
Using LSCs for Scenario Authoring in Tactical Simulators∗

Yoram Atir and David Harel †

The Weizmann Institute of Science, Rehovot, Israel 76100

Keywords: Behavioral specification, Live sequence charts
(LSCs), Scenario authoring, Tactical simulators, End-user
programming

Abstract
The scenario-based approach to programming is adapted for
use in tactical simulators, in which highly structured inter-
entity scenarios are used for practicing and assessing decision
making. The adapted approach, using the LSC language, en-
ables end-users to capture scenario specification directly from
the unfolding 3D scene. The specified scenarios are then used
both for behavior monitoring and for the orchestration of sim-
ulation runs.

1. INTRODUCTION
Computer simulators and the so-called serious games (See,

e.g., [1] for the latter), are referred to as “tactical” when their
main focus is on decision making, rather than on technical
skills. In order to make high level functionalities in the ap-
plications susceptible to assessment and control, the simu-
lation is carried out by actors assigning intentions to semi-
autonomous agents. The intentions are typically related to
other entities, and so the simulation is to a large extent de-
fined by high level interactions between entities. Thus inter-
entity scenarios are at the heart of tactical simulations. They
are set up in order to practice and assess the interactions of
actors with respect to some local doctrine.

The doctrine and the scenarios that embody it are often ex-
pressed in a modal, temporal way. For example, “IfX occurs,
actionY must be initiated in no more thanZ seconds”. Inter-
entity scenarios are typically defined by Subject Matter Ex-
perts (SMEs), and may be used both in simulator design and
testing, and in simulation runs. The former relates to the ex-
pected behavior of (semi)autonomous agents and the latter to
the expected behavior of human trainees.

Two challenges in this area are the creation of believable
agent behavior and the orchestration of different agents and
behaviors into credible, controlled scenarios. A major issue is
the gap between the partial and informal specifications given
by SMEs in the design stages of the system and the imple-
mentation of the behavior, which requires the utilization of
formal methods by computer experts. In a larger context, that
of the general domain of reactive systems [2], a similar gap

∗This research was supported in part by The John von Neumann Minerva
Center for the Development of Reactive Systems at the Weizmann Institute
of Science.

†Part of this author’s work carried out during a visit to the School of
Informatics at the University of Edinburgh, which was supported by a grant
from the EPSRC.

was one of the main forces that triggered the introduction of
the language oflive sequence charts(LSC) [3], and the sub-
sequent work on the play-in/play-out methodology and the
supporting Play-Engine tool [4, 5].

The play-in technique involves a user-friendly and natu-
ral way to play in scenario-based behavior directly from the
system’s GUI (or some abstract version thereof, such as an
object-model diagram), during which LSCs are generated au-
tomatically. The play-out technique makes it possible to play
out the behavior; that is, to execute the system as constrained
by the grand sum of the scenario based information. These
ideas are supported in full by the Play-Engine.

In the present paper, we show how to adapt the LSC lan-
guage and the play-in/play-out techniques, so that they can be
applied beneficially to real-time tactical simulation. Among
other things, this makes it possible for end-users and SMEs
to naturally and intuitively specify LSCs for use in scenario
orchestration and behavior monitoring.

The work we set out to do involves dealing with many dif-
ferent issues related to languages, semantics, software engi-
neering and modeling, and the project in general is still in
progress. In this paper we outline the suggested methodol-
ogy, report on an initial (partial) implementation, and dis-
cuss some basic issues that arise in the adaptation process.
We focus mainly on two of the aspects inherent to real-time
simulator applications, which could not have been part of
the original LSC language and its play-out technique: First,
since simulation is carried out by independent actors, we have
augmented the language with the ability to reason about ac-
tors. Second, high level scenarios are inherently dependant on
low level and domain specific issues, which are often unpre-
dictable at the time of specification. Accordingly, in order to
retain the intuitive nature of LSC specification, we have mod-
ified the play-out semantics and have established a model and
mechanism for considering low level information while ab-
stracting it from the high-level specification. For instance, the
model deals with the selection and timing of enabled events
to account for low-level dependencies — a non-issue in the
original play-out technique.

The paper is organized as follows: Section 2 discusses re-
lated work on autonomous behavior and scenario orchestra-
tion. Section 3 presents the simulator prototype that we use
as a testbed, which is a typical example of the application
domain. Section 4 gives an overview of the LSC language
and the play-in/play-out methods as they are modified and
adapted for use in the suggested setting. Section 5 elaborates
on the adaptation issues outlined above, and Section 6 con-
cludes with a discussion of some currently known limitations
and a preview of our ongoing and planned work.



2. RELATED WORK
In general, schemes for applying autonomous behavior

must deal with the coordination of objects and behaviors.
There are many different approaches to this, in different do-
mains. The vast majority of work that aims for granular and
predictable behavior at the level of a single object take an
intra-object (and essentially a state-based) approach. This
means that an object’s behavior depends entirely on its asso-
ciated action schemes and internal believes. See for example
[6, 7]. Some of the research in the intra-object paradigm has
targeted the complexity of autonomous behavior implemen-
tation, suggesting high level languages. These are often ac-
companied by tools and methodologies aimed at bridging the
gap between high level behavior specification and its imple-
mentation. See for example [8, 9, 10]. In related work, such as
[11] and [12], it has been noticed that intra-object approaches
are not very fitting for highly structured inter-object scenar-
ios. These papers present disembodied high-level state-based
agents for orchestrating embodied agents and other orches-
trators. In [13, 14, 15] it was also noticed that the state-based
representation is inadequate for highly structured inter-object
scenarios. Their authors suggest textual-based scenario spec-
ification languages, with operators that define temporal re-
lationships between scenarios, and mechanisms to establish
the way scenarios are interleaved (e.g., by explicit prioritiza-
tion). The work in [13, 14, 15] is close to ours in application
domain, and in that LSCs may also be viewed as disembod-
ied agents that orchestrate other agents. However, the visual
nature of the LSC language makes a rather significant differ-
ence, as we shall see.

UML and UML derivatives have been suggested for agent
specification in, e.g., [16, 17]. In particular, UML’s sequence
diagrams (which originated in the telecommunication indus-
try as message sequence charts, MSCs), and specialized ver-
sions thereof, have been suggested for specifying agent inter-
actions. Having built on the insufficiently formal basis of the
UML standard, and being non-executable, these sequence di-
agram dialects cannot support a fully operational setting. In
the OO domain, formal derivatives of UML’s sequence dia-
grams have been used in testing tools, see, e.g., the TestCon-
ductor tool of Rhapsody [18]. In that approach, system events
are traced against sequence diagrams in order to detect flaws,
mostly with respect to partial order. This method can also be
adapted for testing aspects of autonomous behavior during
simulator application development.

3. TACTICAL SIMULATOR TESTBED
We now describe our system for illustration. It has charac-

teristics typical of tactical simulators. It is meant to train per-
sonnel of so called ‘tactical units’ in real-time decision mak-
ing. Tactical units tend to develop a unique type of combat
doctrine. This doctrine consists of a set of rules considering
where and how to look for threats, how to asses the relative
severity of multiple threats, what actions should be taken with

regard to these threats, and in what order.
The system is built around a central server, in a star archi-

tecture. The stations host end-users, which may be trainees or
instructors. Instructors and trainees may operate entities by
assigning them intentions, which are typically actions that re-
late to other objects. For example, entityA may be assigned
the intention “Move fast to objectB”, where “fast” is a prop-
erty of the move action. All actions implied by the intention
are autonomously performed by the entity. For example, the
moving entityA may decide on the route to objectB and may
respond autonomously to events like collisions, which may
occur on its way toB. This ‘hardwired’ autonomous behavior
is usually specified by SMEs earlier, at the prototype devel-
opment phase, as is the related entities’ interface; i.e., its set
of possible intensions.

Trainees are associated with a single human entity and are
limited to its point of view of the scene. Trainees can only
control their assigned entity. Instructors can control every en-
tity, and take any point of view. An intension is associated
with an entity by a natural GUI operation. For example, a
trainee may instruct its associated entity to move by point-
ing the mouse at the target and clicking a mouse button. The
entities’ pose may be toggled, from upright to duck and vice
versa, by pressing a keyboard key, etc. Instructors must first
associate themselves with an entity, and can then direct it in
a similar manner, although they have a richer interface. For
example, an instructor can alter the ‘health’ of an entity, an
action that trainees cannot carry out — they can only view its
consequences.

Simulation scenarios typically have definite initial and ter-
minal configurations, and are structured to practice specific
aspects of the doctrine in predetermined points in place and
time. As a consequence, hardwired high level autonomous co-
ordinators cannot be effectively utilized, and inter-entity sce-
narios are manually orchestrated. This is obviously a prob-
lem. Scenarios can be quite complex and may be dynami-
cally interweaved in ways that are hard to predict. In many
cases, the orchestration itself is faulty, and important things
are missed.

Our LSC examples in the paper will refer to the scene in
Figure 1. EntitySoldier1 (lower left) is shown shooting at
entity Fighter2 (right). The other human entity, on the upper
left, isFighter3. The upper barrel-shaped entity isStand5, and
the lower one isStand4.

We will refer to instructors and trainees asactors. The en-
tities that are directed by actors are referred to asagents.

4. THE LSC APPROACH
For fuller details about the scenario-based programming

paradigm, the language of live sequence charts (LSCs), the
play-in and play-out methods and the supporting Play-Engine
tool, we refer the reader to [3, 4, 5]. Here we present only
those aspects of the language that are essential to this paper.

Figure 2 shows auniversal LSCnamedFighter2Action.
This LSC states the required actions ofFighter2 in response



to being shot at by some soldier. The entities are represented
by the vertical lines, calledinstance lines. The two rightmost
instance lines represent specific entities, while the left one
is symbolic, meanin that it can represent any instance of its
class, and it does so by dynamically binding to any entity of
classCSoldierduring execution. Events, such as inter-entity
messages and self property changes are represented by ar-
rows. Along an instance line, time progresses from top to
bottom, so that higher events precede lower ones. Also, in
general, the sending of a message precedes its receipt, but in
our examples all inter-entity interactions are synchronous, so
sending and receiving are simultaneous.

A universal chart has two parts, turning it into a kind of
if-then construct. Its top dashed portion, theprechart, speci-
fies the scenario, which, if satisfied (i.e., carried out to com-
pletion), causes the system to have to also satisfy the chart
body, themain chart, which is the solid part at the bottom.
Thus, such an LSC induces an action-reaction relationship
between the scenario appearing in its prechart and the one
appearing in the chart body. In our case, The only event in the
prechart is theShootAt(X1)intention message from the sol-
dier to Fighter2. Possible values for the parameterX1 are 1
for slow, and 2 for fast.

Thus, the prechart will be satisfied when some soldier will
be associated with an intent to shootFighter2, at either speed.
If and when this happens, the symbolic instance line will bind
to the actual shooting soldier, andX1 will bind to the re-
quested speed value. This will then cause the following chain
of events:Fighter2will start shooting back at the soldier and
then start a slow moving action in the direction ofStand4.
After reaching the stand,Fighter2 will change its pose and
duck behind it. This manifests itself as changing the value of
propertyFightPoseto 1. Eventually, the value of the health
property ofFighter2will change to 0. This results in a short
‘dying’ animation, and the entity will no longer be operable.

The scene in Figure 1 was constructed for assessing the sol-
dier’s behavior. Fighter2 and Fighter3, as well as the stands,
were positioned at the scene building stage. While it was
known that some soldier will arrive at the scene, his/her ex-

Figure 1. An example of a scene

act identity was not known, which explains why the soldier’s
instance line is symbolic. While the actions of the soldier
are monitored, that is, the events are ‘given’ to the Play-
Engine by the entities themselves, the behavior of the fighters
is driven — i.e., orchestrated — by the Play-Engine itself.
This is indicated by the “PE” tag associated withFighter2’s
activities in the LSC, so that the Play-Engine is responsi-
ble for initiating the associated activity. The only event in
Fighter2Action’s main chart not initiated by the Play-Engine
is theReached()message fromStand4to Fighter2. Obviously
the Play-Engine cannot initiate this event, but it monitors it
for establishing that ducking (and dying) will not occur be-
fore the stand is reached.

Note that the only temporal specification of events in the
LSC is the partial order between them (given by the top-to-
bottom and send-before-receive rules). For instance, nothing
is said about the exact time between ducking and dying. This
information emerges dynamically from other LSCs or from
actual properties of the simulation, as we shall see later. Note
also that the LSC specifies only ‘skeletal’ behavior. For in-
stance, it says nothing about things thatFighter2 might do
between shooting back at the soldier and moving toStand4.
It only states thatFighter2 must eventually decide to move
to Stand4, and not duck (or dye...) before reaching it. Such
weaved behaviors may be expressed in a combination of dif-
ferent LSCs, or ignored altogether. The possibility of under-
specifying the behavior while effectively concentrating on
key aspects of it conforms with the intuitive way scenarios
are conceived by SMEs; it is actually a key feature of our
approach, making it amenable for end-user programming.

4.1 Play-in: Programming scenarios
The Play-Engine is currently a stand-alone application,

with its own dedicated GUI. In it, LSCs are depicted during
play-in, and can be visually traced during play-out. It also al-
lows for a specific GUI of the application to be present and

Figure 2. Fighter2Action: A universal LSC stating the re-
quired actions ofFighter2



be animated during play-in and play-out.
The LSCFighter2Actionwas ‘programmed’ in much the

same way its described scenario unfolds during simulation
run, using the actual simulation scene given in Figure 1. A
soldier entity was brought to its initial place and the Play-
Engine’s mode of operation was set to play-in a newly opened
LSC. The operator then assigned the soldier the intention to
shoot atFighter2 in one of the ways it would have done so in
actual simulation run. This had two simultaneous effects: the
soldier entity started the shooting action and theShootAt(X1)
message was depicted in the LSC’s prechart. The shooting
speed initially had a concrete value matching the actual op-
erator’s action, but it was later changed to be symbolic. The
operator then moved to the main chart’s region in the GUI,
and choseFighter2as a default controlled entity. As before,
from here on the LSC directly reflects the actions of the op-
erator and the related happenings in the scene. For example,
After choosingStand4as a target of the movement, the op-
erator waited for the entity to reach it. As this happened, the
entity stopped moving and theReached()message appeared
in the LSC.

During this specification process, the soldier’s instance line
was bound to the exact entity that was brought to play. It was
changed to be symbolic after the specification process was
completed. Similarly, the Play-Engine was assigned to be the
initiator of events at the end of the play-in process. Note that
play-in does not have to take place during a (stub) simulation
run. It is possible to play-in on a still scene, as well as on
an OMD of it. In fact, we found it convenient to occasionally
stop a scene or exit the play-in mode, for the sake of ‘manual’
adjustments, or in order to avoid playing-in redundant events.

The LSCs shown here are very simple, to ease the ex-
position and keep the paper short. Producing them involved
mainly acting in the simulation scene, with very little inter-
action with the Play-Engine’s GUI. However, as LSCs grow
in complexity and include constructs other than events (e.g.,
sub-charts, assignments, etc.) their creation requires more in-
teraction with the Play-Engine’s GUI.

4.2 Play-out: Simulation run authoring
Play-out is the process of executing an LSC specification.

In our context, it should be viewed as the method by which
the Play-Engine becomes an actor, constantly monitoring the
behavior of agents that act on its behalf or on the behalf of
other actors, and directing agents as faithfully as it can, ac-
cording to the grand sum of (relevant) LSCs. In some occa-
sions, the Play-Engine might announce that an LSC has been
interrupted, or even violated; i.e., that a scenario has evolved
in a way forbidden by some LSC.

Here we only sketch the play-out method as applied to the
tactical simulator setting, and describe its effects with respect
to the scene in Figure 1, the LSCFighter2Actionand two ad-
ditional LSCs,Fighter3ActionandRequiredResponse, shown
in Figures 3 and 4. Some of the issues concerning the imple-
mentation of the method in our setting are presented in the

next section. For a detailed description of the (original) play-
out method, please refer to [4].

The LSCFighter3Actionstates that as a consequence of
a soldier shooting atFighter2, Fighter3 should start moving
to Stand5. Also, Fighter3should eventually shoot at the sol-
dier andFighter2’s health should drop to 0, but both of these
events should occur only afterFighter3has reachedStand5.
This constraint is due to theSYNCconstruct appearing under-
neath theReached()message. LSCFighter3Actionis shown
mainly to demonstrate how eventual behavior can be dynami-
cally defined by several different LSCs, which refine and con-
strain each other.

Assume that the initial configuration is valid, and that
sometime during the runSoldier1arrives at the scene and is-
sues aShootAt(2)event atFighter2. The play-out mechanism
unifies this event with the messages in the precharts of LSCs
Fighter2ActionandFighter3Action, the messages are propa-
gated and both precharts become satisfied. By the main chart
of Fighter2Action, the Play-Engine then initiates aShootAt(1)
at the soldier, then aMoveTo(1)to Stand4. It waits for the ar-
rival of a Reached()event back from the simulator and then
issues a property change ofFighter2’s Fighting pose. In par-
allel, by the main-chart ofFighter3Action, the Play-Engine
initiates amoveTo(1)of Fighter3 to Stand5and waits for
a Reached()acknowledgement. Now comes the interesting
part: theHealth(0)event forFighter2 will not be issued be-
fore Fighter3 ReachesStand5. This is because the play-out
mechanism unifies theHealth(0) events in both LSCs, and
due to theSYNCconstruct inFighter3Action.

Eventually,Health(0)will be issued forFighter2, and LSC
Figther2Actionwill close. But according toFighter3Action,
Fighter3still has to shoot at the soldier. This may be ‘phys-
ically’ impossible, since even fromFighter3’s new position,
nearStand5, the soldier may still be obscured by the wall.
So the LSCFighter3Actionis left pending until something
makes the soldier progress to be in sight ofFighter3. What
can make him/her do that? Recall that the soldier is human-
controlled and hence his/her behavior should be monitored;
it makes no sense for the Play-Engine to force the required

Figure 3. Fighter3Action: A universal LSC giving the re-
quired actions ofFighter3



progress.
Assume that according to the soldier’s doctrine, he/she

should approachStand4afterFighter2ducks behind it. This
is stated in LSCRequiredResponse. Using aforbidden con-
dition this LSC also states that the soldier should start this
movement in no more than 2 time units. In the prechart, when
Fighter2ducks, the current time is captured in the variableT.
The scope of the forbidden condition (Time> T + 2) is the
main chart, so that the condition is monitored from the mo-
ment the prechart is satisfied. Since the condition is hot, if the
main chart is not exit by the time it becomes true, a violation
occurs and the Play-Engine’s GUI issues a matching notifi-
cation. This is one way to handle a deviation from a planned
scenario. In general, different paths a scenario might take can
be handled by conditional constructs of the LSC language, or
by utilizing the basic pre-chart/main-chart mechanism, i.e.,
by devising LSCs that will be activated or closed, when the
scenario path renders them relevant or irrelevant, respectively.

5. ADAPTATION ISSUES
The biggest challenges in our proposed adaptation of the

LSC approach to real-time tactical simulators are related to
the play-out method. The original method defines a clear cut
between the system and its environment (e.g., external ob-
jects); see [4]. Every action in the system itself is determined
by the Play-Engine according to the LSC specification. Al-
though objects with a graphical representation can be ani-
mated, their animation is really under the control of the Play-
Engine. Accordingly, every piece of information of interest in
the system’s behavior has to be embedded in the LSC speci-
fication itself.

The original play-out method thus makes two important
assumptions: (1) a system object does nothing unless it is told
so by the Play-Engine, and (2) a system object will always
perform Play-Engine requests immediately.

Obviously, these assumptions do not hold in our setting.
As to (1), several actors may direct a single entity. This raises
several issues. Most prominently, the Play-Engine has to

Figure 4. RequiredResponse: The response of the soldier to
Fighter2hiding

know who is, or was, responsible for the initiation of events.
To deal with this we associate each event with a property that
identifies its initiating actor. This is essential for collabora-
tive scenario authoring. In our current implementation of the
proposed approach, LSCs explicitly identify only the Play-
Engine and ‘all other’ actors, as can be seen in our example
LSCs. We are in the process of considering a more powerful
approach.

As to assumption (2), apart from not knowing the future
actions of other actors, the Play-Engine lacks additional in-
formation. For example, being a separate generic component,
it does not have the scene’s full 3D information. As a conse-
quence, it cannot tell if, e.g.,Fighter3can see the soldier, and
Fighter3 cannot initiate fire towards targets it cannot see. In
the simulator, such impossible requests are simply discarded.
Hence, the original play-out semantics will probably yield an
incorrect scenario, since the Play-Engine would have issued
a prematureShootAt request.1

A major challenge in applying the scenario-based approach
to the simulator setting is how to effectively integrate the ap-
proach while retaining its power and generality. We would
like to make it possible for users to correctly specify and ap-
ply high-level ‘skeletal’ LSCs while ignoring low level, do-
main specific issues.

To this end, we have devised a Play-Engine proxy, which is
a low level agent of the Play-Engine in the simulator domain.
It is embedded in the prototype’s code in the sense that it
publishes an interface for use in different places in the code,
and it spawns internal activities that are specifically for the
sake of the Play-Engine. On the other side, the proxy has a
generic interface to the Play-Engine, and is implemented with
XML and RPCs.

Among other things, the proxy is responsible for maintain-
ing the view of the scene synchronized between the simulator
and the Play-Engine. This is not at all trivial, and is depen-
dant on low level simulator specification. So, for example, the
proxy discards redundant scene messages using deep knowl-
edge of local specification and implementation. The proxy is
also responsible for extracting and translating implicit infor-
mation in the scene, for the sake of modeling. For example,
the Reached()event is only implicit in the simulator, but is
used extensively in scenario specification. The proxy also co-
operates with the Play-Engine to initiate events in a locally
consistent manner. For example, it initiates a dependent event,
such asShootAt, only if and when it is possible according to
up-to-date 3D information and low-level local specification.

This last-listed point in particular relates to the way the
play-out semantics is enforced by the interplay between the
Play-Engine and its proxy. The general scheme is as follows:
When an event reaches the Play-Engine from the proxy, the
Play-Engine updates its current configuration by unifying and

1Actually, the approach can be made to support some kind of ‘can-see’
functionality (expose a function or an event). However, it can be shown that
this does not necessarily enable correct or convenient modeling, due to rea-
sons that are outside of scope of this paper.



propagating LSC events, spawning new LSC live copies, etc.
As a result, a new set of events is considered by the Play-
Engine as enabled for initiation according to the LSC spec-
ification. This set, however, may include events that are not
‘physically’ enabled, and is thus sent to the proxy. The proxy
tries to initiate one of the events in the set in a heuristic
manner, considering the likely urgency of events (dependent
events are considered more urgent) and the cost of testing the
possibility of their initiation. This process continues until ini-
tiation succeeds, or until a new set of events arrives from the
Play-Engine.

We expect the low level behavior of the proxy to be highly
dependant on the specific simulator application. Our main ef-
fort in this respect is to devise a highly generalized integration
scheme. A step in this direction is the classification of events
for instantiation by the proxy according to the way they are
considered in play-out. For example, theReached()event is
classified as an event that the Play-Engine does not initiate.
In play-in, the Play-Engine cannot be declared as an actor for
events of this class.

6. CONCLUSION
We suggest that the scenario-based approach to program-

ming, as exemplified by the LSC language and the play-in/out
methodology, can be adapted and adopted as a powerful tool
for end-user’s programming and real-time authoring of tac-
tical scenarios. The main advantage of the approach is the
ability to express inter-entity scenarios in a natural and in-
tuitive manner. For effective RT programming, the approach
leverages on, and may cooperate with, other programming
models. For example, LSCs may author the behavior of en-
tities that are directed by state machines which, in particular,
scale better than LSCs computationally. LSCs do not scale
well compared to state-machines since the way we have set
things up so far is highly centralized. All LSCs in a given
configuration have to be scanned for each incoming event.
This may become a problem in large scale simulations, as the
complexity of LSC specification increases. The cooperation
of several Play-Engine’s is a possible solution, which should
be accompanied with an efficient distribution scheme for the
LSC specification, something our group has been working on
for some time.

Although our initial results from implementing parts of the
proposal are promising, usage tests by end-users have not yet
been preformed on a sufficient scale. Also, some elements of
the LSC language have not been dealt with yet. We plan to
extend the language in order to make the approach more suit-
able for real world simulator applications. For some useful
extension a suitable formal basis exists, and what is required
is careful adaptation and implementation. Other extensions
require significant additional research.

Acknowledgements We would like to thank Gili Hess for
her cooperation and for her work on the simulator prototype.

REFERENCES
[1] Serious Games Initiative, http://www.seriousgames.org.

[2] D. Harel and A. Pnueli, “On the Development of Reactive Sys-
tems”, Logics and Models of Concurrent Systems (K. R. Apt,
ed.), NATO ASI Series, F:13, 1985, 477–498, Springer-Verlag.

[3] W. Damm and D. Harel, “LSCs: Breathing Life into Message
Sequence Charts”,Formal Methods in System Design, 19:1
(2001), 45–80.

[4] D. Harel and R. Marelly,Come, Let’s Play: Scenario-Based
Programming Using LSCs and the Play-Engine, Springer-
Verlag, 2003.

[5] D. Harel and R. Marelly, “Specifying and Executing Behavioral
Requirements: The Play-In/Play-Out Approach”,Software and
System Modeling2 (2003), 82–107.

[6] H. Noser and D. Thalmann, “Sensor-based Synthetic Actors in
a Tennis Game Simulation”,The Visual Computer, 14:4 (1998),
193–205.

[7] E. Norling and L. Sonenberg, “Creating Interactive Characters
with BDI Agents”, Proc. of the Australian Workshop on Inter-
active Entertainment IE2004, 2004.

[8] S. Donikian, “HPTS: A Behaviour Modelling Language for Au-
tonomous Agents”,Proc. 5th Int. Conf. on Autonomous agents,
2001, 401–408, ACM Press.

[9] M. Kallmann and D. Thalmann, “A Behavioral Interface to Sim-
ulate Agent-Object Interactions in Real Time”,Proc. Computer
Animation, 1999, 138–146, IEEE Computer Society.

[10] T. Ishida, “Q: A Scenario Description Language for Interac-
tive Agents”,Computer, 35:11 (2002), 42–47, IEEE Computer
Society Press.

[11] O. Ahmad, J. Cremer, S. Hansen, J. Kearney, and P. Willemsen,
“Hierarchical, Concurrent State Machines for Behavior Model-
ing and Scenario Control”,Prof. Conference on AI, Planning,
and Simulation in High Autonomy Systems, 1994.

[12] J. Cremer, J. Kearney and P. Willemsen, “Directable Behavior
Models for Virtual Driving Scenarios”,Trans. Society for Com-
puter Simulation, 14:2 (1997), 87–96.

[13] J. Kearney, P. Willemsen, S. Donikian, and F. Devillers, “Sce-
nario Languages for Driving Simulation”,Proc. Driving Simu-
lation Conf.1999, 377–393.

[14] F. Devillers and S. Donikian, “A scenario Language to
Orchestrate Virtual World Evolution”,Proc. ACM SIG-
GRAPH/Eurographics Symp. on Computer Animation, 2003,
265–275, Eurographics Association.

[15] P. Willemsen, “Behavior and Scenario Modeling for Real-time
Virtual Environments”, PhD thesis, Department of Computer
Science, University of Iowa, 2000.

[16] M. Papasimeon and C. Heinze, “Extending the UML for De-
signing Jack Agents.”,Proc. Australian Software Engineering
Conference, 2001, 89–97.

[17] B. Bauer J. P. Müller and J. Odell, “Agent UML: A Formalism
for Specifying Multiagent Software Systems.”,Int. J. Software
Engineering and Knowledge Engineering, 11:3 (2001), 207–
230.

[18] I-Logix Inc., http://www.ilogix.com.


