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Gruson–Serganova character formulas
and the Duflo–Serganova cohomology functor

By Maria Gorelik at Rehovot and Thorsten Heidersdorf at Bonn

Abstract. We establish an explicit formula for the character of an irreducible finite-
dimensional representation of gl.mjn/. The formula is a finite sum with integer coefficients
in terms of a basis E� (Euler characters) of the character ring. We prove a simple formula
for the behavior of the “superversion” of E� in the gl.mjn/ and osp.mj2n/-case under the
map ds on the supercharacter ring induced by the Duflo–Serganova cohomology functor DS.
As an application, we get combinatorial formulas for superdimensions, dimensions and g0-
decompositions for gl.mjn/ and osp.mj2n/.

1. Introduction

Let g be a finite-dimensional Kac–Moody superalgebra. Denote by W the Weyl group
of g.

1.1. A brief history of character formulas. Let L.�/ be a simple finite-dimensional
g-module. In 1977, V. Kac [30] showed that the Weyl character formula

Re� chL.�/ D
X
w2W

sgn.w/w.e�C�/;

where R is the Weyl denominator and � is the Weyl vector, holds if L.�/ is typical. In 1980,
I. Bernstein and D. Leites [1] established for g D gl.1jn/ the character formula

(1.1) Re� chL.�/ D
X
w2W

sgn.w/w
�

e�C�

.1C e�ˇ /

�
;

where ˇ 2 �C1 satisfies .ˇj�/ D 0. This formula was extended to the osp.2j2n/-case in [50]
and to gl.mjn/-modules of atypicality one in [51]. In 1998, J. Germoni produced similar char-
acter formulas for the two cases osp.3j2/ and D.2j1I a/; except for the case of the standard
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osp.3j2/-module, Germoni’s formula is very similar to (1.1): the only difference is the factor
1
2

appearing in the right-hand side in certain cases (other formulas were obtained earlier by van
der Jeugt in [48,49]). In 1990, J. van der Jeugt, J. Hughes, R. C. King and J. Thierry-Mieg [51]
suggested to write the character formula in the general gl.mjn/-case as a sum of termsX

w2W

sgn.w/w
�

e�Q
ˇ2U .1C e

�ˇ /

�
for some U � �1 satisfying .U j�/ D 0.

In 1994, V. Kac and M. Wakimoto [32] conjectured that

(1.2) Re� chL.�/ D j�1
X
w2W

sgn.w/w
�

e�C�Q
ˇ2S .1C e

�ˇ /

�
for some scalar j if the following conditions (which we will call the KW-conditions) hold: � is
the highest weight of L with respect to a base † containing S , .S j�C �/ D .S jS/ D 0 and
the cardinality of S is equal to the atypicality of L. This conjecture was established in [7,8,23].
For each S � � satisfying .S j�/ D .S jS/ D 0, we set

KW.�; S/´
X
w2W

sgn.w/w
�

e�Q
ˇ2S .1C e

�ˇ /

�
:

(We call the above terms “Kac–Wakimoto terms” since the condition .S jS/ D 0 is crucial for
our argument.)

Notice that Germoni’s formulas demonstrate that the KW-conditions are not necessary
for (1.2) to be valid: the only atypical osp.3j2/-module satisfying the KW-condition is trivial,
whereas (1.1) holds for each L © Vst.

The first general formula for the character chL was discovered by V. Serganova [41] in
the gl.mjn/-case by expressing the character as an infinite sum over characters of Kac modules.
This algorithmic solution was enhanced by J. Brundan [2] who showed that the values of the
coefficients in the infinite sum can be computed in terms of weight diagrams. The equivalence
of the two approaches [2,41] was shown in [35]. Another description of the composition factors
of Kac modules was obtained in [6]. The description of Brundan [2] was then used by Y. Su
and R. Zhang [46] to establish a finite character formula for gl.mjn/. For the osp-case, a finite
character formula was produced by C. Gruson and V. Serganova in [24]. For the exceptional Lie
superalgebras, the character formulas were proven by J. Germoni [18] and L. Martirosyan [34].
For qn, an implicit finite character formula was given by I. Penkov and V. Serganova in [37];
Y. Su and R. B. Zhang [47] wrote this formula explicitly using [3]; for the pn-case, an infinite
Serganova type character formula was recently proven by B.-H. Hwang and J.-H. Kwon [29].

The Kac–Wakimoto character formula suggests the following two refinements of van der
Jeugt–Hughes–King–Thierry-Mieg’s proposal: to presentRe� chL as a linear combinations of
KW.�; S.�//, where

(I) S� is maximal, i.e. jS� j equals the atypicality of L.�/ or

(II) S� can be embedded into a certain base †L.

The Kac–Wakimoto formula is of both types. The Germoni formula and the Su–Zhang
formula for gl.mjn/ are of type I; the Gruson–Serganova formula for osp and the Su–Zhang
formula for qn are of type II. For the exceptional algebras, the character formulas in [18, 34]
can be rewritten as type I or as type II formulas.
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1.2. The Gruson–Serganova type character formula. In this paper, we obtain a for-
mula of type II for gl.mjn/ (by above, such formulas were obtained early for all other cases).
Since the q.n/-case and the exceptional cases can be treated with the same methods, this gives
a uniform approach to obtain finite character formulas. The main difference of the gl.mjn/-case
compared to the osp.mj2n/-case is that †L depends on L.

Let Irr be the set of isomorphism classes of finite-dimensional irreducible g-modules.
The terms ¹chL; L 2 Irrº form a natural basis of the character ring. We say chL is given by
a Gruson–Serganova type character formula if it can be written as a sum

(1.3) Re� chL D
X
L02Irr

bL;L0 KW.L0/;

where the Kac–Wakimoto terms KW.L/ have the following properties.

(i) ¹EL´ .Re�/�1 KW.L/; L 2 Irrº form a basis of the character ring (where R is the
Weyl denominator). The terms EL are equal to the Euler characteristics E� (for a suitable
choice of parabolic) of Penkov–Serganova, and hence we can equally write the character
of L.�/ as a finite sum with integral coefficients in the Euler characters).

(ii) The character formula Re� chL D
P
L02Irr bL;L0 KW.L/ is finite.

(iii) The matrix B ´ .bL;L0/ is a lower triangular matrix with integral entries and 1’s on
the main diagonal; moreover, there exists a diagonal matrix D with D2 D Id such that
the entries of DBD�1 are non-negative (the entries of DBD�1 can be interpreted as
a number of certain paths in a directed graph).

(iv) KW.L/´ j.L/�1 KW.��; SL/, where j.L/ is a scalar and �� is the �-shifted highest
weight of L with respect to a certain base †L containing SL.

The scalar j.L/ is an order of the “smallest factor” in StabW �� (for instance, j.L/ D jS jŠ for
the gl-case). The set SL is a maximal subset of †L satisfying .��jS/ D .S jS/ D 0.

We call the cardinality of SL the tail of L (tail.L/); this is a non-negative integer which
is less than or equal to the atypicality of L. If bL;L0 ¤ 0, then L and L0 lie in the same
block and tail.L0/ � tail.L/. We call the highest weight of L a Kostant weight if tail.L/ is
equal to the atypicality of L; in this case, bL;L0 D ıL;L0 . From [7, 8], it follows that, for
gl.mjn/; osp.2mC 1j2n/, L.�/ satisfies the Kac–Wakimoto character formula if and only
if its highest weight is a Kostant weight; this also holds for the osp.2mj2n/-modules of
atypicality greater than one; see Remark 3.5.4.

In the osp-case, (1.3) was obtained in [24] in a slightly different form (property (iv) is
established in Proposition 4.3 below). In this case, †L D † is the usual “mixed” base and
�� D �C �.

In this paper, we will establish (1.3) in the gl-case. In this case, †L depends on L; in
Section 6, we describe the assignmentL 7! ��; this assignment is a one-to-one correspondence
between the set of irreducible modules Irr and the set ƒ� which can be described in terms of
weight diagrams as follows: this is the set of the diagrams where at most one position contains
more than one of the symbols ı; >;<;� and, if such a position exists, it contains �i for i > 1
with no symbols � which precede this position. For each diagram f � in ƒ�, we assign S
of cardinality tail.f �/, where tail.f �/ is the maximal number of �’s appearing in the same
position in f �. For instance, for � with the diagram f D >ı�<�>ıı�, we have

f � D >ıı<�2>ıı� with tail.L.�//´ tail.f �/ D 2;



4 Gorelik and Heidersdorf, Character formulas

and the character formula can be written as

Re� chL.�/ D KW.>ı�<�>ıı�/ � KW.>ı�<�>ı�ı/

� KW.>��<�>ııı/C 2KW.>ı�<�>�ıı/;

where, for instance,

KW.L/µ KW.>ı�<�>ıı�/ D
1

2
KW.>ıı<�2>ıı�I "3 � ı2; "4 � ı3/;

KW.>��<�>ııı/ D
1

6
KW.>ıı<�3>ııı; "3 � ı1; "4 � ı2; "5 � ı3/:

One has

†L D ¹ı1 � "1; "1 � "2; "2 � "3; "3 � ı2; ı2 � "4; "4 � ı3; ı3 � ı4; ı4 � "5º

which can be naturally encoded as ı"2."ı/2ı".

1.3. Applications and conjectures. For a finite-dimensional module N , define the �-
character

ch� N ´ dim.N0/�e
�
C � dim.N1/�e

�

(where � is a formal variable with �2 D 1); clearly, the Z-span of �-characters form a ring,
which we denote by Ch�.g/. The character ring Ch.g/ and the supercharacter ring Sch.g/ are
a factor of Ch�.g/ by � D 1 and � D �1, respectively; these rings were explicitly described
by A. N. Sergeev and A. P. Veselov [45]. Several important notions (for instance, dimN and
sdimN ) can be viewed as linear maps from Ch�.g/. The Gruson–Serganova formula gives an
expression of Ch� L see (A.3) and a formula for schL in terms of E�L (which are “superana-
logues” of EL).

An important example is the map multL0 WCh.g/! Z which assigns to chN the (non-
graded) multiplicity ŒN W L0�, where L0 is a g0-module; in Corollary A.5.3, we give formulas
for multL0.EL/ and for dim.EL/.

Another important linear map is induced by the Duflo–Serganova monoidal functor

DSx WF in.g/! F in.gx/;

where gx is a smaller rank Lie superalgebra. In [26, Section 3.8], it was shown that DSx induces
a ring homomorphism

dsx WSch.g/! Sch.gx/

given by dsx W schN 7! sch DSx.N / (see also [28] for more details); moreover, dsx coincides
with the evaluation of sch to a subalgebra hx � h. In Theorem 7.2, we show that dsx.E�L / is
given by a simple formula (for the exceptional Lie superalgebras, a similar formula follows
from [20]). Since DSx preserves sdim, this gives a formula for sdim E�L ; see Corollary 7.2.8.
It turns out that sdim E�L D 0 except for the case when tail.L/ is equal to the defect of g (by
above, tail.L/ is less than or equal to the defect of g).

Using equation (1.3) and the aforementioned formulas, one obtains the expressions for
sch DSx.L/, sdimL, ŒL W L0� and dimL for L 2 Irr (we do not write these long expressions).
Note that DSx.L/ is described in [20,21,26]; various formulas for dimL and sdimL appeared
in [10, 21, 26, 34, 46].
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It is well known that the highest weight ofLwith respect to any base†0 can be computed
by a recursive procedure. In Corollary 4.9.1, we show that, for the osp.2mC 1j2n/-case, the
�-shifted highest weight of L with respect to any base†0 is the maximal element in the support
of KW.L/ and establish the same formula for certain bases for the osp.2mj2n/-case; we hope
that a similar result holds in the gl-case as well.

For each base †0, let � denote the �-shifted highest weight of L with respect to †0.
Consider the leftmost position in its weight diagram containing the symbol �, and let tail0.�/
be the number of �’s in this position. We conjecture that, for the gl-case, one has

tail.L/ D max
†0

tail0.�/:

1.4. Euler characters. The Euler characters were originally defined as Euler charac-
teristics of the cohomology of vector bundles on a super-flag variety [41]. They were first
introduced in [36–38] and play also a crucial role in Brundan’s work on characters in the q.n/-
case [3, 4]. We will describe the Euler characters for the “core-free case”, i.e. for the principal
block of gl.d jd/ or osp.2d C t j2d/, where t D 0; 1; 2. (A similar description works for all
osp-weights and for the “stable weights” in the gl-case.)

Fix a flag of parabolic subalgebras

g D p.d/ � p.d�1/ � � � � � p.0/ D b;

where d is the defect of g and l.i/´ Œp.i/;p.i/� is of defect i (one has l.i/ D gl.i ji/ for
g D gl.d jd/, l.i/ D osp.2i C t j2i/ for g D osp.2d C t j2d/). For a pair of parabolic subal-
gebras q � p � g containing a fixed Borel b, let �p;q.V / denote the maximal finite-dimen-
sional quotient of the induced module U.p/˝U.q/ V . Then �p;q defines a functor from the
category of finite-dimensional q-modules F in.q/ to F in.p/, and we denote by � ip;q its derived
functors as in [24]. For �;� 2 ƒCmjn, we consider the Poincaré polynomial in the variable z,

K
�;�
p;q .z/´

1X
iD0

Œ� ip;q.Lq.�// W Lp.�/�z
i ;

where Lq.�/ and Lp.�/ stand for the corresponding simple q and p-module, respectively.
Proposition 1 in [24] expresses the Euler characteristic

(1.4) E�;p ´
X

�2ƒ
C
mjn

K
�;�
g;p .�1/ chL.�/

in terms of chLp.�/. The polynomials K�;�p;q .z/ for the “neighboring parabolics” were com-
puted in [39] in the gl-case and in [24] in the osp-case. These polynomials can be conveniently
described in terms of so-called “arc diagrams”, Section 5.2.2. The coefficients K�;�g;p .�1/ can
be computed iteratively via the formula

(1.5) K
�;�
g;q .�1/ D

X
�

K�;�p;q .�1/K
�;�
g;p .�1/

established in [24, Theorem 1].
In the gl-case, the matrix Ab ´ .K

�;�
g;b

.�1// is invertible and the inverse matrix can
be explicitly described; this gives the Serganova character formula [39]; this is an “infinite
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formula”: some rows of A�1
b

have infinitely many non-zero entries. For the osp-case, one
has E�;b D 0 for some �’s, so the matrix Ab is not invertible. In order to obtain the Gruson–
Serganova character formula, we take for each � the “maximal suitable parabolic”, setting
p�´ ptail.�/, where tail.�/ is the maximal i such that �jh\l.i/ D 0. (For osp-weights and for
the “stable” gl-weights, one has tail.�/ D tail.L.�//). The iterative formula (1.5) allows to
interpret K�;�g;p .�1/ in terms of “decreasing paths” in a certain directed graph. This graph has
several nice properties, which allow to express the inverse matrix .K�;�

g;p�
.�1//�1 in terms of

the paths in this graph; using (1.4), we obtain

(1.6) chL.�/ D
X

�2ƒ
C
mjn

.�1/k�k�k�kd
�;�
< E�;p�

for stable weights �, where d�;�< is the number of “increasing paths” from� to � in the directed
graph and k�k is defined in Section 3.5. Since dimLp�.�/ D 1, [24, Proposition 1] gives
an explicit formula for E�;p� ; using the denominator identity from [32], this formula can be
rewritten as Re�E�;p� D KW.L/. This gives (1.3).

For the osp-case, this program was executed in [24]. In the first part of our paper, we
execute a similar program for gl. The graph in the gl-case has an easier description than in the
osp-case, but its structure is more complicated: by contrast with the osp-case, each component
has infinitely many sources. We show that, in the gl-case, each vertex has finitely many prede-
cessors, and this property allows us to obtain (1.6). We will reveal some additional details in
Section 1.5 below.

To link (1.6) and (1.3), we show in Proposition 4.3 that the Euler characters are propor-
tional to Kac–Wakimoto terms. This result is also fundamental when we study the effect of ds
on Euler characters in the second part of the paper.

A similar approach works for the exceptional Lie superalgebras and for qn; in these cases,
each component of the graph has a unique source. To the best of our knowledge, the Gruson–
Serganova type character formula is not known for the pn-case; we expect that, in this case,
each component has infinitely many sources as for the gl.mjn/-case.

1.5. Method of proof. The proof of (1.6) uses iterated parabolic induction. We will
outline this proof for the principal block of gl.d jd/. A similar proof works for all osp-weights
and for the “stable weights” in the gl-case. On the other hand, the character formula for a simple
module of atypicality d can be reduced to this case.

The graphs y�� and �� are directed graphs with the same set of vertices enumerated by
the highest weights of the irreducible modules in the principal block. In y��, the vertices �; �
are joined by the edge � e

�! � if K�;�
p.s/;p.s�1/

¤ ı�;�; for such an edge, we set b.e/´ s. For
��, we require that ps�1 � p� (in other words, �� can be obtained from y�� by deleting the
edges with b.e/ � tail.�/). By [35], for the gl.mjn/-case, K�;�

p.s/;p.s�1/
is either ı�;� or zi with

i � k�k � k�k. In particular, if � and � are connected by an edge in y��, then

K
�;�

p.s/;p.s�1/
.�1/ D .�1/k�k�k�k:

We define a “b-decreasing path” in y��, �� as a path with a decreasing function b. For-
mula (1.5) allows to express K�;�

g;b
.�1/ as a sum of .�1/length.P /Ck�k�k�k, where P runs

through the b-decreasing paths from � to � in y��. We show that K�;�g;p�.�1/ has the simi-
lar formula in terms of the b-decreasing paths in �� (the proof uses the fact that a path in y��

lies in �� if the last edge of this path lies in ��).
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The matrix A>´ .K
�;�
g;p�.�1// is invertible; by above, its entries can be written in terms

of the b-decreasing paths from � to � in ��. We substitute b by another function b0 such that
b-decreasing paths and b0-decreasing paths are the same. The function b0 has the following
advantage:

(*) if � is the start of an edge e1 and the end of an edge e2, then b0.e1/ ¤ b0.e2/

(this property does not hold for the function b). By above, K�;�g;p�.�1/ can be written as a sum
of .�1/length.P /Ck�k�k�k, where P runs through the b0-decreasing paths from � to � in ��.
Property (*) implies that the entries of A�1> can be written as a sum of .�1/k�k�k�k, where P
runs through the b0-increasing paths; this gives formula (1.6) (d�;�< stands for the number of
increasing paths from � to � with respect to b0). The graph y�� and the functions b; b0; deg.e/
can be naturally described in terms of arc diagrams (see Section 4.5.5).

In order to prove the finiteness of formula (1.6), we show that each vertex � has a finite
set of predecessors in �� (for the gl-case, this property does not hold for y��; for the osp and
q-cases, the property holds in both cases since ¹� 2 ƒmjn j � � �º is finite).

1.6. Modified superdimensions. By the Kac–Wakimoto conjecture, sdimL.�/ ¤ 0 if
and only ifL.�/ has a maximal atypicality; this conjecture was proven by V. Serganova in [43].
In the gl.mjn/-case, sdimL.�/ was computed in [26].

Consider the case g D gl.mjn/; osp.M jN/. Fix a triangular decomposition in the usual
way (see [24,25], etc.), i.e. a distinguished base for gl.mjn/ and the mixed base for osp.mj2n/.
Let L.�/ be a finite-dimensional simple module of atypicality k. In this case, applying DSx
with rk.x/ D k to L.�/ gives by Theorem 7.2 an isotypic representation L.�0/˚m.�/ of

gx D gl.m � kjn � k/

in the gl-case, and in the osp-case, either an isotypic representation L.�0/˚m.�/ of

gx D osp.m � 2kj2n � 2k/

(ifL.�0/ is � invariant for the involution � of OSp; see Section 2.2) or .L.�0/˚ L.�0/� /˚m.�/

otherwise. We put Lcore D L.�0/ in the gl and osp.2mC 1j2n/-case and

Lcore
´

´
L.�0/ if �0 is � � invariant;

L.�0/˚ L.�0/� else;

in the osp.2mj2n/-case. Then Lcore only depends on the central character of �. Using this
notation, we obtain in case where the atypicality of L.�/ equals the rank of x the uniform
formula

DSx.L.�// Š …i .Lcore/˚m.�/

for some parity shift …i .
Identifying gx with a subalgebra of g as in [13, 22], we can interpret the above for-

mula as follows: for a simple gx-module L0, the “super-multiplicity” of L0 in L.�/ is zero if
ŒLcore W L0� D 0 and is˙m.�/ otherwise; see Remark 2.3.1.

If L.�/ is maximal atypical, gx is one of the algebras glk , ok , spk; osp.1j2k/.
The numbers m.�/ can be computed in the equal rank case. In this case, we have that

m.�/ D jsdimL.�/j is equal to the number of increasing paths from the Kostant weights,
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which are �’s with dimL.�/ D 1, to �. (In all cases, it is easy to see that the existence of
such paths is equivalent to the maximal atypicality condition). Therefore, we reprove the Kac–
Wakimoto conjecture and establish another combinatorial expressions for the superdimensions.

If L.�/ is not maximal atypical, one can introduce a modified superdimension sdimk on
the thick tensor ideal spanned by the irreducible representations of atypicality k instead. We
show that the modified superdimension is given by sdimk.L.�// D ˙m.�/ sdim0.Lcore/ for
L.�/ of atypicality k, where sdim0 is the (unique up to a scalar) modified superdimension on
the thick ideal of projective objects, reproving results of [33, 43].

By [21], the isotypic multiplicity in the osp-case can be expressed in terms of the arc
diagram of �.

1.7. Structure of the article. We recall some background in Sections 2 and 3. In partic-
ular, in Section 3, we discuss stability, tail and weight diagrams. We define parabolic induction
functors and their derived versions in Section 4. The main results, formula (1.3) for gl.mjn/

and the behavior of E�� ’s under ds, are proven in Section 5 and Theorem 7.2. For the relation-
ship of (1.3) to other existing gl.mjn/-character formulas (notably the one from Su–Zhang),
see Section 5.4. Section 6 deals with E�;p� and KW.L/ in the gl.mjn/-case; in particular, we
describe the assignment L 7! �� and establish property (iv). The results on superdimensions
and modified superdimensions are assembled in Section 8. We discuss properties of KW.L/

in Appendix A. In Section A.5, we compute dim E� and obtain a formula for the multiplicity
of a g0-module in L.�/; see Corollary A.5.3, Section A.5.5 and Remark A.5.6 for the graded
versions.

1.8. Index of definitions and notation. Throughout the paper, the ground field is C;
N stands for the set of non-negative integers. We will use the standard Kac notation for the root
systems.

KW.�; S/;Ch.g/;Sch.g/ Section 1.2

F ; ƒCmjn Section 2.1

� Section 2.2

gx; rk.x/; dsx; dsj Section 2.3

Ss; †; � Section 3.1

iso-set, at.�/; at.L/, stable weight, tail.�/;g� Section 3.2

ƒ
�
mjn, weight diagrams, diag.�/;wt.�/, stability and tail for the diagrams Section 3.3

core.�/; ��; ƒ�; core.�/, core-free, howl.�/ Section 3.4

k�kgr; k�k; � , Kostant weights Section 3.5

K
�;�
p;q .z/ Section 4.1

E�;p� Section 4.2

�L Proposition 4.3

arc diagrams for gl, b.�I�/, b0.�I�/ Section 4.5

graph Dg for gl, D�g Section 4.6
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ƒ
�
st; d
0
�;�
; d
�;�
< , Ta;aC1 Section 4.7

j.�/;KW.�/;KW.L/ Section 4.8

hwt†0 L Section 4.9
y�
�
st ; �

�
st ; y�

�; ��, increasing/decreasing paths Section 5.2

��, tail.�/;KW.�/ for non-stable weights Section 6.1.2

E�� Section 7.1

Lcore Section 7.2.7

sgn.w/; JY ; R0; R1; �0; �1; Re� Section A.1

R;R†; supp Section A.2

P�; ‚
V
�;�0 Section A.3

2. Preliminaries

We denote by … the parity change functor. Throughout Sections 2–8, g stands for one of
the Lie superalgebras gl.mjn/; osp.2mj2n/ or osp.2mC 1j2n/.

2.1. Notation. We use the standard notation: the root system � lies in the lattice

ƒmjn � h� spanned by ¹"iº
m
iD1 [ ¹ıiº

n
iD1:

We denote by ƒ the lattice spanned by ¹"iº1iD1 [ ¹ıiº
1
iD1 and view ƒmjn as a subset of ƒ. We

define the parity homomorphism pWƒ! Z2 by p."i / D 0, p.ıj / D 1 for all i; j .
For our purposes (character formulas and DS functor), the study of the category F in of

finite-dimensional representations of g with parity preserving morphisms reduces to study the
category zF with the modules whose weights lie in ƒmjn.

The category zF is canonically isomorphic to the category of G-modules, where G is
a classical supergroup corresponding to g,

G ´ GL.mjn/ for gl.mjn/ and G ´ SOSp.mjn/ for g D osp.mjn/:

We fix the same triangular decomposition as in [24, 25, 35]: for gl.mjn/, we choose the
base † which contains only one odd root "m � ı1, and in the osp-case, we choose a base †
which contains a maximal possible number of odd roots; we always consider † as the ordered
set with respect to the usual order (see examples in Section 3.1 below).

We denote by ƒCmjn the set of dominant weights in ƒmjn,

ƒCmjn´ ¹� 2 ƒmjn j dimL.�/ <1º:

The simple modules in zF are of the form L.�/;….L.�// for � 2 ƒCmjn.
The category zF decomposes into a direct sum of two categories,

zF D F ˚…F ;

such that the simple objects in F are labeled by the dominant integral weights. The category F

is the full subcategory consisting of all modulesM with the Z2-grading induced by the grading
on ƒ (i.e. Mi D

P
�Wp.�/Di M�). Note that zF and F are tensor categories.
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2.2. OSp;SOSp and � . One has

O.2r C 1/ D SO.2r C 1/ � Z2 and O.2r/ D SO.2r/ Ì Z2I

we can choose the subgroup Z2 in such a way that Z2 acts on osp.2r j2n/ by an involutive
automorphism � which stabilizes the Cartan algebra h. For r > 1 (i.e. or ¤ C), � induces
a Dynkin diagram involution given by

�.ıj / D ıj ; j D 1; : : : ; n;

�."i / D "i ; i D 1; : : : ; r � 1;

�."r/ D �"r :

For odd m D 2r C 1, the orthosymplectic supergroup OSp.mj2n/ is a direct product,

OSp.2r C 1j2n/ Š SOSp.2r C 1j2n/ � Z2;

where the nontrivial element of Z2 acts as minus the identity. For even m D 2r , it is a semidi-
rect product,

OSp.2r j2n/ Š SOSp.2r j2n/ Ì Z2:

The underlying even group of OSp.mj2n/ is O.m/ � Sp.2n/ and SO.m/ � Sp.2n/ in the
SOSp-case.

The automorphism � can be extended to osp.2r j2n/. For m > 1, the involution � on h�

is given by
�.ıj / D ıj ; j D 1; : : : ; n;

�."i / D "i ; i D 1; : : : ; r � 1;

�."r/ D �"r :

A finite-dimensional SO.2r/-moduleN can be extended to O.2r/ if and only ifN � ŠN .
Similarly, a finite-dimensional SOSp.2r j2n/-module N can be extended to OSp.2r j2n/ if and
only if N � Š N . See also [14] for more details.

2.3. The DS-functor. The DS-functor was introduced in [13]. We recall the definition
below.

For a g-module M and g 2 g, we set

M g
´ KerM g:

We fix now an x 2 g1 with Œx; x� D 0. We set gx ´ gadx=Œx;g�; note that gadx and gx
are Lie superalgebras. For a g-module M , we set

DSx.M/ DM x=xM:

Observe that M x; xM are gadx-invariant and Œx;g�M x � xM , so DSx.M/ is a gadx-module
and gx-module. Thus DSx WM ! DSx.M/ is a symmetric monoidal functor from the category
of g-modules to the category of gx-modules.

2.3.1. Remark. Notice that the action of x provides a gadx-isomorphism

M=M x �
�! ….xM/:
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This implies that the “super-multiplicity” of a simple gadx-module L0 in a g-moduleM equals
the “super-multiplicity” of L0 in the gx-module DSx.M/,

ŒM W L0� � ŒM W ….L0/� D ŒDSx.M/ W L0� � ŒDSx.M/ W ….L0/�:

In many examples, gx can be identified with a subalgebra of g; in this case, the same
holds for a simple gx-module L0. The examples of such situation includes the cases when g is
a finite-dimensional Kac–Moody algebra (and x is arbitrary); see [13, 22].

2.3.2. Let G0 denote GL.m/ � GL.n/ (the gl-case) or O.m/ � Sp.2n/ (the osp-case).
There exist g 2 G0 and isotropic mutually orthogonal linearly independent roots ˛1; : : : ; j̨

such that
Adg.x/ D x1 C � � � C xj ; where xi 2 g˛i :

The number j does not depend on the choice of g and is denoted by rank x (or rk.x/) [13]. The
Lie superalgebra gx depends only on the rank of x. For rk.x/ D k, we have

gx Š

´
gl.m � kjn � k/; g D gl.mjn/;

osp.m � 2kj2n � 2k/; g D osp.mj2n/:

Take x´ x1 C � � � C xj as above. Then the algebra hx ´ hadx=.Œx;g� \ h/ is a Cartan
subalgebra of gx . The functor DSx induces a ring homomorphism dsx WSch.g/! Sch.gx/
such that

sch DSx.N / D dsx.schN/ for each N 2 F in.g/:

This homomorphism can be described as follows: the restriction f 7! f jhadx gives a ring
homomorphism Sch.g/! Sch.gadx/; the image of this map lies in Sch.gx/ (which is a sub-
ring in Sch.gadx/) and dsx WSch.g/! Sch.gx/ is the corresponding map. If we choose

hx � hadx such that hadx
D hx ˚ .Œx;g� \ h/;

then dsx is given by f 7! f jhx ; see [28, Lemma 4].

2.3.3. In this paper, we will describe the action of dsx on a certain basis of Sch.g/. We
do not use DS, but ds only, and while DSx depends on x (even for fixed rank [26]), dsx depends
only on the rank of x, and we simply write dsk for dsx with rk.x/ D k. Then

(2.1) dsj D .ds1/j :

3. Weights, roots and diagrams

We use the standard notation for the roots of g0 and denote by…0 a standard set of simple
roots. In what follows, we consider only bases † of � which are compatible with …0, that is
�C.†/0 D �

C.…0/. By [40], all such bases are connected by chains of odd reflections. These
bases can be encoded by words consisting of m letters " and n letters ı (see examples below).

We fix a standard bilinear form on h� as follows:

."i j"j / D ıij D �.ıi jıj /; ."i jıj / D 0:
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3.1. The base † and the sets Ss. We set S0´ ; and, for s D 1; : : : ;min.m; n/, in-
troduce the sets Ss as follows:

Ss ´

8̂̂<̂
:̂
¹"mC1�i � ıiº

s
iD1 for gl.mjn/;

¹ın�i � "m�iº
s�1
iD0 for osp.2mj2n/;

¹"m�i � ın�iº
s�1
iD0 for osp.2mC 1j2n/:

Notice that Smin.m;n/ is a basis of a maximal isotropic subspace of h�.
For gl.mjn/, we take the base † corresponding to the word "mın,

†´ ¹"1 � "2; : : : ; "m�1 � "m; "m � ı1; ı1 � ı2; : : : ; ın�1 � ınº:

For the osp-case, we denote by † a base containing Smin.m;n/ (such a base is unique): this are
the bases ın�m.ı"/m and "m�n.ı"/n for osp.2mj2n/ with n � m and n � m, respectively,
and ın�m."ı/m and "m�n."ı/n for osp.2mC 1j2n/ with n � m and n � m, respectively. For
instance,

† D ¹ı1 � ı2; : : : ; ın�mC1 � "1; "1 � ın�mC2; ın�mC2 � "2; : : : ; "m�1 � ın; ın ˙ "mº

for osp.2mj2n/ with n � m.

3.1.1. Remark. In [21], we used the same bases †, but in the osp.2mj2n/-case, we
chose different S for different blocks. The formulas in Proposition 4.3 hold for both choices
of S .

3.1.2. We denote by � the Weyl vector of g (see Section A.1.1). Note that � is unique
for osp.M j2n/ with M ¤ 2; we take

� D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

nX
iD1

.n � i/ıi for osp.2j2n/;

mX
iD1

.1 � i/"i C

nX
iD1

.m � i/ıi for gl.mjn/:

Notice that .�jSmin.m;n// D 0; in the osp.2mj2n/-case, one has �.�/ D �.

3.1.3. Remark. For our choice of †, there are several natural choices of x of each
rank s: this can be x 2

P
ˇ2Ss

gˇ or x 2
P
ˇ2Ss

g�ˇ . For these choices, we have a natural
embedding DSx.g/ D gx � g which is compatible with the triangular decomposition with the
set of positive roots

�Cx ´ ¹˛ 2 �
C
j .˛jSs/ D 0º n S:

Our choice of � is compatible with the embedding gx � g, i.e. �jhx is the Weyl vector of gx .
For instance, for gl.mjn/ with x 2 g"m�ı1 , we have

�jhx D

m�1X
iD1

.1 � i/"i C

nX
iD2

.m � i/ıi

which is the Weyl vector for gx Š gl.m � 1jn � 1/.
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3.2. Atypicality, stability and tails. We call S � �1 an iso-set if S forms a basis of
an isotropic subspace in h�, i.e. S is linearly independent and .S jS/ D 0. For instance, Sr is
an iso-set.

For � 2 h�, we denote by at.�/ the atypicality of � (i.e. the maximal cardinality of an
iso-set orthogonal to �). The atypicality of L.�/ is equal to at.�C �/.

The stability is usually introduced for a weight diagram. Below, we will introduce this
notion for a weight (and a fixed base †).

We say that gs � g is an equal rank subalgebra if gs is of the following form:

gs D gl.sjs/ for the gl-case;

gs D osp.2s C 1j2s/ for g D osp.2mC 1j2n/;

gs D osp.2sj2s/ or osp.2s C 2j2s/ for g D osp.2mj2n/;

and, in addition, gs has a base †s � †. Note that �0s ´ �jgs\h satisfies .�0sj˛/ D 2.˛j˛/ for
each ˛ 2 †s , so �0s is “a Weyl vector” for gs (�0s is the usual Weyl vector except for the gl-case).
Observe that g contains a unique copy of gs for each s with 0 < s � min.m; n/.

3.2.1. Definition. In the gl-case, we say that � 2 ƒCmjn is a stable weight if there exists
an equal rank subalgebra gs � g such that

at.�C �/jh\gs D at.�C �/ D s:

3.2.2. Definition. Take � 2 ƒCmjn, which is assumed to be stable for the gl.mjn/-case.
We denote by g� the maximal equal rank subalgebra of g satisfying �jh\Œg�;g�� D 0; we call
g� the tail subalgebra of � and denote by tail.�/ the defect of g�.

3.2.3. Examples. The gl.3j3/-weight � with �C � D 3"1 C 2"2 � 2ı2 � 5ı3 is stable
(with gs D gl.2j2/), and one has g� D gl.1j1/ and tail.�/ D 1; the gl.3j3/-weight � with
� C � D 3"1 C "2 � ı2 � 5ı3 is stable (with gs D gl.2j2/), and one has g� D gl.2j2/ and
tail.�/ D 2.

3.3. Weight diagrams. Many properties of a finite-dimensional representation L.�/
can be better understood by assigning a weight diagram to the weight � (see e.g. [6,15,26,43]).
These were first defined in [6] for gl.mjn/ and then for osp.mj2n/ in [24, 43] and for OSp
in [14]. Note that the conventions how to draw these weight diagrams differ. The original
weight diagrams of [6] use a different labeling of the vertices: our > is a �, our < a ı and our
� a _. For the difference between the weight diagrams of [24] and [14] in the osp-case, see
[14, Proposition 6.1]. We follow essentially [24].

We denote by ƒ�mjn the following subgroup of h�:

ƒ�mjn´

´
mX
iD1

ai"i C

nX
jD1

biıj

ˇ̌̌̌
ˇ a1 2 12Z; a1 � b1 2 Z; ai � aj ; bi � bj 2 N for i < j

µ
:

The set ƒ�mjn contains �;ƒCmjn and ƒCmjn C �.
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3.3.1. We assign the weight diagram (a labeling of the real line R by certain symbols)
to each weight

Pm
iD1 ai"i C

Pn
jD1 biıj 2 ƒ

�
mjn using the following rules:

� for gl.mjn/, we put> and< at the position with the coordinate j if ai D j and bi D �j
for some i , respectively;

� for osp.2mj2n/, we put > and < at the position with the coordinate t if jai j D j and
jbi j D j for some i , respectively; if am ¤ 0, we add the signs C and � if am > 0 and
am < 0, respectively;

� for osp.2mC 1j2n/, we put> and< at the position with the coordinate j � 1
2

if jai j D j
and jbi j D j for some i , respectively; we add the signs C and � if the zero position is
occupied by �p for p > 0, .�C �j"i / D 1

2
for some i and .�C �j"i / ¤ 1

2
for each i ,

respectively.

If >;< occupy the same position, we write these symbols as � (�s stands for s symbols < and
s symbols>; >

�s
stands for s symbols< and s C 1 symbols>). We put an “empty symbol” ı at

the non-occupied positions with the coordinates in a1 C Z; sometimes, instead of ı, we put its
coordinate (for instance, 0ı� means that � has the coordinate 2). For a diagram f , we denote
by f .a/ the symbols at the a-th position.

Note that, for the osp.2mC 1j2n/-case, our diagram is obtained from the diagram used
in [24] by the shift by �1

2
.

3.3.2. Examples. The diagram of � for osp.2nC 1j2n/ has the sign � and contains n
symbols � in the zero position; we write this as .�/�n; similarly, for osp.2nj2n/, the diagram
of � is �n, and for gl.3j3/, the diagram of � is ���, where the rightmost symbol � appears
in the position 0. For gl.mjn/, we sometimes add a coordinate of ı instead one empty symbol;
for instance, for gl.4j3/, the diagram of � can be written as

���>1 or �4���>:

3.3.3. We assign to each � 2 ƒ�mjn the diagram of �C � constructed as above; this
diagram will be denoted by diag.�/. For a diagram f , the corresponding weight in ƒ�mjn will
be denoted by wt.f /; notice that

wt.diag.�// D �C �:

The map � 7! diag.�/ gives a one-to-one correspondence between ƒCmjn and the dia-
grams containing k symbols�,m � k symbols> and n � k symbols< (where k � min.m; n/)
with the following additional properties:

� the atypicality of L.�/ is equal to the number of symbols � in the diagram of �C �;

� in the gl-case, the coordinates of the occupied positions lie in Z, and each occupied
position contains exactly one of the signs ¹>;<;�º;

� in the osp-case, the coordinates of the occupied positions lie in N, and each non-zero
occupied position contains exactly one of the signs ¹>;<;�º;

� in the osp.2mj2n/-case, the zero position does not contain <, contains at most one sym-
bol > and an arbitrary number of �; a diagram f has a sign if and only if f .0/ D ı; see
[24, Section 6] for details;
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� in the osp.2mC 1j2n/-case, the zero position contains at most one of the symbols >;<
and an arbitrary number of �; a diagram f has a sign if and only if f .0/ D �i for i > 0;
see [24, Section 6] for details.

3.3.4. Remark (OSp.2mj2n/-modules). By Section 2.2, simple OSp.2mj2n/-modules
are in one-to-one correspondence with the unsigned osp.2mj2n/-diagrams.

3.3.5. Tail in the diagrammatic language. It is easy to see that � 2 ƒ�mjn is stable in
the gl-case if and only if all symbols � in diag.�/ precede all symbols <;>.

For � 2 ƒCmjn, we can easily express tail.�/ in terms of f ´ diag.�/ as follows:

� for the osp.2mj2n/-case, tail.�/ is equal to the number of symbols � in the zero position
of f ;

� for the osp.2mC 1j2n/-case, tail.�/ is the number of symbols � in the zero position of
f if f does not have .C/ sign and is less by 1 if f has the sign .C/;

� for a stable weight � in the gl-case, tail.�/ is equal to the maximal length of the subdia-
gram �� : : :� which starts from the first symbol � in diag.�/.

For instance, in the osp-case, tail.ı��/ D 0 and tail..C/�3�/ D 2; in the gl-case, one has
tail.ı��ı���/ D 2.

Note that, in the gl-case, tail.�/ ¤ 0 if � is an atypical stable weight.

3.4. Cores and howls. We call the symbols >;< the core symbols. A core diagram is
a weight diagram which does not contain symbols � and does not have a sign.

For a weight diagram f , we denote by core.f / the core diagram which is obtained
from the diagram of f by replacing all symbols � by ı and deleting the sign. For instance,
core.<ı�>/ D <ıı>. For a weight �, we set

core.�/´ core.diag.�//:

3.4.1. We say that a g-central character is dominant if F .g/ contains modules with
this central character. We denote by �� the central character of L.�/. For a dominant central
character �, we set

ƒ�´ ¹� 2 ƒCmjn j �� D �º:

For the gl.mjn/, osp.2mC 1j2n/-cases, the dominant central characters are parame-
trized by the core diagrams, i.e. for �; � 2 ƒCmjn,

�� D �� H) core.�C �/ D core.� C �/I

for osp.2mj2n/, the same holds for the atypical dominant central characters, and one has

�� 2 ¹�� ; ��� º H) core.�/ D core.�/:

For a dominant central character � D ��, we set core.�/´ core.�/. By above, a dom-
inant central character is determined by its core for g D gl.mjn/; osp.2mC 1j2n/, and for
osp.2mj2n/, this holds for atypical dominant central characters.
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For the osp.2mj2n/-case, we introduce t 2 ¹0; 2º for each dominant central character �
and for each � 2 ƒCmjn in the following way: t D 0 if core.�/ and core.�/, respectively, have
an empty zero position and t D 2 otherwise (i.e. the zero position is occupied by >); for
osp.2mC 1j2n/, we set t D 1, and for gl.mjn/, we set t ´ 0. We will sometimes use the
notation t .�/ or t .�/; one has t .�/´ t .��/.

3.4.2. We say that a diagram f is core-free if core.f / D ; or g D osp.2mj2n/ and
core.f / D > (> occupies the zero position).

3.4.3. By [24, Theorem 2], the blocks in F .g/ are parametrized by the dominant central
characters; for gl.mjn/, the block of atypicality s is equivalent to the block �0 in gl.sjs/; for
the osp.M j2n/-case, the block of atypicality s is equivalent to the block �0 in osp.2s C t j2s/.
The equivalences are described in [24, Section 6]. For � 2 ƒCmjn, let howl.�/ be the corre-
sponding weight in �0. Diagrammatically, the passage from � to howl.�/ essentially amounts
to removing the core symbols <;> from diag.�/ except for the symbol > at the zero position
in the osp.2mj2n/-case (see [24, Section 6] and [21, Section 3.7] for details). (In particular,
howl.�/ has a core-free diagram.) If tail.�/ is defined, then tail.�/ D tail.howl.�//.

For example, if diag.�/ D >�<�ı<ı�, then

diag.howl.�// D

8̂<̂
:
��ıı� for g D gl.4j5/;

>��ıı� for g D osp.8j10/;

.C/��ıı� for g D osp.9j10/:

3.5. The functions k�k and k�kgr. Let � 2 ƒCmjn be such that �C � is atypical. Set
f ´ diag.howl.�//.

Definition. Let a1 � � � � � aj be the coordinates of the symbols � in f (j D at.�C �/).
Then

k�k ´

8̂̂̂̂
<̂
ˆ̂̂:

jX
iD1

ai for t .�/ ¤ 2;

tail.�/ � j C
jX
iD1

ai for t .�/ D 2;

k�kgr ´

8̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

jX
iD1

.ai � a1/ �
j.j � 1/

2
for gl.mjn/;

jX
iD1

ai for osp.2mj2n/;

j � tail.�/C
jX
iD1

ai for osp.2mC 1j2n/:

Notice that k�kgr 2 N and that k�k 2 N for osp.M jN/ and k�k 2 Z for gl.mjn/. More-
over, k�kgr D 0 if and only if howl.�/ D 0 in the osp-case and howl.�/ 2 Z

Pj
iD1."i � ıi /

for the gl-case (i.e. dimL.howl.�// D 1). The condition k�k D 0 is equivalent to howl.�/ D 0
and howl.�/ D 0; "1 for g D osp.2mj2n/ and for g D osp.2mC 1j2n/, respectively. Note
that, in the gl.mjn/-case, k�kgr is invariant under the shift of the diagram.
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If �C � is typical, we set k�kgr D 0 (we do not define k�k in this case).

3.5.1. Remark. For the osp-case with t D 0; 1, one has .�1/p.howl.�// D .�1/k�k. If
�; � are stable gl-weights with �� D �� , then .�1/p.�/�p.�/ D .�1/k�k�k�k.

3.5.2. Remark. The odd-looking formulas for k�k with t .�/ D 2 and for k�kgr with
t .�/ D 1 can be interpreted as follows. Consider f 0, which is obtained from f by removing
> from the zero position and then shifting all entries at the non-zero positions of f by one
position to the left; then k�k D

Pj
iD1 a

0
i , where a0i are the coordinates of � in f 0. The above

operation induces a bijection � between the core-free osp.2mC 2j2m/-weights and the core-
free osp.2mC 1j2m/-weights: this bijection, introduced in [24], assigns to f the diagram f 0

with the sign chosen in such a way that tail.f / D tail.�.f //. For instance,

�.
�
>ı�/ D ���; �.

�
>/ D ��; �.>�/ D C�; �.>ı�/ D ı�:

One has
k�k D k�.�/k; k�kgr D k�.�/kgr:

3.5.3. Definition. We call � 2 ƒCmjn a Kostant weight if dimL.howl.�// D 1.

Note that dimL.howl.�// D 1means that howl.�/ D 0 and howl.�/ 2 Z str for the osp-
case and for the gl-case, respectively.

Observe that k�kgr D 0 if and only if � is a Kostant weight (k�kgr can be seen as the
“distance” to the nearest Kostant weight). For instance, for gl.3j3/ and diag.�/ D ��ı�, one
has k�kgr D 1.

For the gl-case, this term was used in [5]; in [8], these weights are called totally con-
nected. If in addition � is stable, such weight is called a ground state in [26, 52]. The Kostant
weights are precisely the weights where all � are adjacent to each other discounting possible
core symbols.

3.5.4. Remark. For the gl.mjn/-case, the modules satisfying the KW-conditions (see
Section 1.1) were classified in [8]; for the osp.M jN/-case, this was done in [7]. The results
of these classification can be formulated as follows. Except for the case g D osp.2mj2n/

with t D 0 and atypicality 1, L.�/ satisfies the KW-conditions if and only if � is a Kostant
weight. For the case g D osp.2mj2n/ with t D 0, all simple finite-dimensional modules of
atypicality 1 satisfy the KW-conditions. The latter case has the following interpretation. Let
F .osp.2mj2n//� be a block of atypicality 1 with t D 0. Since osp.2j2/ D sl.1j2/, we have

F .osp.2mj2n//�
�
�! F .osp.2j2//�0 D F .sl.1j2//�0

�
�! F .sl.1j1//�0 ;

so the image of each simple module L 2 F .osp.2mj2n//� is the trivial sl.1j1/-module.
From the above description, it follows that the KW-conditions are compatible with the

equivalence of categories given by the translation functors Ta;aC1 described in Section 4.7.
This is not true in general: the switch functor

F �0.osp.2mC 1j2n//
�
�! F �0.osp.2mC 1j2n//

given by N 7! .N ˝ Vst/
�0 maps the trivial module (satisfying the KW-conditions) to the

standard module, which does not satisfy these conditions.
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4. Parabolic induction, Euler characters and character formulas

We define parabolic induction functors � ip;q and the Poincaré polynomials K�;�p;q .z/ in
Section 4.1 and Euler characters E� in Section 4.2. We give a diagrammatic description of the
Poincaré polynomials in the gl.mjn/-case. This leads to a character formula for chL.�/.

4.1. The functors � ip;q. Let q � p � g be a pair of parabolic subalgebras contain-
ing b, and let V be a finite-dimensional q-module. We denote by �p;q.V / the maximal finite-
dimensional quotient of the induced module U.p/˝U.q/ V . View �p;q as a functor from
the category of finite-dimensional q-modules to the category of finite-dimensional p-modules
and define the derived functors � ip;q as in [24] (� ip;q ´ �i .P=Q; �/ in the notation of [24]).
By [25], for gl.mjn/, these functors coincide with the functors � ip;q defined in [35].

For �;� 2 ƒCmjn, we consider the Poincaré polynomial in the variable z as

K
�;�
p;q .z/´

1X
iD0

Œ� ip;q.Lq.�// W Lp.�/�z
i ;

where Lq.�/ and Lp.�/ stand for the corresponding simple q and p-module, respectively.

4.1.1. Fix a central character � and a flag of parabolic subalgebras

g D p.d/ � p.d�1/ � � � � � p.0/ D b;

where d is the defect of g and l.i/´ Œp.i/;pi � is given by l.i/ D gl.i ji/ for g D gl.d jd/,
l.i/ D osp.2i C t j2i/ for g D osp.2d C t j2d/.

The polynomials K�;�
p.i/;p.iC1/

.z/ for the “neighboring parabolics” were given in [39] in
the gl-case and in [24] in the osp-case. In the gl-case, we will describe these polynomials in
terms of so-called “arc diagrams” in Section 4.5 below. Using these polynomials, the values
K
�;�
g;p�.�1/ can be computed iteratively using the formula (established in [24, Theorem 1])

(4.1) K
�;�
g;q .�1/ D

X
�

K�;�p;q .�1/K
�;�
g;p .�1/;

where the summation is taken over � 2 h� with dimLp.�/ <1.

4.2. The terms E�. Take � 2 ƒCmjn, which is assumed to be stable for the gl-case.
Let g� be the tail subalgebra of � (see Definition 3.2.2). As in [24], we introduce

E�´ R�1e�� JW

�
e�C�Q

˛2�.g�/
C

1

.1C e�˛/

�
I

see Section A.1 for notation. Clearly, E� 2 R; see Section A.2 for notation. By [24, Proposi-
tion 1] (Euler characteristic formula), one has

(4.2) E� D
X

�2ƒ
C
mjn

K
�;�
g;p�.�1/ chL.�/; where p�´ bC g�:

The sum in the right-hand side of the formula is finite (see, for example, [24, Lemma 3]).
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4.2.1. Remark. The perspective of [24, 41] is a bit different. The E�’s are defined as
actual Euler characters. It is important not to confuse the Euler character E� of [24] with the
Euler character E� of [25]. In the latter case, E� simply equals for gl.mjn/ the character of the
Kac module K.�/.

4.2.2. In the case when g� D g, formula (A.2.2) gives E� D e
� D chL.�/.

4.3. Proposition. Take � 2 ƒCmjn, which is stable in the gl.mjn/-case. Set s´ tail.�/.

(i) In the osp-case, we have

jsRe
�E� D KW.�C �; Ss/;

where js D max.1; 2s�1sŠ/ for t D 0 and js D 2ssŠ for t D 1; 2.

(ii) If g D gl.mjn/ and � is stable, then

jsRe
�E� D KW.�C �L; Ss/;

where js D .�1/Œ
s
2
�sŠ and �L is the Weyl vector for the base "m�s."ı/sın�s .

Proof. In the osp-case, set†L´ †; in the gl-case, let†L be the base "m�s."ı/sın�s .
Denote by �� and �0

�
the Weyl vectors for �.g�/ with respect to the bases † \�.g�/ and

†L \�.g�/, respectively. Let W� � W be the Weyl group of g�. Note that Ss is the maximal
iso-set in �.g�/. Combining (A.2.2) and (A.4.5), we obtain

JW�

�
e��Q

˛2�.g�/
C

1

.1C e�˛/

�
D j�1s JW�

�
e�
0
�Q

˛2Ss
.1C e�˛/

�
:

One has JW D JW=W� � JW� , where W=W� stands for any set of representatives. Using
W�-invariance of � and � � ��, we obtain

Re�E� D JW

�
e�C�Q

˛2�.g�/
C

1

.1C e�˛/

�
D JW=W�

�
JW�

�
e�C�Q

˛2�.g�/
C

1

.1C e�˛/

��

D j�1s JW=W�

�
JW�

�
e�C����C�

0
�Q

˛2Ss
.1C e�˛/

��
D j�1s JW

�
e�C����C�

0
�Q

˛2Ss
.1C e�˛/

�
D KW.�C � � �� C �

0
�; Ss/:

For the osp-case, one has † D †L, so �� D �0�; this gives (i). For the gl-case, notice
that †L is obtained from † by the chain of odd reflections with respect to the roots in �.g�/;
this gives �L � � D �0� � �� and establishes (ii).

4.4. The osp-case. Consider the case g D osp.M j2n/ (M D 2m or M D 2mC 1).
Theorems 3, 4 and the remark after Theorem 3 of [24] imply that, for � 2 ƒCmjn, one has

chL.�/ D
X

�2ƒ
C
mjn

.�1/k�k�k�kd
�;�
< E�;

where d�;�< is the number of “increasing paths” from diag.�/ to diag.�/ in the graph Dg

described in [24, Section 11]; we will recall some properties of this graph below.
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4.4.1. Properties ofDg. The connected components ofDg correspond to the dominant
central characters, so for each component D�g , we can define t 2 ¹0; 1; 2º via the correspond-
ing central character. The map �! howl.�/ gives an isomorphism D

�
g
�
�! D

�0
osp.2kCt j2k/ for

k´ at.�/, t ´ t .�/; the map � induces an isomorphism D
�0
osp.2kC1j2k/

�
�! D

�0
osp.2kCt j2k/.

Assume that diag.�/ is a predecessor of diag.�/ in Dg. From [24, Section 11], we
conclude that, for the cases t D 0; 2, diag.�/ is obtained from diag.�/ by moving several sym-
bols � to the right; moreover, if diag.�/ has a sign, then diag.�/ has the same sign. Using the
isomorphism induced by � , we conclude that, for t D 1, diag.�/ is obtained from diag.�/ by
moving several symbols � to the right or by changing the sign � to the signC. This implies

� > �; howl.�/ > howl.�/; k�k � k�k; k�kgr > k�kgr; tail.�/ � tail.�/

and that if � is stable, then � is stable. Moreover,

(4.3) � � � 2

´
1
2
N…0 CN.ın � "m/CN.ın C "m/ for t D 0;
1
2
N…0 for t D 1; 2:

By above, Dg is N-graded with respect to k kgr (if diag.�/ is a predecessor of diag.�/,
then k�kgr < k�kgr). In particular, each vertex in Dg has finitely many predecessors.

The map � described in Remark 3.5.2 gives an isomorphism of the graphDosp.2mC1j2n/

and the subgraph of Dosp.2mC2j2n/ which correspond to the union of connected components
with t D 2.

4.4.2. We conclude that, for osp.M jN/, we have

d
�;�
< D 1; d

�;�
< D d

howl�;howl�
< � 0;

d
�;�
< ¤ 0 H) �� D ��; k�k � k�k; tail.�/ � tail.�/; k�kgr > k�kgr:

Moreover, the sum in the right-hand side of the character formula is finite and the terms
¹E�º�2ƒCmjn form a basis in the character ring of F .

Using Remark 3.5.1, we obtain

.�1/p.�/ chL.�/ D
X

�2ƒ
C
mjn

.�1/p.�/d
�;�
< E� if � is stable and t .�/ ¤ 2:

4.4.3. Remark. The q.n/-case can be treated with the same methods. The character of
L.�/ can be written as a finite sum in the Euler characters where the coefficients are again
given by the number of increasing paths in a certain bimarked graph. As for the osp-case, the
finiteness is automatic since each vertex � in this graph has a finite number of predecessors.
However, Y. Su and R. B. Zhang already obtained in [47] a similar character formula based on
earlier work of J. Brundan [3] so that we have refrained from including this case.

4.5. The Poincaré polynomials in the gl-case. Let k be the degree of atypicality of
�C �. For i D 0; : : : ; k � 1, the polynomials K�;�

p.iC1/;p.i/
.z/ were computed in [39] (see also

[35, Corollary 3.8]). We will recall the diagrammatic interpretation (which was provided by
Serganova in one of her wonderful talks in Rehovot) in Definition 4.5.3.

Let g´ gl.mjn/. We identify a weight � 2 ƒCmjn with diag.�/.
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4.5.1. Arc diagrams. Take a weight � 2 ƒCmjn. Denote by diag.�/ the weight diagram
of � C �. The arc diagram Arc.�/ consists of the arcs arc.aI a0/, where a < a0 and diag.�/ has
� and ı at the position a and a0, respectively. These arcs satisfy the following properties:

� each symbol � is connected by an arc to exactly one symbol ı;

� each symbol ı is connected to at most one symbol �;

� the arcs do not intersect;

� each symbol ı situated under an arc is connected to a symbol �.

The arc diagram Arc.�/ is unique and can be constructed in the following way: we pass
from right to left through the weight diagram and connect each of the finitely many crosses �
with the next empty symbol to the right by an arc (ignoring core symbols).

4.5.2. Example. We have the following arc diagram for ��ı�ıı��ıııı�ı:

−1 0 1 2 3 4 5 6 7 8 9 10 11 12

4.5.3. Definition. For a weight diagram f , we denote by f ua the weight diagram ob-
tained from f by interchanging the symbols at the positions u and a.

Let �; � 2 ƒCmjn be such that diag.�/ D diag.�/ua . We say that � is obtained from � by
a move if diag.�/ has � at the position a, ı at the position u and u lies under the arc originated
at a, that is Arc.�/ contains arc.aI a0/ with a < u � a0. For such a move, we define the weight
as the number of arcs in Arc.�/ which are “strictly above” u (for instance, if u D a0, then the
move has zero weight).

Observe that if � can be obtained from � by a move as above, then such a move is
unique. In this case, we set b0.�I�/´ u. Note that diag.�/ has � at the u-th position; we set
b.�I�/´ i C 1, where i is the number of the symbols � with the coordinates less than u in
diag.�/.

We will consider only the case of stable �, so the symbols � in diag.�/ precede the core
symbols. If � is obtained from � by a move, then � is stable. A move is called a non-tail move
if b.�I�/ > tail.�/.

4.5.4. Example. Take � with diag.�/ D 0��� and with the following arc diagram for
0���ı:

0 1 2 3 4 5 6 7

There are 6 weights �1; : : : ; �6 which can be obtained from �; in all cases, b.�I�/ D 3.
For instance, �1 with diag.�1/ D 1��� can be obtained from � by a move of weight 2 with
b0.�I�1/ D 4. Similarly, �2 with diag.�2/ D 1��ı� can be obtained from � by a move of
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weight 1 with b0.�I�1/ D 5. Another example is �3 with diag.�3/ D 0�ı�� can be obtained
from � by a move of weight 1 with b0.�I�1/ D 4.

From the weight �2, we can obtain � with diag.�/ D 1�ı�� by a move of weight 0
with b0.�2I�/ D 4 and b.�2I�/ D 2.

Among the above examples, only the first move is a tail move.

4.5.5. Let � be a stable weight and k´ at.�C �/. For i D 1; : : : ; k, the results of [39]
(see also [35, Corollary 3.10 (b)]) give

K
�;�

p.i/;p.i�1/
.z/ D 1;

K
�;�

p.i/;p.i�1/
.z/ D zs for � ¤ �;

if � is obtained from � by a move of weight s and b.�I�/ D i . In all other cases,

K
�;�

p.i/;p.i�1/
.z/ D 0:

Moreover, K�;�
g;p.k/

.z/ D ı�;� (see [24, Lemma 5], a “Typical Lemma”).

4.5.6. Lemma. Take a stable weight � 2 ƒCmjn. Assume that � is obtained from � by
a move of weight w.

(i) Then � is stable, core.�/ D core.�/ and

� > �; k�k � k�k � .w C 1/ 2 2Z; tail.�/ � b.�I�/:

(ii) If the move is a non-tail move, then

k�kgr > k�kgr; tail.�/ � tail.�/:

Proof. The first assertion immediately follows from the formula diag.�/ D diag.�/ua for
a < u. Consider the case of a non-tail move, i.e. b.�I�/ > tail.�/.

Since �; � are stable, their diagrams start from the subdiagrams � : : :� containing, re-
spectively, tail.�/ and tail.�/ symbols �. Let A� and A� be the coordinates of symbols � in
these subdiagrams (one has A.�/ D ¹u� C iºtail .�/�1

iD0 , where u� is the minimal coordinate of
the non-empty symbol in diag.�/). The inequality b.�I�/ > tail.�/ means that u > maxA�.
This gives A� � A� and implies (ii).

4.6. Graph Dg. Let Dg be a graph with the set of vertices enumerated by ƒCmjn. We
identify the weight � with diag.�/. We join f; g by the edge f ! g if core.f / D core.g/ and
howl.g/ is obtained from howl.f / by a non-tail move described in Section 4.5.

Recall that f ! g implies that howl.g/ is obtained from howl.f / by moving � from
a position a to an empty position u > a. We mark each edge by the corresponding u.

4.6.1. SubgraphsD�g . Clearly, if � and � lie in the same connected component ofDg,
then �� D �� . Denote by D�g the full subgraph with the vertices � such that �� D �. If � has
atypicality s, then the map f 7! howl.f / gives an isomorphism of D�g and D�0

gl.sjs/
.

If at� � 1, then the corresponding vertex is isolated. It is not hard to see that D�g is
connected if � has atypicality greater than 1.
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4.6.2. Corollary. The following statements hold.

(i) Let � be a predecessor of �. Then diag.�/ is obtained from diag.�/ by moving some
symbols � to the right. In particular, core.�/ D core.�/, � > � and

howl.�/ > howl.�/; k�k > k�k; k�kgr > k�kgr; ghowl.�/ � ghowl.�/:

(ii) Any vertex in Dg has a finite number of predecessors.

Proof. Let � be a predecessor of �. Then diag.�/ is obtained from diag.�/ by moving
several symbols � to the right; this gives � > � and k�k > k�k; the rest of the formulas in (i)
follow from Lemma 4.5.6. By above, for (ii), it is enough to consider the case g D gl.sjs/ and
core.�/ D ;. By Lemma 4.5.6, the predecessors of � in Dg lie in the following set:

¹� 2 ƒCsjs j core.�/ D ;; k�kgr < k�kgr; A� � A�º;

where A�; A� are as in the proof of Lemma 4.5.6. In particular, the coordinates of all non-
empty symbols in diag.�/ lie between u� � s and u� � s C k�kgr, where u� is the minimal
coordinate of the non-empty symbol in diag.�/. This gives (ii).

4.6.3. We call a path in Dg increasing and decreasing if the marks strictly increase and
decrease, respectively, along the path.

4.6.4. Example. If � is a Kostant weight, then E� D e
�. For gl.njn/, the adjoint rep-

resentation Ad has a three step Loewy filtration

Ad D

0B@ C

….L."1 � ın//

C

1CA
The middle term with highest weight � D "1 � ın corresponds to the diagram

�n�� : : :�„ ƒ‚ …
n�1 times

ı�I

this diagram is connected to the Kostant weights

�n�� : : :�„ ƒ‚ …
n times

; �n � 1�� : : :�„ ƒ‚ …
n times

;

the corresponding weights 0 and � D
Pn
iD1.ıi � "i /. This gives

chL."1 � ın/ D E"1�ın � 1 � e
�; schL."1 � ın/ D E�"1�ın C 1C e

�:

Notice that sdim.Ad/ D 0; hence sdimL."1 � ın/ D 2.

4.6.5. Examples. For gl.1j1/, the graph Dg does not have edges. For gl.2j2/, the
vertices � with core.�/ ¤ ; are isolated; the vertices with core.�/ D ; form a connected
component D�0g of the following form:

& 3

0��
3
�! 0�ı�

4
�! 0�ıı�

5
�! 0�ııı� : : :

& 4

1��
4
�! 1�ı�

5
�! 1�ıı�

6
�! 1�ııı� : : :
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The left column corresponds to the Kostant weights (k�kgr D 0); the next column to the �’s
with k�kgr D 1 and so on.

4.6.6. Proposition. The following statements hold.

(i) Each vertex is connected to a Kostant weight by an increasing path.

(ii) The Kostant weights are the sources of the graph Dg.

Proof. For (i), take f0 with kf0kgr ¤ 0, and let u be the coordinate of the rightmost
symbol � (which is not in the tail since f is not a Kostant weight) and let a be maximal
such that a < u and f .a/ D ı. Set f1 D .f /ua . Then f D .f1/ua , and f is obtained from
f1 by a non-tail move with b0.f1; f / D u. If kf1kgr ¤ 0, we construct f2 by the same rule.
Continuing this process, we obtain an increasing path

fr ! fr�1 ! � � � ! f1

with kfiC1kgr < kfikgr; thus, for some r , one has kfrkgr D 0. This gives (i). Now (ii) follows
from (i) and the inequality k�kgr > k�kgr if � is a predecessor of �.

4.7. Character formula for gl.mjn/. Take g D gl.mjn/ with a distinguished base †.
For �; � 2 ƒCmjn, denote by P>.�; �/ the set of decreasing paths from � to � and by d�;�< the
number of increasing paths from � to � in the graph Dg. Set

d 0�;�´ .�1/k�k�k�k
X

P2P>.�;�/

.�1/lengthP :

By above, d�;�< D d
howl.�/;howl.�/
< and d 0

�;�
D d 0howl.�/;howl.�/.

4.7.1. Let ƒ�st be the set of stable weights in ƒ�. In the next section, we will prove the
following formulas for � 2 ƒ�st:

(4.4)

E� D
X
�2ƒ�

d 0�;� chL.�/;

chL.�/ D
X
�2ƒ

�
st

.�1/k�k�k�kd
�;�
< E�:

Notice that, by Corollary 4.6.2, the right-hand sides of the above formulas have finite
number of non-zero summands.

4.7.2. For a non-stable weight �, we introduce E� by the first formula in (4.4), i.e.

(4.5) E�´
X
�2ƒ�

d 0�;� chL.�/:

If � is stable and � is not stable, then d�;�< D 0 (by Corollary 4.6.2). Therefore, the second
formula in (4.4) can be rewritten as

(4.6) chL.�/ D
X
�2ƒ�

.�1/k�k�k�kd
�;�
< E� D

X
�2ƒ

C
mjn

.�1/k�k�k�kd
�;�
< E�
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if � is stable. By (4.4), the matrices

.d 0�;�/ D .d
0
howl.�/;howl.�// and ..�1/k�k�k�kd

�;�
< /

are mutually inverse. Using (4.5), we deduce (4.6) for each � 2 ƒCmjn.

4.7.3. We retain notation of Section A.3.1. Fix a central character � and denote by
F in� the full subcategory of F in of the modules with the central character �. We will consider
translation functors T V�;�0 for special cases when these functors are equivalence of categories
and V is either the standard representation or its dual. These functors can be described as
follows.

Recall that, for a weight diagram f , we denote by .f /aC1a the diagram f 0 obtained
from f by interchanging the symbols in the positions a and aC 1. We denote by Ta;aC1 the
corresponding operations on ƒ�mjn and on the central characters: Ta;aC1.�/ D �0 such that
diag.�0/ D Ta;aC1.diag.�// and Ta;aC1.�/ D �0 such that core.�0/ D Ta;aC1.core.�//.

For V D Vst; V
�

st , the translation functor

T V�;�0 WF in� ��! F in�
0

is an equivalence of categories if �0 D Ta;aC1.�/ for some a and exactly one of the positions
a; aC 1 in core.�/ is empty (so for � 2 ƒ�, exactly one of the positions a; aC 1 in diag.�/ is
occupied by a core symbol and Ta;aC1 interchanges this core symbol with ı or�, respectively).

One has
T V�;�0.L.�// D L.Ta;aC1.�//:

Note that howl.�/ D howl.Ta;aC1.�//. By a slight abuse of notation, we denote such functor
by Ta;aC1.

4.7.4. Lemma. For �0´ Ta;aC1.�/, one has

Re�E� D ‚�;�0.Re
�E�0/;

where ‚�;�0 WR† ! R† is the ring homomorphism corresponding to Ta;aC1 (Section A.3.1).

Proof. For each � 2 ƒ�, set �0´ Ta;aC1.�/. By (4.5),

Re�E� D
X

�02ƒ�
0

d 0�;�Re
� chL.�/:

Using Section A.3.1, we get

‚�;�0.Re
�E�/ D

X
�2ƒ�

d 0�;�Re
� chL.�0/:

Since howl.�0/ D howl.�/, one has d 0
�;�
D d 0

�0;�0
, so

Re�E�0 D
X

�02ƒ�
0

d 0�0;�0Re
� chL.�0/ D

X
�02ƒ�

0

d 0�;�Re
� chL.�0/

as required.
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4.8. Another form of the character formula. In the osp-case, we retain the notation
of Proposition 4.3 and set

KW.�/´ KW.� C �; Stail.�//; j.�/´ jtail.�/:

For the gl-case, we will introduce KW.�/ in Section 6.1.4 and set j.�/´ tail.�/Š.

4.8.1. Corollary. We have

Re� chL.�/ D
X

�2ƒ
C
mjn

.�1/k�k�k�k
d
�;�
<

j.�/
KW.�/:

Proof. Combining Proposition 4.3 and Section 4.4, we obtain the assertion for the osp-
case. For the gl-case, we combine (4.6), Lemma 4.7.4 and Corollary 6.5 (ii).

4.8.2. Remark. Setting KW.L.�//´ j.�/�1 KW.�/, we obtain formula (1.3).

4.8.3. Remark. The graph Dg is an oriented graph; this graph does not have multi-
edges for the gl-case and for the osp-case with t D 1; 2; for t D 0, the graph has double edges.

4.9. Highest weights ofL with respect to different bases. Fix any base z† compatible
with …0 (i.e. �C.z†/ \�0 D �C.…0/) and denote the Weyl vector by z�. For a simple finite-
dimensional module L, denote by hwtL the “�-twisted highest weight of L” i.e.

hwtz†L D � C z�;

where � is the highest weight of L with respect to z†. If ˇ 2 z† is isotropic and rˇ is the
corresponding odd reflection, then

hwtrˇ z†L D

´
hwtz†L if .hwtz†Ljˇ/ ¤ 0;

hwtz†LC ˇ otherwise:

Using this procedure, one can compute hwtz†L.�/ recursively. The character formula in Corol-
lary 4.8.1 allows to give the following formula for hwtz†L.�/ for t .�/ D 1; 2.

4.9.1. Corollary. Consider the partial order z> on h� given by � z> � if � � � 2 N z†.
View KW.�/ as an element of Rz†.

(i) In the osp-case with t .�/ D 1; 2, the weight hwtz†L.�/ is a unique maximal element in
supp KW.�/ with respect to the partial order z>.

(ii) In the osp-case with t .�/ D 0, the same holds if ın ˙ "m 2 z†.

(iii) In the gl-case, �C � is a unique maximal element in supp KW.�/ with respect to the
partial order >.

Proof. Assertions (i), (ii) follow by induction on k�kgr if we combine Corollary 4.8.1
with (4.3). Similarly, (iii) follows by induction on k�kgr from Corollary 4.8.1 and the fact that
d
�;�
< ¤ 0 implies � < �.
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5. Proof of formulas (4.4)

The proof of (4.4) follows the plan explained in [20, Section 3]. In Sections 5.1, 5.2
below, we recall the main constructions of [20].

5.1. Marked graphs. Consider a directed graph .V;E/, where V and E are at most
countable, where the set of edges E is equipped by two functions: bWE ! Z and a function �
from E to a commutative ring.

We say that �WV ! N and �WV ! Z define an N-grading and a Z-grading, respectively,
on this graph if, for each edge � e

�! �, one has �.�/ < �.�/.

5.1.1. For a path

P ´ �1
e1
�! �2

e2
�! �3 �! � � �

es
�! �sC1;

we define

length.P /´ s; �.P /´

sY
iD1

�.ei /:

We call the path P decreasing and increasing if

b.e1/ > b.e2/ > � � � > b.es/ and b.e1/ < � � � < b.es/;

respectively. We consider a path P D � (with one vertex and zero edges) as a decreasing/
increasing path of zero length with �.P / D 1.

5.1.2. Definition. We call two functions b; b0WE ! Z decreasingly equivalent if, for
each path �1

e1
�! �2

e2
�! �3, one has

b.e1/ > b.e2/ ” b0.e1/ > b
0.e2/:

5.1.3. Observe that two decreasingly equivalent graphs have the same set of decreasing
paths.

5.1.4. We denote the set of decreasing and increasing paths from � to � by P>.�; �/

and P<.�; �/, respectively.
Let .V;E/ be a Z-graded graph with a finite number of edges between any two vertices.

Notice that, in this case, the number of paths between any two vertices is finite.
We introduce the square matrices A<.�/ D .a<

�;�
/�;�2V and A>.�/ D .a>

�;�
/�;�2V by

a>�;� ´
X

P2P>.�;�/

�.P /; a<�;� ´
X

P2P<.�;�/

.�1/length.P /�.P /:

Since the graph is Z-graded, these matrices are lower-triangular with a>
�;�
D a<

�;�
D 1. The

following lemma is proven in [20, Section 3.4] (the proof is similar to one in [24, Theorem 4]).

5.1.5. Lemma. Let .V;E/ be a Z-graded graph with a finite number of edges between
any two vertices. Assume that bWE ! Z satisfies the following property:

(BB) for each path �1
e1
�! �2

e2
�! �3, one has b.e1/ ¤ b.e2/.

Then A>.�/ � A<.�/ D A<.�/ � A>.�/ D Id.
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5.2. Graphs y�
�

st and ��st . We take g´ gl.mjn/ and fix a central character �. We
define y��st and its subgraph ��st similarly to [20].

5.2.1. Graph y�
�

st . Let y��st be a graph with the set of vertices V ´ ƒ
�
st and the follow-

ing edges: if
K
�;�

p.i/;p.i�1/
¤ ı�;�

(where ı�;� is the Kronecker symbol), we join �; � by the edge of the form �
e
�! � with

b.e/ D i . The graph ��st is obtained from y��st by removing the edges of the form �
e
�! � with

b.e/ � tail.�/. For the core-free case, ƒ�st D ƒ
�, and we denote the resulting graphs by y��

and ��, respectively.
We denote by P>.�; �/ the set of decreasing paths from � to � in the graph ��st .
By Section 4.5.5, if � e

�! � is an edge in y��st and in ��st , then � is obtained from � by
a move and a non-tail move, respectively, of weight s, and for i ´ b.�I �/ D b.e/, one has

K
�;�

p.i/;p.i�1/
D zs:

In particular, y��st does not have multi-edges and is Z-graded with respect to k�k.

5.2.2. Take � 2 ƒ� with � ¤ �. By Lemma 4.5.6 (i) and Section 4.5.5,

(5.1) K
�;�

p.i/;p.i�1/
.�1/ D .�1/k�k�k�kC1

if y��st contains an edge � e
�! � with b.e/ D i and

K
�;�

p.i/;p.i�1/
D 0

otherwise (in particular, if � is not dominant). By Lemma 4.5.6 (ii), the graph ��st is N-graded
with respect to k�kgr and satisfies the following condition:

(Tail) for each edge � e
�! � in ��st , one has tail.�/ � b.e/.

This condition implies the following important property: a decreasing path P in y��st lies in ��st
if and only if the last edge of P lies in this graph. Using this property, (4.1) and (5.1), we
obtain, for � 2 ƒ�st and � 2 ƒCmjn,

(5.2) K�;�g;p�
.�1/ D .�1/k�k�k�k

X
P2P>.�;�/

.�1/length.P /

(see [20, Section 3.5] for details). For K�;�
g;b
.�1/, one has a similar formula in terms of the

decreasing paths in y��st .

5.2.3. Let E be the set of edges in ��st . We introduce b0WE ! Z by

b0.�
e
�! �/´ b0.�; �/:

One readily sees that b and b0 are decreasingly equivalent. We denote by P>
�;�

the number of
paths from � to � in ��st which are increasing with respect to b0.

Moreover, b0 satisfies property (BB). Using Lemma 5.1.5, we conclude that, for a stable
weight �, one has

chL.�/ D
X

�2ƒ
C
mjn

.�1/k�k�k�kd
�;�
< E�;

where d�;�< is the cardinality of P>
�;�

.
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5.2.4. Notice that ��st coincides with the “stable part” (the full subgraph corresponding
to the stable vertices) of the component D�g and that b0 corresponds to the marking in this
graph. This completes the proof of (4.4).

5.3. Examples. Consider the core-free case: g D gl.r jr/ and �� D �0.

5.3.1. Case r D 1. In this case, E� D chL.�/ D e�.

5.3.2. Case r D 2. Set ˇ1´ "1 � ı2, ˇ2´ "2 � ı1.
The weights � 2 ƒC

2j2
with �� D �0 are of the form

s.ˇ1 C ˇ2/C iˇ1 for s 2 Z; i 2 Z�0I

we denote such weight by .sI i/. The diagram of .sI i/ has symbols � at the positions s and
s C i C 1. One has k.sI i/kgr D i and tail.sI i/ D 1C ıi0.

The graph Dg is described in Examples 4.6.5. The decreasing paths are the paths of
length at most 1; combining (4.2) and (5.2), we obtain

EsIi D

8̂<̂
:

chL.sI 0/ if i D 0;

chL.sI 1/C chL.sI 0/C chL.s � 1I 0/ if i D 1;

chL.sI i/C chL.sI i � 1/ if i > 1:

For j > 0, a vertex .sI j / can be reached by increasing paths from vertices .sI i/ for 0 � i � j
and from a vertex .s � 1I 0/; in both cases, the path is unique; this gives

chL.sI j / D .�1/jEs�1I0 C .�1/
j�i

jX
iD0

EsIi ;

schL.sI j / D E�s�1I0 C

jX
iD0

E�sIi :

5.4. Comparison with other character formulas. For the gl.2j2/-case, a weight .s; i/
is a Kostant weight only if i D 0; thus the Kac–Wakimoto character formula does not hold for
L.sI i/ with i ¤ 0. By [12], the restriction of any L.s; i/ for i > 0 is a sum of four simple
gl0-modules, so the character of L.s; i/ is a sum over four Weyl character formula terms
for gl0. Any gl.2j2/-module is always partially disconnected (PDC) in the sense of [9]. For
PDC weights, the authors establish the following character formula:

e�R � chL.�/ D
.�1/j.�

�/*���jS�

t�
JW

�
e.�

�/*Q
ˇ2S�

.1C e�ˇ /

�
;

where we refer to [9] for the definitions. The number t� is two for .s; 0/ and one for .s; i/,
i > 0. However, already for gl.3j3/, there are simple modules which are not PDC.

The Su–Zhang formula [46] expresses the character in terms of KW.�; S/, where S is
chosen to be maximal (the cardinality of S is equal to the atypicality of L), whereas we take S
with cardinality equal to tail.L/.
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6. Euler characters for gl.mjn/

In this section, we define tail.�/ and the �� which appeared in (iv) in Section 1.2 for
the gl.mjn/-case. In addition, in Corollary 6.5, we deduce property (i) of Section 1.2. In this
section, g´ gl.mjn/.

6.1. The set ƒ�mjn. Recall that wt.diag.�// D �C �; see Section 3.3.3.

6.1.1. We denote by ƒ� the set of diagrams with the following properties:

� at most one position contains more than one of the symbols>;<;� and, if such a position
exists, it contains �i for i > 1 with no symbols � which precede this position;

� the symbol ı appears between two leftmost positions containing �.

For instance, ƒ� contains <ı>�2>ı� and all weight diagrams with atypicality at most
one; ƒ� does not contain �>�, ��, �2� and ��2. We denote by ƒ�mjn the subset of the
diagrams corresponding to gl.mjn/ (containing m symbols > and n symbols <, where � is
counted as > and as <). We identify ƒ�mjn with its image wt.ƒ�/ in ƒ�mjn.

We will use a natural one-to-one correspondence �! �� between ƒCmjn and ƒ�. It is
more convenient to describe the inverse map, which can be done as follows. Take a diagram
f � 2 ƒ

�
mjn and the weight ��´ wt.f �/. We construct a “usual weight diagram” f by the

following procedure: if f � has a position containing �i for i > 1, we move i � 1 symbols �
from this position to the i � 1 first non-occupied positions to the left, for instance,

(6.1) f �´ ı>ı<>ı�3>ı�ı 7! ı>�<>��>ı�ı µ f:

Taking � 2 ƒCmjn such that diag.�/ D f , we obtain a one-to-one correspondence � 7! ��

between ƒCmjn and ƒ�mjn. For example, for gl.2j4/, we have

f ´ diag.0/ D �2��<<; f � D �2ı�2<<; 0� D �ı3 � 2ı4I

note that 0� is the Weyl vector for ."ı/2ı2 D †L.0/; see Corollary 6.1.3 below.
If � is a stable weight with tail.�/ � 1, then �� D �C �.

6.1.2. For a diagram f � 2 ƒ�, consider the leftmost position containing the symbol �;
by above, this position contains �i , and we set i ´ tail.f �/; if f � does not contain �, we set
tail.f �/ D 0.

If � is a stable weight, then we have tail.�/ D tail.f �/; see the above example. For each
� 2 ƒCmjn, we set tail.�/´ tail.f �/. For example, tail.�/ D 3 if diag.�/ D f as in (6.1).

6.1.3. Corollary. The following statements hold:

(i) if � is a stable weight, then �� D �C �L (see Proposition 4.3 for notation);

(ii) one has tail.�/ D tail.howl.�//;

(iii) � is a Kostant weight if and only if tail.�/ is equal to the atypicality of �.

6.1.4. Take f � 2 ƒ� and set s´ tail.f /, ��´ wt.f �/. Our goal is to describe an
iso-set S�� of cardinality s which is orthogonal to ��. If s D 0, then S�� D ;. If s ¤ 0, let y0
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be the leftmost position in f � which contains �; then f �.y0/ D �s and we have

.��j"i / D .�
�
jıj / � y0 for i D p C 1; : : : ; p C s and j D q C 1; : : : ; q C s:

We set
Sf � ´ ¹"pCi � ıqCiº

s
iD1; †f � ´ ıq"p."ı/sın�s�q"m�s�p:

Notice that Sf � � †f � .
For example, for f D ��>>, we have f � D ı�2>> with Sf � D ¹"3 � ı1; "4 � ı2º

lying in †f �"2."ı/2. For f as in (6.1), we have

Sf � D ¹"3 � ı2; "4 � ı3; "5 � ı4º and †f � D ı"
2."ı/3ı"2I

see Section 6.2 below for the additional examples.
For � 2 ƒCmjn with f ´ diag.�/, we set S�� ´ Sf � and KW.�/´ KW.��; S��/.

6.1.5. Example (Stable weight �). Let � 2 ƒCmjn be a stable weight with f ´ diag.�/.
In this case, the weight diagram of �� starts from �s , so ps D m and q D 0. Therefore,

S�� D ¹"m�sCi � ıiº
s
iD1; †f � D †L.�/

(where †L.�/ is introduced in Proposition 4.3). Observe that †L is obtained from † by odd
reflections with respect to the roots of g�; these reflections do not change the highest weight
of L, so the highest weight of L with respect to †L is �. It is easy to see that �� D �C �L.
Using Proposition 4.3, we get

sŠRe�E� D KW.�/ D .�1/Œ
s
2
� KW.��; Ss/:

6.1.6. Remark. Using Section 4.9, it is not hard to show that the weight �� is always
the �-twisted highest weight of L.�/ with respect to †f � .

6.1.7. Remark. In the osp-case, the weight �� D �C � has a “vertical tail” (diag.�/
has �s in the zero position); in the gl-case, diag.�/ has a “horizontal tail” and the diagram of
�� has a “vertical tail” of the same size.

6.2. Examples. In the examples below, we will use the notation E�
f
;L.f / for E�

�
;L.�/

with diag.�/ D f .

6.2.1. Consider the gl.3j3/-module L.ı��ıı�/. Formula (1.3) gives

chL.ı��ıı�/ D Eı��ıı� � Eı��ı�ı C Eı���ıı � 2E���ııı;

Re�Eı��ıı� D
1

2
KW.ıı�2ıı�I ¹"2 � ı1I "3 � ı2º/; †ıı�2ıı� D "."ı/

2ı;

Re�Eı��ı�ı D
1

2
KW.ıı�2ı�ıI ¹"2 � ı1I "3 � ı2º/; †ıı�2ı�ı D "."ı/

2ı;

Re�Eı���ıı D
1

6
KW.ııı�3ııI ¹"1 � ı1I "2 � ı2I "3 � ı3º/; †ııı�3ıı D ."ı/

3;

Re�E���ııı D
1

6
KW.ıı�3ıııI ¹"1 � ı1I "2 � ı2I "3 � ı3º/; †ıı�3ııı D ."ı/

3:
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6.2.2. Consider the gl.5j4/-module L´ L.>ı�<�>ıı�/.
One has howl.>ı�<�>ıı�/ D ı��ıı�. Formula (1.3) gives

chL D E>ı�<�>ıı� � E>ı�<�>ı� C E>ı�<�>� � 2E>��<�>;

Re�E>ı�<�>ıı� D
1

2
KW.>ıı<�2>ıı�I ¹"2Ci � ı1Ciº

2
iD1/;

†>ıı<�2>ıı� D ı"
2."ı/2ı";

Re�E>ı�<�>ı� D
1

2
KW.>ıı<�2>ı�I ¹"2Ci � ı1Ciº

2
iD1/;

†>ıı<�2>ı� D ı"
2."ı/2ı";

Re�E>ı�<�>� D
1

6
KW.>ıı<ı>�3; ¹"i � ı1Ciº

3
iD1/;

†>ıı<ı>�3 D ı."ı/
3"2;

Re�E>��<�> D
1

6
KW.>ı<�3>; ¹"1Ci � ı1Ciº

3
iD1/;

†>ı<�3> D ı"."ı/
3":

6.3. Tail conjecture. Consider the set of �-twisted highest weights of L´ L.�/,

Hwt.L/´ ¹hwt†0 L j where †0 is a base of �º:

For each � 2 ƒmjn, let diag.�/ be the weight diagram of � constructed by the same
rules as in Section 3.3 (even though � is not always in ƒ�mjn); consider the leftmost position
containing the symbol �, and let tail0.�/ be the number of � in this position. In particular, for
� 2 ƒ�, tail0.�/ is the size of the “vertical tail” of the diagram.

6.3.1. Conjecture. tail.�/ D max�2Hwt.L.�// tail0.�/.

6.3.2. Remark (The osp-case). For the osp-case, we define tail0.�/ to be the number
of � in the zero position.

6.4. Translation functors and KW.�/. Retain notation of Section 4.7.

Lemma. Take � 2 ƒmjn. Let a 2 Z be such that exactly one of the positions a; aC 1
in core.�/ is empty.

(i) .Ta;aC1.�//� D Ta;aC1.��/.

(ii) For �0 D Ta;aC1.��/, one has ‚V�0;��.KW.�// D KW.Ta;aC1.�//.

Proof. For (i), note that .Ta;aC1.f //� D Ta;aC1.f �/ except for the case a D y0.f /
and f .aC 1/ D ı; in the latter case, the positions a; aC 1 in core.f / are empty. Combining (i)
and the formula .��/� D .��/, we reduce (ii) to the case when � D �� (i.e. � 2 ƒ�). We set
S ´ S�. We will consider the case when

core.�/.a/ D >; core.�/.aC 1/ D ı

(other cases are similar). In this case, V D Vst.
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Using the formula P�.KW.�// D KW.�/ and W -invariance of chV , we get

‚V�;�0.KW.�// D P�0

�
chV � JW

�
e�Q

ˇ2S .1C e
�ˇ /

��
D P�0

�
JW

�
e� chVQ

ˇ2S .1C e
�ˇ /

��
;

which allows to rewrite (ii) in the following form:

(6.2) P�0

�
JW

�
e� chVQ

ˇ2S .1C e
�ˇ /

��
D KW.Ta;aC1.�//:

Recall that S D ¹"pCi � ıqCiºsiD1 for s´ tail.�/ and some p; q. Set

A´
®

 2 ¹"iº

m
iD1 [ ¹ıj º

n
jD1 j .
; S/ D 0

¯
and Si ´ S n ¹"pCi � ıqCiº for i D 1; : : : ; s. Using

chV D
mX
iD1

e"i C

nX
jD1

eıj ;

we get

JW

�
e� chVQ

ˇ2S .1C e
�ˇ /

�
D

X

2A

JW

�
e�C
Q

ˇ2S .1C e
�ˇ /

�
C

sX
iD1

JW

�
e�C"pCiQ

ˇ2Si
.1C e�ˇ /

�

D

X

2A

KW.�C 
 IS/C

sX
iD1

KW.�C "pCi ISi /:

Using (A.1), we obtain

P�0

�
JW

�
e� chVQ

ˇ2S .1C e
�ˇ /

��
D

X

2B

KW.�C 
; S/C
X

2B0

KW.�C 
; Si /;

where B ´ ¹
 2 A j core.�C 
/ D Ta;aC1.core.�//º and

B0´ ¹"pCi j i D 1; : : : ; s such that core.�C "i / D Ta;aC1.core.�//º:

Denote by f the weight diagram of �. Recall f .a/ D > and f .aC 1/ D �j for some i .
Since � 2 ƒ�, f has a “vertical tail” at the position y ´ y0.f / (so j D 1 if aC 1 ¤ y).
Since f .a/ D >, there exists a unique k such that .�; "k/ D a. Note that

core.�C "i / D Ta;aC1.core.�//

implies i D k and core.�C ıi / D core.�/ implies .�; ıi / D �a � 1. Note that "k 2 A, so
B0 D ;. We get

P�0

�
JW

�
e� chVQ

ˇ2S .1C e
�ˇ /

��

D

´
KW.�C "k; S/ if aC 1 D y;

KW.�C "k; S/C
P
i W.�;ıi /D�a�1

KW.�C ıi ; S/ otherwise:
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If f .aC 1/ D ı, then we have .�; ıi / ¤ �a � 1 for all i and �C "k D Ta;aC1.�/ with
S�C"k D S ; thus KW.�C "k; S/ D KW.Ta;aC1.�//, and this gives (6.2).

Consider the case f .aC 1/ D � with aC 1 ¤ y. By Lemma A.4.4 (ii), it follows that
KW.�C "k; S/ D 0 (since .�C "k; "k�1 � "k/ D .S; "k�1 � "k/ D 0). As aC 1 ¤ y, there
is a unique i such that .�; ıi / D �a � 1. One has �C ıi D Ta;aC1.�/ and S�Cıi D S , so
(6.2) holds.

In the remaining case, aC 1 D y. Then f .aC 1/ D �s and k D p C s C 1. Note that
.�C "k; "i / D aC 1 if and only if i D p C 1; : : : ; p C s C 1 and .�C "k; ıi / D �a � 1 if
and only if i D q C 1; : : : ; q C s. Set

�´ .aC 1/

 
sC1X
iD1

"pCi �

sX
iD1

ıqCi

!
:

Let
W� Š SsC1 � Ss � W

be the group of permutations of "pC1; : : : ; "pCsC1 and of ıqC1; : : : ; ıqCs . Notice that �C "k
is W�-invariant. Choosing any set of representatives in W=W�, we have

KW.�C "k; S/ D JW

�
e�C"kQ

ˇ2S .1C e
�ˇ /

�
D JW=W�

�
e�C"k JW�

�
1Q

ˇ2S .1C e
�ˇ /

��
:

Comparing the denominator identities for gl.s C 1js/ with respect to the bases ."ı/s" and
"."ı/s , we get

JW�

�
1Q

ˇ2S .1C e
�ˇ /

�
D JW�

�
e�

P
ˇ2S0 ˇQ

ˇ2S 0.1C e
�ˇ /

�
;

where S 0´ ¹"pC1Ci � ıqCiºsiD1. This gives

JW

�
e�C"kQ

ˇ2S .1C e
�ˇ /

�
D JW=W�

�
e�C"k JW�

�
e�

P
ˇ2S0 ˇQ

ˇ2S 0.1C e
�ˇ /

��
D JW

�
e�
0Q

ˇ2S 0.1C e
�ˇ /

�
;

where �0´ �C "k �
P
ˇ2S 0 ˇ. One readily sees that �0 D Ta;aC1.�/ and S 0 D S�0 . This

completes the proof.

6.5. Corollary. The following statements hold.

(i) Let T WF in� ��! F in�
0

be a composition of the translation functors T V�;�0 which are equiv-
alence of categories, and let ‚�;�0 WR† ! R† be the corresponding composed map. If
T .L.� � �// D L.�0 � �/, then ‚�;�0.KW.�// D KW.�0/.

(ii) For each � 2 ƒCmjn, one has tail.�/ŠRe�E� D KW.�/.

6.5.1. Denote by K.�/ the Kac module of the highest weight �. Take �0 as in Corol-
lary 6.5 (i). From [39, Theorem 5.1], it follows that T .K.�// D K.�0/. This gives the following
formula:

‚�;�0.Re
�K.� � �// D K.�0 � �/

which will be used later (this formula can be also proven as Lemma 6.4 (ii)).
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7. Euler supercharacters and the Duflo–Serganova functor

Let Sch.g/ be the ring of supercharacters of g. Recall that DSx induces for any x a homo-
morphism Sch.g/! Sch.gx/ which depends only on the rank of x. We denote this homomor-
phism by dsj , where j is the rank of x. We always assume that j > 0 (ds0 D Id).

In this section, g stands for gl.mjn/ or osp.M jN/.

7.1. Euler supercharacters. Recall that � is the involution of ZŒƒmjn� given by

�.e�/´ .�1/p.�/e�I

we extend this involution to the ring of fractions of ZŒƒmjn�. Recall that

schL.�/ D .�1/p.�/�.chL.�//:

For each � 2 ƒCmjn, set
E�� ´ .�1/p.�/�.E�/:

Using the character formulas and Remark 3.5.1, we obtain the following formulas.

7.1.1. Corollary. For � 2 ƒCmjn, one has

schL.�/ D
X

�2ƒ
C
mjn

.�1/p.���/Ck�k�k�kd
�;�
< E�� ;

where d�;�< is the number of increasing paths from � to � in Dg.
If � is stable and t ¤ 2, then schL.�/ D

P
�2ƒ

C
mjn

d
�;�
< E�� .

The main result of this section is the following theorem, which will be proven in Sec-
tion 7.3 below.

7.2. Theorem. Take � 2 ƒCmjn. If tail.�/ < j , then dsj .E�� / D 0. If tail.�/ � j , let
�0 2 ƒCm�j jn�j be such that diag.�0/ is obtained from diag.�/ by the removal the first j
leftmost symbols � (and keeping the sign if diag.�0/ requires the sign). Then

dsx.E�� / D

8̂̂̂̂
<̂
ˆ̂̂:

E��0 if tail.�/ > j;

E��0 if tail.�/ D j; g D osp.2mC 1j2n/;

E��0 if tail.�/ D j; g D osp.2j j2n/;

schK.�0/ if tail.�/ D j; g D gl.mjn/;

where K.�0/ is the Kac g0-module with the even highest weight vector of weight �0.
For osp.2mj2n/ with m > j D tail.�/, one has

dsx.E�� / D

´
E��0 if .�0/� D �0;

E��0 C E�
.�0/�

if .�0/� ¤ �0:

7.2.1. Remark. For a typical moduleN , one has DSx.N / D 0 for each x ¤ 0. If L.�/
is typical, then Re� chL.�/ D KW.�C �;;/ and

schL.�/ D E�� D .�.R//
�1

X
w2W

.�1/p.�C��w.�C�// sgnw � ew.�C�/:

By above, dsx.E�� / D 0 (since DSx.L.�// D 0). In particular, dsx.E�� / D 0 if � … ƒCmjn.
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7.2.2. Weight �0. If tail.�/ � j for osp or tail.�/ > j for gl, then

tail.�0/ D tail.�/ � j

and � 7! �0 corresponds to the “tail-cutting”: for example, for osp.13j12/ with

diag.�/ D .C/�4><�;

we have diag.�0/ D .C/�2><� for j D 2 and diag.�0/ D ı><� for j D 4; for the gl.4j4/-
case with j D 2, we have

diag.�/ D >��<��>ı : : : ; f � D >ıı<ı�4>ı : : : ;

diag.�0/ D >ıı<��>ı : : : ; .f 0/� D >ıı<ı�2>ı : : : :

7.2.3. Remark. Let j be the rank of x. We take x 2
P
ˇ2Sj

gˇ and identify gx with
a subalgebra of g as in [13, 22]. In the osp-case, �0 D �jhx ; for gl, this holds if � is stable.

7.2.4. Remark. In the osp-case, the “tail-cutting” is “reversible” (we can reconstruct
the tail if our dog is still alive): diag.�/ is obtained by adding j symbols � to the zero posi-
tion in the diagram of diag.�0/. Therefore, dsj .E�� / D dsj .E�� / ¤ 0 implies � D �. (The same
holds for the gl-case if tail.�/ > j .)

This gives the following corollary.

7.2.5. Corollary. In the osp-case, ¹E�
�
j tail.�/ � j º is a basis of the kernel of dsj .

7.2.6. Remark. Take � 2 ƒCmjn, which is assumed to be stable for the gl-case. Using
the notation of Section 4.2, we introduce

E�;i ´ R�1e�� JW

�
e�C�Q

˛2�.p.i//�1
.1C e˛/

�
; E��;i ´ .�1/p.�/�.E�;i /:

Note that E� D E�;tail.�/. Take � 2 ƒCmjn, which is assumed to be stable in the gl-case and
retain notation of Theorem 7.2. If tail.�/ � j for osp or tail.�/ > j for gl, then one has
E�
�0;tail.�/�j D E��0 . In the gl-case with tail.�/ D j , one has E�

�0;0
D schK.�0/.

7.2.7. Let � be a central character of atypicality j D rank x. Let � be the weight of
gx with the diagram equal to the diagram of �. This means that, for each � 2 ƒCmjn with
�� D �, one has � D �jhx (the diagram of � is obtained from the diagram of � by removing
all symbols �). Note that � is a typical weight, so E�� D schL.�/. We put Lcore D L.�/ in the
gl and osp.2mC 1j2n/-case and

Lcore
´

´
L.�/ if � is � -invariant;

L.�/˚ L.�/� else;

in the osp.2mj2n/-case. The notion ofLcore was first introduced in [24], but there,Lcore always
equals L.�/ and therefore differs from ours in the osp.2mj2n/ in case � is not � -invariant.

7.2.8. Extend sdim to a linear function on the Grothendieck ring Ch�.g/. Clearly, sdim
gives a linear function on Sch.g/.
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Corollary. For � 2 ƒCmjn, sdim E�
�
D sdim.L.�//core if � is a Kostant weight andL.�/

has the maximal atypicality; sdim E�
�
D 0 for other weights.

Proof. Since sdim.DSx.N //D sdimN (see [13,43]), the homomorphism dsx preserves
sdim. Take x of the maximal rank (D min.m; n/). By Theorem 7.2, dsx.E�� / D 0 if

tail.howl.�// D tail.�/ < min.m; n/:

Hence dsx.E�� / ¤ 0 implies that tail.howl.�// D min.m; n/, which means that � is a Kostant
weight and L.�/ has the maximal atypicality. Now let � be a Kostant weight, and L.�/ has
the maximal atypicality. The algebra gx is either a Lie algebra (gljm�nj, o2.m�n/, o2.m�n/,
sp2n�2m or osp.1j2.n �m// and Lcore is a gx-module with schLcore D E��0 except for the
case when gx D o2.m�n/ ¤ 0 and schLcore D E��0 C E�

.�0/�
.

7.2.9. Corollary. Take � 2 ƒCmjn. If the rank of x is equal to the atypicality of ��, then

DSxL.�/ D …k�k�k�0kCp.���0/.Lcore/˚m.�/;

where m.�/ is equal to the number of increasing paths from the Kostant weights to �.

7.3. Proof of Theorem 7.2. Using (2.1), we reduce the assertions to the case j ´ 1.
Set s´ tail.�/.

7.3.1. First, we consider the osp-case and the gl-case with a stable weight �. Take
ˇ0 2 S1 (ˇ0 D ˙."m � ın/ for the osp-case and ˇ0D "m � ı1 for gl.mjn/). We take x 2 gˇ0 .
Set g0´ DSx.g/. By [13] (and [40]), we can identify g0 with a subalgebra of g such that h \ g0

is a Cartan subalgebra of g0 and a base †0 for �.g0/ satisfies

(7.1) �C D �C.†0/
a
¹ˇ0º

a
B
a
¹˛ C ˇ0 j ˛ 2 Bº

for some B � �C. Let �0 and R0 be the Weyl vector and denominator, respectively, for g0 with
respect to †0. As in Section A.6, we define

pr.e�/ D c�e�jh0 ;

where c� ´ e��i.�jıq/ with q D n for the osp-case and q D 1 for the gl-case .ˇ0jıq/ ¤ 0.
By (7.1), one has

� � �0 2 Zˇ0; pr.R.1C e�ˇ0// D R0:

By Section A.6.1, we have

dsx.E�� / D .� pr�/.E�� / D .�1/
p.�/.� pr/.E�/;

which allows to rewrite the required formula as follows: pr.E�/ D 0 if s D 0 and

.�1/p.�/�p.�
0/ pr.E�/

D

8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

E�0 if s > 1;

E�0 if s D 1; g D osp.2mC 1j2n/;

E�0 if s D 1; g D osp.2j2n/;

chK.�0/ if s D 1; g D gl.mjn/;

E�0 for osp.2mj2n/; m > s D 1; .�0/� D �0;

E�0 C E�
.�0/�

for osp.2mj2n/; m > s D 1; .�0/� ¤ �0:

(7.2)
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In the gl-case, take �� as in Section 6.1; in the osp-case, we have �� D �C �. Using Proposi-
tion 4.3, we get

js pr.E�/ D pr
�
R�1e�� KW.��; Ss/

�
D c�� � .R

0e�
0

/�1 pr
�
.1C e�ˇ0/KW.��; Ss/

�
:

For s D 0, formula (A.4) gives pr.E�/ D 0 as required. From now on, we assume s > 0.
The pair .��; Ss/ satisfies the assumptions of Proposition A.6.3; using this proposition and
taking into account that, for the gl-case,

R0e�
0

chK.�0/ D KW.�0 C �0;;/;

we see that (7.2) holds up to a non-zero scalar a� which can be computed directly. Instead of
performing such computation, we can employ the following reasoning. One has

sch DSx.L.�// D dsx.E�� /C
X
�<�

d
�;�
< dsx.E�� /:

By above, dsx.E�� / is proportional to E��0 (or to E��0 C E�
.�0/�

for osp.2mj2n/), where
�0´ �jh0 . By Corollary 4.9.1,

supp.E��0/ � �
0
�N†0;

where E��0 is viewed as element of R†0 ; see Section A.2. The inequality � < � means that
� � � 2 N†, which implies �0 2 �0 �N†0 by (7.1). Hence the coefficient of e�

0

in dsx.E�� /
is equal to sdim DSx.L.�//�0 . Using the same reasoning for the formula

schL.�0/ D
X
�0

d
�0;�0

< E��0 ;

we conclude the coefficient of e�
0

in E��0 is 1. Combining .�; ˇ0/ D 0 and ˇ0 2 †, one read-
ily sees that DSx.L.�//�0 D C, so sdim DSx.L.�//�0 D 1. Hence the coefficients of e�

0

in
dsx.E�� / and in E��0 are equal, so a� D 1.

7.3.2. Consider the case when j D 1 and g D gl.mjn/. If � is stable, the required
formula is established in Section 7.3.1. Using the fact that DSx commutes with translation
functors, we deduce from the stable case the required formula for the non-stable case taking
into account Corollary 6.5 and Section 6.5.1 for s > 1 and s D 1, respectively.

7.4. Examples. In the examples below, we will use the notation E�
f
;L.f / for E�

�
;L.�/

with diag.�/ D f . We will demonstrate the compatibility of the formulas in Theorem 7.2 with
the descriptions of DSx.L/ given in [21, 26].

7.4.1. One has

schLgl.3j3/.0/ D E����1; ds1.E����1/ D E���1 D schLgl.2j2/.0/;

schLgl.4j3/.0/ D E����>1; ds1 E����>1 D E���>1 D schLgl.3j2/.0/:

7.4.2. Consider the osp.7j6/-module

L´ L.C�2ı�/:
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Combining the Gruson–Serganova formula and Theorem 7.2, we obtain

schL D E�
C�2ı�

C E�
��2ı�

C E�
C�2�

C E�
��2�

C 2E�
C�3
C 3E�

��3
;

ds1.schL/ D E�C�ı� C E���ı� C E�C�� C E���� C 2E
�

C�2
C 3E�

��2
D schL.C�ı�/;

ds2.schL/ D E�ıı� C E�ı� C 2E
�
C� C 3E

�
��; ds3.schL/ D 3:

The results of [21] give DS1.L.C�2ı�// D L.C�ı�/,

DS2.L.C�2ı�// D DS1.L.C�ı�// D L.C�/˚ L.ıı�/

and DS3.L.C�2ı�// D C˚3. The Gruson–Serganova formula gives

schL.C�/ D E�C� C E���; schL.ıı�/ D E�ıı� C E�ı� C E�C� C 2E
�
��;

which establishes the compatibility for ds2.

7.4.3. Consider the gl.2j2/-module

L."1 � ı2/ D L.�0�/ D …Ad.psl.2j2//:

One has
schL.�0�/ D E��0� C E���1 C E���0;

ds1.schL.�0�// D schK.0�/C E��1 C E��0;

ds2.schL.�0�// D 2

and DS1.Ad.psl.2j2// D Ad.psl.1j1//, DS2.Ad.psl.2j2// D …C˚2. This gives

DS1.L.�0�/ D L."1 � ı1/˚ L.ı1 � "1/ D L.0�/˚ L.�0/:

Notice that schL.�0/ D E�
�0 and

schL.0�/ D E�0� D schK.0�/C E��0

since L.0�/ Š K.0�/=….L.�0//.

7.4.4. Consider the gl.3j2/-module L.�ı>�/ (note that howl.�ı>�/ D �ı�; see the
previous example). In all formulas in this example, we assume that the symbol > has the same
coordinate. One has

DS1.L.�ı>�// D ….L.�ı>//˚ L.>�/

and DS2.L.�ı>�// D …C˚2. Theorem 7.2 gives

schL.�ı>�/ D E��ı>� � E���> � E���ı>;

ds1.schL.�ı>�// D schK.>�/ � E��> � E��ı>;

ds2.schL.ı�ı�// D �2:

We have the following formulas for the gl.2j1/-modules:

schL.�ı>/ D E�ı> and schK.>�/ D E��> C E�>�

since L.>�/ Š K.>�/=L.�>/.
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7.4.5. Consider the gl.3j3/-module L.ı��ıı�/; see Section 6.2.1. Using (1.3) and
Theorem 7.2, we obtain

schL.ı��ıı�/ D E�ı��ıı� C E�ı��ı�ı C E�ı���ıı C 2E
�
���ııı;

ds1.schL.ı��ıı�// D E�ıı�ıı� C E�ıı�ı�ı C E�ıı��ıı C 2E
�
ı��ııı;

ds2.schL.ı��ıı�// D schK.ıııı�/C schK.ııı�ı/C E�ııı�ıı C 2E
�
ıı�ııı;

ds3.schL.ı��ıı�// D 3 schK.ıııııı/ D 3:

On the other hand, the results of [26] give

DS1.L.ı��ıı�// D L.ıı�ıı�/˚ L.ı��ııı/;

DS2.L.ı��ıı�// D L.ııııı�/˚ L.ıı�ııı/˚2;

DS3.L.ı��ıı�// D C˚3:

Let us check that the above formulas are compatible. Using (1.3), we get

schL.ı��ııı/ D E�ı��ııı; schL.ıı�ıı�/ D E�ıı�ıı� C E�ıı�ı�ı C 2E
�
ı��ııı;

which establishes the compatibility for ds1. For the gl.1j1/-modules, we have

schL.ıı�ııı/ D E�ıı�ııı:

Taking R0 and �0 to be the Weyl denominator and the Weyl vector, respectively, for gl.1j1/ and
�´ wt.ıııı�/, we get

�.R0e�
0

/
�
schK.ıııı�/C schK.ııı�ı/C E�ııı�ıı

�
D JW

�
e� C e��ˇ C

e��2ˇ

1 � e�ˇ

�
D JW

�
e�

1 � e�ˇ

�
D �.R0e�

0

/E�ııııı� D �.R
0e�
0

/ schL.ııııı�/I

this establishes the compatibility for ds2.

8. Superdimensions and modified superdimensions

We discuss modified nontrivial trace and dimension functions on the thick ideal Ik gen-
erated by the irreducible representations of atypicality k, and how they can be calculated
explicitly by means of the Duflo–Serganova functor. We do this for the osp.mj2n/ and the
OSp.mj2n/-case. For the gl-case, see [26].

8.1. The core of a block. Recall that zF D Rep.SOSp.mj2n//. Exactly as for gl.mjn/

(see Section 2.1), we have a decomposition

zzF D zF ˚… zF

into two subcategories which are equivalent by the parity shift …. We use the notation

zF 0 D zF 0.mj2n/ D Rep.OSp.mj2n//
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for the finite-dimensional algebraic representations of OSp.mj2n/. As for zF , the category
decomposes zF 0 D F 0 ˚…F 0 into two equivalent subcategories.

The irreducible typical module Lcore (as defined in Section 7.2.7) attached to a block
of atypicality k in zF is both an osp.m � 2kj2n � 2k/ and OSp.m � 2kj2n � 2k/-module.
Therefore, the core can be defined in the zF 0-case as well.

The DSx functor on zF induces a functor

DSx W zF 0.mj2n/! zF 0.m � 2kj2n � 2k/;

where k D rk.x/ (see [11] for details).
If the rank of x equals def.osp.mj2n//, we obtain

� gx D o.m � 2nj0/, m > 2n;

� gx D sp.0j2n � 2m/, 2n > m even;

� gx D osp.1j2n � 2m/, 2n �m odd.

In the OSp-case, we obtain representations of the groupsGx DO.m� 2n/, Sp.2n� 2m/
(considered as odd) and OSp.1j2n � 2m/.

8.2. Superdimensions. If we apply DSx to an irreducible representation L.�/ with
atypicality equal to rk.x/, then DSx.L.�// does not depend on the choice of x. Indeed, the
induced morphism on the supercharacter ring does not depend on x and DSx.L.�// is semi-
simple. We simply write DSk in this case.

The parity rule of [21] yields

DSk.L.�// 2 …
khowl.�/k F .gx/

and hence
DSk.L.�// D …

khowl.�/k.Lcore/˚m.�/

for the positive integerm.�/ defined in Corollary 7.2.9 (the number of increasing paths from �

to the weights with adjacent �’s).

8.2.1. OSp-modules. We first consider g D osp.2mj2n/. By [14, Proposition 4.11],
the simple OSp.2mj2n/-modules are either of the form L.�/ if � 2 ƒCmjn is � -invariant or
L.�/˚ L.�� /. Thus the simple OSp.2mj2n/-modules are in one-to-one correspondence with
the unsigned osp.2mj2n/-diagrams. For osp.2mC 1j2n/ and any � 2 ƒCmjn, there are two
irreducible OSp.2mC 1j2n/-modules L.�;C/ and L.�;�/ which restrict to L.�/. We will
often simply write LOSp.�/ for an irreducible representation of OSp. The diagram

F 0.G/

zF .g/

F 0.Gx/

DSx

Res

DSx

commutes for any x since DSx.L.�// is in F 0.Gx/. It follows from this diagram that the multi-
plicity of Lcore in DSx.LOSp.�/ is the same as for Res.LOSp.�// if the restriction is irreducible
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and is twice the multiplicity of DS.L.�// if the restriction decomposes into two irreducible
summands.

Since DS is a symmetric monoidal functor, it preserves the superdimension.

8.2.2. Corollary. For L.�/ 2 zF of atypicality k,

sdimL.�/ D .�1/khowl.�/km.�/ sdimLcore:

In particular, sdimL.�/ ¤ 0 if and only if � is maximal atypical.

8.3. Modified traces. In this section, zF means either zF or zF 0 unless otherwise speci-
fied. If at.L.�// < n, sdim.L/ D 0. However, one can define a modified superdimension for L
as follows. Recall that a thick (tensor) ideal I in zF is a subset of objects which is closed under
tensor products with arbitrary objects and closed under direct summands. A trace on I is by
definition a family of linear functions

t D ¹tV WEnd zF .V /! kº;

where V runs over all objects of I such that following two conditions hold.

(i) If U 2 I and W is an object of zF , then for any f 2 End zF .U ˝W /, we have

tU˝W .f / D tU .tR.f //

for the right trace trR. /.

(ii) If U; V 2 I , then for any morphisms f WV ! U and gWU ! V , we have

tV .g ı f / D tU .f ı g/:

For such a trace on I , we define

dimI .X/ D tX .idX /; X 2 I;

the modified dimension of .I; t/. For an object J 2 zF , let IJ be the thick ideal generated
by J . By Kujawa [33, Theorem 2.3.1], the trace on the ideal IL, L irreducible, is unique up to
multiplication by an element of C.

8.4. The generalized Kac–Wakimoto conjecture. Let Ik be the thick ideal generated
by all irreducible representations of atypicality k. The ideal I0 coincides with Proj. The follow-
ing theorem was proven for gl.mjn/ by Serganova [43] and for osp.mj2n/ by Kujawa [33]. We
give a slightly different simplified proof. Moreover, we explain how to compute these modified
superdimensions.

8.4.1. Theorem (Generalized Kac–Wakimoto conjecture). The ideal Ik admits a non-
trivial modified trace function. For irreducible L.�/, the associated dimension function

dimk ´ dimIk

satisfies dimk L.�/ ¤ 0 if and only if the atypicality of L.�/ is k.

It was shown in [16, Theorem 1.3.1] that if an ideal I carries a modified trace func-
tion, all indecomposable objects in I are ambidextrous in the sense of [16]. Since the Ik
define an exhaustive filtration of zF , the conjecture implies that every simple module in zF
is ambidextrous.
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8.5. A trace on Ik. There are two different ways to see that Proj � zF 0 carries a nontriv-
ial trace function. It was proven in [17, Theorem 4.8.2] that Proj � zF has such a trace function.
This implies that Proj � zF 0 has one as well using the restriction rules of Ehrig–Stroppel and
the argument of [33].

Alternatively, it follows from [27] that Proj � zF 0 carries such a trace function. Note that
it is unique up to a scalar: any P 2 Proj satisfies hP i D Proj. Indeed, hP i � Proj is clear, and
Proj � P follows since Proj is the smallest thick ideal [11]. We denote any normalization of
this trace function by Tr0.

8.5.1. Proposition. The thick ideal Ik � zF carries a nontrivial modified trace func-
tion Trk .

Proof. Let L.�/ 2 zF . Then we have DSx.L.�// 2 zF 0 for all x by [21]. Let X 2 Ik
and f 2 End.X/. Then we define

Trk.f / D Tr0.DSk.f //:

Then DSk.X/ is typical and therefore projective. Since DSk is a symmetric monoidal functor,
this defines a trace function. We claim that it is nontrivial. For X D L.�/, we obtain

DSk.f / 2 End.…khowl.�/k.Lcore/˚m.�//:

Since the parity is either even or odd and Tr0 is nontrivial for any typical module, we compute,
for f 2 End.X/,

Trk.idL/ D Tr0DSk.L/
.idDSk.L// D m.�/Tr0

…khowl.�/kLcore.id…khowl.�/kLcore/ ¤ 0:

The same proof works for LOSp.�/.

8.5.2. Remark. It can be shown [33] that Ik is in fact generated by an arbitrary irre-
ducible representation of atypicality k. Therefore, the above trace is the unique modified trace
up to a scalar.

Since DSk.L/ D 0 for any L of atypicality less than k, we obtain, for the modified
superdimension, sdimk.X/´ Trk.idX /

8.5.3. Corollary. Let L.�/ be a representation of atypicality at most k. Then we have
sdimk.L.�// ¤ 0 if and only if at.L.�// D k.

A. Kac–Wakimoto terms and the rings R;R†0

In this section, g is gl.mjn/, osp.M jN/ or one of the exceptional Lie superalgebras
F.4/, G.3/, D.2j1; a/. We use the standard notation for the roots of g0 and denote by …0
a standard set of simple roots. In what follows, we consider only bases † of � which are com-
patible with …0, that is �C.†/0 D �C.…0/. By [40], all such bases are connected by chains
of odd reflections. In the gl and osp-cases, these bases can be encoded by words consisting of
m letters " and n letters ı.
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A.1. Notation. We denote byW the Weyl group of g0. We denote by� the set of roots
of g and set

h�int ´ ¹� 2 h� j � � w� 2 Z� for all w 2 W º;

P.g0/´ ¹� 2 h� j � � w� 2 Z�0 for all w 2 W º:

For each non-isotropic root ˛, let r˛ 2 W be the reflection with respect to ˛. For any
subset Y � W , we denote by JY the linear operator

P 7!
X
w2Y

sgn.w/w.P /;

where sgnWW ! Z2 is the standard sign homomorphism (given by sgn r˛ D �1).

A.1.1. Choice of the Weyl vector. We denote by �0 a Weyl vector of g0 which is
an element of h� satisfying r˛�0 D �0 � ˛ for each ˛ 2 …0. Note that �0 is unique if �0
spans h�, i.e. for g ¤ gl.mjn/; osp.2j2n/. We choose the Weyl vector � by the rule

�´ �0 � �1; �1 D
1

2

X
˛2�

C

1

˛:

If ˇ 2 † is isotropic and †0 D rˇ†, we have �0´ �C ˇ. Using [42] (or a short case-by-case
reasoning), we obtain � 2 h�int. We introduce

R0´
Y
˛2�

C

0

.1 � e�˛/; R1.†/´
Y

˛2�
C

1 .†/

.1C e�˛/; R.†/´
R0

R1.†/
:

Note that the following term is W -invariant and does not depend on the choice of †:

e�0��R1.†/ D
Y

˛2�
C

1 .†/

.e˛=2 C e�˛=2/:

Hence, for each †0 satisfying �C0 � �
C.†/, we have

R.†0/e�
0

D Re�; where R´ R.†/:

A.2. Rings R and R†. For a sum of the form
P
�2h� a�e

� with a� 2 Q, we define
the support by the formula

supp
�X

a�e
�
�
D ¹� 2 h� j a� ¤ 0º:

Let R† be the set consisting of the sums
P
�2h� a�e

� with a� 2 Q and such that

supp
�X

a�e
�
�
�

k[
iD1

.�i �N†/

for some k. Clearly, R† is a ring. This ring contains chN and schN for any N in the BGG-
category O.

A.2.1. Denote by R the ring of rational functions of the form P=Q, where P lies in the
group ring QŒh�� and Q is a product of the factors of the form 1˙ e�˛ for ˛ 2 �. Using the
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formula
1˙ e�˛ D 1� e�˛ C e�2˛ � e�3˛ C � � � ;

we will view the element P=Q 2 R as a series R†; we will call this series the †-expansion
of P=Q. For instance, R.†0/; R.†0/�1 2 R for any base †0 and †-expansion of R.†0/�1 is
equal to the character of a Verma module of the highest weight 0 (defined with respect to the
base †).

A.2.2. Lemma. For any base †0 satisfying �C.†0/0 D �C.†/0, one has

JW

�
e�
0Q

˛2�
C

1 .†
0/
.1C e�˛/

�
D Re�:

Proof. By above, e�0��
0

R1.†
0/ is W -invariant, so

JW

�
e�
0Q

˛2�
C

1 .†
0/
.1C e�˛/

�
D JW

�
e�
0

R1.†0/

�
D

JW .e�0/
e�0��

0
R1.†0/

:

The Weyl character formula for the trivial g0-module gives JW .e�0/ D R0e�0 . Using the above
identity R.†0/e�

0

D Re�, we obtain the required formula.

A.3. Projection P�. Let O� be the full subcategory of the category O corresponding
to a central character �. ForN 2 O, letN � be the projection ofN to O�. The character ofN �

can be expressed via chN by the following procedure.
By above, R†0 contains the terms chN;Re� chN for any module N 2 O. It is well

known that, for N 2 O�, the †0-expansion of Re� chN satisfies

supp.Re� chN/ � ¹�C � j �� D �º:

Introducing a projection P�WR†0 ! R†0 by P�
�P

a�e
�
�
D
P
�W����D�

a�e
�, we get

Re� chN �
D P�.Re

� chN/:

A.3.1. For a finite-dimensional module V , a translation functor T V�;�0 WO
� ! O�

0

is
given by T V�;�0.N /´ .N ˝ V /�

0

. By above,

Re� ch.T V�;�0.N // D ‚
V
�;�0.Re

� chN/;

where ‚V�;�0 W R†0 ! R†0 is given by

‚V�;�0
�X

a�e
�
�
´ P�0

�
chV � P�

�X
a�e

�
��
:

A.4. The terms KW.�; S /. We say that a subset S � �1 is an iso-set if S is a basis
of an isotropic subspace of h�, i.e. S is linearly independent and .S jS/ D 0.

For � 2 h�int and an iso-set S � �1 satisfying .�jS/ D 0, we set

KW.�; S/´ JW

�
e�Q

ˇ2S .1C e
�ˇ /

�
:

A.4.1. Remark. For an arbitrary weight � 2 h�, the group W should be substituted by
the “�-integral” subgroup; see [23, Section 11].
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A.4.2. Note that

KW.�; S/ �
Y
˛2�

C

1

.1C e�˛/ 2 S.h�/;

so KW.�; S/ 2 R. One readily sees that, for the †-expansion of KW.�; S/, we have

supp KW.�; S/ � W.� C ZS/:

By [31, 44], ���� D ���� for each � 2 � C ZS . Thus, for P� introduced in Section A.3, we
have

(A.1) P�.KW.�C �; S// D ı�;�� KW.�C �; S/:

A.4.3. For g D gl.mjn/; osp.M jN/, one has S D ¹˙"pi ˙ ıqi º
t
iD1, where pi ¤ pj ,

qi ¤ qj for i ¤ j . We denote the intersection of Z�with the span of "p1 ; : : : ; "pt ; ıq1 ; : : : ; ıqt
by h.S/�. Notice that S spans a maximal isotropic subspace in h.S/�.

A.4.4. Lemma. The following statements hold:

(i) wKW.�; S/ D sgn.w/KW.�; S/ D KW.w�;wS/;

(ii) KW.�; S/ D 0 if there exists ˛ 2 �0 such that .˛jS/ D .˛j�/ D 0;

(iii) KW.� � ˇ; S/ D KW.�; .S [ ¹�ˇº/ n ¹ˇº/ for each ˇ 2 S ;

(iv) in the osp-case, if .�jh.S/�/ D 0, then KW.� � ˇ; S/ D �KW.�; S/ for each ˇ 2 S .

Proof. (i), (iii) are straightforward and (ii) follows from (i) for w´ r˛. For (iv), note
that

KW.�; S/C KW.� � ˇ; S/ D JW

�
e� C e��ˇQ
ˇ2S .1C e

�ˇ /

�
D KW.�; S n ¹ˇº/:

Since ˇ D ˙"i ˙ ıj for some i; j , we have .�jıj / D .S n ¹ˇºjıj / D 0, so (iii) gives

KW.�IS n ¹ˇº/ D 0

as required.

A.4.5. Denominator identity. Let S be an iso-set of the cardinality min.m; n/ and let
†0 be a base of � containing S (for instance, †0 D † for the osp-case and †0 corresponding
to ."ı/mın�m for n � m). By [19], one has KW.�0; S/ D jRe�, where j is a certain integer
(j is the order of the “smallest factor” in W , for instance, j D mŠ for gl.mjn/ with m � n).

Consider the case g D gl.sjs/ or osp.2s C t j2s/. Then we have j D sŠ for gl.sjs/,
j D max.2s�1sŠ; 1/ for osp.2sj2s/, and j D 2ssŠ for osp.2s C t j2s/ with t D 1; 2. Let †0

be the base corresponding to the word ."ı/s; this base contains an iso-set ¹"i � ıiºsiD1. Note
that w�0 D �0 for any w 2 Ss � Ss; using Lemma A.4.4 (i), we obtain

jRe� D KW.�0; ¹"i � ıiº
s
iD1/ D .�1/

Œ s
2
� KW.�0; ¹"i � ısC1�iº

s
iD1/:
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A.5. The term KW.�;S/
Re� . Recall that Lg0.� � �0/ is finite-dimensional if and only if

� 2 PCC.g0/, where

PCC.g0/´ ¹� 2 P.g0/ j � � w� 2 Z�0�
C for all w 2 W; � ¤ w�º:

The character ring Ch.g0/ has a basis ¹chLg0.� � �0/º�2PCC.g0/. This allows to extend
dim to the linear map dimWCh.g0/! Z having dim.chN/ D dimN for any finite-dimensional
module N .

The Weyl character and the Weyl dimension formulas give the following.

A.5.1. Lemma. Take � 2 P.g0/. One has

(i) JW .e�/ D 0 if and only if � … WPCC.g0/;

(ii) JW .e�/
R0e

�0
2 Ch.g0/;

(iii) dim
� JW .e�/
R0e

�0

�
D
Q
˛2�

C

0

.�j˛/
.�0j˛/

.

Proof. If � … WPCC.g0/, then r˛� D � for some ˛ 2 �C0 , and thus JW .e�/ D 0 and
both sides of (iii) are equal to zero. Now take �2WPCC.g0/, that is �Dw� for � 2PCC.g0/.
Then JW .e�/ D sgn.w/ JW .e�/. Using the Weyl character formula, we get

.R0e
�0/�1 JW .e�/ D sgn.w/.R0e�0/�1 JW .e�/ D sgn.w/ chL.� � �0/;

which establishes (ii). The Weyl dimension formula gives

dim
�

JW .e�/
R0e�0

�
D sgn.w/ dimL.� � �0/

D sgn.w/
Y
˛2�

C

0

.�j˛/

.�0j˛/
D sgn.w/

Y
˛2w�1�

C

0

.�j˛/

.�0j˛/
:

One has .�1/#¹˛2w
�1�

C

0 \.��
C

0 /º D sgn.w/; this gives (iii) for � 2 WPCC.g0/.

A.5.2. For a subset U � �, we will use the notation

sum.U /´
X
ˇ2U

ˇ:

Observe that all weights of a finite-dimensional g-module lie in P.g0/. Take � 2 P.g0/C �.
Recall that �0 � � D �1 D 1

2

P
˛2�

C

1

˛. One has

KW.�; S/

Re�
D

JW
�
e�C�1

Q
ˇ2�

C

1 nS
.1C e�ˇ /

�
R0e�0

D

X
U��

C

1 nS

JW .e�C�1�sum.U //

R0e�0
:

A.5.3. Corollary. For each � 2 P.g0/, the term KW.�;S/
Re�

lies in Ch.g0/ and

dim
�

KW.�C �; S/

Re�

�
D

X
U��

C

1 nS

Y
˛2�

C

0

.�C �0 � sum.U /j˛/
.�0j˛/

:
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Moreover,
KW.�C �; S/

Re�
D

X
n�� chLg0.�/

with the coefficients given by

n�� D
X

U��
C

1 nS

X
w2W

sgn.w/ıw.�C�0/;�C�0�sum.U /:

A.5.4. Example. If chL is given by the Kac–Wakimoto formula

Re� chL D j�1 KW.�C �; S/;

then

dimL D j�1
X

U��
C

1 nS

Y
˛2�

C

0

.�C �0 �
P
ˇ2U ˇj˛/

.�0j˛/
:

A.5.5. L.�/ as a g0-module. A Verma module M.�/ has a filtration with the fac-
tors of the form ¹Mg0.� � sum.U //ºU��C1 . Notice that if Mg0.� � sum.U // has a finite-
dimensional quotient, then this quotient is Lg0.� � sum.U //. Hence ŒL.�/ W Lg0.� � �/� ¤ 0

implies �D sum.U / for some U ��C1 . The multiplicitym�IU ´ ŒL.�/ W Lg0.�� sum.U //�
can be computed using Corollary A.5.3 as follows:

m�IU D
X
�

.�1/k�k�k�kd
�;�
<

X
U 0��

C

1 nS�

j�1�X
w2W

sgn.w/ıw.�C�0�sum.U //;��C�1�sum.U 0/:

(A.2)

For the osp-case, this gives

m�IU D
X
�

.�1/k�k�k�kd
�;�
<

X
U 0��

C

1 nS�

j�1�X
w2W

sgn.w/ıw.�C�0�sum.U //;�C�0�sum.U 0/:

A.5.6. Remark. A variation of the above reasoning allows to find the graded multiplic-
ities

ŒL.�/0 W Lg0.�/�C �ŒL.�/1 W Lg0.�/�

using the Gruson–Serganova character formula. In order to do this, we define the graded version
of KW.�; S/ by the following procedure.

Let � be a formal (even) variable satisfying �2 D 1. We denote by Ch�.g/ the ring of �-
characters of the finite-dimensional g-modules and view Ch�.g/ as a subring of RŒ��. For
� 2 Z�, consider the map „W e� 7! �p.�/e� and extend this map to the rational functions
P=Q, where P;Q are polynomials in e� with � 2 Z�. This allows to define for � 2 h�int the
term KW�.�; S/ by the formula

KW�.�; S/´ e�„.e�� KW.�; S//:
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Note that KW�.�; S/ and„.R˙1/ lie in the ring RŒ�� and can be viewed as elements of R†Œ��.
Taking � 2 P.g0/, we have

KW�.�C �; S/

„.R/e�
D

JW
�
e�C�0

Q
ˇ2�

C

1 nS
.1C �e�ˇ /

�
R0e�0

2 Ch�.g0/:

The graded multiplicity
�KW.�C�;S/

„.R/e�
W chLg0.�/

�
is given byX

U��
C

1 nS

�#U
X
w2W

sgn.w/ıw.�C�0/;�C�0�sum.U /:

The Gruson–Serganova formula (1.3) gives the following formula for ch� L:

(A.3) „.R/e� ch� L D

Q
˛2�

C

0

.1 � e�˛/Q
˛2�

C

1

.1C �e�˛/
e� ch� L D

X
L02Irr

˙bL;L0 KW.L0/

(where L D L.�/, L0 D L.�/ and the sign˙ is given by .�1/p.�
����/); combining the above

formulas, one obtains an analogue of (A.2) for the graded multiplicity of Lg0.�/ in L.�/.

A.6. The map pr. Let g be gl.mjn/ or osp.M j2n/. Fix an odd root ˇ0 of the form
ˇ0 D ˙."p � ıq/. Let e�; � 2 h� be a basis of the group algebra CŒh��. Consider a projection
prWCŒh��! CŒh�� given by

pr.ea"p /´ 1; pr.eaıq /´ ei�a; pr.ea"t /´ ea"t ; pr.eaıj /´ eaıj

for any a 2 C and the indices t ¤ p, j ¤ q. Note that pr is an algebra homomorphism and
pr.eˇ0/ D �1. We extend pr to the rational functions of the form P=Q, where P;Q 2 CŒh��
are such that pr.Q/ ¤ 0.

Since pr is an algebra homomorphism for each � 2 h�, one has

(A.4) pr
�
KW.�;;/.1C e�ˇ0/

�
D 0:

A.6.1. Take a non-zero vector x 2 gˇ0 . Identify g0´ DSx.g/ with the subalgebra of g

(recall g0 D gl.m� 1jn� 1/ for gD gl.mjn/, g0 D osp.M � 2j2n� 2/ for gD osp.M j2n/).
Recall that h0 D g0 \ h is a Cartan subalgebra of g0.

Observe that
pr.e�/ D c�e

�jh0 for c�´ e��i.�jıq/

and that the restriction of � pr� to the supercharacter ring J.g/ is equal to dsx (see [8]).

A.6.2. Set

� ´

8̂̂<̂
:̂
1

2

 
mX
iD1

"i �

nX
iD1

ıi

!
for osp.2mC 1j2n/;

0 otherwise:

Notice that �jh0 is equal to the vector � defined for g0; we denote this vector by � 0.
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We assume that an iso-set S and � 2 h� satisfy

(A.5) ˇ0 2 S � .Sm � Sn/ˇ0; .� � �jh.S/�/ D 0

and set
S 0´ S n ¹ˇ0º; �0´ �jh0 :

By above, pr.e�/ D e��i.�jıq/e�
0

; observe that .�jıq/ D 0 and .�jıq/ D �12 for osp.2mj2n/

and osp.2mC 1j2n/, respectively.

A.6.3. Proposition. Let S; � be as in (A.5). For g D osp.2mj2n/ with m > 1 and
jS j D 1, one has

pr
�
KW.�; S/.1C e�ˇ0/

�
D KW.�0;;/C KW..�0/� ;;/:

For other cases

pr
�
KW.�; S/.1C e�ˇ0/

�
D ae��i.�jıq/ KW.�0; S 0/;

where a D jS j for g D osp.2j2n/;gl.mjn/ and a D 2jS j for osp.2mC 1j2n/; osp.2mj2n/

with m; jS j > 1.

Proof. Denote byW 0 the Weyl group of g0 and notice thatW 0 D StabW ˇ0. Set s´ jS j
and c´ e��i.�jıq/. One has

pr
�
KW.�; S/.1C e�ˇ0/

�
D

X
w2W

sgn.w/y.w/;

where

y.w/´ pr
�
ew�.1C e�ˇ0/Q
ˇ2S .1C e

�wˇ /

�
:

Observe that pr.1C e˛/ D 0 for ˛ 2 � is equivalent to ˛ D ˙ˇ0. Since pr is an algebra
homomorphism, this gives y.w/ D 0 if˙ˇ0 … wS . Therefore,

pr
�
KW.�; S/.1C e�ˇ0/

�
D YC C Y�;

where
Y˙´

X
w2W W˙ˇ02wS

sgn.w/y.w/:

Each ˇ 2 S 0 can be written as ˇ0 D wˇˇ for wˇ ´ r"i�"prıj�ıq . Setting wˇ0 ´ Id,
we have sgn.wˇ / D 1 and

wˇ� D �; wˇˇ0 D ˇ; wˇˇ D ˇ0; wˇ .ˇ
0/ D ˇ0 for ˇ0 2 S n ¹ˇ; ˇ0º;

for each ˇ 2 S . The operator pr commutes with the action of w0 for w0 2 W 0. This gives

y.w0wˇ / D
pr.ew

0wˇ�/Q
ˇ 02S 0.1C e

�w 0ˇ 0/
D w0

�
pr.e�/Q

ˇ 02S 0.1C e
�ˇ 0/

�
for any w0 2 W 0:

Since W 0 D StabW ˇ0, one has ¹w 2 W j ˇ0 2 WSº D W 0wˇ .
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By Section A.6.2, pr.e�/ D ce�
0

. Summarizing, we obtain

YC D
X
ˇ2S

X
w 02W 0

sgn.w0/y.w0wˇ / D cs JW 0
�

e�Q
ˇ 02S 0.1C e

�ˇ 0/

�
;

that is YC D csKW.�0IS 0/.
For g D gl.mjn/; osp.2j2n/, the set WS does not contain �ˇ0, so Y� D 0; this com-

pletes the proof for these cases.
For the remaining cases g D osp.M jN/ with M > 2, the set WS contains �ˇ0. For

g D osp.2mj2n/ with s > 1, we fix ˇ1´˙."i � ıj / 2 S 0; for osp.2mj2n/ with m > 1 and
s D 1, we set i ´ m if p ¤ m and i ´ m � 1 if p D m. We set

w�´

8̂<̂
:
r"prıq for g D osp.2mC 1j2n/;

r"i rıj r"prıq for g D osp.2mj2n/; s > 1;

r"i r"prıq for g D osp.2mj2n/; s D 1:

Notice that w� 2 W and w�ˇ0 D �ˇ0. Therefore,

¹w 2 W j �ˇ0 2 wSº D
a
ˇ2S

W 0w�wˇ ;

and thus
Y� D

X
ˇ2S

X
w 02W 0

sgn.w0w�/y.w0w�wˇ /:

For w0 2 W 0, we have

y.w0w�wˇ / D pr
�

ew
0w��.1C e�ˇ0/Q

ˇ2S .1C e
�w 0w�ˇ /

�
D �w0 pr

�
ew��Q

ˇ2S 0.1C e
�w�ˇ /

�
:

Therefore,

Y� D �s sgn.w�/ JW 0
�

pr
�

ew��Q
ˇ2S 0.1C e

�w�ˇ /

��
:

For osp.2mC 1j2n/, one hasw�S 0 D S 0 andw��D �C ˇ0, that is pr.ew��/D�ce�
0

.
Therefore, Y� D csKW.�0; S 0/ as required.

For osp.2mj2n/ with s > 1, one has

w�� D �; w�S
0
D .S 0 [ ¹�ˇ1º/ n ¹ˇ1º:

Using Lemma A.4.4, we get

Y� D �sKW.�0; S 0 [ ¹�ˇ1º/ n ¹ˇ1º D sjKW.�0; S 0/:

For the remaining case osp.2mj2n/ with m > 1 and S D ¹ˇ0º, we have

sgn.w�/ D �1; pr.ew��/ D er"j �
0

;

that is Y� D KW.r"i�
0;;/. Since r"i�

0 D .�0/� , this completes the proof.
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