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Abstract. We provide semantics for the powerful scenario-based lan-
guage of live sequence charts (LSCs). We show how the semantics of live
sequence charts can be captured using temporal logic. This is done by
studying various subsets of the LSC language and providing an explicit
translation into temporal logic. We show how a kernel subset of the LSC
language (which omits variables, for example) can be embedded within
the temporal logic CTL∗. For this kernel subset the embedding is a strict
inclusion. We show that existential charts can be expressed using the
branching temporal logic CTL while universal charts are in the intersec-
tion of linear temporal logic and branching temporal logic LTL ∩ CTL.
Since our translations are efficient, the work described here may be used
in the development of tools for analyzing and executing scenario-based
requirements and for verifying systems against such requirements.

1 Introduction

Understanding system and software behavior by looking at various “stories”
or scenarios seems a promising approach, and it has focused intensive research
efforts in the last few years. One of the most widely used languages for specifying
scenario-based requirements is that of message sequence charts (MSCs), adopted
long ago by the ITU [26], or its UML variant, sequence diagrams [25]. This paper
addresses the relationship between scenario-based requirements and temporal
logic [23]. As a scenario based language we focus on the language of live sequence
charts (LSCs) [7] which is a powerful extension of classical message sequence
charts.

LSCs distinguish between behaviors that may happen in the system (exis-
tential) from those that must happen (universal). A universal chart contains a
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prechart, which specifies the scenario which, if successfully executed, forces the
system to satisfy the scenario given in the actual chart body.

Our contribution focuses on providing semantics for the powerful scenario-
based language of live sequence charts, but the underlying approach and ideas
are more general and can also be applied to other scenario based approaches
including classical MSCs, UML sequence diagrams, triggered message sequence
charts [24] and other variations. We show how the semantics of live sequence
charts can be captured using temporal logics. This is done by studying various
subsets of the LSC language and providing an explicit translation to temporal
logic. We also show how some of the popular temporal logic “patterns” can be
specified using live sequence charts.

In addition to gaining a better theoretical understanding of scenario-based
languages, another motivation for this work is the development of tools for ana-
lyzing scenario based requirements and verifying systems against these require-
ments. Since our translations are efficient, the work described here may be used
in tools that verify that a system satisfies a requirement specified using LSCs,
in tools for executing scenarios directly, as suggested by the play-in/play-out
approach [14, 15] and smart play-out [13], and in testing and synthesis tools.

2 Live Sequence Charts

2.1 Overview

Live sequence charts (LSCs) [7] have two types of charts: universal (annotated
by a solid borderline) and existential (annotated by a dashed borderline). Uni-
versal charts are used to specify restrictions over all possible system runs. A
universal chart typically contains a prechart, that specifies the scenario which,
if successfully executed, forces the system to satisfy the scenario given in the
actual chart body. Existential charts specify sample interactions between the
system and its environment, and must be satisfied by at least one system run.
They thus do not force the application to behave in a certain way in all cases,
but rather state that there is at least one set of circumstances under which a
certain behavior occurs. Existential charts can be used to specify system tests,
or simply to illustrate longer (non-restricting) scenarios that provide a broader
picture of the behavioral possibilities to which the system gives rise.

We will use an example of a cellular phone system to illustrate the main
concepts and constructs of the language. The chart OpenCover appearing in
Fig. 1 requires that whenever the user opens the Cover, as specified in the
prechart (dashed hexagon), the Speaker must turn silent. Both the messages
Open sent from the User to the Cover, and the self message Sound(Silent)
of the Speaker are synchronous messages as denoted by the close triangular
arrowheads.

The chart CloseCover appearing in Fig. 2 requires that whenever the user
closes the Cover, The Chip will send the message MakeSound(Silent) to the
Speaker and later the speaker will turn silent as designated by the self message



Fig. 1. Open Cover

Sound(Silent). The Display should set its state to Time and later set its back-
ground to Green. An LSC induces a partial order which is determined by the
order along an instance line, by the fact that a message can be received only
after it is sent, and taking into account that a synchronous message blocks the
sender until receipt. Thus in Fig. 2, message ChangeBackground(Green) must
occur after message SetState(Time), but both are unordered with respect to
messages MakeSound(Silent) and Sound(Silent). In the chart appearing in
Fig. 2 all messages are synchronous, except message MakeSound(Silent) which
is asynchronous, as denoted by the open arrowhead.

Fig. 2. Close Cover

The chart Call911 appearing in Fig. 3 is an existential chart as denoted by
the dashed borderline. It describes a scenario in which a user calls the number
911, opens the antenna and the call is answered. The chart in Fig. 3 introduces a



Fig. 3. Call 911

new element – a condition – denoted by a hexagon. The conditions in this chart
are hot conditions, specifying assertions that must hold for the scenario to be
satisfied. Existential charts do not have a prechart, and the meaning is that this
is a possible scenario, that should be satisfied by at least one system run.

So far we have shown the main LSC features, which are at the focus of
our research in this paper, and are also the ones most widely used. The LSC
language supports additional features making it a rich and complex language.
For a detailed description of live sequence charts the reader is referred to [7, 14].

2.2 Trace-based semantics for LSCs

This section defines the languages specified by a set of LSCs. Later in this paper
we show how to provide equivalent semantics using temporal logics. For the ease
of presentation and due to space limitations, the LSC definitions appearing here
are a restricted and simplified version of the original LSC semantics [7]. These
definitions provide the key ideas and concepts, allowing the reader to understand
extensions that will be explained as we go along. The concept of an execution of a
chart which is defined here will be used later in the temporal logic constructions.

We assume the LSC specification relates to an object system composed of
a set of objects O = {O1 . . . On}. An object system corresponds to an implemen-
tation, and our goal while providing semantics for LSCs is to define if a given
object system satisfies an LSC specification. The instance identifiers in the LSC
charts are objects from O, and possibly also the environment denoted env. The
LSC specifies the behavior of the system in terms of the message communication
between the objects in the system. We want to define the notion of satisfiabil-
ity of an LSC specification. In other words, we want to capture the languages



L ⊆ A∗ ∪ Aω generated by the object systems that satisfy the LSC specifi-
cation. The alphabet A used defines message communication between objects,
A = O × (O.Σ) where Σ is the alphabet of messages.

Let inst(m) be the set of all instance-identifiers referred to in chart m.
With each instance i we associate a finite number of locations dom(m, i) ⊆
{0, ..., l max(i)}. We collect all locations of m in the set

dom(m) = {< i, l >| i ∈ inst(m) ∧ l ∈ dom(m, i)}

The messages appearing in m are triples

Messages(m) = dom(m)×Σ × dom(m),

where (< i, l >, σ,< i′, l′ >) corresponds to instance i, while at location l,
sending σ to instance i′ at location l′. Each location can appear in at most one
message in the chart. The relationship between locations and messages is given
by the mapping

msg(m) : dom(m) → Messages(m)

The msg function induces two Boolean predicates send and receive. The predi-
cate send is true only for locations that correspond to the sending of a message,
while the predicate receive is true only for locations that correspond to the re-
ceiving of a message. We define the binary relation R(m) on dom(m) to be the
smallest relation satisfying the following axioms and closed under transitivity
and reflexivity:

– order along an instance line:

∀ < i, l >∈ dom(m), l < l max(i) ⇒< i, l > R(m) < i, l + 1 >

– order induced from message sending:

∀msg ∈ Messages(m),msg = (< i, l >, σ,< i′, l′ >) ⇒

< i, l > R(m) < i′, l′ >

– messages are synchronous; they block sender until receipt:

∀msg ∈ Messages(m),msg = (< i, l >, σ,< i′, l′ >) ⇒

< i′, l′ > R(m) < i, l + 1 >

We say that the chart m is well-formed if the relation R(m) is acyclic. We
assume all charts to be well-formed, and use ≤m to denote the partial order
R(m).

We denote the preset of a location < i, l > containing all elements in the
domain of a chart smaller than < i, l > by

• < i, l >= {< i′, l′ >∈ dom(m)| < i′, l′ >≤m< i, l >}.



We denote the partial order induced by the order along an instance line by
≺m, thus < i, l >≺m< i′, l′ > iff i = i′ and l < l′.

A cut through m is a set c of locations, one for each instance, such that for
every location < i, l > in c, the preset • < i, l > does not contain a location
< i′, l′ > such that < j, lj >≺m< i′, l′ > for some location < j, lj > in c. A cut
c is specified by the locations in all of the instances in the chart:

c = (< i1, l1 >,< i2, l2 >, ..., < in, ln >)

For a chart m with instances i1, ..., in the initial cut c0 has location 0 in all the
instances. Thus, c0 = (< i1, 0 >,< i2, 0 >, ..., < in, 0 >). We denote cuts(m) the
set of all cuts through the chart m.

For chart m, some 1 ≤ j ≤ n and cuts c, c′, with

c = (< i1, l1 >,< i2, l2 >, ..., < in, ln >), c′ = (< i1, l
′
1 >,< i2, l

′
2 >, ..., < in, l′n >)

we say that c′ is a < j, lj >-successor of c, and write succm(c, < j, lj >, c′), if
c and c′ are both cuts and

l′j = lj + 1 ∧ ∀i 6= j, l′i = li

Notice that the successor definition requires that both c and c′ are cuts, so that
advancing the location of one of the instances in c is allowed only if the obtained
set of locations remains unordered.
A run of m is a sequence of cuts, c0, c1, ..., ck, satisfying the following:

– c0 is an initial cut.
– for all 0 ≤ i < k, there is 1 ≤ ji ≤ n, such that succm(ci, < ji, lji >, ci+1).
– in the final cut ck all locations are maximal.

Assume the natural mapping f between (dom(m) ∪ env) × Σ × dom(m) to
the alphabet A, defined by

f(< i, l >, σ,< j, l′ >) = (Oi, Oj .σ)

Intuitively, the function f maps a location to the sending object and to the
message of the receiving object. Using this notation, f(Messages(m)) will be
used to denote the letters in A corresponding to messages that are restricted by
chart m:

f(Messages(m)) = {f(v) | v ∈ Messages(m)}
Definition 1. Let c = c0, c1, ..., ck be a run. The execution trace, or simply
the trace of c, written w = trace(c), is the word w = w1 · w2 · · ·wk over the
alphabet A, defined by:

wi =
{

f(msg(m)(< j, lj >)) if succm(ci−1, < j, lj >, ci) ∧ send(< j, lj >)
ε otherwise

We define the trace language generated by chart m, Ltrc
m ⊆ A∗, to be

Ltrc
m = {w | ∃(c0, c1, ..., ck) ∈ Runs(m) s.t. w = trace(c0, c1, ..., ck)}



There are two additional notions that we associate with an LSC, its mode
and its activation message. These are defined as follows:

mod : m → {existential, universal}

amsg : m → dom(m)×Σ × dom(m)

The activation message of a chart designates when a scenario described by
the chart should start, as we describe below. The charts and the two additional
notions are now put together to form a specification. An LSC specification is
a triple

LS = 〈M, amsg, mod〉,
where M is a set of charts, and amsg and mod are the activation messages and
modes of the charts, respectively.

The language of the chart m, denoted by Lm ⊆ A∗ ∪ Aω, is defined as
follows:

For an existential chart, mod(m) = existential, we require that the activation
message is relevant (i.e., sent) at least once, and that the trace will then satisfy
the chart:

Lm = {w = w1 · w2 · · · | ∃i0, i1, ..., ik and ∃v = v1 · v2 · · · vk ∈ Ltrc
m , s.t.

(i0 < i1 < ... < ik) ∧ (wi0 = f(amsg(m))) ∧
(∀j, 1 ≤ j ≤ k, wij = vj) ∧
(∀j′, i0 ≤ j′ ≤ ik, j′ 6∈ {i0, i1, ..., ik} ⇒ wj′ 6∈ f(Messages(m)))}

The formula requires that the activation message is sent once
(wi0 = f(amsg(m))), and then the trace satisfies the chart; i.e., there is a
subsequence belonging to the trace language of chart m (v = v1 · v2 · · · vk =
wi1 · wi2 · · ·wik

∈ Ltrc
m ), and all the messages between the activation message

until the end of the satisfying subsequence (∀j′, i0 ≤ j′ ≤ ik) that do not be-
long to the subsequence (j′ 6∈ {i0, i1, ..., ik}) are not restricted by the chart m
(wj′ 6∈ f(Messages(m))).

For a universal chart, mod(m) = universal, we require that each time the
activation message is sent the trace will satisfy the chart:

Lm = {w = w1 · w2 · · · | ∀i, wi = f(amsg(m)) ⇒ ∃i1, i2, ..., ik and
∃v = v1 · v2 · · · vk ∈ Ltrc

m , s.t. (i < i1 < i2 < ... < ik) ∧
(∀j, 1 ≤ j ≤ k, wij = vj) ∧
(∀j′, i ≤ j′ ≤ ik, j′ 6∈ {i1, ..., ik} ⇒ wj′ 6∈ f(Messages(m)))}

The formula requires that after each time the activation message is sent
(∀i, wi = f(amsg(m))), the trace will satisfy the chart m (this is expressed in
the formula in a similar way to the case for an existential chart.)

Now come the main definitions, which finalize the semantics of our version
of LSCs by connecting them with an object system:



Definition 2. A system S satisfies the LSC specification LS = 〈M, amsg,mod〉,
written S |= LS, if:

1. ∀m ∈ M, mod(m) = universal ⇒ LS ⊆ Lm

2. ∀m ∈ M, mod(m) = existential ⇒ LS ∩ Lm 6= ∅

3 Specifying temporal logic patterns in LSCs

We show how to specify some important temporal logic formulas using LSCs.
Apart from the interest in specifying the properties, this can help getting more
familiar with LSCs by seeing several examples.

Fig. 4.

Fig. 5.

Consider the universal chart appearing in Fig. 4(a) specifying the temporal
logic property Fp. The label Initial specifies that the chart can be activated



only once, at the beginning of the system run. The prechart (top dashed hexagon)
has the condition TRUE as activation condition, this implies the main chart con-
sisting of the message p occur eventually. The chart appearing in Fig. 4(b) speci-
fies the temporal logic property Gp. The default interpretation without the label
Initial is that whenever the prechart is activated, the main chart follows so p
eventually occurs, and the forbidden element restricts all other messages from
occurring so p always occurs. The properties GFp and G(p → Fq) are specified
in Fig. 5(a), (b). Note the label tolerant in Fig. 5(b) that allows p to occur
more than once before q happens without causing a violation of the chart.

4 Basic Translation

Embedding LSCs into CTL∗

As a starting point for studying the relationship between LSCs and temporal
logic, we consider a subset of the LSC language including only messages, and
with at most one message in a prechart. We show that these LSC specifications
can be embedded in the branching temporal logic CTL∗ [9]. This translation was
first proposed in [12]. In this paper we will show how to support a wider subset
of LSCs compared to [12] and in a much more efficient way.

Definition 3. Let w = m1m2m3...mk be a finite trace. Let R = {e1, e2, e3 · · · el}
be a set of events. The temporal logic formula φR

w is defined as:

φR
w = NU(m1 ∧ (X(NU(m2 ∧ (X(NU(m3...))))))),

where the formula N is given by N = ¬e1 ∧ ¬e2... ∧ ¬el.

Definition 4. Let LS = 〈M,amsg, mod〉 be an LSC specification. For a chart
m ∈ M , we define the formula ψm as follows:

– If mod(m) = universal, then ψm = AG(amsg(m) → X(
∨

w∈Ltrc
m

φR
w)).

– If mod(m) = existential, then ψm = EF (
∨

w∈Ltrc
m

φR
w).

Here for a universal chart m we take R to be the events appearing in the
prechart and in the main chart.

The following can now be proved

Proposition 1. Given LS = 〈M, amsg,mod〉, let ψ be the CTL∗ formula
∧

m∈M ψm,
and let S be an object system. Then

S |= ψ ⇔ S |= LS.

Proof. Follows from the definitions. Omitted from this version of the paper.

It is noteworthy that the reverse is not true: CTL∗ cannot be embedded in the
language of LSCs. In particular, given the single level quantification mechanism
of LSCs, the language cannot express general formulas with alternating path
quantifiers. However, it shouldn’t be too difficult to extend LSCs to allow certain
kinds of quantifier alternation, as noted in [7]. This was not done there, since it
was judged to have been too complex and unnecessary for real world usage of
sequence charts.



5 Extending and Optimizing the Translation

5.1 Precharts with more than one message

In the language of live sequence charts, scenarios are a basic concept, so a
prechart can itself describe a scenario which leads to the activation of the univer-
sal chart. We now consider the effect of this more general case on our translation.
Since existential charts do not have precharts their translation is not affected,
and we have to consider only the universal charts.

For a universal chart m we define the formula ψm as follows:

Definition 5.

ψm = G(
∨

w∈Ltrc
pch(m)

φw →
∨

w∈Ltrc
pch(m)·Ltrc

m

φw)

We denote Ltrc
pch(m) the language of executions for the prechart m. The lan-

guage Ltrc
pch(m) · Ltrc

m consists of concatenations of executions of the prechart and
executions of the main chart.

Notice that this is a formula in linear temporal logic (LTL), as is the formula
for a universal chart in the basic translation.

5.2 Improved Translation

The formula described in Definition 5 can be large, due to the possibility of
having many different traces for the chart, which affects the number of clauses
in the disjunction, and also due to the similarity of clauses at the different sides
of the implication operator. We give an improved translation where the resulting
temporal logic formulas are much more succinct (polynomial vs. exponential in
the number of locations).

We consider the case where both the prechart and the main chart consist
only of message communication, and denote p1, · · · pk the events appearing in
the prechart, m1, · · ·ml the events appearing in the main chart. Denote ei any
of these events, either in the prechart or in the main chart. Denote ei ≺ ej if ei

precedes ej in the partial order induced by the chart and ei ⊀ ej if ei and ej are
unordered. We assume also that a message does not appear more than once in
the same chart. It remains open whether an efficient translation exists for the
most general case.

Definition 6.

ψm = G((
∧

pi≺pj

φpi,pj ∧
∧

∀pi,mj

φpi,mj ∧
∧

pi⊀pj

¬χpj ,pi) →

(
∧

mi≺mj

φmi,mj ∧
∧

mj is maximal

Fmj ∧
∧

∀ei,mj

¬χei,mj ))

φxi,xj = ¬xjUxi

χxi,xj = (¬xi ∧ ¬xj)U(xi ∧X((¬xi ∧ ¬xj)Uxi))



Here the formula φxi,xj
specifies that xj must not happen before xi which

eventually occurs. The formula ¬χxi,xj specifies that xi must not occur twice
before xj occurs. Note that this translation is polynomial in the number of
messages appearing in the chart, while the translation in Definition 5 may be
exponential in the number of messages appearing in the chart.

5.3 Past and Future

Another way to view LSCs is as a past formula implying a future formula, an
approach similar to that of Gabbay [10]. An advantage of this view is that past
formulas have simple and efficient canonical transformations to testers. A tester
can be composed with a system and detect when a chart is activated due to
the completion of the prechart. In this case the translation can be reduced to
the simpler case of an activation message or activation condition rather than
handling precharts explicitly. This view is formalized in the following definition:

Definition 7.

ψm = G((
∧

pi≺pj

τpi,pj ∧
∧

∀pi,mj

τmj ,pi ∧
∧

pi⊀pj

¬ξpj ,pi) →

(
∧

mi≺mj

φmi,mj ∧
∧

mj is maximal

Fmj ∧
∧

∀ei,mj

¬χei,mj ))

φxi,xj = ¬xjUxi

χxi,xj = (¬xi ∧ ¬xj)U(xi ∧X((¬xi ∧ ¬xj)Uxi))
τxi,xj = ¬xiSxj

ξxi,xj = (¬xi ∧ ¬xj)S(xj ∧ Y ((¬xi ∧ ¬xj)Sxj))

Here the formula τxi,xj specifies that xi must not happen in the past before
xj which eventually occurs in the past. The formula ¬ξxi,xj specifies that xj

must not occur twice in the past before xi occurs. Y denotes the previous state,
and is the past version of the operator X while S denotes the Since operator
and is the past version of the Until operator U .

6 Expressing formulas in CTL

In this section we investigate the possibilities of expressing LSCs using the
branching time logic CTL. The logic CTL is a restricted subset of CTL∗. In
CTL the temporal operators G,F, X and U must be immediately preceded by
a path quantifier. We now show that the formulas in Definition 4 are in CTL,
i.e. although syntactically they are not CTL formulas (In φw the X and U op-
erators are not immediately preceded by a path quantifier) they have equivalent
formulas that are CTL formulas.



Proposition 2. For any formula ψm in Definition 4 there exists an equivalent
CTL formula ψ′m.

Proof. We consider the two cases of existential and universal charts.
Existential chart

The formula given is ψm = EF (
∨

w∈Ltrc
m

φw) We can simplify it as follows:

EF (
∨

w∈Ltrc
m

φw) ≡
∨

w∈Ltrc
m

EF (φw)

And then go on to show that φw is equivalent to the CTL formula where the
E path quantifier is added before each X and U temporal operator.
Universal chart

The formula given is ψm = AG(amsg(m) → X(
∨

w∈Ltrc
m

φw)).
We show a proof for the special case of a single disjunct:

AG(amsg(m) → Xφw). It illustrates the main ideas and results that can be
applied to the general case.

In order to explain the proof we consider an example with messages m0,m1,
m2,m3 and prove the following lemma:

Lemma 1.

G(m0 → (X(NU(m1 ∧X(NU(m2 ∧X(NUm3))))))) ≡

AG(m0 → (AX(A(NU(m1 ∧AX(A(NU(m2 ∧AX(A(NUm3))))))))))

Here N = ¬m0 ∧ ¬m1 ∧ ¬m2 ∧ ¬m3

In order to prove Lemma 1 we use a characterization obtained by Maidl of
the common fragment of CTL and LTL [21]. In [21] an inductive definition of
the ACTL 5 formulas that can be expressed in LTL is given. These formulas are
called ACTLdet, and they are a restriction of ACTL.

ACTLdet is inductively defined as follows:

Definition 8. ACTLdet

– p is a predicate.
– For ACTLdet formulas φ1 and φ2 and a predicate p:

φ1∧φ2, AXφ1, (p∧φ1)∨(¬p∧φ2), A(p∧φ1)U(¬p∧φ2), A(p∧φ1)W (¬p∧φ2).

Theorem 1. (Maidl [21])
Let φ be an ACTL formula. Then there exists an LTL formula ψ which is

equivalent to φ iff φ can be expressed in ACTLdet.

We also use a theorem by Clarke and Draghicesku [6].

5 ACTL is the fragment of those CTL formulas that contain, when in negation normal
form, only A as a path quantifier.



Theorem 2. (Clarke and Draghicesku [6]) For a CTL formula φ, we denote
the result of removing all path quantifiers from φ by φd. Let φ be a CTL for-
mula. Then there is an LTL formula ψ such that φ and ψ are equivalent iff φ is
equivalent to φd.

Proof. (of Lemma 1)
We now show that the formula in the right hand side of the equivalence in

Lemma 1 is in ACTLdet by constructing it inductively according to Definition 8.
φ0 = m3

φ1 = A(¬m3 ∧ (¬m0 ∧ ¬m1 ∧ ¬m2))U(m3 ∧ true) ≡ A(NUm3)
φ2 = AX(φ1) ≡ AX(A(NUm3))
φ3 = A((¬m2∧(¬m0∧¬m1∧¬m3))U(m2∧φ2)) ≡ A(NU(m2∧AX(A(NUm3)))
φ4 = AX(φ3) ≡ AX(A(NU(m2 ∧AX(A(NUm3)))))
φ5 = A(¬m1∧(¬m0∧¬m2∧¬m3))U(m1∧φ4)) ≡ A(NU(m1∧AX(A(NU(m2∧

AX(A(NUm3)))))))
φ6 = AX(φ5) ≡ AX(A(NU(m1 ∧AX(A(NU(m2 ∧AX(A(NUm3))))))))
φ7 = (¬m0∧TRUE)∨ (m0∧φ6) ≡ m0 → AX(A(NU(m1∧AX(A(NU(m2∧

AX(A(NUm3))))))))
φ8 = A(true∧φ7)W (false) ≡ AG(m0 → AX(A(NU(m1 ∧AX(A(NU(m2 ∧

AX(A(NUm3)))))))))
This shows that the formula in the right hand side of the equivalence in

Lemma 1 is in ACTLdet, and therefore according to Theorem 1 the formula is
in the common fragment of LTL and CTL.

As we showed the formula:

AG(m0 → AX(A(NU(m1 ∧AX(A(NU(m2 ∧AX(A(NUm3)))))))))

is in ACTLdet therefore by theorem 1 the formula can be expressed in LTL,
and by theorem 2 it is equivalent to the formula obtained by removing all path
quantifiers:

G(m0 → (X(NU(m1 ∧X(NU(m2 ∧X(NUm3)))))))

thus completing the proof of Lemma 1.
ut

The proof of an equivalence like that of Lemma 1 for an execution of arbitrary
length k, w = m1m2m3...mk is by induction on k and is straightforward.

7 Extension for Additional LSC Constructs

We briefly outline how our translations can be extended to handle additional LSC
constructs. A detailed treatment will appear in the full version of the paper.



7.1 Conditions

The LSC language allows using conditions, which are assertions on the variables
of the system. Variables may be local to an instance or globally known. Condi-
tions can be handled within the framework described previously, the main effect
of conditions on the translation is on the languages of executions. We consider
generalized executions, w = x1x2x3...xk is an execution of m, a sequence of
events (send or receive) or conditions (or their negation) satisfying the require-
ments of m.

As before

φw = NU(x1 ∧ (X(NU(x2 ∧ (X(NU(x3...))))))),

where the formula N is given by N = ¬m1 ∧ ¬m2... ∧ ¬ml. Each mi in the
formula is a proposition indicating the occurrence of a send or receive event,
the conditions do not appear in N . Each xi in the formula φw is a proposition
indicating the occurrence of a send or receive event mi, a condition holding ci

or not holding ¬ci. Conditions can come in two flavors: mandatory (hot) and
provisional (cold). If a system run encounters a false mandatory condition the
run aborts abnormally, while a false provisional condition induces a normal exit
from the enclosing charts. Conditions can also be shared by several instances,
forming a synchronization barrier. These issues can be treated by our translation
but are beyond the scope of this version of the paper.

7.2 Iteration

A loop construct is a subchart that is iterated a number of times. Fixed loops are
annotated by a number or variable name, while unbounded loops are performed
an a priory unknown number of times. The subchart can be exited when a
cold condition inside it is violated. Bounded loops can be treated by unfolding
techniques. Unbounded loops enhance the expressive power of LSCs and cannot
be expressed in propositional temporal logic (PTL), since PTL does not allow
counting modulo n, which can be specified by an LSC with unbounded loop with
a certain message appearing n times inside the loop.

8 Related Work

A large amount of work has been done on scenario-based specifications. We
briefly discuss the ones most relevant to our work. The idea of using sequence
charts to discover design errors at early stages of development has been investi-
gated in [1, 22] for detecting race conditions, time conflicts and pattern matching.
The language used in these papers is that of classical message sequence charts,
with semantics being simply the partial order of events in a chart. In order to
describe system behavior, such MSC’s are composed into hierarchal message se-
quence charts (HMSC’s) which are basically graphs whose nodes are MSC’s. As
has been observed in several papers, e.g. [2], allowing processes to progress along



the HMSC with each chart being in a different node may introduce non-regular
behavior and is the cause of undecidability of certain properties. Undecidabil-
ity results and approaches to restrict HMSC’s in order to avoid these problems
appear in [16, 17, 11].

Live sequence charts have been used for testing and verification of system
models. Lettrari and Klose [20] present a methodology supported by a tool called
TestConductor, which is integrated into Rhapsody [18]. The tool is used for mon-
itoring and testing a model using a restricted subset of LSCs. Damm and Klose
[8, 19] describe a verification environment in which LSCs are used to describe
requirements that are verified against a Statemate model implementation. The
verification is based on translating an LSC chart into a timed Büchi automa-
ton, as described in [19], and it also handles timing issues. Standard translations
from Büchi automata to temporal logic can then be applied. Previous work on
optimizing temporal logic formulas for model-checking appears in [3]. LSCs have
also been applied to the specification and verification of hardware systems [4, 5].

In [14] a methodology for specifying and validating requirements, termed
“play-in/play-out” is described. According to this approach, requirements are
captured by the user playing in scenarios using a graphical interface of the system
to be developed or using an object model diagram. The user “plays” the GUI
by clicking buttons, rotating knobs and sending messages (calling functions) to
objects in an intuitive manner. As this is being done, the supporting tool, called
the Play-Engine, constructs a formal version of the requirements in the form of
LSCs. Play-out is a complementary idea to play-in, which makes it possible to
execute the requirements directly. Smart play-out [13] is an extension of the play-
out mechanism using verification methods to drive the execution. The semantics
described in this paper follows that of [14, 13], but the translation to temporal
logic described here is new and was not used as part of (smart) play-out, a
direction that we plan to investigate in future work.
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