own, without
InterPlay, external objects are rather hollow, providing little substantial enhancement to the
design and development cyeldn this section, we briefly survey the addition of external
objects, stressing their role in the scheme we present.

When dealing with reactive systems we distinguish between the system proper and other
elements that interact with it, to which we refer as #mwironment. The system’s user is
separated from the environment and can interact with the system through the GUI, while the
other elements of the environment can affect external settings of the system, mainly through
changing object properties. Since most reactive systems work in the presence of such ex-
ternal/environmental objects and can affect them and be affected by them, it is necessary to
express the interaction with them.

Technically, we have added to the LSCs language and to the Play-Engine a new kind of
object, theexternal object, which will be considered as part of the system’s environment.
External objects are recognized by the system, but are driven externally by another modeling
tool, or by code. What will become extremely important, however, is the fact that external
objects allow other systems to interact with the one we are working on.

Having external objects within the specification entails more than just breaking up the
environment into individual pieces. These pieces are objects in their own right, they have
properties, they can be in different states, they can call other objects, etc. However, as we
shall see in a moment, in terms of what the Play-Engine knows when ‘working on’ a partic-
ular system with its environment, an external object is abstract; it is not considered to be an
ordinary object, and, for example, cannot be triggered (by our Play-Engine specification) to
call other objects.

In the LSCs themselves (and also during play-in) external objects are treated much like
other objects, and the fact they are external is merely indicated by a little cloud attached to
the object-name box. Any object can be made external easily, by flipping the appropriate
property in its definition. Thus, objects can be considered internal throughout some portion
of the system development process, and then made external later on, whether for refining
its design elsewhere, or to implement and test it. We shall see later how this ability can be
exploited.

The main difference between internal and external objects occurs during play-out. Usu-
ally, property changes of objects, and calls between them, are performed by the Play-Engine

5 Without InterPlay no more than two Play-Engines can run cooperatively, and they must always use
the exact same system model



as a part of its super-steps. This, however, is not what we want for external objects. The way
they are controlled in a simple one-engine use of the Play-Engine is by the system’s end-
user, but the ultimate goal is for them to be controlled by some other modeling tool, possibly
another Play-Engine, or implemented in code. And this is what InterPlay is all about. Conse-
quently, the execution mechanism of the Play-Engine has been modified, so that it does not
initiate events that originate from external objects, just as it does not initiate events from the
user, or the environment.

Appropriate sets of external objects serve as a commitment between the different teams
and their respective parts of the system. They can be compared to an interface in object-
oriented programming. The team that sees a specific object as external uses it as a part of its
communication mechanism with the outside world. As such, the team relies on this object
having certain properties and methods. Hence, the team that ‘owns’ the object as internal can
add properties or methods to it, but not change the original ones. All the added properties
and methods added in such a way are for the internal use of that specific team and are not
reflected outside on the other external views of the object.

Our methodology is, in a sense, backward compatible, since it can be applied to any exist-
ing specification set, even if it was prepared before the introduction of external objects. One
of the benefits of this compatibility is that even if two systems have been specified separately,
they can later be joined, without any pre-planning. If the two different specifications have re-
ferred to some common part, even if slightly differently and by different names, they can still
be considered jointly, by choosing the common part to be external in one of the specifications
and remaining internal in the other.

In order to support the external objects mechanism, we added to the Play-Engixe an
ternal event manager which deals with the technicalities of remote connections to other
computers (e.g., IP, ports, etc.) and conveys messages to and from external objects. In fact,
once the external manager is activated, the Play-Engine transmits to the outside world the
entire sequence of events that occurs among its GUI and internal objects. The Play-Engine
also receives via the external manager events and messages from other Play-Engines, or other
modeling tools. Since external objects reflect elements specified or implemented outside the
scope of the local Play-Engine, events (e.g., property changes or method calls) that originate
in those objects also arrive through the external manager. Upon receiving such an event, the
Play-Engine acts as if the event originated from the external object itself. In short, the external
object is recognized by the local system, but is driven by a remote one.

In order to best serve the InterPlay techniques, the external manager has various operation
modes, allowing either cooperation between two Play-Engines or execution by a single Play-
Engine and monitoring its run by another. Such a connection was possible between only two
Play-Engines having the exact same system model. However, using InterPlay any number of
Play-Engines, with different system models, can be connected, as we shall see shortly.

4 InterPlay: Cooperation of Various Design Tools

InterPlay operates in two stages, a preprocessing offline stage, and a main online execution
stage. In the first stage a mapping is set up, which associates each internal object with all of
its images as external objects in other tools, making them all seem as a single object. During
the execution stage InterPlay uses the mapping to translate and transmit messages and events
among the connected models and their respective tools, so that whatever happens to an object
during play-out is reflected in all its external views.
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Fig. 5. Inter-object specifications of a system from the points of view of two teams. Objects with thin
dotted lines do not actually appear in the relevant specification and are included for better illustration
only.

InterPlay’s mapping stage is really part of the system’s specification, in which one indi-
cates how the different parts of the system fit together. We use the two specifications in Figure
5 throughout this section as a specific example, and concentrate on connecting only multiple
Play-Engines.

Consider objectD in the figure. It is internal to the left-hand tedfa and external to
the right-hand tearfi’s. Although both teams do deal with this common object, they might
refer to it by different namésand teami’;, might have added to it additional properties or
methods. Thus InterPlay works on mapping two system parts together, in order to overcome
such naming differences while matching an object to its external view. This, of course, does
not limit the number of specifications of systems parts and their respective tools that can
be fused together. Figure 6 displays a screenshot of InterPlay mapping two system models
to each other. These are two parts of a biological system, which communicate using two
common proteins Let-23 and Let-60. Although both parts refer to the same proteins, their
descriptions are very different in the two models. The common interface is a method in Let-
23 and an activity measurement property in Let-60, which are mapped to each other through
InterPlay.

When using InterPlay to bridge different levels of abstraction one has to pay particu-
lar attention to the specification refinement from coarse to fine. Objects described on the
coarse level arinterface objectsfor some subsystem that interacts through them. Hence,
on a coarse level we describe interactions among interface objects, while when refining the

% Had there been another team containing objeas external, it could have referred to it by yet a
different name than do tearfi$, andT'i.
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Fig. 6. InterPlay screen shot, mapping two biological models through an interface of a method and a
property of two common to both.

specification we implemehthe subsystems that interact through them. This rather subtle
difference from actually refining an object is further illustrated in Figure 7: The right-hand
side of the figure is the coarse level system, in which there is an external interfacelghject
The left-hand portion of the figure is a refinement of fke and within it the internal object

X implements the interface object on the coarse level. All other objects on the fine level con-
stitute the subsystem behind the interféceThus, all interactions between this subsystem
and other subsystems are conducted through oBje¥hen mapping the two specifications
through InterPlay,X is matched td/x, allowing events on the finer abstraction level to be
reflected on the coarser level, and vice versa.

" By “implementation” in this context we still refer to inter-object design, used to specify in detail a
subsystem which has been declared on the coarse level.
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Fig. 7. Multiple levels of abstraction. The left figure represents a specification refinement of the external
interface objecfx in the coarse level.

Here’s how the mapping is set up. InterPlay loads a system model from a Play-Engine
specification and displays it to the user. Only the components of the system are loaded (i.e.,
the GUI and internal objects, with their properties and methods), without any behavior (LSCs)
attached. There are several levels of mapping between objects. AssumingAlhjastnot
been extended with new methods or properties by t#anthe mapping can be completed
as is, by simply associating (using an appropriate form that pops up) the two versidns of
on the object level. This implies that all the object’s properties and methods are also mapped.

Assume that objecB has been expanded by tedm. InterPlay allows partial mappings
of selected properties and methods, leaving some unmatched. Thus, only the properties and
methods common to the two teams will be mapped to each other and we do not allow split-
ting; e.g., mapping some propertiesBfin teamTr’s specification to objecB of teamTy,
and others to objeat’ therein. This kind of splitting up of an object is closely related to
aggregation, and is the central aspect@ttical scale-up which we discuss briefly in Sec-
tion 6. Nevertheless, InterPlay does allow mapping multiple objects to a single one on the
object abstraction level. Going back to Figure 5, it might be the case that the left-hand team
Ty, considers objectsl, B andC as having the same functionality. For examplemight
be a department manager with a direct phone line connection to his/her bbs3esdC.

As only these bosses can call this lirde,is impervious to which of them assigns him/her a
task. Tean¥;, can thus use a single external object only, shywhich will be mapped to the
group of objectsA, B andC in teamTr’s specification. This raises the question of whether
any event involving objectl in teamT7},’s specification would have to be reflected in all of

its mapped variants on the right. Currently, InterPlay broadcasts such an event to all internal
objects mapped to an external one, but other possibilities are mentioned in $ection

During play-out, InterPlay carries out the ramifications of the mappings set up in the pre-
liminary phase. Each Play-Engine connects to InterPlay through its external manager. Once
connected, played out events (user operations, property changes and method calls) are trans-
mitted to InterPlay, which translates them according to the mappings and sends them to all
the relevant Play-Engines. Consider the blue (rightmost) scenario in Figure 5. Play-out starts
with teamTr’s Play-Engine, involving objedf’. SinceC is internal toT'’s’s, its Play-Engine



performs the necessary events, operating it. InterPlay translates and transmits these events
to theT;’s Play-Engine, which traces the scenario as well. The scenario moves on to object
D, which is external tdl'r's scope, and thug’r’s Play-Engine goes idle. Obje&? is now
‘driven’ by theT's Play-Engine and through InterPlay the respective events are sent to the
Tr's Play-Engine. This initiates an event coming frdm allowing the scenario to proceed.
The scenario continues in a similar fashion, with each Play-Engine running and driving its
own internal objects, and waiting to receive input from the other one if necessary.

As mentioned above, this description concentrates on several Play-Engines, but a similar
process is carried out when the Play-Engine is connected to Rhapsody. More on this later.

5 An Example: The Food Take-Out System

In this section we illustrate InterPlay by a simple example of a food take-out service that
enables clients to order food from diverse restaurants through a single ordering center.

= Take-out system: Overview

Client Ordering Center Restaurant

Fig. 8. The three high-level components of the food take-out system

The development process starts with specifying an inter-object overview of the system’s
overall functionality. This coarse specification identifies the system’s main components — a
client, the ordering center and a restaurant component — as illustrated in the GUI of Figure 8.
Using the Play-Engine and LSCs, we describe the functionality of the system by interactions
among these components, as exemplified in Figure 9. One LSC therein describes the simple
process of acquiring a menu from the ordering center, while the other concerns placing a
take-out order. Before we explain the latter LSC, note thatlent andRestaurant
were internal at this stage and became external only in later design stages. The prechart
contains the event of thélient  ordering a dish by calling th€enter ’s Order(Dish)
method. Should this occur, the main chart specifiesGbeter asking for a time estimate
on theDish from theRestaurant , by calling theRestaurant ’s Estimate(Dish)
method. TheRestaurant s resulting estimated time is conveyed to fBienter via the
Time(T) method. (In accordance to the inter-object design approach we do not specify at
this stage how the restaurant calculates this estimated time.) After receiving the estimated
time to delivery, theClient responds by calling th€onfirm method with itsID and
Decision . Should theClient agree, depicted by the coldecision=True  condition,

a series of method calls follows, confirming the order to Restaurant  and getting an



OrderID in exchange. If for some reason tBestomer doesn't wish to order, the chart is
simply exited, in effect cancelling the order.
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Fig. 9. Two LSCs describing an overview of the behavior of the take-out system.

We now decide to distribute the rest of the specification among three teams, each in charge
of one of these components. Each team is required to refine the specification of its assigned
subsystem, respecting the interface that was defined on the coarse level. Hence the client
has an internal object callddPanel , implementing the interface defined by tGé&ent
object on the coarse level and serving as its interface with the other system components. It
also has an external object callEdmmUnit that implements the ordering center’s interface
within the client’s subsystem. In other words, the entire client subsystem interacts with the
rest of the system, represented ®gmmUnit, through its interfacel _Panel . Similarly,
the restaurant’s subsystem has an internal obje&est , as its interface with the ‘outside
world’, which in turn is represented by the exter@@mmuUnit. These objects can be seen
in Figures 10 and 12, which show the refined GUIs and additional objects of the client and
restaurant subsystems, respectively.

Having the coarse design level available, we then approach the client subsystem and re-
fine its specification using the aforementioned interface and adding to it further objects and
internal behavior. Figures 10 and 11 illustrate this specification refinement, with its GUI and
a self-explanatory LSC example that describes the process of the client ordering a dish.

Now that the client’s subsystem refinement is complete, we mak€lirat object
on the coarse level external. As such, the Play-Engine playing out the coarse level can no
longer initiate events from the client. Instead, it waits for them to arrive, having been initiated
by another Play-Engine playing out the client subsystem. We played out both specifications,
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Fig. 11.An LSC that describes the ordering process from the client’s point of view. This LSC is invoked
by all three buttons referring to dishes (second row in the GUI), which are of Biaks_Class .

one fine and one coarse, in cooperation, using InterPlay, as we explain shortly. At this stage
the restaurant has not been refined yet, so it continued to be ‘driven’ by the coarse level
specification.

The restaurant’s team then starts to refine its specification, deciding that the restaurant
has to have some cooks to keep the business running, a few customers who sit inside, and
two indicator buttons to capture the opening and closing of the restaurant. The team specifies
how these parts of the system should behave, independently of, and in ignorance of, how
their ‘outside world’ operates, but still aware of it and interacting with it through the external
CommuUnit. The restaurant’s GUI and additional objects are shown in Figure 12, while an
LSC example describing part of its internal behavior is shown in Figure 13.

The LSC in the figure specifies how the restaurant calculates the time estimate for a re-
guested dish. It is activated when tBemmuUnit requests an estimate by calling the method
Estimate(Dish) of the restaurant’s interfacke, Rest , as defined in the prechart. In the
main chart, using a select-case construct, the basic time required for the requested dish is
stored. The number of available cooks is also taken into consideration in the if-then-else
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Fig. 13.An LSC describing part of the restaurant’s inner behavior

construct. Finally, the restaurant’s interfaceRest returns the preparation time to the or-
dering center, through theommUnit. The restaurant’s specification refinement involved a
few other LSCs that deal with its internal behavior, such as one describing the working rou-
tine of the cooks in the restaurant, depending on the amount of clientele patronizing it. For
lack of space we will not show these here. Recall also Figure 4, which updates the number of
clients in the restaurant every 3 clock ticks, by calling thmate method.

Having now refined the specifications of the client and the restaurant subsystems, we
make botiClient andRestaurant objects external on the coarse level. The three system
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Fig. 14. InterPlay screenshot, showing the mapping of the refined restaurant’s subsystem model to the
coarse level overview of the take-out system.

models, with only the objects and their respective properties and methods, are loaded into
InterPlay. We map the refined subsystems to the coarse specification, in turn, by associating
their appropriate interface objects:panel is mapped tcClient andl _Rest is mapped

to Rest , while bothCommUnits on the fine level are mapped (separatelyTémter on

the coarse level. Notice that the latter two mappings are made based only on a subset of the
methods and properties, while the former two are made on the object level. The mapping of

the refined restaurant to the overview of the system is shown in Figure 14.

The entire system can now be run in cooperation by three different Play-Engines, one for
each of the two refined subsystems and the third running the coarse specification, providing
the functionality of the yet unrefined ordering center and monitoring the entire run. Since the
Play-Engine can record a run and later display it as an LSC, we have attached in Figure 15
the three recordings of the respective Play-Engines.

After all of this, and assume we have executed, revised and verified the inter-object spec-
ification, we might want to make a transition to design, or in other words, to move towards an
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Fig. 15. The results of running the take-out system using three cooperating Play-Engines. Each LSC is
the trace of the run from the point of view of one Engine’s model.

intra-object implementation. We could pick the restaurant’s interface urRgst ), for ex-

ample, which has clear internal behavior. We would make it external to the inter-object spec-
ification of the restaurant, and proceed to define its internal behavior in a state-based fashion
using statecharts and Rhapsody. We can now load the unit's system model from Rhapsody
into InterPlay and map it to the restaurant’s LSCs specification. This would then allow run-
ning the intra-object design, or implementation, of the panel both against its specification and
in cooperation with the rest of the take-out service system.

Doing this for all the parts of the system that we want to have implemented in an intra-
object way would lead to a full implementation. All remaining parts would be played-out



in an inter-object manner, with the relevant Play-Engines handing over control whenever an
implemented part is to become active.

6 What Next?

In this section we discuss several issues for future research.

Connecting to Rhapsody: We have repeatedly stated as our goal not only to connect
Play-Engines to each other, but also to allow cooperation between many types of design or
modeling tools. We have set up an initial connection between Rhapsody and the Play-Engine.
Its present status is that of a feasibility test, and was carried out in a tailored fashion for a
particular system model, with very encouraging results. We are now in the final stages of
making this connection generic through InterPlay.

We do not make any changes to Rhapsody’s framework in order to allow this connection.
Instead, we offer an API with which a dll plug-in can be created. The plug-in serves as an
observer that receives events of interest from Rhapsody as they take place during the system
run, and can also interact with the animation module of Rhapsody, generating events that will
impact the animation. We then made it possible for these dll plug-ins to communicate with
InterPlay, in both sending and receiving events.

Connecting to Other Implementations: There is clearly much value in allowing the
Play-Engine to be connected to other kinds of modeling and implementation tools, includ-
ing standard programming environments. For example, if a project requires designing a new
component that has to fit exactly into an existing complex of implemented components or
systems, it could be extremely useful to connect the LSC model we build for it using the
Play-Engine via InterPlay directly to the real environment, allowing the composite system to
be tested and run as an integrated whole.

Moreover, given such flexible connection abilities, modeling tools like the Play-Engine
could be used to conduct integration tests of implemented components even if these were de-
signed using other tools. The implemented system could then be executed with a Play-Engine
tracing its runs, making sure they fit the requirements (which would have been predefined as
LSCs).

To make such broad connection abilities possible, we intend to construct a simple API for
connecting to InterPlay, which most implemented systems will be able to incorporate. Since
they would all connect to each other through InterPlay, no changes in any of these tools will
be required by this addition.

Synchronous Messages:Synchronous messages, supported by the Play-Engine, raise a
whole new level of complexity when one uses InterPlay to carry out truly distributed model-
ing and implementation. Recall that a synchronous messages is one that flows (for all practical
purposes in zero time) from the sending object to the receiving object if and when the former
is ready to send it and the latter is free to receive it. When both objects are controlled by a
single Play-Engine it is relatively easy to determine whether the message can be sent, and if
so to make sure nothing changes in the two objects until the message is delivered. This is far
more complicated when the two objects are driven by different Play-Engines, and even worse
if they are driven by statecharts or code.

Several possible solutions come to mind, such as usitwoaphase commiprotocol,
of the kind used in certain kinds of transaction processing. We have not yet dealt with this
feature, and doing so would probably require subtle changes both in the Play-Engine and in
the InterPlay module.



Centralized Clock Ticks: Another complication that InterPlay gives rise to involves
time. Recall that the Play-Engine supports time via a single clock, with a tick event that can
be advanced through the host computer’s clock or via the model itself (e.g., by the user or
by other objects). Clearly, different Play-Engines running different specifications cannot be
assumed to advance clock ticks at the same (absolute) rate, and the classical problems of
distributed time arise in full force. Even running a single Play-Engine will advance time very
differently when run with or without visual animation of the LSCs, not to mention different
Play-Engines working in tandem or with other modeling tools.

Without getting into the usual controversies and opinions about how to best deal with
time in a distributed environment, it is quite obvious that there are several incentives for
supplying a mechanism for centralized clock ticks across InterPlay. (For one, we might be
using InterPlay to build an ultimately centralized system in a distributed fashion.) We propose
to add the option of receiving clock tick signals from InterPlay through the external event
manager. This is relatively easily done. We have also looked closely into Rhapsody, which
has a special time mode controlled by the user, and conclude that it too can receive clock
ticks from InterPlay through the observer dll without making changes to the main program’s
framework.

Type Mapping: Currently two objects, or their properties and methods, can be ef-
fectively mapped to one another if they are of the same type, or receive parameters of the
same type. We plan to consider adding more flexibility to InterPlay through a type-mapping
feature, allowing system models to enrich their interaction without having to make further
adjustments to the model itself.

Delegating to Multiple Objects: Recall that InterPlay allows mapping multiple objects
to a single one on the object abstraction level. However, should an event that involves the
single object be necessarily reflected onto all of its multiple images? We do not have enough
experience with InterPlay to decide on this quite yet. Other than the obvious approach, cur-
rently implemented, of broadcasting each message (and relevant event) to all the objects
mapped to the source, we could also implement a scheme that sends it to the latest image to
have interacted with the source. We could also have a user-driven mode, letting the user of
InterPlay decide at run time how to delegate the message. Recently we have been toying with
the idea of allowing asymmetric mappings, which might solve this problem more elegantly,
but this is still in preliminary stages only.

Vertical Scale-Up: In this paper we have used the term horizontal scale-up to denote
the kinds of connections between tools we have discussed. The reason is that what they make
possible is theeomposition of collections of objects in a side-by side manner (although in
an implicit way a limited kind of refinement can be specified too as we have seen in section
5). Complimentary to this is vertical scale-up, whereby we want to support in LSCs and
the Play-Engine thaggregation or rich refinement of objects. In other words we want in
the large a full notion of hierarchies of objects, complete with multiple-level behavior, even
within a single LSC specification. And we want all this related in the play-in and play-out
processes. This is a complicated topic, since it is not clear how to best define aggregation in
the presence of inter-object behavior. For example, how should scenarios (i.e., LSCs) defined
within an object, among its sub-objects, be connected to the scenarios between the parent
object and its siblings on the higher level? What kind of mappings should we allow between
levels, etc.? We are in the midst of a research project on this, and hope to be able to report on
it in a future paper.
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