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Abstract. We classify all simple bounded highest weight modules of a basic classical Lie
superalgebra g. In particular, our result leads to the classification of the simple weight
modules with finite weight multiplicities over all classical Lie superalgebras. We also
obtain some character formulas of strongly typical bounded highest weight modules of g.

Introduction

The representation theory of Lie superalgebras has been extensively studied
in the last several decades. Remarkable progress has been made on the study of
the (super)category O, see for example [S1] and the references therein. On the
other hand, the theory of general weight modules of Lie superalgebras is still at its
beginning stage. An important advancement in this direction was made in 2000 in
[DMP] where the classification of the simple weight modules with finite weight
multiplicities over classical Lie superalgebras was reduced to the classification
of the so-called simple cuspidal modules. This result is the superanalog of the
Fernando-Futorny parabolic induction theorem for Lie algebras. The classification
of the simple cuspidal modules over reductive finite-dimensional simple Lie algebras
was completed by Mathieu, [M], following works of Benkart, Britten, Fernando,
Futorny, Lemire, Joseph, and others, [BBL], [BL], [F], [Fu], [Jo]. One important
result in [M] is that every simple cuspidal module is a twisted localization of a
simple bounded highest weight module, where, a bounded module by definition
is a module whose set of weight multiplicities is bounded. The maximum weight
multiplicity of a bounded module is called the degree of the module.

The presentation of the simple cuspidal modules via twisted localization of
highest weight modules was extended to the case of classical Lie superalgebras in
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[Gr]. In this way, the classification of simple weight modules with finite weight
multiplicities of a classical Lie superlagebra t is reduced to the classification of the
simple bounded highest weight modules of . The latter modules are easily classified
for Lie superalgebras of type I. For Lie superalgebras of type II a classification is
obtained for Lie supealgebras of Q-type in [GG], for the exceptional Lie superalgeb-
ra D(2,1,a) in [H], and for osp(1]2n) in [FGG]. The main goal of this paper is to
complete the classification in all remaining cases, namely for osp(m|2n), m =
3,4,5,6. In particular, by classifying the simple bounded highest weight modules
for these four series of orthosymplectic superalgebras, we complete the classification
of all simple weight modules with finite weight multiplicities over all classical Lie
superalgebras.

Apart from the classification of simple weight modules, the category of bounded
modules is interesting on its own. We believe that the results in the present paper
mark the first step towards the systematic study of this category. Note that in
the case of Lie algebras, bounded modules have nice geometric realizations and
an equivalence of categories of bounded modules and weight modules of algebras
of twisted differential operators was established in [GrS1], [GrS2]. We expect that
similar geometric properties of the category of bounded modules of classical Lie
superalgebras hold as well. We also expect that, as in the Lie algebra case, the
injective objects in the category of bounded modules will be obtained via twisted
localization functors.

We remark that in [Col, there is a classification and explicit examples of all
simple highest weight modules of degree 1. One should note that in this classifica-
tion there is a minor gap in the proof for lower-rank cases.

Most of the new results in this paper concern the highest weight bounded
modules of the orthosymplectic Lie superalgebras osp(m|2n). One should note
though that the above mentioned classification is new also for the exceptional Lie
superalgebras F'(4) an G(3). In addition to the completion of this classification, we
prove that the category of O-bounded osp(1]2n)-modules is semisimple for n > 1.
Last, but not least, we establish explicit character formula for strongly typical
bounded modules over all basic classical Lie superalgebras.

A crucial part in the paper plays the notion of the nonisotropic algebra gy,
associated to a Kac—-Moody superalgebra g. Most of the criteria for boundedness
are expressed in terms of the components of g,;. Also, for our classification we use
distinguished sets of simple roots - simple roots that contain at most one isotropic
root. One of the tools used in the paper are Enright functors —localization type
of functors introduced originally by Enright in [En] for classical Lie algebras and
later generalized by [IK] for Kac-Moody superalgebras.

Our main result is Theorem 3.3 which describes simple highest weight bounded
modules over basic classical Lie superalgebras in terms of the highest weights
with respect to the distinguished Borel subalgebras. For all g except for g =
osp(m|2n), m > 5,n > 2, we give a simple criterion, Corollary 3.5.1. On the other
hand, Theorem 3.6.1 reduces the remaining case osp(m|2n),m > 5,n > 2 to the
case 0sp(m|4). In Section 4 we provide character formula and an upper bound of the
degree of a strongly typical simple highest weight bounded module for osp(m|2n).
In Section 5 we obtain an upper bound of the degree of the simple O-bounded
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modules for the cases osp(m|2n) with m = 3,4 or n = 1.
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the helpful discussions and the referees for the useful remarks and suggestions. We
also acknowledge the hospitality and excellent working conditions at the Weizmann
Institute of Science and the University of Texas at Arlington where parts of this
work were completed.

1. Preliminaries
Let g = go © g1 be one of the Lie superalgebras
sl(m|n),m # n, gl(n|n), osp(m|2n), D(2,1,a), F(4), G(3).

For the sake of brevity A(m|n) stands for the corresponding Kac-Moody super-
algebra: A(m|n) = sl(m|n) for m # n and A(n|n) = gl(n|n). We fix a triangular
decomposition go = ng, ©h @nar and consider all compatible triangular decomposi-
tions of g, i.e., g = n~ @hdnt with nf = nTNgy. Recall that any two compatible
triangular decompositions are connected by a chain of odd reflections, see [S2]. We
denote by A the root system of g and by Aq (respectively, by A;) the set of even
(respectively, odd) roots. We denote by IIy the set of simple roots for go (IIp is
fixed, since ng is fixed) and by ¥ a base of AT.

Note that g is an indecomposable Kac-Moody superalgebra. Recall that an in-
decomposable finite-dimensional Kac—-Moody superalgebra is isomorphic either to
gl(n|n) or to a basic classical Lie superalgebra which is not isomorphic to psli(n|n).
Recall that g admits a non-degenerate invariant bilinear form. In all examples we
will use the standard notation for root systems, see [K1].

1.1. Notation

We set

Ani = {a e Allla]* # 0}
to be the set of nonisotropic roots. For o € A,,; we introduce a¥ := 2a/(«r, ) and
the reflection 7, € GL(H*) given by 7o () := p — (p, @")a. We denote by W the
Weyl group of A (the group generated by the reflections r, with a € A,;).

For a base ¥ we denote by pyx its Weyl vector, namely the difference of the half
sums of the even positive roots and the odd positive roots. For A € h* we denote
by L(X,\) the corresponding simple highest weight module. Note that L(X, ) is
a simple highest weight module for any base X’ (compatible with IIj). In the case
when ¥ is fixed, we write p for ps; and L(\) for L(X,\). By M(\) = M (2, \) we
denote the corresponding Verma module.

For a fixed base ¥ we consider the standard partial order on b*: u > p’ if
w—p' € ZsoX.

For a g-module N we set

N, :={ve N |hv=v(h)v,Yh € b}, supp(N):={ve€h*| N, #0}

and say that v has weight v if v € N,,. If all weight spaces IV, are finite-dimensional,
we set
ch N := Z dim N, e".

veh*
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A g-module N is called a weight module if N = @ueh* N,, and N is bounded if
it is a weight module and there is s > 0 such that dim N,, < s for all v € h*.

1.1.1. Kac—Moody subalgebras. Fix a nonempty subset ¥’ C ¥ and denote by t the
subalgebra of g generated by gin,a € X'. We call t a Kac—Moody subalgebra of
g. Note that t is a direct sum of a Kac—Moody superalgebra and several copies of
sl(s]s); tN b is a Cartan subalgebra of t and ¥ := ¥’ is a base; we denote by A
the corresponding root system and by W (t) the corresponding Weyl group. One
has Ay = AN (ZY), see [K2, Ex. 1.2].

If ¥/ is a connected component of ¥ we call t a component of g.

1.2. Categories O, 0™f
We denote by O™ (g) the full category of g-modules with the following properties:

(C1) b acts diagonally (or, equivalently, semisimply);

(C2) ng acts locally nilpotently.

We denote by O(g) the BGG-category which is the full subcategory of O™(g)
consisting of finitely generated modules. Note that O(g), O™ (g) do not depend on
the choice of X. Indeed, if ¥, Y are compatible with the triangular decomposition
of go, then O™ (g) is the same category for ¥ and for ¥’

1.2.1. Pairs of Kac-Moody superalgebras. Let g’ = n” & bh" & n/, be a Kac-
Moody superalgebra and g’ C g; we say that g',g have compatible triangular
decompositionsif h’ C h,n’. C nT and b acts diagonally on each root space of g'. Let
us assume now that g’ C g is a pair of Kac—Moody superalgebras with compatible
triangular decompositions. For N € O™ (g) one has Res], N € Of(g"). On the
other hand, O(g) does not have this property in general. However, the property
holds in the special case g’ = go.

For each A € h* we denote by Ay the restriction of A to g’ N bh; we denote by
Mg (Ag), Lg/(Agr) the corresponding g’-modules. We use the similar notation for
the case when g’ is a Kac-Moody subalgebra of g.

The following lemma will be useful later.

1.2.2. Lemma.

(i) Let t be a Kac—Moody subalgebra of g. The t-submodule of L(\) generated
by a highest weight vector of L(\) is isomorphic to Li(A¢).

(ii) Let g’ C g be a pair of Kac—Moody superalgebras with compatible triangular
decompositions. A cyclic g'-submodule of a bounded g-module is g’'-bounded.

Proof. For (i) let v be a highest weight vector of L(\) and L’ be the t-submodule
generated by v. Clearly, L’ is a quotient of M¢()¢). Let uwv € L' be a t-primitive (t-
singular) vector, i.e., u € U(n~Nt) is such that (tNn™)(uv) = 0. Take @ € AT\ Ay
For each 8 € A(NA™T one has 83—« ¢ AT which gives [g_3, go] C nT. This implies
go(uv) = 0 and thus wv is a g-primitive vector. Therefore uv is proportional to v,
so L' is simple. This gives (i).

For (ii) let N be a bounded g-module and let N’ be the g’-submodule generated
by a vector v € N; we may (and will) assume that v" is a weight vector. Recall
that b’ = g’ N b is a Cartan subalgebra of g’. Set

A ={aeA|g.Cyg'}
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Fix v/ € (§')* such that N/, # 0. One has

dim N}, = 3 dim(N, N N'),
veX

where
X :={vesuppN |v|pne =7, N,N N’ #0}.

For v1,v5 € X one has (1 —1») € ZA', since N’ is a cyclic g’-module generated by
a weight vector, and (11 — v2)|pr = 0. Thus 11 = 19, so X = {11} and dim N], <
dimN,,. O

1.3. Root subsystems A(N), A(\)

A subset A’ C Ag is called a root subsystem if 1,3 € A’ for any o, € A

For a root subsystem A’ we denote by W(A') the subgroup of W generated by
ra,a € A'. We set (A')T := A’N AT and introduce

(A7) = {8 € (A) | rp((A)T\{B}) = (A) "\ {B}}.

The group W(A’) is the Coxeter group for II((A")T) (see, for example, [KT1],
2.2.8-2.2.9).
For N € O™ (g) we set

A(N) :={a € A¢ | 3\ € supp(N) such that (\,a") € Z}.

If N is indecomposable, then A(N) = {a € Ag | (\,aV) € Z VA € supp(N) },
since for v € A and o € Ag one has (v,a") € Z. For A € h* we introduce

AN = ALN) = {a € Ag | (\aY) € Z}.

By [K2, Lem. 3.4}, for a simple module L each root space g, acts either injec-
tively or locally nilpotently on L. If for each o € I the root space g_,, acts locally
nilpotently on L(\), then L(\) is finite-dimensional. If a € Il is such that o € £
or a/2 € ¥, then the root space g_, acts locally nilpotently on L(A) if and only if
a € A(X) and (A, V) > 0.

Let N be an indecomposable module. One readily sees that A(N) is a root
subsystem of Ag. We set W(N) := W(A(N)), W(A) := W(A(N)), and II(A) :=
I(AA)™).

1.3.1. Mazimal element in orbit. Tt is well known that the orbit W (u)u contains a
unique maximal element and that g is the maximal element in its orbit W (u)p if
and only if (i, V) > 0 for each o € A(p)™. Moreover, if y1 is a maximal element in
W (u)p, then Staby p is generated by the reflections r, with a € II(u) such that
(n,a¥) =0.

1.4. Enright functors

The Enright functors were introduced in [En]. For Kac-Moody superalgebras the
Enright functors were defined in [IK]. We will use these functors in the following
context: let p be a Lie superalgebra containing an sly-triple (e, f, h) and M, be the
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full subcategory of g-modules N with the following properties: h acts diagonally
with eigenvalues in a +Z and e acts locally nilpotently. The Enright functor C is a
covariant functor C : M, — M_,. We will use the Enright functor for g and slo-
triple corresponding to o € Ag: f € g_o, b € b, € € g,; in this case we denote this
functor by C,. We retain the notation of §1.1.1. Note that for an indecomposable
N € O™ (g), the condition a € A(N) is equivalent to N € M.

We will use the the following properties of the Enright functors. For the proofs
we refer the reader to [GS].

1.4.1. Proposition.

() If a € Z then C : My, = M_, is an equivalence of categories.

(ii) If p C g is a subalgebra containing the sla-triple (e, f,h), then the Enright
functors commute with the restriction functor Resg. Namely, C"OResg = Resg o (9,
where C8,CP are Enright functors for g,p, respectively.

(iii) Let a € Iy be such that & € ¥ or a/2 € ¥ and let A € b* be such that
a & A(X). Then Co(L(N)) = L(ra(A+p) —p) and Co(Lgy (X)) = L(ra(A+po) — po)-

(iv) If N € O™ (g) has a subquotient L(\) and o & A(N), then Co(L(N)) is a
subquotient of Co(N).

2. Bounded modules in the case when A = A,,;

In this section g is an indecomposable finite-dimensional Kac—Moody super-
algebra without isotropic roots, i.e., g is isomorphic to a simple Lie algebra or to
0sp(1]2n). In this case all finite-dimensional modules are completely reducible and
L()\) is finite dimensional if and only if for each simple root « one has (A, aV) €
L.

A finite-dimensional simple Lie algebra t admits infinite-dimensional bounded
modules L(\) only for g = sl,,, sp,,,. This result is proven in by [BBL] generalizing
the analogous result in [F] for cuspidal modules.

2.1. Bounded modules for sp,,,, 0sp(1]|2n)

For g = sp,, 05p(1]2) all modules in O are bounded, since dim L(X),, < 1 for each
A 1€ B*.

Consider the case g = sp,,,, 0sp(1]|2n) with n > 1. The root system A is of type
C,, or BC,, and it contains a unique copy of the root system of type D,,. A module
L()) is an infinite-dimensional bounded module if and only if

AN) =Dy, (A +p,a¥) >0 for each a € AN)T.

For sp,,, this is proven in [M]. For osp(1|2n) this is proven in [FGG]| and we give
another proof in §2.2 below. Writing the set of simple roots for sp,,, in the form
{61 — d2,...,0n—1 — 6,20, } we obtain that the root subsystem D,, has a set of
simple roots {61 =82, ..., 0p—1—0n, 6n_1+0, }. Let A € h*, and let A\+p = D7, y;0;.
Then L(A) is an infinite-dimensional bounded module if and only if

Y1 —Y2:Y2 — Y3y s Yn—1 — Yns Yn—1 + Un € Zxo (1)

and, in addition, y,, € Z+1/2 for sp,,,, while y,, € Z for osp(1|2n). Note that L(\)
is finite dimensional if and only if (1) holds and, in addition, y, € Zs¢ for sp,,,,
Yn € Z>0 + 1/2 for 05p(1|27’},)
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2.2,

Here we give another proof of the above-mentioned result for osp(1|2n).

Theorem. Let g = osp(1]2n),n > 1. A module L(\) is an infinite-dimensional
bounded module if and only if A(\) = D,, and

(A+p,a¥) >0 for each o € A(N)T. (2)

Proof. One has gg = sp,,, and g admits a unique base ¥ compatible with I (since
A does not have isotropic roots). One has

L =1U{s,}, My =1 U{25,}, (D) ="' U{6p_1+n},

where I := {6; — d2,...,0n,—1 — 6 }. Let v be a highest weight vector of L(}\).

Assume that L(A) is bounded. A ggp-module generated by v is a quotient of
My, (A), 80 Lgp, (A) is a subquotient of Resg L(A). Therefore Lgyp, (A) is boun-
ded.

If Lgp, () is finite-dimensional, then for each o € Ily the root space g_, acts
nilpotently on v and so L(A) is finite-dimensional, see §1.3.

If Ly, () is an infinite-dimensional bounded module, then, by §2.1, A(X) = D,
and thus g_s,v # 0. Since ng (g_s,v) = 0, the module Res§ L(\) has a primitive
vector of weight A\ — d,, and thus has a subquotient isomorphic to Lgp, (X — dy).
Hence Lgp, (A —4,) is bounded. Since A(A —6,) = A(\) = Dy, the boundedness
of Lgp, (A—6y) gives

A+p,a¥)=(\=68,+po,a’) >0 for each a € TI(D,,),

see §2.1. This establishes the “only if” part.

Now assume that A(\) = D,, and that (2) holds. Let us show that L(\) is
bounded, i.e., that M := Resj L()) is bounded. Since M € O(go), it has a finite
length.

Therefore it is enough to show that any simple subquotient of M is a bounded
module. Let Lg, (1) be a subquotient of M. One has A(u) = A(X) = D,,. By §2.1
it suffices to show that (u+ po, ) > 0 for o € II(D,,). Take o € II". By (2) the root
space g_q acts nilpotently on v and thus locally nilpotently on L(A) and on Lg,(u).
Therefore (@ + po, ) > 0. It remains to verify that (1 + po, dn—1 + 65) > 0. Note
that A(X) = A(u) does not contain 24,,. Using Proposition 1.4.1 for o = 26,, we
obtain that Cas, (Lg,(1t)) = Lg, (75, (1t + po) — po) is a subquotient of Cas, (L(N)) =
L(rs, (A + p) — p). Since 6,,—1 — d,, € ¥ and

(r5n ()‘ + p)a Opn—1— 5n) = ()\ + p, Op—1+ 6n) € Zg

the root space gs, —s,_, acts locally nilpotently on L(rs, (A + p) — p) and thus on
Ly, (rs, (1t + po) — po). Hence

0 < (75, (1t + po)s0n—1 = 0n) = (1t + po, 6n—1 + )
as required. This completes the proof. [

We remark that the reasoning used to prove the boundedness of Ly, (1) at the
end of the last proof is similar to the one used for the classification of the simple
highest weight bounded modules of sp,,,, see [M, Lem. 9.2].
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2.3. Category B(g)

We retain the notation of §1.2 and denote by B(g) the Serre subcategory of
O (g) generated by simple bounded modules, i.e., the full subcategory of O™ (g)
consisting of modules N such that each simple subquotient of N is bounded.!
We note that B(g) is an example of a category of “snowflake modules” in the
terminology of [GS].

If E is a cyclic submodule of N € B(g), then E € O, so E has a finite
length and thus E is bounded. As a result, B(g) is the full subcategory of O™ (g)
consisting of modules N such that each cyclic submodule of N is bounded. Using
Lemma 1.2.2(ii), we obtain the following.

2.3.1. Corollary. Letg C g be a pair of Kac—Moody superalgebras with compatible
triangular decompositions. If N € B(g), then Resg, N € B(g').

The following result is a particular case of a more general result about the
so-called “snowflake modules” in [GS].

2.5.2. Proposition. Let g = osp(1]2n) or g = sp,,, n > 1.
(i) The category B(g) is semisimple.
(ii) If g C g” are Kac—Moody superalgebras with compatible triangular decompo-

sitions, then for each N € B(g) the module Resg” N is completely reducible.

Proof. Note that part (ii) follows from part (i) and Corollary 2.3.1. One easily
shows (see, for example, [GK, Lem. 1.3.1]) that to prove (i) it is enough to verify
that each module in B = B(g) has a simple submodule and that

Extp(L(p), L(i')) = 0

if L(p), L(y') are bounded. Take any N € B and let M be a cyclic submodule of
N. Then M lies in the category O and thus admits a simple submodule. Hence N
admits a simple submodule.

Let L(p), L(y') are bounded and Extg(L(u), L(i')) # 0. By Theorem 4.2 in
[DGK] (the statement and the proof are the same for osp(1|2n)), this implies

1+ p € W)+ p).

Since h acts diagonally on the modules in B, one has p' # pu.

Let L(p), L(1') be bounded modules. Using the assumption on g and §1.3.1,
§2.1, Theorem 2.2, we conclude that u + p (respectively, ' + p) is the unique
maximal element in W (u)(u + p) (respectively, in W (u')(p' + p)). Since p # 1/,
one has ' +p & W(u)(p + p), which leads to a contradiction. This completes the
proof of (i). O

We remark that in the cases g = sl,, and g = osp(1|2) the category B(g) is not
semisimple. Indeed, take for example an extension of the trivial module L(0) by
L(ry.0), a € Iy if g = sl,,, and the Verma module M (0) with highest weight A = 0
if g = osp(1]2).

!'Note that Exté(g)(M, N) = Ext;h(M, N) for modules M, N in B(g), where Ext%m

is the Ext'-functor on the category of weight modules.
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3. Bounded modules

In this section g is an indecomposable finite-dimensional Kac-Moody super-
algebra.

3.1. The nonisotropic algebra g,;

Let 3 be the set of all bases (compatible with IIy) of g. Recall that all bases in 5
are connected by chains of odd reflections; in particular, A,,; NAT does not depend
on the choice of ¥/ € X. Set

Hni = U (E/ N Anz)

es

If g does not have non-isotropic odd roots, then II,,; = Ily; if g has odd non-
isotropic roots, then g = osp(2m + 1|2n) or G(3) and IIy contains a unique root «
with a/2 € A; in this case, II,,; =1 \ {a} U{«a/2}.

Consider a Kac-Moody superalgebra g,,; with the set of simple roots I1,,;, parity
function p : I1,;; — Zs given by the restriction of p : A — Zs to I1,,;, and the Cartan
matrix a;; == (o), a;) for a;, a; € Il,;.

If g does not have non-isotropic odd roots, then g,; = [go, go] and we identify
these algebras. For g = osp(1|2n) one has II,,; = ¥ and g,; = g; we identify these
algebras. For g = G(3),0sp(2s + 1|2n) with s > 0, one has go = t x sp,,, and
gni = t X 05p(1|2n), where t = Go, 09511 respectively; in these cases, gp; is not a
subalgebra of g.

Using the above identifications, we have (gn:)o = [go, g0] and we fix § N [go, go]
to be the Cartan subalgebra of g,;. We identify the root system of g,; with A,;.

Observe also that, with the terminology of §1.1.1, the connected components of
go are the even parts of the connected components of g,;.

3.1.1. Distinguished bases. A base ¥/ € S is called distinguished, if X' contains at
most one isotropic root. It is easy to check that each connected component IT" of
IL,; lies in a certain distinguished base ¥/ € X. For instance, for osp(7]4) one has
IM,; =I'[JI1I”, where

Il' = {e1 — e2,69 — €3,3}, X' = {01 — 2,00 —€1,61 — €2,62 — €3,€3},
" = {61 — b2, 02}, ' ={e1 —e2,62 — 3,63 — 01,01 — 02,02}

3.1.2. Base Y. Let t be a component of g,; and II(t) be the corresponding
connected component of II,;. For g = A(m|n) we choose one distinguished set
of simple roots ¥ and set ¥ := X for all components t of g,;. If g # A(m|n) we
denote by ¥ a distinguished base containing II(t).

Then II(t) C 3, and t is a subalgebra of g. For instance, g = osp(2s + 1|2n)
does not contain g,; = 02541 X 0sp(1]2n), but contains subalgebras isomorphic to
025+1 and osp(1]2n).

3.1.3. Ezample. Take g = osp(5]|4). We have g,,; = 05 X 0sp(1[4). Then
Yoy = {01 — 02,02 — 1,61 — 2,62}, Poap(1ja) = {61 — €2,62 — 01,01 — J2, 02}

Recall the notation A¢ from §1.1.1. For A = x1e1 + x2e2 + y101 + y202 we have
Aoy = 181 + 262 and Aggp(1ja) = Y101 + y202.
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3.2.

Proposition. Lett be a component of gn; such that tg # A,. Let X contain II(t).
If Li(X\y) is bounded, then Res{ L(\) € B(t).

Proof. Set M := Res{ L(\). Note that M € O™(¢).

Let v be a highest weight vector of L(\). By Lemma 1.2.2(i), the t-submodule
of L(\) generated by v is isomorphic to L¢(Ay).

If L¢(Ay) is finite-dimensional, then for each o € TI(t) the root spaces g_o = t_4
acts nilpotently on v and thus acts locally nilpotently on M. Then M is a direct
sum of finite-dimensional simple t-modules, and thus M € B(t).

Now assume that L{(A¢) is infinite-dimensional. Since this module is bounded
and ty # A, the algebra t is sp,,, or 0sp(1|2n) with n > 1. Moreover, A(L((A\¢)) =
D, and (A¢ + p(t),a") > 0 for each a € II(D,,), where

HO = 1_.[/ @] {2571}, H(Dn) = HI U {571,1 + 5n}7 H/ = {61 - 52, ey 6n,1 — (Sn}
Since t is a component of g,; and II(t) C ¥ one has
pi=p(8), (A +pa)=((A+p)ua) = (A +pua) forac Alt).

Therefore
(A +p,a¥) >0 for each a € TI(D,,). (3)

Let L¢(u) (p € (hN4)*) be a simple subquotient of M. Let us show that L¢(u)
is bounded. One has

p € supp(M) = {v¢ | v € supp(L()))},
so for & € A(t) one has

()Y Cc (N a")+Z = (\,a") +Z.
Therefore A(L¢(A\t)) = A(L¢(u)) = D,,. By §2.1 it sufficies to show that (u +
p(t),a) > 0 for o € II(D,,). Take o € II'. By (3) the root space g_,, acts nilpotently
on v and thus locally nilpotently on L(\) and on L(u). Therefore (u + p(t), ) >
0. By above, A(L¢(u)), A(L(A)) do not contain 24,. Using Proposition 1.4.1 for
a = 2§, we obtain that Cos, (Li(1t)) = Li(rs, (1t + p(t)) — p(1)) is a subquotient of
Cas, (L(X)) = L(rs, (A + p) — p). Since 0,1 — 6, € II(t) C ¥ and

(Tén ()‘ + p)v 677,71 - an) = ()‘ + P 57171 + 6n) € Z>0

the root space gs,—s, , acts locally nilpotently on L(rs, (A + p) — p) and thus on
L(rs, (1t + p(t) — p(t)). Therefore

0 < (rs,(n+pt), 0n—1 — 6n) = (u+ p(t), 6p—1 + 65)

as required. Hence L((p) is bounded. We conclude that M € B(t) as required. O



SIMPLE BOUNDED HIGHEST WEIGHT MODULES 903

3.3.

Retain the notation of §1.1.1. For a simple g-module L in O and a component
t of g.:, by A' € h* we denote the highest weight of L with respect to Xy, i.e.,
L= L3, \Y).

Theorem. Let g be a finite-dimensional Kac—Moody superalgebra and let L € O
be a simple g-module. The module L is bounded if and only if the module Li((A)¢)
is bounded for each component t of gn;.

3.3.1. Example. We apply the theorem to the case we are mostly interested in:
g = osp(m|2n). Take X\ € b* and write A + p = >0 x5, + >, y;0;, where
s = |m/2]. Assume that x; + y; # 0 for all ¢,j. Then for any base ¥’ we have
L(X, M) = L(X',X), where A+ p = XN + p/, p' = psr. The Theorem above states
that L()) is bounded if and only if L(((\')¢) is bounded for each component t of
Oni- We have TI(t) C X, so

P = Pt-

Hence, for A as above, L()) is bounded if and only if L(((A+ p)¢ — p¢) is bounded
for each t. One has gn; = 0,,, X ', where t' = sp,,, if m is even and t' = osp(1|2n)
if m is odd.

One has Ly (A + p)v — pv) = Le(X1 vid; — py). For n = 1 this module is
bounded. For n > 1 the conditions on y; are given in §2.1.

Consider the module Lo, (3 ;_, zie; — po,,). For m = 1,2,3,4 this module is
always bounded. For m > 6 this module is bounded only if it is finite-dimensional,
ie, if x1 — x9,...,25_1 — Ts,2x5s € Z~g. For m = 6 we have 05 = sl; and the
boundedness is reduced to the boundedness of a module over sly. For m = 5 one
has o5 = sp, and this module is bounded if and only if either x1 — 22,225 € Zsg
or 2x1,2x9 € Z~g, T1 — X2 ¢ 7.

3.4. Proof of Theorem 3.3
We start from the following useful lemma.
3.4.1. Lemma.

(i) A simple g-module L is bounded if and only if it has a bounded go-submodule.
(ii) If Lgy (A —2p1) is bounded, then L(X) is bounded.

Proof. Let N be a go-module. One has Ind} N = N®Ag; as go-modules. Since the
tensor product of a finite-dimensional module and a bounded module is a bounded
module, Indgo N is bounded if N is bounded.

To prove (i), let N be a bounded go-submodule of a simple g-module L. Since

Homyg, (N, L) = Homgy(Ind3 N, L),

the module L is bounded. For (ii), note that the maximal weight of Ind§  Lg,(v)
is equal to v + ZaeAf o = v+ 2p;. In particular, L(v 4 2p;) is a subquotient of

Ind§ Ly, (v). O

3.4.2. Continuation of proof of Theorem 3.3. Assume that L is bounded. Let t
be a component of g,;. Let v be a primitive vector of L with respect to the base
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Yt. Then v has weight A\' and, by Lemma 1.2.2, U(t)v = L((AY)¢) is a bounded
t-module. This establishes the “only if” part.

For the “if” part, we assume that L((\')¢) is bounded for each component
of g,;. By Lemma 3.4.1 the boundedness of L follows from the existence of a
bounded gop-submodule. Let us show that L contains a bounded gg-submodule. If
g = osp(1]2n), the assertion is tautological. For g = D(2,1,a) any go-submodule
of L(\) is bounded.

Consider the remaining case when g # osp(1|2n), D(2,1, a). Let t be the follow-
ing component of g,;: for g = osp(m|2n) let t = 0,,, for g = gl(m|n) with m <n
let t = sl,,, and for g = G(3) (respectively, F'(4)) let t = G5 (respectively, t = o7).
Set ¥ := ¥ and X := \'. Let vy be the highest weight vector of L. Let us show
that U(go)vy is a bounded go-module. One has g,; = t x t' and [go, go] = t X t{,
where t) = A; for F(4), G(3) and t, = sp,,, (respectively, t, = ' = sl,,,) for
g = osp(m|2n) (respectively, for gl(m|n)). Set

E = U(f)’l))\, El = U(fé))'l))\.

By Lemma 1.2.2(i) one has E = L¢((\')¢), so E is a simple bounded t-module.
If g = gl(m|n), then  contains TI(t'), so E' = Ly ((AY)y) is a simple bounded
t'-module. If t;) & A;, then any module in O(t') is bounded, so E’ is a bounded
t-module. In the remaining case one has t) = sp,,,n > 1. Since Ly ((AY)y) is
bounded, Proposition 3.2 implies that Res!, L(\) € B(t') and thus, by Proposition
2.3.2, any cyclic tj-submodule of L()) is bounded. We conclude that E’ is a
bounded t{-module.
View E® E’ as a t x tj-module by

g (e@e) =gexg'e forget,g et ec B¢’ e E.

By above, E,E’ are bounded. Each weight space of E ® E’ is of the form
(E®QFE),=E, ®FE,,, so E®E’is abounded t X tj-module.
Set N :=U(go)vx. Since go = [go, go] X Z(go) one has

N = U([go. g0])on = Ul x o

The natural map ¢ : EQ E' — U(t x t{)vyx = N defined by uvy @ u'vy — un'vy is
a surjective homomorphism of t X t;-modules. Hence N is a bounded t x tj-module
and thus N is a bounded gg-submodule of L. Now Lemma 3.4.1 completes the
proof. [

3.5.

Checking the boundedness of Li((A')¢) for all t could be computationally heavy.
These computations could be shortened with the aid of Corollary 3.5.1 and Theo-
rem 3.6.1 below.

It turns out that for g # osp(m|2n), it is enough to consider only one distingui-
shed set of simple roots.
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3.5.1. Corollary.
(i) If all components of gn; have rank one, then L(\) is bounded for any .
Assume that t is a component of gn; of rank greater than one. Set ¥ := 3.
(ii) If g # osp(m|2n), then L(\) is bounded if and only if Ly, (\) is bounded.
(iil) If g = osp(m|2n) with m = 2,3,4 or n = 1, then L(X\) is bounded if and
only if Li(\) is bounded.

Proof. Tf ¥’ is a component of g,; of rank one, then any module in O(t') is bounded
and (i) follows from Theorem 3.3.

If t is a unique component of g,; which has rank greater than one, then Theo-
rem 3.3 implies that L()A) is bounded if and only if Li(A) is bounded. Note that
gn; contains more than one component of rank greater than one in the following
cases: g = osp(m|2n) with m > 4,n > 1 and A(m|n) with m,n > 1; this gives (iii).
For g = A(m|n) one has ¥y C 34, so (ii) follows from Theorem 3.3. [

3.6. Reduction to n = 2

Let g = osp(m|2n). Take
Yi=%,,.

For n > 2 we consider the subalgebra
osp(ml|d) C osp(m|2n)
with the set of simple roots lying in X. For instance, for osp(2s + 1|2n) we have
Y={01—02,.-,0n—1—0n,0n —€1,...,E5—1 — Es,Es}

and we take 0sp(2s+1]4) to be the subalgebra with the set of simple roots {0, 1 —
5n75n —€1,-+5,&s-1 — 53758}-

3.6.1. Theorem. Forn > 2 the module Lygp(m|2n)(A) is bounded if and only if the
modules Lgp, (Asp,,) and Losy(m|a)(Xosp(m|a)) are bounded.

Proof. Denote by vy the highest weight vector of L()\) := Losp(m|2n)(A) and set
E:=U(om)vn, E :=U(spy,)vn, E” :=U(osp(m|4))vy, N :=U(go)va.

By Lemma 1.2.2, E” 2 Logp(m|a)(Aosp(m|4))- Since E’ has the highest weight
Asp,,,» the module Lgy, (Asp, ) is a quotient of £’

If L(\) is bounded, then all modules E,E’, E” /N are bounded by Lemma
1.2.2(ii). This implies the “only if” part.

Now assume that Lsp, (Asp,,) and Logp(m|a)(Aosp(m|4)) are bounded. By Lemma
3.4.1(i) in order to show that L,sp(m|2n)(A) is bounded it is enough to verify N is
a bounded gg-module. Arguing as in the proof of Theorem 3.3, we see that N is
a quotient of £ ® E’, where E ® E’ is viewed as go-module (go = 0,,, X 5p,,,) and
that the boundedness of N follows from the boundedness of F and of E’. Since
0m C 0sp(m|4), E is a cyclic o,,-submodule of E” = Lygp(mja)(Aosp(mla)), 50 E is
bounded by Lemma 1.2.2(ii). It remains to verify the boundedness of F’.
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Note that E’ is a sp,,-module generated by its highest weight vector vy which
is of the weight
N o= Aspy,, -

Write II' := {61 — d2,...,0n—1 — On}, II(spsy,) = II' U {24,}. Consider the
copy of sl,, in g with the set of simple roots II' and the copy of sp, in g with
the set of simple roots {6,-1 — dp,20,}. By Lemma 1.2.2, the sl,-submodule
generated by v is isomorphic to L, (Asr, ). Note that sl,, C spy, and A = Aqy,,.
By Lemma 1.2.2, the sl,-submodule generated by the highest weight vector in
Lep, (Asp,, ) is isomorphic to Ly, (Asr, ). Since Lgp, (Asp,. ) is bounded, Lgr, (Ast,,)
is finite-dimensional, see §2.1.

Since E” is bounded and sp, C osp(m|4), the sp,-submodule generated by vy
is bounded. We conclude that E’ is an sp,,,-module with the following properties:

E’ is generated by the highest weight vector vy/;

U(sl,)uyn is a simple finite-dimensional sl,,-module;

U(sp,)vy is a simple bounded sp,-module.

By the description of the simple bounded highest weight modules of sp,,, (see
§2.1), E’ is bounded. This completes the proof. [

4. Strongly typical modules for osp(m|2n)

In this section g = osp(m|2n).

A weight X is called strongly typical if (A + p,8) # 0 for each § € Ay; the
module L(A) is called strongly typical if A is strongly typical.
4.1. Notation
We set

5= {%J ; p(m):=0 if m is even, p(m) := 1 if m is odd.

One has gn; = 0, X 8py, for even m and gn; = 05, X 08py)p,, for odd m.
We write for convenience gni = 0 X 08P, (1) |25, Where 08Py 5, = 0sp(1|2n) and

05Po|2n, = P2y
4.1.1. Conventions. We will use the standard notations of [K1] for A, in particular,
A(o,,) lies in the span of {e;}5_; and A(sp,,,) lies in the span of {J;}7 ;. We set
be :=HNom, hs:=5h N 5Poy,-
We identify (h N oy,)* with b := span{e;};_; and (h Nsp,,)* = (hNosp(1|2n))*
with b} := span{d;}}_;. One has
h=b:Dbs, b =bI@b3.
For A =Y ae; + > bjd; we set A\c ==Y a;g, As := ) b;d;.
In this section we use the base ¥ =3, | i.e.,
Y = {51 — 52,52 —53,...,5" — &1,
€1 —€2,...,Es—1 — 55758} for 05p(28 + 1|2n)7

¥ ={61 — 062,00 —03,...,0n — €1,
€1 —€2,...,65-1 — Es,E5—1 1+ €5} for osp(2s[2n).

Om s
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Set .
¢ = Z 5;.
=1

Then p1 = pg — p = (m/2)€ and pg,,, — p = s&. We set

Ry := H (1—e™%), Ry:= H (1+e™®), R:=Ro/Ry
ozEA(J{ (JLGA;r
and define R, , Rsp, , Ry, similarly. It is clear that Ry = R, Rsp,, -
4.1.2. Stabilizer. For u € h* we set

Ao(p) = {a € Ao(spay) | (1, @) = 0}

It is well known that Stabyy (s, ) is generated by 7 with a € Ag(u) (this follows
from §1.3.1).

We consider the root system B,, of 0, with the set of simple roots II(B,,) =
{61 — d2,...,0,} and denote by A*(B,,) the corresponding set of positive roots.
We set

Ct={pueh* | (un,a") ¢ Zo for a € AT(B,)}.

Note that for any A € b* there exists w € W(A)NW (sp,,, ) such that w(A+p) € CT.

4.2,

Theorem. Let v € h* be a strongly typical weight such that v+ p € CT and
(v+p,a) #0 forao=0;+6; with1 <i,j <n. Then for each z € W(v) "W (spy,,)
one has

Ref ch L(z.v) = Ry, ,e*ni ch Ly, (2(v + p) — pg,..)-

4.2.1. Remark. Since gni = 0m X 08P}, () |20

ch Lg, (A4 p = pgi) = ch Losp, ), (A + 9 = Pg,.:)5) - ch Lo, (A4 p = pg,..)e),
SO
epﬂni e Ch Lgni ()\ + p - pgm) = 685 : ChLUspp(m)\Qn (Aé - Sf) : ChLu'm. (AE) (4)

4.2.2. Corollary. Let A € b* be such that (A + p,a) # 0 for each o € Ay and
either Ag(A+ p) = & or (A + p,20;) € Z\ {0} fori=1,...,n. Then

chL(\) = e [T+ e %) 1+ %) - ch Loap, ., .. (A5 — 5€) - ch Lo, (Ao).

i=1j=1

4.2.3. Corollary. Let )\ be a strongly typical weight. Then L(X) is bounded if
and only if L1 = Losp yam (As — 8§) and Ly := L, (X)) are bounded modules
(over 08P, (yj2n and o, Tespectively). Moreover, the degree of L(A) is at most
225" deg Ly - deg Lo.
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4.3. Proofs of Corollaries

4.8.1. Proof of Corollary 4.2.2. For Corollary 4.2.2 note that take w € W(\) such
that w(\ + p) € C*. It is enough to verify that v := w.\ satisfies the assumptions
of Theorem 4.2. One has v+ p = w(A+p). Since A is strongly typicial, v is strongly
typical.

If Ag(A+ p) =@, then Ag(v + p) = &, so v satisfies the assumptions of Theo-
rem 4.2. Assume that for each i = 1,...,n we have (A + p,26;) € Z \ {0}. Since
wd; = £6; we have

(v+p,6)) = (wA+p),6)) € Z\ {0}.

Since v + p € C*, this gives (v + p,d)) € Zso, so v satisfies the assumptions
of Theorem 4.2. [

4.8.2. Proof of Corollary 4.2.3. Let L(A) be bounded. Then Ly = L, _()\.) is
bounded. Take ¥’ which contains the set of simple roots for 08P, (m)|2n and denote
by p' the corresponding Weyl vector. Then p§ = (pg,,)s. Since L(A) = L(X/, X) is
bounded, Losp,,, ., (A5) is bounded. Since A is strongly typical, one has A"+ p’ =
A+ p, so

)\3 = (>‘ +p— pgm‘)5’

Thus L1 = Losp, 0, (As + p — pg,..) is bounded.

Now let A be a strongly typical weight such that L, Ly are bounded modules.
Since L; is bounded, the description of the simple bounded highest weight modules
in §2.1 gives (A+p, ;) € (1/2)Z for i = 1,...,n. From Corollary 4.2.2 we conclude
that L()\) is bounded and has degree at most 22*" deg Ly - deg L. [

4.4. Central characters

The rest of the section is devoted to the proof of Theorem 4.2.
For a weight A € h* we define the g- and gg-central characters by

Xx: Z(g) — C such that z|p) = xa(2)Id,
x%: Z(go) — C such that Z|Lg,(0) = 3 (2)Id.

We next recall the notion “perfect mate” which was introduced in Section 8 of
[G1]. A maximal ideal X" in Z(go) is called a perfect mate for a maximal ideal x
in Z(g) if the following conditions are satisfied.

(i) For any Verma g-module annihilated by Y, its go-submodule annihilated by
a power of x¥ is a Verma gg-module.

(ii) Any g-module annihilated by x has a non-zero vector annihilated by x°.

If x° is a perfect mate for x, then [G2, Thm. 1.3.1] establishes an equivalence
of the corresponding categories of g- and go-modules.

4.4.1. Lemma. Let v € h* satisfies the assumptions of Theorem 4.2. Then:

(i) for each j € Z~qo one has v+ p+ (§/2)§ € CT and Ao(v + p+ (j/2)€) =
AO(V + p);

(i) X2 is a perfect mate for x,.
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Proof. Recall that v+ p € C* and Ag(v + p) C {d; — 0517 -1

One has (§,a") =2 for a = §;,0; +6; and (&, (6; —d;)Y) =0for 1 <i<j<n.
For j € Z-o this gives that v + p + (j/2)§ € CT and Ag(v + p + (j/2)€) C
{0; — 6;}7 =1, which implies (i). For (ii) we use [G1, Lem. 8.3.4], which asserts
that x¥ is a perfect mate for y, if the following conditions hold:

(1) Stabw (v + po) C Stabw (v + p);

(2) if I € AT and w € W are such that

w(u+po):1/+po—257 (5)

ger

then I' = @.
One has W = W (o0,,) x W(sp,,,), so for each p € h*

Stabw (1) = Stabyy(a,,.) #t X Stabyy(sp, 1t = Staby (o) fte X Stabyy (sp, ) is-
One has (v + p)e = (v + po)e, SO
Stabyy(a,,) (¥ + p)e = Stabyw (o) (¥ + po)e-
By §4.1.2, the group Stabyy(sp, ) ts is generated by rq, a0 € Ag(us), so (i) gives
Staby (sp,,,,) (¥ + po) = Stabw (sp,,.) (¥ + p)

and condition (1) follows. Now let us verify condition (2). Take w € W and I' € AT
such that (5) holds. Write w = wywy with wy € W (o,,), we € W(sp,,,), and set

vi=> B wi=+po)s

Ber

Then p — wop = 75 and 5 = 0 implies I' = @. Thus it is enough to verify that
vs = 0.
Write pn=: >0 ; b;6; and wap =: >~ ; bd;. The assumptions on v give
bi—bj¢Z<0, bi+bj—m¢Z§0 for 1<i<j<n. (6)
Note that vs = >_1, $;6;, where s; € {0,1,...,m} for each i, so
b; — b, €{0,1,...,m} for i=1,...,n.

Since W (spy,,) acts on {J;}7; by signed permutations, one has {|b;|}7_; = {|b;|}}_;
as multisets. If for some i, j one has b, = —b;, then b; +b; = b; —b; € {0,1,...,m},
a contradiction to (6). Therefore {b;}7; = {b}}_; as multisets. Since b; > b; for
each i, one has b; = b}, that is 75 = 0 as required. O
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4.5. Proof of Theorem 4.2

Recall that y.u := y(pu+p) — p for w € W, u € b*; we consider other shifted actions
of the Weyl group W on h* given by

Yotb = y(pr + po) — po, Yelt := Y(1t + Pg,;) = P

and note that y.u = you = yep if y € W,

By Lemma 4.4.1, the central character of go-module My, (v) is a perfect mate for
the central character of g-module M (v). This gives rise to equivalence of categories,
see [G2, Thm. 1.3.1]. The image of L(z.r) under this equivalence is Lg,(2ov),
see [FGG, §8.2.1]. Therefore

Roe ch Lg, (201 Z ay 2ey(Fpo) - Rep ch L(z.v) Z a;, zey(v+p) (7)
yGW yEW

for certain integers ay, which are given in terms of Kazhdan-Lusztig polynomials
for the Coxeter group W (v + po) (note that a; are not uniquely defined if Ao () #
o).
Set
pi=v+p—pg,, =V— s

Our goal is to show that

Rgm' ePoni ChL Z./*L Z (L ey(MJran (8)
yeWw

For each y € W one has (yot)s = yo(1s), and the analogous formula holds for
Yo. Since z € W(spy,), one has (zov): = V. = p. = (zept). Hence we have the
following identities:

ch Ly, (20v) = ch L, (ve) - ch Lgp, (20vs),
Ch Lgni (Z./’L) = ChLom (VE) ! Ch LDSpp(m)\?n, (Z./J,é),

R, e’*m -ch L, (v.)= Z b etV tro)e
erDm

+p)e
S bt
JZEWOm

R5p2n epspzn .ch L5p2n (Zol/é) — E CZ eu(Vo'i‘PJpzn)

uEWsp,,

= Z CZ eu(l/-‘y—po)g,

u€Wsyp,,

Z z u(ps+p )
due 5P p(m)|2n ,

u€EWsp,,

Pos ;
R e °5Pp(m)|2n . Laspp(m)mn(z.ué)

0SPy,(m)|2n

where by, cZ,d? are certain integers. Therefore for each x € W, ,u € Wep,, we

Ty ~u u
have

z z
a, = bycl.
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Also, one has that 5 + posp, o, = (1 F Pa,i)s = (¥ + p)s, so the last formula
of (9) can be rewritten as

Pospy(m)|2n . — z u(v+p)s
R"spp(m)\zne pml L"spp(m)\zn(z'ﬂé) = E dye .
u€Wspy,

Therefore for each x € W, ,,u € Wsp, we have

Ry, ., e’inich Ly, (zep) = Z bpd? e VTP
z€EW,,, u€Wsp,,
Now (8) reduces to the fact that we can choose ¢Z,d? in such a way that ¢ = d7,
for each u € Wy, (note that c,d? are not uniquely defined if Ag(v 4 p) or
Ao(v + po) is not empty).
Consider the case when m is odd. Combining (7) for m = 1 and the weight
15 + Posp,,, = (¥ + p)s with the last formula of (9) we get

Rgp,, €7*v2n - ch Lgp, (2os) = Z 4z etBatpepsn) (10)

UEWsyp,,

Note that for even m the formula (10) coincides with the last formula of (9).
Hence (10) holds for all m. Compare (10) and the forth formula of (9). In light
of [KT2, Prop. 3.9], the required formulae ¢ = d7 follow from the following
conditions:

(a) vs — ps lies in the weight lattice of sp,,;

(b) (Vs + psp,, ) (@), (15 + psp,, ) (") & Z<o for each o € A(spy,);
(€) Bo(¥s + psp,,) = Do(s + psp,,)-

Condition (a) follows from vs — us = s€. For (b), (c) notice that

p(m)
2

m

Vs + Psp,, = (v+p)s+ 55, Bs + Psp,, = (v+p)s+ £

Using Lemma 4.4.1(i) we obtain (c) and vs + psp, , fts + psp,, € CT; one readily
sees that these inclusions imply (b). This completes the proof. [

5. The cases osp(m|2n) for m =3,4orn =1

Corollary 4.2.3 gives an upper bound for the degree of a simple strongly typical
highest weight bounded module. In this section we deduce an upper bound on the
degree of a simple highest weight bounded module for the cases m = 3,4 or n = 1.

We retain the notation of §4.1. Recall that 0sp, )2, stands for spy, if m is
even and for osp(1]2n) if m is odd.

5.1.

Theorem. Let g = osp(m|2) with the base ¥, . The module L(\) is bounded if
and only if the on,-module Lo, (X,,,) is bounded. The degree of L(\) is at most
22m deg L, (o, ).
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Proof. Assume that L, (), ) is bounded. Set
={ven |v,, =X, }
If v € A is strongly typical, then, by Corollary 4.2.3, for each p one has
dim L(v),—, < 2°™ deg La,, (Xo,,) (11)

since any simple highest weight osp,,,,,yo-module has degree 1 (note that 05D (1m) 2
is isomorphic to sly for even m, and to osp, |, for odd m).

Recall that dim L(v),—,, is equal to the rank of the Shapovalov matrix S,(v),
see [Sh]. The Shapovalov matrix is a k x k matrix (where k = dim(n),) with
entries in S(h), and such that for each v € h* the matrix S, (v) is a k x k scalar
matrix. Let Ay be the set of strongly typical weights in A. Then A, is Zariski dense
in A. By (11), for v € Ay the rank of S,(v) is at most d := 2™ deg L,,, (Xo,,)-
Hence the rank of S,(v) is at most d for each v € A. Thus (11) holds for each
v € A. This completes the proof. [

5.2.
Theorem. Let g = osp(m|2n) for m = 3 or m = 4 with the base

Zﬂﬁpp<7”)|2" = {61 — &2, — 51, 51 — 52, N ,adn},

where a = 1 form = 3,a = 2 form = 4. The module L(\) is bounded if and
only if the 08P, () jon-module Losp o (Asp,,) is bounded. The degree of L(X) is
at most 22" deg Lgspp(mmn()\sp%).

Proof. Assume that L (As) is bounded. Set

OSP4, (m)|2n
A={veb” |vap,, =X, }

and let A, be the set of strongly typical weights in A.

Set X 1= Zosp, (), a0 Y =%, ; denote by p (respectively, p’) the Weyl
vector for ¥ (respectively, ¥'). Observe that any simple highest weight 0,,,-module
has degree 1 (since 03 = sl and 04 2 sly X sl2). If v € Ay, then L(v) = L(¥/, V)
with v/ + p' = v+ p and Corollary 4.2.3 gives

dim L(v),—,, = dim L(¥',v'),_,, < 2*" deg Losp, (yjam (V;pzn - {*J 251)

for each p. One has

n

n
m m
l/;pzn - \‘EJ Z(sl = V5P2n -+ psan — P;pzn — \‘EJ Z(Sl = I/sp2n.

i=1 =1
Therefore for v € Ag; one has
dim L(v),—, < 2°" deg Logp, ., o, (Vop,,,)- (12)

Since Ay is Zariski dense in A, we can use again the last argument in the proof
of Theorem 5.1. Thus (12) holds for each v € A. O



[BBL]
[BL
[Co]
[DGK]
[DMP]
[En]
[FGC]
[F]
i
(G1]
(G2]
(ele]
[GK]
[GS]
[Gr]
(GrS1]
(Grs2]
[H]
[1K]

[Jo]

[K1]

SIMPLE BOUNDED HIGHEST WEIGHT MODULES 913

References

G. Benkart, D. Britten, F. Lemire, Modules with bounded weight multiplicities for
stmple Lie algebras, Math. Z. 225 (1997), 333-353.

D. Britten, F. Lemire, A classification of simple Lie modules having a 1-dimen-
stonal weight space, Trans. Amer. Math. Soc. 299 (1987), 683-697.

K. Coulembier, On a class of tensor product representations for orthosymplectic
superalgebras, J. Pure Appl. Algebra 217 (2013), 819-837.

V. V. Deodhar, O. Gabber, V. Kac, Structure of some categories of representa-
tions of infinite-dimensional Lie algebras, Adv. Math. 45 (1982), 92-116.

I. Dimitrov, O. Mathieu, 1. Penkov, On the structure of weight modules, Trans.
Amer. Math. Soc. 352 (2000), 2857-2869.

T. J. Enright, On the fundamental series of a real semisimple Lie algebra: their
wrreducibility, resolutions and multiplicity formulae, Ann Math. 110 (1979), 1-82.

T. Ferguson, M. Gorelik, D. Grantcharov, Bounded highest weight modules of
0sp(1,2n), Proc. Symp. Pure Math., AMS, Vol. 92 (2016), 135-143.

S. Fernando, Lie algebra modules with finite dimensional weight spaces 1, Trans.
Amer. Math. Soc. 322 (1990), 757-781.

V. Futorny, The Weight Representations of Semisimple Finite-dimensional Lie
Algebras, PhD Thesis, Kiev University, 1987.

M. Gorelik, Annihilation theorem and separation theorem for basic classical Lie
superalgebras, J. Amer. Math. Soc. 15, (2002), 113-165.

M. Gorelik, Strongly typical representations of the basic classical Lie superalgebras,
J. Amer. Math. Soc. 15, (2002), 167-184.

M. Gorelik, D. Grantcharov, Bounded highest weight modules of q(n), Int. Math.
Res. Not. 2014(22) (2014), 6111-6154.

M. Gorelik, V. Kac, Characters of (relatively) integrable modules over affine Lie
superlagebras, Japan. J. Math. 10 (2015), 135-235.

M. Gorelik, V. Serganova Snowflake modules and Enright functor for Kac—Moody
superalgebras, arXiv:1906.07074 (2019).

D. Grantcharov, Ezplicit realizations of simple weight modules of classical Lie
superalgebras, Cont. Math. 499 (2009), 141-148.

D. Grantcharov, V. Serganova, Category of sp(2n)-modules with bounded weight
multiplicities, Mosc. Math. J. 6 (2006), 119-134.

D. Grantcharov, V. Serganova, On weight modules of algebras of twisted differen-
tial operators on the projective space, Transform. Groups 21 (2016), 87-114.

C. Hoyt, Weight modules for D(2,1, &), in: Advances in Lie Superalgebras, Sprin-
ger INAAM Ser., Vol. 7, Springer, Cham, 2014, pp. 91-100.

K. Iohara, Y. Koga, Enright functors for Kac—Moody superalgebras, Abh. Math.
Semin. Univ. Hambg. 82 (2012), no. 2, 205-226.

A. Joseph, Some ring theoretical techniques and open problems in enveloping
algebras, in: Noncommutative Rings, MSRI Publications, Vol. 24, Springer, New
York, NY, 1992, pp. 27-67.

V. G. Kac, Lie superalgebras, Adv. Math. 26 (1977), 8-96.



914
[K2]
[KT1]

[KT2]

[M]

[S1]

[52]

[Sh]

MARIA GORELIK, DIMITAR GRANTCHAROV

V. G. Kac, Infinite-dimensional Lie Algebras, 3rd edition, Cambridge University
Press, Cambridge, 1990.

M. Kashiwara, T. Tanisaki, Kazhdan—Lusztig conjecture for symmetrizable Kac—
Moody algebras 111. Positive rational case, Asian J. Math. 2 (1998), no. 4, 779-832.

M. Kashiwara, T. Tanisaki, Characters of the irreducible modules with non-critical
highest weights over affine Lie algebras, in: Representations and Quantizations
(Shanghai, 1998), China High. Educ. Press, Beijing, 2000, pp. 275-296.

O. Mathieu Classification of irreducible weight modules, Ann. Inst. Fourier 50
(2000), 537-592.

V. Serganova, Finite-dimensional representations of algebraic supergroups, in:
Proceedings of International Congress of Mathematicians — Seoul 2014, Vol. 1,
Kyung Moon Sa, Seoul, 2014, pp. 603-632.

V. Serganova, Kac—Moody superalgebras and integrability, in Developments and
Trends in Infinite-dimensional Lie Theory, Progress in Math., Vol. 288, Birk-
h&user Boston, Boston, MA, 2011, pp. 169-218.

H. H. lanosanos, 06 00notl busuneldnol gopme na ynusepcasvrnoll obepmut-
sanu,el arzebpe Komnaekcnolt noaynpocmod aszebpe Ju, PyHKI. aHAIU3 U €ro
npui. 6 (1972), Bom. 4, 65-70. Engl. transl.: N. N. Shapovalov, On a bilinear
form on the universal enveloping algebra of a complex semisimple Lie algebra,
Funct. Analysis Appl. 6 (1972), 307-312.

Publishers Note Springer Nature remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.





