Using LSCs for Scenario Authoring in Tactical Simulators*

Yoram Atir and David Harel T
The Weizmann Institute of Science, Rehovot, Israel 76100

Keywords: Behavioral specification, Live sequence chartswas one of the main forces that triggered the introduction of
(LSCs), Scenario authoring, Tactical simulators, End-usethe language dlive sequence charfg.SC) [3], and the sub-

programming sequent work on the play-in/play-out methodology and the
supporting Play-Engine tool [4, 5].
Abstract The play-in technique involves a user-friendly and natu-

The scenario-based approach to programming is adapted feall way to play in scenario-based behavior directly from the
use in tactical simulators, in which highly structured inter- system’s GUI (or some abstract version thereof, such as an
entity scenarios are used for practicing and assessing decisiobject-model diagram), during which LSCs are generated au-
making. The adapted approach, using the LSC language, etematically. The play-out technique makes it possible to play
ables end-users to capture scenario specification directly fromut the behavior; that is, to execute the system as constrained
the unfolding 3D scene. The specified scenarios are then uség the grand sum of the scenario based information. These
both for behavior monitoring and for the orchestration of sim-ideas are supported in full by the Play-Engine.

ulation runs. In the present paper, we show how to adapt the LSC lan-
guage and the play-in/play-out techniques, so that they can be
1. INTRODUCTION applied beneficially to real-time tactical simulation. Among

Computer simulators and the so-called serious games (Se%ther things, this makes it possible for end-users and SMEs

e.g., [1] for the latter), are referred to as “tactical” when theirto naturally and intuitively specify LSCs for use in scenario

; . .) . ?rchestration and behavior monitoring.
main focus is on decision making, rather than on technica Th K t out to do invol deall ith dif
skills. In order to make high level functionalities in the ap-]c (tayvor we Iset c(;ut (lj 0 INVOIVES ealntg Wi rfrt]any -
plications susceptible to assessment and control, the simUc Nt Issues refated 1o fanguages, semantics, software engi-

lation is carried out by actors assigning intentions to semil1€€rnng and modeling, and the project in general is still in

autonomous agents. The intentions are typically related tBrogress. In this paper we outline the suggested methodol-

other entities, and so the simulation is to a large extent de29Y: report on gn_initial (partial_) im_plementation,_and dis-
fined by high level interactions between entities. Thus interoUSS some basic issues that arise in the adaptation process.

We focus mainly on two of the aspects inherent to real-time

entity scenarios are at the heart of tactical simulations. They. lat licati hich Id not h b ¢ of
are set up in order to practice and assess the interactionsé_‘ ulator appiications, which could not have been part o
the original LSC language and its play-out technique: First,

actors with respect to some local doctrine. . X 7 . :
The doctrine and the scenarios that embody it are often oSince simulation is carried out by independent actors, we have
pressed in a modal, temporal way. For exampleX“ticcurs, augmented the_ language with _the abl_llty to reason about ac-
tors. Second, high level scenarios are inherently dependant on

action¥ must be initiated in no more thahseconds’. Inter- low level and domain specific issues, which are often unpre-
entity scenarios are typically defined by Subject Matter Ex- P ! P

perts (SMEs), and may be used both in simulator design angictable at the time of specification. Accordingly, in order to

testing, and in simulation runs. The former relates to the ex.[etaln the intuitive nature of LSC specification, we have mod-

pected behavior of (semi)autonomous agents and the latter {ged the_play-out sem_antl_cs and have e_zstabllsh_ed a m_odel and
the expected behavior of human trainees mechanism for considering low level information while ab-

. . . . stracting it from the high-level specification. For instance, the
Two challenges in this area are the creation of believablé .) s
i . . model deals with the selection and timing of enabled events

agent behavior and the orchestration of different agents and . . .
S : . 2 .10 account for low-level dependencies — a non-issue in the
behaviors into credible, controlled scenarios. A major issue is_. ~. ;
original play-out technique.

the gap between the partial and informal specifications given
gap b P g The paper is organized as follows: Section 2 discusses re-

by SMEs in the design stages of the system and the impl ated K " behavi q . hest
mentation of the behavior, which requires the utilization of ated work on autonomous behavior and scenario orchestra-
on. Section 3 presents the simulator prototype that we use

formal methods by computer experts. In a larger context, thatf o : -
y b ’ g s a testbed, which is a typical example of the application

of the general domain of reactive systems [2], a similar ga
g y [2] 9 Fgomaln. Section 4 gives an overview of the LSC language

*This research was supported in part by The John von Neumann Minervand the play-in/play-out methods as they are modified and
Center for the Development of Reactive Systems at the Weizmann Institutgdapted for use in the suggested setting. Section 5 elaborates
of Science. PR ; ;

TPart of this author's work carried out during a visit to the School of on the a(_japtat!on ISS_ueS outlined above, and Segthn 6 con
Informatics at the University of Edinburgh, which was supported by a grantcludes with a discussion of some currently known limitations

from the EPSRC. and a preview of our ongoing and planned work.

2. RELATED WORK regard to these threats, and in what order.

In general, schemes for applying autonomous behavior The system is built around a central server, in a star archi-
must deal with the coordination of objects and behaviorstecture. The stations host end-users, which may be trainees or
There are many different approaches to this, in different doinstructors. Instructors and trainees may operate entities by
mains. The vast majority of work that aims for granular andassigning them intentions, which are typically actions that re-
predictable behavior at the level of a single object take af@te to other objects. For example, entkymay be assigned
intra-object (and essentially a state-based) approach. Thige intention “Move fast to objed”, where “fast” is a prop-
means that an object’s behavior depends entirely on its ass8!ty of the move action. All actions implied by the intention
ciated action schemes and internal believes. See for examphée autonomously performed by the entity. For example, the
[6, 7]. Some of the research in the intra-object paradigm hag'oving entityA may decide on the route to objeégtand may
targeted the complexity of autonomous behavior implementespond autonomously to events like collisions, which may
tation, suggesting high level languages. These are often a@ccur on its way tds. This ‘hardwired’ autonomous behavior
companied by tools and methodologies aimed at bridging thés usually specified by SMEs earlier, at the prototype devel-
gap between high level behavior specification and its impleOPment phase, as is the related entities’ interface; i.e., its set
mentation. See for example [8, 9, 10]. In related work, such a8f possible intensions.

[11] and [12], it has been noticed that intra-object approaches Trainees are associated with a single human entity and are
are not very fitting for highly structured inter-object scenar-limited to its point of view of the scene. Trainees can only
ios. These papers present disembodied high-level state-basg@ntrol their assigned entity. Instructors can control every en-
agents for orchestrating embodied agents and other orchelity, and take any point of view. An intension is associated
trators. In [13, 14, 15] it was also noticed that the state-base@ith an entity by a natural GUI operation. For example, a
representation is inadequate for highly structured inter-objedfainee may instruct its associated entity to move by point-
scenarios. Their authors suggest textual-based scenario spéd the mouse at the target and clicking a mouse button. The
ification languages, with operators that define temporal re€ntities’ pose may be toggled, from upright to duck and vice
lationships between scenarios, and mechanisms to establi¥grsa, by pressing a keyboard key, etc. Instructors must first
the way scenarios are interleaved (e.g., by explicit prioritizaassociate themselves with an entity, and can then direct it in
tion). The work in [13, 14, 15] is close to ours in application & Similar manner, although they have a richer interface. For
domain, and in that LSCs may also be viewed as disembodxample, an instructor can alter the ‘health’ of an entity, an
ied agents that orchestrate other agents. However, the visu@ftion that trainees cannot carry out — they can only view its
nature of the LSC language makes a rather significant differcONSequences.

ence, as we shall see. Simulation scenarios typically have definite initial and ter-

UML and UML derivatives have been suggested for agen{ninal configurations, and are structured to practice specific
specification in, e.g., [16, 17]. In particular, UML’s sequence?‘SpeCtS of the doctrine in predetermined points in place and

diagrams (which originated in the telecommunication indusiMe. As a consequence, hardwired high level autonomous co-
try as message sequence charts, MSCs), and specialized Vgpd!nators cannot be effectively utlllzeq, gnd inter-entity sce-
sions thereof, have been suggested for specifying agent intef@ros are manually orchestrated. This is obviously a prob-
actions. Having built on the insufficiently formal basis of the I6m. Scenarios can be quite complex and may be dynami-
UML standard, and being non-executable, these sequence @@lly interweaved in ways that are hard to predict. In many
agram dialects cannot support a fully operational setting. I/F2S€S the orchestration itself is faulty, and important things
the OO domain, formal derivatives of UML's sequence dia-2r€ missed. _ _ .
grams have been used in testing tools, see, e.g., the TestCon-Our LSC examples in the paper will refer to the scene in
ductor tool of Rhapsody [18]. In that approach, system event§igure 1. EntitySoldierl (lower left) is shown shooting at
are traced against sequence diagrams in order to detect flavf@)tity Fighter2 (right). The other human entity, on the upper
mostly with respect to partial order. This method can also béeft, isFighter The upper barrel-shaped entity§and5and

adapted for testing aspects of autonomous behavior durinty€ lower one isStand4 _
simulator application development. We will refer to instructors and trainees astors The en-

tities that are directed by actors are referred tagents

3. TACTICAL SIMULATOR TESTBED 4. THE LSC APPROACH

We now describe our system for illustration. It has charac- For fuller details about the scenario-based programming
teristics typical of tactical simulators. It is meant to train per-paradigm, the language of live sequence charts (LSCs), the
sonnel of so called ‘tactical units’ in real-time decision mak- play-in and play-out methods and the supporting Play-Engine
ing. Tactical units tend to develop a unique type of combatool, we refer the reader to [3, 4, 5]. Here we present only
doctrine. This doctrine consists of a set of rules consideringhose aspects of the language that are essential to this paper.
where and how to look for threats, how to asses the relative Figure 2 shows ainiversal LSCnamedFighter2Action
severity of multiple threats, what actions should be taken withThis LSC states the required actionsFighter2in response

to being shot at by some soldier. The entities are representextt identity was not known, which explains why the soldier’'s
by the vertical lines, callethstance linesThe two rightmost instance line is symbolic. While the actions of the soldier
instance lines represent specific entities, while the left on@re monitored, that is, the events are ‘given’ to the Play-
is symboli¢ meanin that it can represent any instance of itsEngine by the entities themselves, the behavior of the fighters
class, and it does so by dynamically binding to any entity ofis driven — i.e., orchestrated — by the Play-Engine itself.
classCSoldierduring execution. Events, such as inter-entity This is indicated by the “PE” tag associated wiighter2s
messages and self property changes are represented by activities in the LSC, so that the Play-Engine is responsi-
rows. Along an instance line, time progresses from top tdole for initiating the associated activity. The only event in
bottom, so that higher events precede lower ones. Also, ifrighter2Actiors main chart not initiated by the Play-Engine
general, the sending of a message precedes its receipt, butistheReached(inessage frortand4o Fighter2 Obviously
our examples all inter-entity interactions are synchronous, sthe Play-Engine cannot initiate this event, but it monitors it

sending and receiving are simultaneous. for establishing that ducking (and dying) will not occur be-
A universal chart has two parts, turning it into a kind of fore the stand is reached. - _
if-then construct. Its top dashed portion, hrechart speci- Note that the only temporal specification of events in the

fies the scenario, which, if satisfied (i.e., carried out to comLSC is the partial order between them (given by the top-to-
pletion), causes the system to have to also satisfy the chappttom and send-before-receive rules). For instance, nothing
body, themain chart which is the solid part at the bottom. is said about the exact time between ducking and dylng This
Thus, such an LSC induces an action-reaction relationshipnformation emerges dynamically from other LSCs or from
between the scenario appearing in its prechart and the orf€tual properties of the simulation, as we shall see later. Note
appearing in the chart body. In our case, The only event in th@lso that the LSC specifies only ‘skeletal’ behavior. For in-
prechart is theShootAt(X1)ntention message from the sol- stance, it says nothing about things tiéghter2 might do

dier to Fighter2 Possible values for the paramed¢t are 1 ~ between shooting back at the soldier and movingtand4
for slow, and 2 for fast. It only states thaFighter2 must eventually decide to move

Thus, the prechart will be satisfied when some soldier wiIIto Stand4 and _not duck (or dye...) bef_ore reach_ing .it' Such

be associated with an intent to sh&ajhter2, at either speed. weaved behawo_rs may be expressed in a comp!natlon of dif-

If and when this happens, the symbolic instance line will bindferen.t ITSCS’ or |gnor§d altogether. The possibility of'under-
specifying the behavior while effectively concentrating on

to the actual shooting soldier, an¢iL will bind to the re- ts of it ¢ th the intuiti)
guested speed value. This will then cause the following chaiJ‘fey aspects of it conforms wi € Infuitive way scenarios
are conceived by SMEs; it is actually a key feature of our

of eventsFighter2will start shooting back at the soldier and N ;
then start a slow moving action in the direction $fand4 approach, making it amenable for end-user programming.

After reaching the standsighter2 will change its pose and
duck behind it. This manifests itself as changing the value o4 1 P|ay-in: Programming scenarios
property FightPoseto 1. Eventually, the value of the health

%ro_pefty QfFi%.hterZW(;IItﬁhan%e to (I)I Thlis resulgs in a Sr:)?rt with its own dedicated GUI. In it, LSCs are depicted during
ying' animation, and the entity will no longer be operable. play-in, and can be visually traced during play-out. It also al-

The scene in Figure 1 was constructed for assessing the s@bws for a specific GUI of the application to be present and
dier’s behavior. Fighter2 and Fighter3, as well as the stands,
were positioned at the scene building stage. While it was
known that some soldier will arrive at the scene, his/her ex-

The Play-Engine is currently a stand-alone application,

CSoldier: Fighter2 Standd

'
'
'
——————————— 1
'

PE MoveTaoll

'
' '
' '
t----------- 1
' '

14 FReached]
1
: 14 .- IPE Fighifiose(1)

4 “IPE Healtl?[D]

e 4 i i i Figure 2. Fighter2Action A universal LSC stating the re-
Figure 1. An example of a scene quired actions ofighter2

be animated during play-in and play-out. next section. For a detailed description of the (original) play-
The LSCFighter2Actionwas ‘programmed’ in much the out method, please refer to [4].
same way its described scenario unfolds during simulation The LSCFighter3Actionstates that as a consequence of
run, using the actual simulation scene given in Figure 1. Aa soldier shooting atighter2, Fighter3 should start moving
soldier entity was brought to its initial place and the Play-to Stand5 Also, Fighter3should eventually shoot at the sol-
Engine’s mode of operation was set to play-in a newly openedier andFighter2s health should drop to 0, but both of these
LSC. The operator then assigned the soldier the intention tevents should occur only aft€ighter3 has reache&tands
shoot atFighter2in one of the ways it would have done so in This constraint is due to tH&YNCconstruct appearing under-
actual simulation run. This had two simultaneous effects: theeath theReached(jnessage. LSEighter3Actionis shown
soldier entity started the shooting action and $f®otAt(X1) mainly to demonstrate how eventual behavior can be dynami-
message was depicted in the LSC’s prechart. The shootingally defined by several different LSCs, which refine and con-
speed initially had a concrete value matching the actual opstrain each other.
erator’s action, but it was later changed to be symbolic. The Assume that the initial configuration is valid, and that
operator then moved to the main chart's region in the GUlsometime during the ruSoldierlarrives at the scene and is-
and chosérighter2 as a default controlled entity. As before, sues éShootAt(2event afFighter2 The play-out mechanism
from here on the LSC directly reflects the actions of the op-unifies this event with the messages in the precharts of LSCs
erator and the related happenings in the scene. For exampleighter2Actionand Fighter3Action the messages are propa-
After choosingStand4as a target of the movement, the op- gated and both precharts become satisfied. By the main chart
erator waited for the entity to reach it. As this happened, thexf Fighter2Action the Play-Engine then initiatesShootAt(1)
entity stopped moving and tfeeached(nessage appeared at the soldier, then RloveTo(1)o Stand4 It waits for the ar-
in the LSC. rival of a Reached(event back from the simulator and then
During this specification process, the soldier’s instance lingssues a property change Eifjhter2s Fighting pose. In par-
was bound to the exact entity that was brought to play. It wasgillel, by the main-chart oFighter3Action the Play-Engine
changed to be symbolic after the specification process waitiates amoveTo(L)of Fighter3 to StandSand waits for
completed. Similarly, the Play-Engine was assigned to be the Reached(Jacknowledgement. Now comes the interesting
initiator of events at the end of the play-in process. Note thapart: theHealth(0) event forFighter2 will not be issued be-
play-in does not have to take place during a (stub) simulatioffiore Fighter3 ReachesStand5 This is because the play-out
run. It is possible to play-in on a still scene, as well as onmechanism unifies thelealth(0) events in both LSCs, and
an OMD of it. In fact, we found it convenient to occasionally due to theSYNCconstruct inFighter3Action
stop a scene or exit the play-in mode, for the sake of ‘manual’ Eyentually,Health(0)will be issued forFighter2, and LSC
adjustments, or in order to avoid playing-in redundant eventsrigther2Actionwill close. But according tdrighter3Action
The LSCs shown here are very simple, to ease the exgighter3still has to shoot at the soldier. This may be ‘phys-
position and keep the paper short. Producing them involvegtally’ impossible, since even frorighter3s new position,
mainly acting in the simulation scene, with very little inter- nearStands the soldier may still be obscured by the wall.
action with the Play-Engine’s GUI. However, as LSCs growso the LSCFighter3Actionis left pending until something
in complexity and include constructs other than events (e.gmakes the soldier progress to be in sightrafhter3 What
sub-charts, assignments, etc.) their creation requires more igan make him/her do that? Recall that the soldier is human-
teraction with the Play-Engine’s GUI. controlled and hence his/her behavior should be monitored:;
it makes no sense for the Play-Engine to force the required
4.2 Play-out: Simulation run authoring
Play-out is the process of executing an LSC specification. | CSoldier: ‘ Fighter2 ‘ ‘ Fighter3 ‘ | Stands ‘
In our context, it should be viewed as the method by which :-l_ |
the Play-Engine becomes an actor, constantly monitoring the T T T TN
behavior of agents that act on its behalf or on the behalf of < ;*-S-h@wm‘ﬂb; .
other actors, and directing agents as faithfully as it can, ac- j - ; ;
cording to the grand sum of (relevant) LSCs. In some occa- iFE_ MoveToll))
sions, the Play-Engine might announce that an LSC has been iq__EH_e_a_cb_egl[] |
interrupted, or even violated; i.e., that a scenario has evolved ; C T e —= :>
in a way forbidden by some LSC. a———=
Here we only sketch the play-out method as applied to the : -
tactical simulator setting, and describe its effects with respect :
to the scene in Figure 1, the LS@ghter2Actionand two ad-
ditional LSCs Fighter3ActionandRequiredResponsshown
in Figures 3 and 4. Some of the issues concerning the impld=igure 3. Fighter3Action A universal LSC giving the re-
mentation of the method in our setting are presented in th@uired actions oFighter3

'
'
-
'

FE Healthl0]

progress. know who is, or was, responsible for the initiation of events.

Assume that according to the soldier’s doctrine, he/shdo deal with this we associate each event with a property that
should approacltand4after Fighter2 ducks behind it. This identifies its initiating actor. This is essential for collabora-
is stated in LS(RequiredRespons&sing aforbidden con- tive scenario authoring. In our current implementation of the
dition this LSC also states that the soldier should start thigproposed approach, LSCs explicitly identify only the Play-
movement in no more than 2 time units. In the prechart, wherengine and ‘all other’ actors, as can be seen in our example
Fighter2ducks, the current time is captured in the variable LSCs. We are in the process of considering a more powerful
The scope of the forbidden conditioifne> T +2) is the approach.
main chart, so that the condition is monitored from the mo- As to assumption (2), apart from not knowing the future
ment the prechart is satisfied. Since the condition is hot, if thections of other actors, the Play-Engine lacks additional in-
main chart is not exit by the time it becomes true, a violationformation. For example, being a separate generic component,
occurs and the Play-Engine’s GUI issues a matching notifiit does not have the scene’s full 3D information. As a conse-
cation. This is one way to handle a deviation from a plannedjuence, it cannot tell if, e.gFighter3can see the soldier, and
scenario. In general, different paths a scenario might take cafighter3 cannot initiate fire towards targets it cannot see. In
be handled by conditional constructs of the LSC language, dthe simulator, such impossible requests are simply discarded.
by utilizing the basic pre-chart/main-chart mechanism, i.e.Hence, the original play-out semantics will probably yield an
by devising LSCs that will be activated or closed, when theincorrect scenario, since the Play-Engine would have issued
scenario path renders them relevant or irrelevant, respectivelg. prematureShootAt request:

A major challenge in applying the scenario-based approach
to the simulator setting is how to effectively integrate the ap-
5. ADAPTATION ISSUES proach while retaining its power and generality. We would

The biggest challenges in our proposed adaptation of thigke to make it possible for users to correctly specify and ap-
LSC approach to real-time tactical simulators are related tgly high-level ‘skeletal’ LSCs while ignoring low level, do-
the play-out method. The original method defines a clear cuain specific issues.
between the system and its environment (e.g., external ob- To this end, we have devised a Play-Engine proxy, which is
jects); see [4]. Every action in the system itself is determined, |low level agent of the Play-Engine in the simulator domain.
by the Play-Engine according to the LSC specification. Al-|t s embedded in the prototype’s code in the sense that it
though objects with a graphical representation can be anpublishes an interface for use in different places in the code,
mated, their animation is really under the control of the Play-and it spawns internal activities that are specifically for the
Engine. Accordingly, every piece of information of interestin sake of the Play-Engine. On the other side, the proxy has a
the system’s behavior has to be embedded in the LSC specjeneric interface to the Play-Engine, and is implemented with
fication itself. XML and RPCs.

The original play-out method thus makes two important Among other things, the proxy is responsible for maintain-
assumptions: (1) a system object does nothing unless it is tolihg the view of the scene synchronized between the simulator
so by the Play-Engine, and (2) a system object will alwaysand the Play-Engine. This is not at all trivial, and is depen-
perform Play-Engine requests immediately. dant on low level simulator specification. So, for example, the

Obviously, these assumptions do not hold in our settingproxy discards redundant scene messages using deep knowl-
Asto (1), several actors may direct a single entity. This raiseedge of local specification and implementation. The proxy is
several issues. Most prominently, the Play-Engine has talso responsible for extracting and translating implicit infor-

mation in the scene, for the sake of modeling. For example,
G ‘ Sokdert ‘ | Standt ‘ the Reached(event is only implicit in the simulator, but is
l _l l_ used extensively in scenario specification. The proxy also co-
S N S S operates with the Play-Engine to initiate events in a locally
/ ?E--S-hqth-?-“f ------------ l> \ consistent manner. For example, it initiates a dependent event,
< {4 1P FightPose(1) : such asShootAt only if and when it is possible according to
\ | T := Time 5 5 / up-to-date 3D information and low-level local specification.
; ; [This last-listed point in particular relates to the way the
;- MoveToll] play-out semantics is enforced by the interplay between the
: : B Play-Engine and its proxy. The general scheme is as follows:
When an event reaches the Play-Engine from the proxy, the
Play-Engine updates its current configuration by unifying and

Forbidden Elements

MAIN e i .
| TineT +23 | 1Actually, the approach can be made to support some kind of ‘can-see’

Figure 4. RequiredResponséhe response of the soldier to functlonallty (expose a_functlon or an event). Howeyer, it can pe shown that
this does not necessarily enable correct or convenient modeling, due to rea-

Fighter2hiding sons that are outside of scope of this paper.

propagating LSC events, spawning new LSC live copies, etdREFERENCES

As a result, a new set of events is considered by the Play1] Serious Games Initiative, http://www.seriousgames.org.
Engine as enabled for initiation according to the LSC spec2] p. Harel and A. Pnueli, “On the Development of Reactive Sys-
ification. This set, however, may include events that are not tems”, Logics and Models of Concurrent Systems (K. R. Apt,
‘physically’ enabled, and is thus sent to the proxy. The proxy ed.) NATO ASI Series, F:13, 1985, 477-498, Springer-Verlag.
tries to initiate one of the events in the set in a heuristiqs; . pamm and D. Harel, “LSCs: Breathing Life into Message

manner, considering the likely urgency of events (dependent” sequence Charts’Formal Methods in System Desigh9:1
events are considered more urgent) and the cost of testing the (2001), 45-80.

pos_sibility of theirinitiati_on. This process continu_es untilini- 11 b Harel and R. Marelly,Come, Let's Play: Scenario-Based
tiation succeeds, or until a new set of events arrives fromthé * programming Using LSCs and the Play-Engir@pringer-
Play-Engine. Verlag, 2003.

We expect the low level behavior of the proxy to be highly ;5 b Harel and R. Marelly, “Specifying and Executing Behavioral

dependant on the specific simulator application. Our main ef- Requirements: The Play-In/Play-Out ApproacBbftware and
fortin this respect is to devise a highly generalized integration system Modeling (2003), 82—107.

scheme. A step in this direction is the classification of event%] H. Noser and D. Thalmann, “Sensor-based Synthetic Actors in
for instantiation by the proxy according to the way they are’ * , tennis Game SimulationThe Visual Computefi4:4 (1998),
considered in play-out. For example, tReached(event is 193-205.

classified as an event that the Play-Engine does not initiat(?r7

. . E. Norling and L. Sonenberg, “Creating Interactive Characters
In play-in, the Play-Engine cannot be declared as an actor fo 9 g g

with BDI Agents”, Proc. of the Australian Workshop on Inter-

events of this class. active Entertainment IE2002004.
[8] S. Donikian, “HPTS: A Behaviour Modelling Language for Au-
6. CONCLUSION tonomous AgentsProc. 5th Int. Conf. on Autonomous agents

We suggest that the scenario-based approach to program- 2001, 401-408, ACM Press.
ming, as exemplified by the LSC language and the play—in/ouigl M. Kallmann anq D. ThaImapn, A Behavipral Interface to Sim-
methodology, can be adapted and adopted as a powerful tool ula_te Agent-Object Interactions in Real Tlmé’\',oc_. Computer
for end-user's programming and real-time authoring of tac- Animation 1999, 138-146, IEEE Computer Society.
tical scenarios. The main advantage of the approach is thd0] T. Ishida, “Q: A Scenario Description Language for Interac-
ability to express inter-entity scenarios in a natural and in- tive Agents”,Computer 35:11 (2002), 42-47, [EEE Computer
tuitive manner. For effective RT programming, the approach ~ SOCiety Press.
leverages on, and may cooperate with, other programminff1] O.Ahmad, J. Cremer, S. Hansen, J. Kearney, and P. Willemsen,
models. For example, LSCs may author the behavior of en- “Hierarchical, Concurrent State Machines for Behavior Model-
tities that are directed by state machines which, in particular, "9 and Scenario ControlProf. Conference on Al, Planning,
scale better than LSCs computationally. LSCs do not scale 2"d Simulation in High Autonomy Syster894.
well compared to state-machines since the way we have s&2] J. Cremer, J. Kearney and P. Willemsen, “Directable Behavior
things up so far is highly centralized. All LSCs in a given Models.for \ﬁr.tual Driving Scenarios™Trans. Society for Com-
configuration have to be scanned for each incoming event, Puter Simulation14:2 (1997), 87-96.
This may become a problem in large scale simulations, as thd3] J. Kearney, P. Willemsen, S. Donikian, and F. Devillers, “Sce-
complexity of LSC specification increases. The cooperation hario Languages for Driving SimulationRroc. Driving Simu-
of several Play-Engine’s is a possible solution, which should ~ ation Conf.1999, 377-393.
be accompanied with an efficient distribution scheme for thd14] F. Devillers and S. Donikian, “A scenario Language to

LSC specification, something our group has been working on Orchestrate Virtual World Evolution”,Proc. ACM SIG-
for some time. GRAPH/Eurographics Symp. on Computer Animatid03,

Although our initial results from implementing parts of the ~ 269-275, Eurographics Association.

proposal are promising, usage tests by end-users have not)iéﬂ P. Willemsen, “Behavior and Scenario Modeling for Real-time
been preformed on a sufficient scale. Also, some elements of Virtual Environments”, PhD thesis, Department of Computer
the LSC language have not been dealt with yet. We plan to Sc¢ience, University of lowa, 2000.

extend the language in order to make the approach more suift6] M. Papasimeon and C. Heinze, “Extending the UML for De-
able for real world simulator applications. For some useful ~ signing Jack Agents."Proc. Australian Software Engineering
extension a suitable formal basis exists, and what is required Conference2001, 89-97.

is careful adaptation and implementation. Other extensionfl7] B. Bauer J. P. Miller and J. Odell, “Agent UML: A Formalism

require significant additional research. for Specifying Multiagent Software Systemdiit. J. Software
Engineering and Knowledge Engineerjngyl:3 (2001), 207—
230.

Acknowledgements We would like to thank Gili Hess for [18] I-Logix Inc., http:/Awww.ilogix.com.

her cooperation and for her work on the simulator prototype.

