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ANNIHILATION THEOREM AND SEPARATION THEOREM FOR

BASIC CLASSICAL LIE SUPERALGEBRAS

MARIA GORELIK

Abstract. In this article we prove that for a basic classical Lie superalgebra the an-
nihilator of a strongly typical Verma module is a centrally generated ideal. For a basic
classical Lie superalgebra of type I we prove that the localization of the enveloping alge-
bra by a certain central element is free over its centre.

1. Introduction

1.1. Let g be a complex semisimple Lie algebra, U be its universal enveloping algebra
and Z(g) be the centre of U . Consider U as a g-module with respect to the adjoint action.
Separation Theorem of Kostant (see [Ko]) states the existence of a submodule H of U
such that the multiplication map provides the bijection H ⊗ Z(g)

∼
−→ U . Moreover the

multiplicity of each simple finite dimensional module V in H is equal to the dimension
of its zero weight space. Such an ad g-invariant subspace H is called a harmonic space.
An easy proof of Separation Theorem was found by Bernstein and Lunts—see [BL]. This
theorem is an important ingredient in the proof of the annihilation theorem of Duflo
(see [D], 8.4.3) asserting that the annihilator of a Verma module is generated by its
intersection with Z(g). The annihilation theorem is reproven by Joseph and G. Letzter.
They also generalize it to the quantum case— see [JL],[J3].

In this paper we obtain analogous theorems in the case of basic classical Lie superalge-
bras. This was done earlier for the completely reducible case— see [M1],[GL1].

Let g = g0 ⊕ g1 be a basic classical Lie superalgebra, Ũ be its universal enveloping
superalgebra and Z(g) be the centre of Ũ . Let T be a special ghost element constructed
in [G]. Call a highest weight module strongly typical if it is not annihilated by T .

We prove the following version of Annihilation Theorem.

1.1.1. Theorem. The annihilator of a strongly typical Verma g-module M̃ is a
centrally generated ideal.

The author was partially supported by TMR Grant No. FMRX-CT97-0100. Research at MSRI is
supported in part by NSF grant DMS-9701755.
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Moreover, for a strongly typical Verma module M̃ , we describe the quotient Ũ/Ann M̃

as an ad g-module and show that the natural map from Ũ/Ann M̃ to the locally finite

part of EndC(M̃) is bijective.

1.1.2. The proof of Theorem 1.1.1 goes as follows. As in [JL], we use the Parthasarathy–
Ranga-Rao– Varadarajan (PRV) determinants. We generalize the notion of PRV deter-
minants (see [PRV]) to basic classical Lie superalgebras. Our construction is based on

the fact that the two-sided ideal ŨT = T Ũ , considered as ad g-module, is injective in a
category of locally finite modules.

In the completely reducible case one assigns to each simple finite dimensional module
Ṽ a PRV determinant which is a polynomial in S(h).

On the contrary, for the non-completely reducible case the lack of harmonic space forces
us to substitute the PRV determinant by a set of PRV determinants corresponding to the
same Ṽ . However, we do not have to calculate these determinants, but only verify that
they are non-zero. We use these determinants to show that if the locally finite part
F (M̃, M̃) of the endomorphisms EndC(M̃) of a strongly typical Verma module M̃ has

“a right size” as an ad g-module and the natural map Ũ → F (M̃, M̃) is surjective, then

Ann M̃ is centrally generated.

For type I we directly verify both conditions. The crucial point in the study of type II
case is the construction in Section 8 of a perfect mate χ ∈ MaxZ(g0) for each strongly
typical χ̃ ∈ MaxZ(g). We call a maximal ideal χ ∈ MaxZ(g0) a perfect mate for
χ̃ ∈ MaxZ(g) if the following conditions are satisfied.

(i) For any Verma g-module annihilated by χ̃, its g0-submodule annihilated by a power
of χ is a Verma g0-module.

(ii) Any g-module annihilated by χ̃ has a non-trivial g0-submodule annihilated by χ.

The condition (ii) seems to be difficult to check. However, it turns out that it is enough
to verify (ii) only for simple highest weight g-modules. This is deduced from [M2].

For g = osp(1, 2l) the annihilator of a Verma g-module M̃ is a centrally generated ideal

iff M̃ is strongly typical—see [GL1]. In this paper we prove the similar equivalence for
the basic classical Lie superalgebras of type I.

As it is shown in [PS1], if g has type I then for any strongly typical χ̃ ∈ Z(g) the

algebra Ũ/(Ũ χ̃) is the matrix algebra over U(g0)/(U(g0)χ) for a suitable χ ∈ MaxZ(g0).
As it was pointed out by V. Serganova this result implies Theorem 1.1.1 for type I case.
The opposite implication is also easy (see 7.4).

1.2. Let g be a basic classical Lie superalgebra which is not completely reducible. Then
Ũ is not a domain (see [AL]) and Z(g) is not Noetherian ([M1], 2.8). However all non-
zero central elements are non-zero divisors and Z(g) contains an element z such that the
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localized algebra Z(g)[z−1] is isomorphic to a localization of a polynomial algebra. One
can take z := T 2 where T is the element mentioned above. The element T is even; it
commutes with the even elements of Ũ and anticommutes with the odd ones. Moreover,
the image of T in the symmetric algebra S(g) belongs to the top exterior power of g1.
These properties determine T up to a scalar.

It is easy to show (see [G], 4.5) that Ũ , considered as an ad g-module, does not admit a
factorization of the form H ⊗ Z(g). For type I Lie superalgebras, we prove the following
version of Separation Theorem.

1.2.1. Theorem. For g of the type I, there exists ad g-invariant subspace H of Ũ such
that the multiplication map provides the bijection H ⊗ Z(g)[T−2] → Ũ [T−2].

Clearly, Z(g)[T−2] coincides with the centre of Ũ [T−2]. As an ad g-module,H is injective
in an appropriate category of locally finite modules and for any simple finite dimensional
module Ṽ one has dim Homg(Ṽ , H) = dim Ṽ |0 where Ṽ |0 is the zero weight space of Ṽ .
For a basic classical Lie superalgebra of type II, we obtain a weaker result, namely that
the similar assertions hold if we substitute z by a certain subset S of Z(g). This set S
can be described in terms of the PRV determinants.

A natural conjecture is that one can always choose S equal to {T 2}. A possible way to
prove this conjecture is to show that an irreducible factor of a PRV determinant is either
a factor of Shapovalov form or is of the form (β∨+β∨(ρ)) for some odd coroot β. However
it is not clear how to calculate these determinants if g is not completely reducible.

1.3. Content of the paper. In Section 2 we recall some facts about the basic classical
Lie superalgebras.

In Section 3 we define a category F in of locally finite g-modules and provide some
properties of F in. We also recall the construction and properties of the element T .

In Section 4 we investigate the g-module structure of Ũ given by the adjoint action.
We start with studying Homg(Ṽ , Ũ) for a simple finite dimensional module Ṽ . For each

Ṽ we construct a central element z such that the localized module Homg(Ṽ , Ũ [z−1]) =

Homg(Ṽ , Ũ)[z−1] is a free Z(g)[z−1]-module whose rank is equal to dim Ṽ |0. In 4.6 we
generalize a notion of PRV determinants to the case of non-completely reducible Lie
superalgebras. We also establish properties of these determinants which are similar to the
properties of the original PRV determinants. In 4.7 we show that for a suitable subset
S of Z(g) the localized algebra Ũ [S−1] is free over its centre Z(g)[S−1]. We describe
the ad g-module structure of the corresponding “generic harmonic space” H . We show
that one may choose H to be the ad g-module generated by H ′T where H ′ is a certain
harmonic space of U(g0).

In Section 5 we establish a connection between PRV determinants and the annihilators
of simple modules. We show that if all PRV determinants do not vanish at a point λ ∈ h∗
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and if a simple module Ṽ (λ) is strongly typical then its annihilator is a centrally generated

ideal. Moreover, for a simple strongly typical Verma module Ṽ (λ) all PRV determinants

do not vanish at a point λ ∈ h∗ iff the natural map Ũ → F (M̃, M̃) is surjective and

F (M̃, M̃) has a certain nice structure as ad g-module (it should be isomorphic to the
“generic harmonic space” H).

Sections 6,7 are devoted to type I case. Preliminary facts are concentrated in Section 6.
In Section 7 we prove that for a suitable ad g-stable H the multiplication map provides
an isomorphism H⊗Z(g)[T−2] → Ũ [T−2]. We also prove that the annihilator of a Verma
module is centrally generated iff this module is strongly typical.

Sections 8,9 are devoted to type II case.

In Section 8 we describe, for each strongly typical χ̃ ∈ MaxZ(g) its perfect mate
χ ∈ MaxZ(g0). Note that in type I case for any strongly typical χ̃ ∈ MaxZ(g) and for

any λ such that χ̃ annihilates M̃(λ), the ideal AnnZ(g0)M(λ) is a perfect mate for χ̃. This
does not hold for type II. For certain “generic” χ̃, the ideal AnnZ(g0)M(λ) is a perfect

mate if one chooses λ satisfying, apart from χ̃M̃(λ) = 0, also a kind of “dominance”
condition. For B(m,n) and G(3) all strongly typical central characters are generic. For
the remaining superalgebras D(m,n), D(2, 1, α) and F (4) we select perfect mates for non-
generic strongly typical central characters case by case.

In Section 9 we prove Theorem 1.1.1. The existence of a perfect mate for each strongly
typical χ̃ ∈ MaxZ(g) enables us to show that for a Verma module M̃ with the central

character χ̃ the natural map Ũ → F (M̃, M̃) is surjective and F (M̃, M̃) ∼= H . According

Section 5, these two conditions imply that the annihilator of M̃ is centrally generated
ideal.

In Section 10 we study the g0-structure of Verma g-modules.

Appendix 11 contains some lemmas used in the main text. It also contains alternative
proofs of some results (non-vanishing of the PRV determinant,Corollary 4.5.2 and The-
orem 4.7.4). These proofs do not use Kostant’s Separation Theorem. Probably, these
proofs may be useful in the case when separation theorem does not hold.

Acknowledgments. It is a pleasant duty to express the gratitude to my teacher A. Joseph.
Many ideas of this paper owe to his book and to his courses given at Weizmann Institute.
The author would like to thank M. Duflo, E. Lanzmann, I. Musson and I. Penkov for
helpful discussions and V. Serganova for her extreme patience and useful comments. This
work was done when the author was a postdoctoral fellow at MSRI. The author would
like to thank MSRI and the organizers of the Noncommutative Algebra Program for their
support and hospitality.
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2. Preliminaries

In this paper the ground field is C. Everywhere in the paper apart from Sections 6,7,
g = g0⊕g1 denotes one (unless otherwise specified, an arbitrary one) of the basic classical
complex Lie superalgebras gl(m,n), sl(m,n), osp(m,n), psl(n, n). Each of these Lie su-
peralgebras possesses the following properties: it admits a g-invariant bilinear form which
is non-degenerate on [g, g] and the even part g0 is a reductive Lie algebra.

In Sections 6,7, g = g0⊕g1 denotes one of the basic classical complex Lie superalgebras
of type I: gl(m,n), sl(m,n), osp(2, n), psl(n, n). We shall slightly change our notations
since these superalgebras admit Z-grading g = g−1 ⊕ g0 ⊕ g1. The even part g0 coincides
with g0 and the odd part g1 is the sum of two dual g0-modules g−1 and g1.

In this section we present the main preliminary facts about the structure of the basic
classical complex Lie superalgebras and their representations, which we shall use in this
paper.

2.1. Conventions. We denote by N+ the set of positive integers and by #I the number
of elements of the given set I. If A is an algebra, N is an A-module and X, Y are subsets
of A and N respectively, we denote by XY the set of the products xy where x ∈ X, y ∈ Y .

For a Z2-homogeneous element u of a superalgebra denote by d(u) its Z2-degree. In all
formulas where this notation is used, u is assumed to be Z2-homogeneous.

For a superalgebra m denote by U(m) its universal enveloping superalgebra. Set Ũ :=
U(g) and U := U(g0).

In this text all modules are assumed to be left modules. For given module N we denote
by N⊕r the direct sum of n-copies of N . We say that A-module N is locally finite if
dimAv <∞ for all v ∈ N .

The symbol Ṽ (resp., V ) is always used for a simple g (resp., g0) module and the symbol

M̃ (resp., M) for a Verma g (resp., g0) module.

2.2. Triangular decompositions. Triangular decompositions of the superalgebras are
defined in [PS2] as follows. A Lie subsuperalgebra h ⊂ g is called a Cartan subsuperal-
gebra if h is nilpotent and coincides with its centralizer in g. For the basic classical Lie
superalgebras the set of Cartan subalgebras coincides with the set of Cartan subalgebras
of g0. Fix a Cartan subalgebra h; it acts semisimply on g:

g := ⊕µ∈h∗g|µ, g|µ := {a ∈ g| ∀h ∈ h, [h, a] = µ(a)}.

Denote by ∆ the set of non-zero roots that is the set {α ∈ h∗| g|α 6= 0} \ {0}. An element
h ∈ h is called regular if Reα(h) 6= 0 for all α ∈ ∆. Any regular element determines the
decomposition ∆ = ∆+ ∐

∆− where

∆+ := {α ∈ ∆| Reα(h) > 0}, ∆− := {α ∈ ∆| Reα(h) < 0}.
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Moreover it determines a decomposition g = n− ⊕ h ⊕ n+ where

n+ := ⊕α∈∆+g|α, n− := ⊕α∈∆−g|α.

Such decompositions of g are called triangular decompositions. It is clear that n± are
nilpotent Lie subsuperalgebras of g.

A Lie subsuperalgebra b ⊂ g is called a Borel subsuperalgebra if b = h ⊕ n+ for some
triangular decomposition g = n− ⊕ h ⊕ n+. A Borel subsuperalgebra determines the
triangular decomposition; we will add a lower index to designate the corresponding Borel
subsuperalgebra in the case where the choice of triangular decomposition is not clear from
the context. We denote by ∆(b) the set of non-zero roots of b. We say that a vector of v
of g-module is b-primitive if [b, b]v = 0 and hv ∈ Cv.

A triangular decomposition g = n− ⊕ h ⊕ n+ induces the triangular decomposition of
the even part g0 = n−

0 ⊕h⊕n+
0 . The group of inner automorphisms of g0 acts transitively

on all triangular decompositions of g0 and the action of this group can be extended to g.
Hence the theory does not depend from the choice of a triangular decomposition of g0.
In the sequel we fix a triangular decomposition g0 = n−

0 ⊕ h⊕ n+
0 and consider triangular

decompositions of g which induce this fixed triangular decomposition of g0.

2.2.1. Denote by ∆0 the set of non-zero even roots of g and by ∆1 the set of odd roots
of g. Set ∆±

0 := ∆0 ∩ ∆± and ∆±
1 := ∆1 ∩ ∆±.

Denote by (−,−) a g-invariant bilinear form on g which is non-degenerate on [g, g] and
the induced W -invariant bilinear form on h∗. A root α ∈ ∆ is called isotropic if (α, α) = 0.
For a root α denote by α∨ the element of h satisfying α∨(µ) = (α, µ) for each µ ∈ h∗.

Set
∆

+
0 := {α ∈ ∆+

0 | α/2 6∈ ∆+
1 }, ∆

+
1 := {β ∈ ∆+

1 | 2β 6∈ ∆+
0 }.

The set of isotropic roots coincides with ∆
+
1 .

Remark that
∑
α∈∆+ nαα = 0 for some nα ∈ N implies nα = 0 for all α ∈ ∆+. This

allows us to define the standard partial order relation on h∗ by λ ≤ µ ⇐⇒ µ − λ ∈∑
α∈∆+ Nα. One can easily sees that the minimal (with respect to this partial order)

elements of ∆+ form a basis of simple roots.

Denote by π0 the basis of simple roots of g0 and by W the Weyl group of ∆0. Denote
by |W | the number of elements in W . For w ∈W set sn(w) := (−1)l(w) where l(w) is the
length of w. For a non-isotropic root α define sα ∈ Aut h∗ by setting

sα(λ) := λ− 2
(α, λ)

(α, α)
α.

Evidently skα = sα and so the subgroup of Aut h∗ generated by the sα coincides with W .

Set
ρ0 := 1

2

∑

α∈∆+

0

α, ρ1 := 1
2

∑

α∈∆+

1

α, ρ := ρ0 − ρ1.
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For a simple root α one has 2(α, ρ) = (α, α).

Define the translated action of W on h∗ and on the symmetric algebra S(h) by the
formulas:

w.λ := w(λ+ ρ) − ρ, w.f(λ) := f(w−1.λ), ∀λ ∈ h∗, w ∈W.

2.2.2. For a g0-module N and an element µ ∈ h∗ set

N |µ := {m ∈M | hm = µ(h)m, ∀h ∈ h}.

We shall consider mainly h-diagonalizable modules that is satisfying N =
∑
µ∈h∗ N |µ. Set

Ω(N) := {µ ∈ h∗| N |µ 6= 0}.

If dimN |µ <∞ for each µ ∈ h∗ , set chN :=
∑
λ∈h∗(dimN |µ)e

µ.

When we use the notation Ũ |µ, the action of g on Ũ is assumed to be the adjoint action.

2.3. An important property of the basic classical Lie superalgebras is the existence
of a Cartan superantiautomorphism σ coming from the supertransposition of matri-
ces. Recall that an even linear endomorphism ι of a Lie (resp., associative) superal-
gebra is called a superantiautomorphism if ι([x, y]) = (−1)d(x)d(y)[ι(y), ι(x)] (resp., ι(xy) =
(−1)d(x)d(y)ι(y)ι(x)) for all homogeneous elements x, y. The Cartan superantiautomor-
phism σ has the following properties:

a) σ2(g) = (−1)d(g)g, ∀g ∈ g,
b) σ(n+) = n−,
c) σ(h) = h, ∀h ∈ h.

The restriction of σ to g0 is a Cartan antiinvolution:

a) (σ2)|g0
= id,

b) σ(n+
0 ) = n−

0 ,
c) σ(h) = h, ∀h ∈ h.

2.3.1. Symmetric algebra. Denote by F the canonical filtration of Ũ given by Fk := gk.
This filtration is ad g-invariant and the associated graded superalgebra S(g) inherits an
ad g-module structure. The superalgebra S(g) is supercommutative: it is the product of
the symmetric (even) algebra S(g0) and the external superalgebra Λg1.

For u ∈ Ũ denote by gr u its image in S(g); identify U(h) and its image S(h).

2.3.2. Centre. By definition, the (super)centre Z(g) := Ũg. One has grZ(g) = S(g)g.

Denote by grP the projection S(g) → S(h) along S(g) gr(n− + n+). The restriction
of grP to S(g)g provides a monomorphism ι : S(g)g → S(h)W . As a consequence, all

non-zero elements of S(g)g (resp., Z(g)) are non-zero divisors in S(g) (resp., Ũ). The
image of ι is described in [K2], [S1], [BZV]; ι is bijective iff g = osp(1, 2l).
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Denote by P∅ the projection S(g) → S(g0) with the kernel K :=
∑
i≥1 S(g0)Λ

ig1. It is
easy to see that K is ad g0-invariant and so P∅ is an ad g0-map. Moreover P∅ provides a
monomorphism S(g)g → S(g0)

g0 since grP = grP ◦ P∅ and so the injectivity of P∅ on
S(g)g follows from the injectivity of grP .

2.3.3. Harish-Chandra projection. Denote by P the Harish-Chandra projection Ũ → S(h)

with respect to the decomposition Ũ = (Ũn+ + n−Ũ) ⊕ U(h). The restriction of P to

Ũ |0 = Ũh is an algebra homomorphism. An element a ∈ Ũh acts on a primitive vector of
weight µ by the multiplication by the scalar P(a)(µ).

The Harish-Chandra projection provides a monomorphism Z(g) → S(h)W.. If Ñ is a

g-module generated by a primitive vector of weight λ, then a central element z acts on Ñ
by the multiplication by the scalar P(z)(λ).

Call χ̃ ∈ MaxZ(g) a central character of a g-module N if χ̃rN = 0 for r >> 0.

2.3.4. Let z be an element of Z(g). Since z has weight zero, z = P(z) +
∑
i u

−
i u

+
i

where u−i ∈ U(h−)n−, u+
i ∈ U(h+)n+ for all i. One has σ(u−i u

+
i ) = ±σ(u+

i )σ(u−i ) ∈
U(h−)n−U(h+)n+. Therefore

σ(z) = σ(P(z)) +
∑

i

±σ(u+
i )σ(u−i ) ∈ P(z) + Ũn+

that is P(σ(z)) = P(z). Thus the superantiautomorphism σ stabilizes the central ele-

ments. This implies that Z(g0),Z(g) ⊂ Ũσ.

2.3.5. For a Z2-graded g0-module L denote by Indg
g0
L a vector space Ũ ⊗U L (here

Ũ is considered as a right U-module and a left Ũ-module through the multiplication)

equipped by the natural structure of a left Ũ -module. Denote by Coindg
g0
L a vector space

HomU(Ũ , L) (here Ũ is considered as a left U-module) equipped by the following structure

of a left Ũ-module: (uf)(u′) := f(u′u) for any f ∈ HomU(Ũ , L), u, u′ ∈ Ũ . For a g-module

Ñ and a g0-module L one has the canonical bijections

Homg0
(Ñ , L)

∼
−→ Homg(Ñ,Coindg

g0
L),

Homg0
(L, Ñ)

∼
−→ Homg(Indg

g0
L, Ñ).

By [BF], Indg
g0
L ∼= Coindg

g0
L.

2.4. Hopf algebra structure. The enveloping algebra Ũ is a supercommutative Hopf
superalgebra. This means, in particular, that the antipode S is a superantiautomorphism
of Ũ and that the comultiplication ∆′ : Ũ → Ũ ⊗ Ũ is a homomorphism of superalgebras
satisfying the relation s ◦ ∆′ = ∆′ where s is a linear map s : Ũ ⊗ Ũ → Ũ ⊗ Ũ given by
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s(u1 ⊗ u2) := (−1)d(u1)d(u2)(u2 ⊗ u1). The Hopf algebra structure on Ũ is given by

∆′(g) = g ⊗ 1 + 1 ⊗ g,
ε(g) = 0,
S(g) = −g

for any g ∈ g.

The Hopf superalgebra structure on Ũ gives a g-module structure on the tensor product
N1⊗N2 := N1⊗CN2 of two g-modules N1, N2. The map n1⊗n2 7→ (−1)d(n1)d(n2) provides
the canonical g-isomorphism N1 ⊗N2 → N2 ⊗N1.

2.4.1. Throughout the paper we shall write “ad g-module” instead “g-module with re-
spect to the adjoint action”.

View Ũ as g-module through the adjoint action given by

(ad g)u := ug − (−1)d(g)d(u)ug, ∀g ∈ g, u ∈ Ũ .

As ad g-module, Ũ is locally finite.

For any g-modules N1, N2 view Hom(N1, N2) := HomC(N1, N2) as a g-module through
the adjoint action:

(ad g)ψ(v) = gψ(v) − (−1)d(g)d(ψ)ψ(gv) ∀g ∈ g, ψ ∈ Hom(N1, N2).

We denote by F (N1, N2) the locally finite part of ad g-module Hom(N1, N2). Notice that

F (N1, N2) coincides with the ad g0-locally finite part of Hom(N1, N2), since Ũ is a finite
extension of U .

Throughout the paper an action of g on Ũ and on F (N1, N2) is assumed, by default, to
be the adjoint action.

For a g-module N , the natural map Ũ → End(N), coming from the action of Ũ on N ,
is an ad g-homomorphism and its image lies in F (N,N).

2.4.2. Let L be a finite dimensional g-module. Equip the dual supervector space L∗ by
g-module structure through the antipode S:

g.f(v) := (−1)d(g)d(f)f(S(g)v) = (−1)d(g)d(f)f(−gv), ∀v ∈ L, g ∈ g.

We shall use the following form of the Frobenius reciprocity

Homg

(
L,Hom(N1, N2)

)
∼= Homg(L⊗N1, N2) ∼= Homg(N1, N2 ⊗ L∗)

for any g-modules N1, N2 and a finite dimensional g-module L.
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2.5. The category Õ and Verma modules. Denote by O the full subcategory of
finitely generated h-diagonalizable g0-modules which are locally n+

0 -finite. Denote by Õ
the similarly defined category of g-modules.

Since U(n+) is finite over U(n+
0 ), a g-module N belongs Õ iff as g0-module N belongs

to O. In particular, any module of category Õ has a finite length.

2.5.1. For λ ∈ h∗ denote by Cλ a simple b-module such that n+v = 0 and hv = λ(h)v

for any h ∈ h, v ∈ Cλ. Define a Verma module M̃(λ) by setting

M̃(λ) := Ũ ⊗U(b) Cλ.

The module M̃(λ) has a unique simple quotient, which we denote by Ṽ (λ). Similarly,
denote byM(λ) and V (λ) respectively, Verma and simple g0-modules of the highest weight
λ.

2.5.2. Definition. A weight λ ∈ h∗ is called typical if (λ+ ρ, β) 6= 0 for any isotropic
β ∈ ∆1.

2.5.3. If λ is typical then AnnZ(g) M̃(λ) = AnnZ(g) M̃(λ′) implies λ′ ∈ W.λ— see [K3],
Theorem 2. In particular, if a typical weight λ is a minimal element in its orbit W.λ then
M̃(λ) is simple.

On the other hand, if a typical weight λ is a maximal element in W.λ then M̃(λ) is

projective in Õ. Indeed, take a short exact sequence 0 → Ñ ′ → Ñ → M̃(λ) → 0 in Õ.

One may assume that χ̃kÑ = 0 where χ̃ := AnnZ(g) M̃(λ) and k is a positive integer.

Then the weight of a primitive vector of any simple subquotient of Ñ belongs to W.λ.
Since λ is a maximal element of W.λ one has Ω(Ñ) ∩ {λ + Z∆+} ⊆ {λ − N∆+}. Thus

a preimage of a highest weight vector of M̃(λ) is primitive and the above exact sequence
splits.

By a similar argument, a short exact sequence 0 → M̃(λ′) → Ñ → M̃(λ) → 0 in Õ
splits if λ′ 6> λ.

2.5.4. Definition. A weight λ ∈ h∗ is called strongly typical if (λ+ ρ, β) 6= 0 for any
β ∈ ∆1.

2.5.5. Call the highest weight modules Ṽ (λ), M̃(λ) typical (resp., strongly typical) if λ
is typical (resp., strongly typical).

Apart from the cases B(m,n) (that is osp(2m+1, 2n)) and G(3), all odd roots of g are
isotropic and thus the notions of “typical” and “strongly typical” coincide.
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2.5.6. Take N ∈ Õ. Equip the graded dual vector space N# := ⊕µ∈h∗(N |µ)
∗ by the

following g-module structure

u.f(v) := (−1)d(f)d(u)f(σ(u)v)), ∀u ∈ Ũ , f ∈ N#, v ∈ N

where σ : Ũ → Ũ is the superantiautomorphism defined in 2.3. One can easily sees that
N 7→ N# defines a duality functor on Õ.

Since the restriction of σ on h is equal to identity, chN# = chN . In particular,
Ṽ (λ)# ∼= Ṽ (λ) and it is isomorphic to the socle of M̃(λ)#.

2.5.7. According to [LM], for any Zariski dense S ⊆ h∗

∩λ∈S Ann M̃(λ) = 0.

2.5.8. A Verma module is not irreducible iff its highest weight is a root of a Shapovalov
form. Shapovalov forms are polynomials in S(h) indexed by the weights of U(n−). Each
polynomial admits a linear factorization which was established by Kac. The linear factors
of these polynomials are

α∨ + (ρ, α) − n(α, α)/2 n ∈ N+, α ∈ ∆
+
0 ,

α∨ + (ρ, α) − n(α, α)/2 n ∈ 2N + 1, α ∈ (∆+
1 \ ∆

+
1 ),

α∨ + (ρ, α), α ∈ ∆
+
1 .

Hence M̃(λ) is not irreducible iff (λ+ρ, α) = n(α, α)/2 for a positive root α and a positive
integer n which should be odd for odd α.

2.6. Finite dimensional modules. Necessary and sufficient conditions for Ṽ (λ) to be
finite dimensional are given in [K1], Theorem 8. One can immediately sees from these

conditions that any typical finite dimensional Ṽ (λ) is strongly typical. If Ṽ (λ), Ṽ are

finite dimensional satisfying AnnZ(g) Ṽ (λ) = AnnZ(g) Ṽ and Ṽ is typical then Ṽ ∼= Ṽ (λ)—
see [K2], Prop. 2.7.

The following character formula of a typical finite dimensional module is established
by Kac (see [K2],[K3]):

ch Ṽ (λ) = D
∑

w∈W

sn(w)ew.λ, where D =
∏

α∈∆+

0

(1 − e−α)−1
∏

β∈∆+

1

(1 + e−β). (1)

2.7. Odd reflections. The odd reflections were introduced by I. Penkov and V. Serganova—
see [PS2], 3.1. If g is a basic classical Lie superalgebra, the definition takes the following
form. Two Borel subsuperalgebras b, b′ ⊂ g are connected by an odd reflection along β iff
β is a simple odd isotropic root of b′ and

∆(b) = {−β} ∪ ∆(b′) \ {β}.

Note that ∆0(b) = ∆0(b
′) and so b0 = b′

0. As it is shown in [PS2], 3.1, any Borel
subsuperalgebras b, b′ ⊂ g satisfying b0 = b′

0 are connected by a chain of odd reflections.
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Let b and b′ be Borel subsuperalgebras connected by the odd reflection along an odd
isotropic root β. Then b′ = b ∩ b′ + Cx where x is a non-zero element of gβ. If v is a b-

primitive vector such that xv = 0 then v is also a b′-primitive. This implies Ṽb(λ) = Ṽb′(λ)
for λ satisfying (λ, β) = 0. If xv 6= 0 then xv is a b′-primitive since [x, x] = 0. This implies

Ṽb(λ) = Ṽb′(λ+β) and M̃b(λ) = M̃b′(λ+β) for (λ, β) 6= 0. Remark that (ρb, β) = 0, since
β is a simple isotropic root, and so (λ, β) = 0 iff (λ+ρb, β) = 0. Taking into account that
ρb = ρb′ + β, one concludes that for Borel subsuperalgebras b, b′ satisfying b0 = b′

0 and a

b-typical weight λ one has Ṽb(λ) = Ṽb′(λ
′) and M̃b(λ) = M̃b′(λ

′) where λ+ ρb = λ′ + ρb′ .

2.8. Completely reducible Lie superalgebras. Recall that a Lie superalgebra is
called completely reducible if all its finite dimensional modules are completely reducible.
According to the theorem of Djoković and Hochschild (see [Sch], p. 239), any finite dimen-
sional completely reducible Lie superalgebra is a direct sum of semisimple Lie algebras
and algebras osp(1, 2l) (l ≥ 1). The superalgebra g == osp(1, 2l) has many features of

the semisimple Lie algebra; in particular, Ũ is a domain and Z(g) is a polynomial algebra.

2.8.1. Separation Theorem. In [Ko] Kostant establishes the following theorem which is
called sometimes “Separation Theorem”.

Theorem. Let g be a semisimple complex Lie algebra. There exists an ad g-invariant
subspace H in U(g) such that the multiplication map induces an isomorphism Z(g) ⊗
H

∼
−→ U(g). Moreover, for every simple finite dimensional module V , [H : V ] = dim V0.

Such an ad g-invariant subspace H is called a harmonic space.

In [M1] Musson proves the analogous theorem for g = osp(1, 2l).

2.8.2. Annihilation Theorem. In [D] Duflo proves the following theorem.

Theorem. Let g be a semisimple complex Lie algebra. Then for any λ ∈ h∗

AnnM(λ) = U(g) AnnZ(g)M(λ).

Let g be a semisimple complex Lie algebra and M be a Verma module. The multiplicity
of each simple finite dimensional module in F (M,M) is equal to dim V |0 if M is a g0-
simple Verma module. Combining the above theorem and Theorem 2.8.1, one concludes
that for such M the natural map Ũ/AnnM(λ) → F (M,M) is an isomorphism. In [J1],
6.4 Joseph generalizes this result to any g0-Verma module.

2.8.3. For the case g = osp(1, 2l) the following results are obtained in [GL1],[GL2].

Theorem. The annihilator of a Verma module M̃ coincides with Ũ AnnZ(g) M̃ iff M̃
is strongly typical.
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Using Separation Theorem, one concludes that for a strongly typical M̃ one has Ũ/(Ann M̃) ∼=
H .

To describe the non-centrally generated annihilators of Verma modules, it is convenient
to substitute the centre Z(g) by the algebra Z̃(g) defined in 3.3.

Theorem. For any λ ∈ h∗

Ann M̃(λ) = Ũ Ann
Z̃(g)

M̃(λ).

If λ is not strongly typical then the ideal Ann
Z̃(g)

M̃(λ) is a maximal ideal of the algebra

Z̃(g).

The algebra Ũ is free over Z̃(g); more precisely, Ũ contains ad g0-submodule K such

that the multiplication map induces the ad g0-isomorphism K ⊗ Z̃(g) → Ũ . Moreover, as

ad g0-modules H ∼= K ⊕K and K ∼= Ũ/(Ann M̃) if M̃ is not strongly typical .

3. Category F in and a twisted adjoint action

3.1. Category F in. Denote by F in0 the full category of g0-modules whose objects are
sums of simple finite dimensional modules. Denote by F in the full category of g-modules
whose objects, considered as g0-modules, belong to F in0. Since Ũ is a finite extension
of U(g0), any module N ∈ F in is locally finite. In other words, the objects of F in
are the locally finite h-diagonalizable modules (g0 is reductive and so all locally finite
h-diagonalizable are completely reducible).

Denote by Irr the set of isomorphism classes of simple finite dimensional g-modules and
by Irr0 the set of isomorphism classes of simple finite dimensional g0-modules. Note that
Ũ considered as ad g-module belongs to F in.

Throughout this section all modules are objects of F in. Everywhere in the paper,
injectivity and projectivity mean, by default, injectivity and projectivity in the category
F in.

3.1.1. Recall that the socle SocN of the module N is the sum of its simple submodules.
Since any module in F in is locally finite, it has a finite dimensional submodule and so a
non-trivial socle.

Recall that a module N is called an essential extension of its submodule N ′ if for any
non-zero submodule N ′′ of N one has N ′ ∩ N ′′ 6= 0. Any module in F in is an essential
extension of its socle.

3.1.2. For a homomorphism ψ : N → N ′ denote by Socψ its restriction to SocN . If
Socψ is a monomorphism then ψ is also a monomorphism, since kerψ ∩ SocN = 0 and
N is an essential extension of SocN .
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3.2. Injective and projective objects in F in. Recall that an injective envelope E(N)
of the module N is an injective module which is an essential extension of N . An injective
envelope of a given module is unique up to isomorphism.

A typical simple finite dimensional module is injective and projective in F in (see 2.5.2).

A standard reasoning of [McL], 3.11 shows that any submodule N of an injective module
E has an injective envelope which is a direct summand of E. In Lemma 3.2.2 we show
that any module in F in has an injective envelope.

3.2.1. A finite dimensional g0-module L is projective and injective in F in0 and so
Coindg

g0
L ∼= Indg

g0
L is projective and injective in F in— see 2.3.5.

Let Ṽ be a simple finite dimensional g-module and V be its simple g0-submodule.
Then Ṽ is a submodule of the injective module Coindg

g0
V . Therefore Ṽ has an injective

envelope E(Ṽ ) which is a direct summand of Coindg
g0
V . The last is projective and so

E(Ṽ ) is projective as well.

3.2.2. Lemma. Any module N ∈ F in has an injective envelope E(N). Moreover
E(N) ∼= E(SocN).

Proof. By 3.1.1, N is an essential extension of SocN . Therefore, by [McL], 3.11.1, there
exists a monomorphism ι : N → E(SocN) whose socle is the natural embedding SocN →
E(SocN). Since E(SocN) is an essential extension of SocN , it is also essential extension
of N . Hence E(SocN) is an injective envelope of N .

3.2.3. Lemma. Any direct sum of injective modules in F in is injective.

Proof. Let Ei, i ∈ I be a collection of injective modules. One has to check that for any
monomorphism ι : A → B and any homomorphism φ : A → ⊕i∈IEi there exists a
homomorphism ψ : B → ⊕i∈IEi such that ψι = φ. By a standard reasoning based on
Zorn’s lemma, it is enough to verify the above assertion assuming B being cyclic. Any
cyclic module in F in is finite dimensional. If B is finite dimensional, then A is also finite
dimensional and so φ(A) lies in a finite subsum ⊕i∈JEi (J is a finite subset of I). Since
each Ei is injective, ⊕i∈JEi is injective and so there exists ψ : B → ⊕i∈JEi such that
ψι(a) = φ(a) for all a ∈ A. The assertion follows.

3.2.4. Corollary.

E(⊕i∈INi) = ⊕i∈I E(Ni)
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3.2.5. Proposition. Any injective module in F in is projective.

Proof. Take an injective module N and write SocN =
∑
i∈I Li where the Li are simple.

Combining Lemma 3.2.2 and Corollary 3.2.4, one obtains N ∼= ⊕i∈I E(Li). By 3.2.1, all
E(Li) are projective so N is also projective.

3.3. Twisted adjoint action. In this subsection we present some results from [G] which
are used in the sequel.

Define a twisted adjoin action of g on Ũ by setting

(ad′ g)u = gu− (−1)d(g)(d(u)+1)ug, ∀g ∈ g, u ∈ Ũ .

Note that ad g = ad′ g for g ∈ g0.

The anticentre A(g) is the set of invariants of Ũ under the twisted adjoint action
ad′ g. The product of two anticentral elements is central. For g being a basic classical
Lie superalgebra, A(g) is even and so any anticentral element commutes with the even

elements of Ũ and anticommutes with the odd ones. Therefore “the ghost centre”

Z̃(g) := Z(g) + A(g)

is a commutative subalgebra of Ũ .

For g = osp(1, 2l), Z̃(g) is a polynomial algebra and, moreover, Z̃(g) = Z(g) ⊕ TZ(g)
where T is the element defined in 3.3.2.

3.3.1. Let L be an ad g0-submodule of U . Then the ad′ g-submodule generated by L in
Ũ is isomorphic to the induced module Indg

g0
L. As ad′ g-module Ũ is generated by U

and so Ũ ∼= Indg
g0
U . Using the isomorphism Indg

g0
U ∼= Coindg

g0
U , one obtains a linear

isomorphism Z(g0)
∼

−→ A(g) given by z 7→ (ad′ u)z where u ∈ Ũ is such an element that
uV (0) is the trivial g-submodule of Indg

g0
V (0).

An anticentral element z acts on a module generated by a primitive vector v in the
following way. It acts as P(z)(λ) id on Ũ0v and as (−P(z)(λ) id) on Ũ1v (Ũ0, Ũ1 are

homogeneous components of Ũ). From 2.5.7 it follows that the Harish-Chandra projection
provides a monomorphism A(g) → S(h)W.. The image of this monomorphism is equal to
tS(h)W. where

t :=
∏

β∈∆+

1

(β∨ + (ρ, β)).

Any non-zero element of A(g) is a non-zero divisor in Ũ .

3.3.2. Denote by T the element of A(g) such that P(T ) = t. Remark that a Verma
module is strongly typical iff its annihilator does not contain T .
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Up to a non-zero scalar, T is equal to the image of 1 under the above linear isomorphism
Z(g0)

∼
−→ A(g). The image of T in the symmetric algebra is a non-zero element of the

one-dimensional vector space Λtopg1.

Remark that TA(g) ⊂ Z(g) and the restriction of the Harish-Chandra projection pro-
vides an isomorphism TA(g)

∼
−→ t2S(h)W.. For g = osp(1, 2l), this implies that A(g) is a

free module over Z(g) generated by T .

It is easy to check that (ad g)(uT ) = ((ad′ g)u)T . Since T is a non-zero divisor, the

ideal ŨT considered as ad g-module is isomorphic to Ũ considered as ad′ g-module. Hence
as ad g-module ŨT ∼= Indg

g0
U and, in particular, it is injective in F in. Note that ŨT is

a two-sided ideal. Remark that, apart from the case when g is completely reducible, Ũ
itself as ad g-module is neither injective nor projective in F in: it contains, as a direct
summand, a trivial representation generated by 1.

3.3.3. For any N ∈ F in0 one has

dim Homg(Ṽ (ν),Coindg
g0
N) = dim Homg0

(Ṽ (ν), N).

Therefore

Indg
g0
N ∼= Coindg

g0
N = ⊕

Ṽ ∈Irr
E(Ṽ )r(Ṽ ), r(Ṽ ) := dim

(
Homg0

(Ṽ , N)
)
. (2)

This has the following useful consequence. Let H be a harmonic space of U(g0) that is
an ad g0-submodule of U(g0) such that the multiplication map provides an isomorphism
H ⊗ Z(g0) → U(g0)—see 2.8.1. Then H ∼= ⊕V ∈Irr0V

⊕dimV |0. Taking into account 3.3.1
and (2), one obtains

(ad′ Ũ)H ∼= Indg
g0
H = ⊕V ∈Irr0 Coindg

g0
V ⊕ dimV |0 = ⊕

Ṽ ∈Irr
E(Ṽ )⊕ dim Ṽ |0 (3)

since
∑
V ∈Irr0 dimV |0 · dim

(
Homg0

(Ṽ , V )
)

= dim Ṽ |0 for any Ṽ ∈ Irr.

4. The structure Ũ as ad g-module.

In this section we study the ad g-module structure of Ũ . We start from the studying
Homg(Ṽ , Ũ) for a simple finite dimensional module Ṽ . For each Ṽ we construct a cen-

tral element z such that the localized module Homg(Ṽ , Ũ [z−1]) = Homg(Ṽ , Ũ)[z−1] is a

free Z(g)[z−1]-module whose rank is equal to dim Ṽ |0. In 4.6 we define and study PRV
determinants for non-completely reducible basic classical Lie superalgebras.

In 4.7 we show that for a suitable S ⊂ Z(g) the localized algebra Ũ [S−1] is free over
its centre Z(g)[S−1] and that the corresponding harmonic space H (“generic harmonic
space”) is injective (in F in) ad g-module. Moreover, the multiplicity of a simple finite

dimensional module Ṽ in SocH is equal to dim Ṽ |0.
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4.1. The following lemma of A. Joseph and G. Letzter provides a connection between
Homg(Ṽ , Ũ) and Hom(Ṽ |0,S(h)).

4.1.1. Lemma. An ad g-submodule N of Ũ lies in the annihilator of Ṽ (λ) iff
P(N |0)(λ) = 0.

Proof. The proof is the same as in [J3], 7.2. Remark that P(N) = P(N |0). Let vλ be a

highest weight vector of Ṽ (λ) and Ṽ (λ)− := U(n−)n−v. One has

P(N)(λ) = 0 ⇐⇒ Nvλ ⊆ Ṽ (λ)−.

In particular, NṼ (λ) = 0 forces P(N)(λ) = 0.

For the inverse implication, assume that P(N |0)(λ) = 0 that is Nvλ ⊆ Ṽ (λ)−. The
ad g-invariance of N implies U(n−)N = NU(n−) and thus

NṼ (λ) = NU(n−)vλ = U(n−)Nvλ ⊆ U(n−)Ṽ (λ)− ⊆ Ṽ (λ)− ⊂
6=
Ṽ (λ).

The ad g-invariance of N implies also U(g)N = NU(g) and so NṼ (λ) is a submodule of

Ṽ (λ). Hence NṼ (λ) = 0 as required.

4.1.2. Corollary. Take Ṽ ∈ Irr, a basis v1, . . . vr be of Ṽ |0 and λ ∈ h∗. For any

θ1, . . . , θk ∈ Homg(Ṽ , Ũ), the image of the space
∑k
i=1 θi(Ṽ ) under the natural map Ũ →

End(Ṽ (λ)) is isomorphic to Ṽ ⊕m where m is the rank of the matrix
(
P(θj(vi))(λ)

)j=1,k

i=1,r
.

4.1.3. Combining 2.5.7 and Lemma 4.1.1 one concludes that for an ad g-submodule N of
Ũ the equality P(N |0) = 0 implies N = 0. Moreover N = 0 provided that P(N |0)(R) = 0
for a Zariski dense subset R of h∗.

4.2. Notation. Fix Ṽ ∈ Irr and consider Homg(Ṽ , Ũ) as a Z(g)-module with respect to
the action induced by the multiplication.

The Harish-Chandra projection induces the map Ψ : Homg(Ṽ , Ũ) → Homg(Ṽ |0,S(h))
given by

Ψ(φ(v) = P(φ(v)), ∀φ ∈ Homg(Ṽ , Ũ), v ∈ Ṽ |0.

This map is a monomorphism by 4.1.3. Denote by I(Ṽ ) the image of Ψ.

Define the action of Z(g) on S(h) by setting zp := P(z)p. This action induces the

structure of a Z(g)-module on Hom(Ṽ |0,S(h)). Obviously, Ψ is a Z(g)-map. Thus

the study of Z(g)-module structure of Homg(Ṽ , Ũ) reduces to the study of Z(g)-module

structure of I(Ṽ ).

The vector space Hom(Ṽ |0,S(h)) has the natural structure of S(h)-module. We denote

by I(Ṽ )S(h) the S(h)-span of I(Ṽ ) inside Hom(Ṽ |0,S(h)).
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4.3. Examples.

4.3.1. Example. Let g be a completely reducible simple Lie superalgebra. In this
case P(Z(g)) = S(h)W.. Separation Theorem (see 2.8.1) state the existence of an ad g-

submodule H of Ũ such that the multiplication map induces isomorphism H⊗Z(g)
∼

−→
Ũ . Thus for any Ṽ ∈ Irr, a basis of the vector space Homg(Ṽ ,H) is a free Z(g)-

basis of Homg(Ṽ , Ũ). Consequently, Homg(Ṽ , Ũ) is a free Z(g)-module of the rank

dim Homg(Ṽ ,H) = dim Ṽ |0 (see 2.8.1).

4.3.2. Example. Consider the case g = sl(2, 1). Then h = span{z, h} where z is
a central element of the reductive algebra g0 = sl(2) × C and h is an element of the
Cartan subalgebra of sl(2). Then ∆0 = {±α},∆1 = {±β;±(α + β)}. Choose such a
triangular decomposition that ∆+ = {α, β, α + β}. The subalgebras n±

1 = g1 ∩ n± are
supercommutative and are ad g0-submodules of g. Let {x1, x2} (resp., {y1, y2}) be a basis
of n+

1 (resp., n−
1 ).

The algebra S(h)W. is a polynomial algebra generated by z and t = (z − h)(z + h+ 2).
The image P(Z(g)) in S(h)W. is spanned by 1 and the elements {tnzk, n > 0, k ≥ 0}.

Denote by v a highest weight vector of Ṽ := Ṽ (α + 2β); one has Ṽ |0 = Cy1y2v. It is

easy to see that a highest weight vector of any copy of Ṽ inside Ũ is of the form ux1x2

where u ∈ Z(g0). Up to a scalar, P((ad y1y2)(ux1x2)) = (z − h)(z + h+ 2)P(u) = tP(u).

One has P(Z(g0)) = S(h)W. and so I(Ṽ ) = Hom(C,S(h)W.t). Since S(h)W. is not free

over P(Z(g)), the Z(g)-module I(Ṽ ) ∼= Homg(Ṽ , Ũ) is not free.

One might expect from the above example that I(Ṽ ) is stable with respect to the

multiplication on S(h)W.. However I(Ṽ (0)) = Hom(C,P(Z(g))) is not stable with respect
to the multiplication on S(h)W. apart from the case when P(Z(g)) = S(h)W..

4.4. In this subsection we show that the Z(g)-rank of the module Homg(Ṽ , Ũ) is not

greater than dim Ṽ |0. The crucial point is Lemma 4.4.2 asserting that any elements

of I(Ṽ ) which are “linearly dependent” over S(h) are “linearly dependent” over Z(g).

Throughout this subsection Ṽ ∈ Irr is fixed.

4.4.1. Basic definitions. Let A be a commutative domain. For an A-module N define
an A-rank of N to be the dimension over the field of fractions FractA of the localized
module N ⊗A FractA. Call elements θ1, . . . , θk ∈ N A-linearly independent if their
images in the localized module N ⊗A FractA are linearly independent. Call the elements
A-linearly dependent if they are not A-linearly independent. Call an A-basic system of N
a collection θ1, . . . , θk ∈ N such that the image of this collection in the localized module
N ⊗A FractA forms its FractA-basis.

Let L be a vector space and v1, . . . , vr be a basis of L. Let N be an A-submodule of
Hom(L,A) and k be the A-rank of N . The collection θ1, . . . , θk ∈ N is a A-basic system
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of N iff the matrix
(
θj(vi)

)j=1,k

i=1,r
∈ Mat(r×k)(A) has a (k × k) non-zero minor. Call such

a non-zero minor (which is an element of A) a minor of a basic system θ1, . . . θk.

If p ∈ A is a minor of a basic system θ1, . . . θk then for any θ ∈ N one has pθ =∑k
j=1 pjθj for certain (unique) collection p1, . . . , pk ∈ A. In particular, the localized

module N ⊗A A[p−1] is a free A[p−1]-module and the images of θ1, . . . θk form a basis of
this free module.

Recall that t2S(h)W. ⊆ P(Z(g)) (see 3.3.2).

4.4.2. Lemma.

(i) Elements of I(Ṽ ) are Z(g)-linearly independent iff they are S(h)-linearly indepen-
dent.

(ii) If θ1 . . . , θs ∈ I(Ṽ ) are S(h)-linearly independent and
s∑

j=0

pjθj = 0

for some θ0 ∈ I(Ṽ ) and p0, . . . , ps ∈ S(h), then there exists z0, . . . , zs ∈ Z(g) such that
∑s
j=0 zjθj = 0 and P(z0) = t2q where q is a maximal W.-invariant divisor of p

|W |
0 .

Proof. Obviously, elements of I(Ṽ ) are Z(g)-linearly independent provided that they are
S(h)-linearly independent. The inverse implication follows from (ii) because we always
can choose a minimal (with respect to the inclusion) subset of S(h)-linearly dependent
elements in a set of S(h)-linearly dependent elements.

Let us prove (ii). The equality
∑s
j=0 pjθj = 0 means that for any µ ∈ h∗ one has

∀v ∈ Ṽ |0 0 =
s∑

j=0

pj(µ)θj(v)(µ) =
s∑

j=0

pj(µ)P((Ψ−1θj)(v))(µ).

In the light of Lemma 4.1.1, this gives

∀µ ∈ h∗
( s∑

j=0

pj(µ)Ψ−1(θj)
)
(Ṽ ) ⊂ Ann Ṽ (µ);

here the sum belongs to Homg(Ṽ , Ũ) because Ψ−1(θj) ∈ Homg(Ṽ , Ũ) and pj(µ) ∈ C.

Fix a root α ∈ π0; let sα ∈ W be the corresponding reflection. Assume that µ ∈ h∗ is
such that Ṽ (µ) = M̃(µ)/M̃(sα.µ). Then, for “sufficiently large” µ, any copy of Ṽ inside

Ũ which annihilates Ṽ (µ), annihilates also M̃(µ) and so Ṽ (sα.µ). To be more precise,
choose ω ∈ Q∆ such that (ω, α′) ≥ 0 for all α′ ∈ ∆+ and (ω, α) = 1. Set

R := {µ ∈ h| (a) n(µ) ∈ N+, (b) n(µ) > (−ν, ω), (c)∀β ∈ ∆+ \ {Qα} (µ+ ρ, β) 6∈ Q}.

where ν stands for the lowest weight of Ṽ and n(µ) := 2(µ + ρ, α)/(α, α). It is easy to
see that R is Zariski dense in h∗ and that any element in R is typical. Take µ ∈ R.
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By 2.5.8, M̃(µ) is not simple because n(µ) ∈ N+. If M̃(µ′) is a subquotient of M̃(µ), then
(µ′ −µ) ∈ N∆− and, by 2.5.3, µ′ = w.µ for some w ∈W . Using the fact that any w ∈W
can be written as the product sβ1

· · · sβm
where β1, . . . , βm ∈ ∆+

0 are linearly independent,
it is easy to deduce from the condition (c) that (w.µ−µ) 6∈ N∆− for any w 6= id, sα. Thus

Ṽ (µ) = M̃(µ)/M̃(sα.µ) and M̃(sα.µ) is simple. Observe that sα.µ = µ − n(µ)α and so

for any ξ ∈ Ω(M̃ (sα.µ)) one has (ξ, ω) ≤ (µ, ω) − n(µ). Thus (µ+ ν) 6∈ Ω(M̃(sα.µ)) due
to the condition (a).

Let N be a copy of Ṽ inside Ann Ṽ (µ). Let uν be a lowest weight vector of N and vµ be

a highest weight vector of M̃(µ). Since uνṼ (µ) = 0 the vector uνvµ belongs to M̃(sα.µ).
However the latter does not have non-zero elements of weight (µ + ν). Thus uνvµ = 0.

One has uνM̃(µ) = uνU(n−)vµ = U(n−)uνvµ because uν is a lowest weight vector that is

(ad n−)uν = 0. Therefore uνM̃(µ) = 0. Since Ann M̃(µ) is ad g-stable, N ⊂ Ann M̃(µ)

and, in particular, N ⊂ Ann Ṽ (sα.µ).

Hence
∑s
j=0 pj(µ)(Ψ−1θj)(Ṽ ) annihilates Ṽ (sα.µ) for any µ ∈ R. Then, by Lemma 4.1.1




s∑

j=0

(sα.pj)θj(v)


 (µ′) = 0

for any v ∈ Ṽ |0 and any µ′ such that sα.µ
′ ∈ R. The terms

∑s
j=0(sα.pj)θj(v) are polynomi-

als in S(h). Since R is a Zariski dense subset of h∗, one concludes that these polynomials
are equal to zero. Consequently

s∑

j=0

(sα.pj)θj = 0.

Taking into account that
∑s
j=0 pjθj = 0 and that θ1, . . . θs are S(h)-linearly independent,

one concludes that pj/p0 = (sα.pj)/(sα.p0) for all j = 1, . . . , s. Thus pj/p0 is W.-invariant
for all j = 1, . . . , s. Then, by Lemma 11.1.6, for each j = 0, . . . , s there exists qj ∈ S(h)W.

such that qj/q = pj/p0. By 3.3.2, t2S(h)W. ⊂ P(Z(g)) and thus t2qj ∈ P(Z(g)) for all
j = 0, . . . , s. Since qj/q = pj/p0 one has

(t2q)θ0 +
s∑

j=1

(t2qj)θj = 0.

This completes the proof.

4.4.3. Proposition. Let θ1, . . . , θs ∈ I(Ṽ ) be a S(h)-basic system of I(Ṽ )S(h), p be
a minor of this system and z ∈ Z(g) be such that P(z) = t2q where q is a maximal W.-

invariant divisor of p|W |. Then the localized module Homg(Ṽ , Ũ [z−1]) is freely generated
over Z(g)[z−1] by {Ψ−1θ1, . . . ,Ψ

−1θs}.

Proof. Recall that Ψ provides a Z(g)-isomorphism from Homg(Ṽ , Ũ) onto I(Ṽ ). Therefore
the required assertion is equivalent to the following statement: the localized module
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I(Ṽ ) ⊗Z(g) Z(g)[z−1] is freely generated over Z(g)[z−1] by {θ1, . . . , θs}. In other words,

one has to show that for any θ0 ∈ I(Ṽ ) there exists a unique collection z1, . . . , zs such
that zθ0 +

∑s
1 zjθj = 0 or, equivalently, that there exists a unique collection a1, . . . , as ∈

P(Z(g)) ⊂ S(h) such that

(t2q)θ0 +
s∑

1

ajθj = 0.

The uniqueness immediately follows from the fact that the collection θ1, . . . , θs is a
S(h)-basic system of I(Ṽ )S(h). To prove the existence, recall that I(Ṽ )S(h) is a S(h)-

submodule of Hom(Ṽ |0,S(h)). By 4.4.1, for any θ0 ∈ I(Ṽ ) there exists a unique collec-
tion p1, . . . , ps ∈ S(h) such that pθ0 +

∑s
j=1 pjθj = 0. Now the required existence follows

from Lemma 4.4.2.

4.4.4. Corollary. The Z(g)-rank of Homg(Ṽ , Ũ) is not greater than dim Ṽ |0.

4.4.5. Remark. Set r = dim Ṽ |0. Assume that Homg(Ṽ , Ũ) contains the collection
θ1, . . . , θr possessing the following property: for a certain λ ∈ h∗ the images of the modules
θ1(Ṽ ), . . . , θr(Ṽ ) under the map Ũ → Ũ/Ann Ṽ (λ) form a direct sum. We claim that

θ1, . . . , θr is a Z(g)-basic system of Homg(Ṽ , Ũ).

In fact, choose a basis v1 . . . vr of Ṽ |0. By Corollary 4.1.2, the rank of the matrix(
P(θj(vi))(λ)

)j=1,r

i=1,r
is equal to r. Hence the rank of the matrix

(
Ψ(θj(vi))

)j=1,r

i=1,r
=

(
P(θj(vi))

)j=1,r

i=1,r
∈Mat(r×r)S(h)

is also equal to r and so Ψθ1, . . . ,Ψθr are S(h)-linearly independent in I(Ṽ )S(h). Since

I(Ṽ )S(h) is a S(h)-submodule of Hom(Ṽ |0, Ũ), its rank is not greater than r. Hence

Ψθ1, . . . ,Ψθr is a S(h)-basic system of I(Ṽ )S(h). Therefore θ1, . . . , θr is a Z(g)-basic

system of Homg(Ṽ , Ũ) by Proposition 4.4.3.

4.5. In this subsection we show that the Z(g)-rank of Homg(Ṽ , Ũ) is equal to dim Ṽ |0.

4.5.1. Separation Theorem 2.8.1 claims the existence an ad g0-submodule H of U such
that the multiplication map provides an isomorphism H ⊗ Z(g0)

∼
−→ U . In both proofs

([Ko], [BL]) one constructs, actually, an ad g0-submodule H ′ of the symmetric algebra
S(g0) such that the multiplication map provides an isomorphism H ′ ⊗S(g0)

g0
∼

−→ S(g0).

Lemma. Let H be an ad g0-submodule of U such that the multiplication map provides
an isomorphism grH ⊗ S(g0)

g0 → S(g0). Then the ad g-module L := (ad Ũ)(HT ) is
isomorphic to

⊕
Ṽ ∈Irr

E(Ṽ )⊕dim Ṽ |0

and the multiplication induces the monomorphism L⊗Z(g) → Ũ .
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Proof. Fix H satisfying the above condition. According to 3.3, L := (ad Ũ)(HT ) =

(ad′ Ũ)(H)T and as ad g-module L is isomorphic to the ad′ g-module (ad′ Ũ)(H) ∼= Indg
g0
H .

Now the required isomorphism follows from (3).

Since L = (ad′ Ũ)(H)T and T is a non-zero divisor, the injectivity of the map L ⊗
Z(g) → Ũ is equivalent to the injectivity of the map (ad′ Ũ)(H) ⊗ Z(g) → Ũ (both
maps are restrictions of the multiplication map). To check the injectivity of the map

(ad′ Ũ)(H) ⊗Z(g) → Ũ it is enough to check the injectivity of its “graded version”:

gr((ad′ Ũ)(H)) ⊗ grZ(g) → S(g).

Recall that grZ(g) = S(g)g. Let {xi}i∈I be an ordered basis of g1. For any J ⊆ I set
xJ :=

∏
j∈J xj where the product is taken with respect to the given order. Assume that

∑

J⊆I;k=1,... ,s

zk,J gr((ad′ xJ)hk) = 0

for some non-zero h1, . . . , hs ∈ H and some zk,J ∈ S(g)g. To check the injectivity one

has to show that all elements zk,J are equal to zero. Suppose not. For x ∈ g1, u ∈ Ũ one
has (ad′ x)u = 2xu − (ad x)u. This implies gr((ad′ xJ )u) = 2|J | gr xJ gru for any J ⊆ I
and u ∈ U . For each J ⊆ I denote by PJ the projection S(g) → S(g0) grxJ with the
kernel NJ :=

∑
J ′⊆I,J ′ 6=J S(g0) grxJ ′. By 2.3.2, the restriction of P∅ to S(g)g provides a

monomorphism S(g)g → S(g0)
g0. Choose J ⊆ I such that zk,J 6= 0 for some k and J is a

minimal (under inclusion) subset of I possessing this property. Then

0 = PJ
( ∑

J ′⊆I,k=1,... ,s

zk,J ′ gr((ad′ xJ ′)hk)
)

= PJ
( ∑

J ′⊆I,k=1,... ,s

2|J
′|zk,J ′ grxJ ′ grhk)

)

= 2|J | gr xJ
∑

k=1,... ,s

P∅(zk,J) grhk.

Since grH ⊗S(g0)
g0

∼
−→ S(g0), all elements zk,J are equal to zero. The lemma is proven.

4.5.2. Corollary. The Z(g)-rank of Homg(Ṽ , Ũ) is equal to dim Ṽ |0.

Proof. Fix Ṽ ∈ Irr and set r := dim Ṽ |0. ChooseH satisfying the assumption of Lemma 4.5.1.

Then the vector space Homg(Ṽ , L) has dimension r; let θ1, . . . , θr be a basis of Homg(Ṽ , L).

The injectivity of the map L⊗Z(g) → Ũ , induced by the multiplication, implies the Z(g)-

linear independence of θ1, . . . , θr in Homg(Ṽ , Ũ). Thus the Z(g)-rank of Homg(Ṽ , Ũ) is
greater than or equal to r. Comparing with Corollary 4.4.4, one concludes the required
assertion.

4.6. PRV determinants.
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4.6.1. Definitions. Fix Ṽ ∈ Irr and set r := dim Ṽ |0. Lemma 4.4.2 (i) implies that

θ1, . . . , θr is a Z(g)-basic system of Homg(Ṽ , Ũ) iff Ψθ1, . . . ,Ψθr is a S(h)-basic system

of I(Ṽ )S(h). By 4.4.1, the last is equivalent to the condition that detC 6= 0 where

C :=
(
P(θj(vi))

)
∈Mat(r×r)(S(h))

and {v1, . . . , vr} is a basis of Ṽ |0.

Call such a matrix a PRV matrix (corresponding to the basic system θ1, . . . , θr) and
the determinant detC a PRV-determinant. Note that for different choices of a basis
{v1, . . . , vr} of Ṽ |0 the PRV-matrix corresponding to θ1, . . . , θr differ by the multiplication
on an invertible scalar matrix.

Denote by J (Ṽ ) the set of all PRV-matrices and by detJ (Ṽ ) the set of PRV determi-

nants (for fixed Ṽ ∈ Irr). One has

detJ (Ṽ ) = {det
(
P(θj(vi))

)
| θ1, . . . , θr ∈ Homg(Ṽ , Ũ)} \ {0}.

For each ν ∈ h∗ such that dim Ṽ (ν) < ∞ set detJ (ν) := detJ (Ṽ (ν)). For λ ∈ h∗ we

write detJ (Ṽ )(λ) = 0 if (detC)(λ) = 0 for all C ∈ J (Ṽ ).

If θ1, . . . , θr is a Z(g)-basic system of Homg(Ṽ , Ũ), then for any non-zero z ∈ Z(g)

the collection zθ1, θ2 . . . , θr is also a Z(g)-basic system. Consequently, detJ (Ṽ ) is closed
under the multiplication on the non-zero elements of P(Z(g)).

4.6.2. Let N be an ad g-submodule of Ũ such that dim Homg(Ṽ , N) = dim Ṽ |0. By

slightly abuse of notation, we shall denote by detJ (Ṽ ;N) the determinant of the matrix(
P(θj(vi))

)
where θ1, . . . , θr (resp, v1, . . . , vr) is a basis of Homg(Ṽ , N) (resp., Ṽ |0). Note

that detJ (Ṽ ;N) can be zero.

For different choices of a basis θ1, . . . , θr, the values of detJ (Ṽ ;N) differ by a multi-

plicative constant. Hence detJ (Ṽ ;N) is a polynomial in S(h) defined up to a non-zero
scalar.

4.6.3. Remark. The original definition of PRV determinants given in [PRV] for
the semisimple Lie algebras differ from our definition. Namely, the PRV determinant
p(V ) is equal to the polynomial detJ (V ;H) where H is a harmonic space (see 2.8.1).
This definition works for completely reducible Lie superalgebras as well. In our notation
detJ (V ) = S(h)W.p(V ) \ {0}— this follows from Separation Theorem 2.8.1.

4.6.4. Take Ṽ ∈ Irr and p ∈ detJ (Ṽ ). Let θ1, . . . , θr be a Z(g)-basic system of

Homg(Ṽ , Ũ) such that the determinant of the corresponding PRV matrix is equal to p.
Denote by q the maximal W.-invariant divisor of p. Combining Remark 4.4.5 and Propo-
sition 4.4.3, one concludes that z ∈ Z(g) satisfying P(z) = t2q|W | possesses the following

property: for any θ ∈ Homg(Ṽ , Ũ) one has zθ =
∑r
i=1 ziθi for certain zi ∈ Z(g).
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In particular, for a := P(z)r = t2rqr|W | one has

a · detJ (Ṽ ) ⊂ P(Z(g))p ⊆ S(h)W.p.

On the other hand, P(Z(g))p ⊆ detJ (Ṽ ) by 4.6.1.

4.6.5. Corollary. Take Ṽ ∈ Irr. For any p ∈ detJ (Ṽ ) there exists a ∈ S(h)W. such
that

P(Z(g) \ {0})p ⊆ detJ (Ṽ ) ⊂ S(h)W.[a−1]p.

4.6.6. Fix Ṽ ∈ Irr. Take a basic system θ1, . . . , θr and denote by C the corresponding
PRV matrix. Recall that detC 6= 0. For each λ ∈ h∗ denote by C(λ) the complex
matrix which is obtained from C by the evaluation of all entries at λ. Clearly detC(λ) =
(detC)(λ). By Corollary 4.1.2,

corankC(λ) = dim Homg

(
Ṽ ,Ann Ṽ (λ) ∩

r∑

j=1

θj(Ṽ )
)
.

In particular, Ann Ṽ (λ)∩
∑r
j=1 θj(Ṽ ) = 0 iff detC(λ) 6= 0. Then, for fλ being the natural

map Ũ → End(Ṽ (λ)), one has

dim Homg(Ṽ , fλ(Soc Ũ)) = max{rankC(λ)|C ∈ J (Ṽ )}. (4)

Combining 11.1.5 and (4) one obtains

4.6.7. Corollary. Assume that M̃(λ) is simple. Then the image of the socle of Ũ

under the natural map Ũ → F (M̃(λ), M̃(λ)) coincides with the socle of F (M̃(λ), M̃(λ))

iff detJ (Ṽ )(λ) 6= 0 for any Ṽ ∈ Irr.

4.6.8. Change of Borel. In the definition of PRV matrices we use the Harish-Chandra
projection. Therefore this definition depends on the choice of triangular decomposition. In
the sequel we will add a lower index to designate the corresponding Borel subsuperalgebra
in the cases when the choice of triangular decomposition is not clear from the context.

For instance, Jb(Ṽ ) is the set of PRV matrices of the form
(
Pb(θj(vi))

)
where θ1, . . . , θr

is a Z(g)-basic system of Homg(Ṽ , Ũ) and v1, . . . , vr is a basis of Ṽ |0.

Let b and b′ be connected by the odd reflection along an odd isotropic root β. By 2.7,
Ṽb(λ) = Ṽb′(λ

′) where λ = λ′ if λ is such that (λ, β) = 0 and λ = λ′ + β otherwise. Then

for any Ṽ ∈ Irr the equality (4) implies

max{rankC(λ)| C ∈ Jb1
(Ṽ )} = max{rankC(λ′)| C ∈ Jb2

(Ṽ )},
detJ b1

(Ṽ )(λ) = 0 ⇐⇒ detJ b2
(Ṽ )(λ′) = 0.
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4.6.9. Remark. The equality 4) has the following consequence: for any PRV determi-

nant p ∈ detJ (Ṽ ) and any λ ∈ h∗, the order of zero of p at the point λ is greater than

or equal to the value (dim Ṽ |0 − dim Homg(Ṽ ,End(Ṽ (λ))).

In the case when g is completely reducible, this property is used for the calculation of
PRV determinants—see [JL],[J3],[GL1]. Recall that, in this case, the PRV determinant is
a polynomial defined up to a non-zero scalar (see Remark 4.6.3).

4.7. Separation type theorem.

4.7.1. Definition. Call an ad g-submodule L of Ũ a generic harmonic space if the
multiplication map provides an isomorphism L ⊗ Z(g)[S−1]

∼
−→ Ũ [S−1] for certain S ⊂

(Z(g) \ {0}).

In Theorem 4.7.4 we describe all generic harmonic spaces in Ũ . Of course, if L is a
generic harmonic space then L ⊗ Z(g)[S−1]

∼
−→ Ũ [S−1] for S := Z(g) \ {0}. However it

is always possible to find a smaller S; in Corollary 4.7.7 we describe such S in terms of
PRV determinants. As it is shown in Section 7, for g = sl(m,n) or osp(2, 2n) there is a

generic harmonic space in Ũ such that one can take S = {T 2}.

4.7.2. Lemma. If an ad g-submodule L of Ũ is such that

(a) L ∼= ⊕
Ṽ ∈Irr

E(Ṽ )⊕ dim Ṽ |0,

(b) ∀Ṽ ∈ Irr detJ (Ṽ ;L) 6= 0

then it is a generic harmonic space.

Proof. Set h∗
f := {ν| dim Ṽ (ν) < ∞}. For each ν ∈ h∗

f choose a basis θν1 , . . . , θ
ν
r(ν) of

Homg(Ṽ (ν), L). Recall that r(ν) = dim Ṽ (ν)|0. By 4.6.1, the collection θν1 , . . . , θ
ν
r(ν) forms

a Z(g)-basic system of Homg(Ṽ (ν), Ũ). By 4.6.4, for a suitable z(ν) ∈ Z(g) the collection

θν1 , . . . , θ
ν
r(ν) forms a free Z(g)[z(ν)−1]-basis of the localized module Homg(Ṽ (ν), Ũ [z(ν)−1]).

Set S := {z(ν), ν ∈ h∗
f}. Denote by ψ the map L ⊗ Z(g)[S−1] → Ũ [S−1] induced

by the multiplication. For any ν ∈ h∗
f the collection θν1 , . . . , θ

ν
r(ν) forms a free Z(g)[S−1]

basis of the localized module Homg(Ṽ (ν), Ũ [S−1]). This means that the restriction of φ

on the space
∑s(ν)
i=1 θ

ν
i (Ṽ ) ⊗ Z(g)[S−1] is a monomorphism and its image coincides with

the isotypical component of Ṽ (ν) in the socle of Ũ [S−1]. Then the restriction of φ on

SocL ⊗ Z(g)[S−1] is a monomorphism and Soc Ũ [S−1] = φ(SocL ⊗ Z(g)[S−1]). Using
the equality SocL⊗Z(g)[S−1] = Soc(L⊗Z(g)[S−1]) and 3.1.2, one concludes that φ is a
monomorphism. From 3.2.3, it follows that L⊗ Z(g)[S−1] is an injective module in F in.

Since the image of ψ contains Soc Ũ [S−1], ψ is a bijection. The lemma is proven.
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4.7.3. Corollary. If H satisfies the assumption of Lemma 4.5.1 then (ad Ũ)(HT ) is
a generic harmonic space.

Proof. By Lemma 4.5.1, L := (ad Ũ)(HT ) fulfills the condition (a) of Lemma 4.7.2.

Fix Ṽ ∈ Irr and choose a basis θ,1 . . . , θr of Homg(Ṽ , L). Observe that r = dim Ṽ |0.

The injectivity of the map L ⊗ Z(g) → Ũ , induced by the multiplication, implies the

Z(g)-linear independence of θ1, . . . , θr in Homg(Ṽ , Ũ). Since the Z(g)-rank of the latter

is equal to r, the collection θ1, . . . , θr forms a Z(g)-basic system of Homg(Ṽ , Ũ). Then,

by 4.6.1, detJ (Ṽ ;L) 6= 0. By Lemma 4.7.2, (ad Ũ)(HT ) is a generic harmonic space.

4.7.4. Theorem. An ad g-submodule L of Ũ is a generic harmonic space iff

(a) L ∼= ⊕
Ṽ ∈Irr

E(Ṽ )⊕dim Ṽ |0

and one of the following conditions holds

(b) ∀Ṽ ∈ Irr detJ (Ṽ ;L) 6= 0

(c) the multiplication map provides an embedding L⊗Z(g) → Ũ .

Proof. By Lemma 4.7.2, L satisfying (a) and (b) is a generic harmonic space. Arguing as
in Corollary 4.7.3 one concludes that L satisfying (a) and (b) is also a generic harmonic
space.

It remains to show that any generic harmonic space L fulfills the conditions (a)-(c). The

condition (c) obviously holds. Moreover, for any Ṽ ∈ Irr a basis θ1, . . . , θr of Homg(Ṽ , L)

is a Z(g)-basic system of Homg(Ṽ , Ũ). Therefore detJ (Ṽ ;L) 6= 0 and so (b) holds as
well.

To verify the condition (a), let us show that all generic harmonic spaces are pairwise

isomorphic as ad g-modules. Indeed, let L and L′ be generic harmonic spaces. Since Ũ is
countably dimensional, one can choose the corresponding sets S, S ′ ⊂ Z(g) \ {0} having
countable number of elements. Take a maximal ideal m of Z(g) such that m∩(S∪S ′) = ∅.
Then as ad g-modules L ∼= Ũ/(mŨ) ∼= L′. In Corollary 4.7.3 we construct a generic
harmonic space satisfying (a). Hence all generic harmonic spaces satisfy the condition
(a). The theorem is proven.

4.7.5. Now we can formulate the following “receipt”. For each Ṽ ∈ Irr fix a Z(g)-basic

system θṼ1 , . . . , θ
Ṽ
r of Homg(Ṽ , Ũ). The module

∑
Ṽ ∈Irr;j

T 2θṼj (Ṽ ) has an injective envelope

inside an injective ad g-module ŨT . This injective envelope is a generic harmonic space
by Theorem 4.7.4.

4.7.6. Combining 4.6.4 and the proof of Lemma 4.7.2, one obtains the
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4.7.7. Corollary. Let L be a generic harmonic space and S ⊂ Z(g) \ {0} satisfies the

following property: for any Ṽ ∈ Irr there exists s ∈ S such that P(s) = t2q where q is a

maximal W.-invariant divisor of
(
detJ (Ṽ ;L)

)|W |
. Then the multiplication map provides

an isomorphism L⊗ Z(g)[S−1]
∼

−→ Ũ [S−1].

5. Application to the description of Verma module annihilators

In this section we prove Theorem 5.2 which provides a connection between PRV deter-
minants and the annihilators of simple modules.

5.1. Proposition. For a simple strongly typical Verma moduleM̃(λ) the following
conditions are equivalent:

(i) For any Ṽ ∈ Irr one has detJ (Ṽ )(λ) 6= 0.

(ii)The natural map Ũ → F (M̃(λ), M̃(λ)) is surjective and

F (M̃(λ), M̃(λ)) ∼= ⊕
Ṽ ∈Irr

E(Ṽ )⊕ dim Ṽ |0 .

Proof. Fix a strongly typical λ such that M̃(λ) is simple. Denote by f the natural map

Ũ → F (M̃(λ), M̃(λ)).

Let us show that (ii) implies (i). Indeed, if both conditions of (ii) hold then F (M̃(λ), M̃(λ))
is projective in F in and so f has a left inverse f−1. Denote by N the image of f−1. Take
Ṽ ∈ Irr and choose a basis θ1, . . . , θr of Homg(Ṽ , N). By Remark 4.4.5, θ1, . . . , θr is a

Z(g)-basic system of Homg(Ṽ , Ũ). Denote by C the corresponding PRV matrix. Since the
restriction of f to N is a monomorphism corankC(λ) = 0, by 4.6.6. Hence detC(λ) 6= 0

and so detJ (Ṽ )(λ) 6= 0 as required.

Let us show that (i) implies (ii). Suppose that (i) holds. By Corollary 4.6.7, f(Soc Ũ)

coincides with the socle of F (M̃(λ), M̃(λ)). The socle of Ũ is a completely reducible
g-module and so it contains a submodule L such that the restriction of f gives an isomor-
phism L

∼
−→ SocF (M̃(λ), M̃(λ)). The central element T 2 acts on M̃(λ) by a non-zero

scalar t(λ)2 (because λ is strongly typical) and thus one can choose L lying in T 2Ũ .

By 3.3.2, T Ũ is an injective ad g-submodule of Ũ and so it contains an injective envelope
E(L) of L. The restriction of f to E(L) is a monomorphism because the restriction of f
to L is a monomorphism. Therefore f(E(L)) is an injective module containing the socle

of F (M̃(λ), M̃(λ)). Using 3.1.1, one concludes that the restriction of f provides an iso-

morphism E(L)
∼

−→ F (M̃(λ), M̃(λ)). In particular, f is surjective and the ad g-module

F (M̃(λ), M̃(λ)) is injective in F in. Combining these facts and 11.1.5, one obtains (ii).
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5.2. Theorem. Suppose that λ ∈ h∗ is strongly typical and detJ (Ṽ )(λ) 6= 0 for all

Ṽ ∈ Irr. Then Ann Ṽ (λ) = Ũ AnnZ(g) Ṽ (λ).

Proof. For each Ṽ (ν) ∈ Irr choose pν ∈ detJ (ν) such that pν(λ) 6= 0. Let θν1 , . . . , θ
ν
r(ν) ∈

Homg(Ṽ (ν), Ũ) be a Z(g)-basic system such that the determinant of the PRV matrix
corresponding to this system is equal to pν . Let qν be the maximal W.-invariant divisor
of p|W |

ν and zν ∈ Z(g) be such that P(zν) = t2qν . Note that zν 6∈ AnnZ(g) Ṽ (λ) since
(t2pν)(λ) 6= 0.

Let S be the multiplicative closure of the set {T 2; zν | Ṽ (ν) ∈ Irr} . Denote by A

the localization of Z(g) by S and by ŨA the localization of Ũ by S. The action of Ũ
on Ṽ (λ) can be canonically extended to the action of the localized algebra ŨA since

S ∩ AnnZ(g) Ṽ (λ) = ∅ . The action of Ũ on Ṽ (λ) can be canonically extended to the

action of the localized algebra ŨA acts on Ṽ (λ). Clearly, the ideal AnnA Ṽ (λ) is maximal
in A.

Let us show that Ann
ŨA
Ṽ (λ) = ŨA AnnA Ṽ (λ). Combining 4.7.5 and Corollary 4.7.7,

one concludes the existence of ad g-submodule H of Ũ such that

SocH =
∑

ν:Ṽ (ν)∈Irr

r(ν)∑

i=1

T 2 Im θiν (5)

and that the multiplication map induces an isomorphism H ⊗ A
∼

−→ ŨA. To verify
Ann

ŨA
Ṽ (λ) = ŨA AnnA Ṽ (λ) it is enough to check that H ∩ Ann Ṽ (λ) = 0. Observe

that detJ (Ṽ (ν);H) = pνt
2r(ν) and so detJ (Ṽ (ν), H)(λ) 6= 0 for all Ṽ (ν) ∈ Irr. Then,

by 4.6.6,

(
r(ν)∑

i=1

Im θiν) ∩ Ann Ṽ (λ) = 0.

that is SocH ∩ Ann Ṽ (λ) = 0. Therefore H ∩ Ann Ṽ (λ) = 0 as required. Hence

Ann
ŨA
M̃(λ) = ŨA AnnA M̃(λ).

Take u ∈ Ann
Ũ
Ṽ (λ). Write u =

∑m
i=1 uizi where ui ∈ H, zi ∈ AnnA Ṽ (λ). Choose z ∈ S

such that zui ∈ Ũ and zzi ∈ Z(g) for all i = 1, . . . , m. Observe that zzi ∈ AnnZ(g) Ṽ (λ)
for all i = 1, . . . , m. Therefore

z2u =
m∑

i=1

(zui)(zzi) ∈ Ũ AnnZ(g) Ṽ (λ).

Recall that S ∩ AnnZ(g) Ṽ (λ) = ∅ and so (z2 − c) ∈ AnnZ(g) Ṽ (λ) for a certain non-zero

scalar c. Hence u ∈ Ũ AnnZ(g) Ṽ (λ). This completes the proof.
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5.3. PRV determinants and Shapovalov form factorization. Assume that for some
Ṽ ∈ Irr the set detJ (Ṽ ) contains a non-zero polynomial p whose all irreducible factors
are either a divisor of a Shapovalov form (see 2.5.8) or a divisor of t. An irreducible factor
of a Shapovalov form takes either a form (α∨ − (ρ, α) − n) (a first type factor) for some
non-isotropic positive root α and some n ∈ N+ or a form (α∨ − (ρ, α)) (a second type
factor) for some isotropic positive root α. Note that the factors of the second type are
divisors of t. Observe that for n 6= 0 the element

sα.(α
∨ − (ρ, α) − n) = −α∨ + (ρ, α) − n

is neither a divisor of a Shapovalov form nor a divisor of t. This forces the maximal
W.-invariant factor of p|W | to be a divisor of tm for some m ∈ N.

Then 4.7.4– 4.7.5 imply

5.3.1. Theorem. Assume that for any Ṽ ∈ Irr there exists a non-zero element
in detJ (Ṽ ) whose any irreducible factor is either a divisor of a Shapovalov form or a

divisor of t. Then there exists an ad g-submodule H of Ũ such that

H ∼= ⊕
Ṽ ∈Irr

E(Ṽ )⊕dim Ṽ |0

and the multiplication map induces an isomorphism H ⊗ Z(g)[T−2]
∼

−→ Ũ [T−2].

Recall that M̃(λ) is simple iff all Shapovalov forms are non-zero at the point λ. Theo-
rem 5.2 yields

5.3.2. Theorem. Assume that for any Ṽ ∈ Irr there exists a non-zero element
in detJ (Ṽ ) whose any irreducible factor is either a divisor of a Shapovalov form or a

divisor of t. Then the annihilator of M̃(λ) is centrally generated provided M̃(λ) being
simple strongly typical.

As it is shown in [GL1] the condition of the last two theorems holds for g = osp(1, 2n).
We will prove that this condition also holds for the basic classical Lie superalgebras of
type I. Contrary to the case osp(1, 2n), the proof is not based on the calculations of PRV
determinants.

6. The basic classical Lie superalgebras of type I.

Throughout this section g is a basic classical Lie superalgebras of type I that is g =
gl(m,n), sl(m,n), psl(n, n) or g = osp(2, n). We describe some common properties of
these superalgebras which are used in the next section.

6.1. Notation. The Lie superalgebras of type I are Z-graded. We denote by gr (r ∈ Z)
the corresponding homogeneous component of g and by g0 (resp., g1) the even (resp., the
odd) part of g.
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One has g0 = g0 and g1 = g1 + g−1. In particular, both superalgebras g±1 are super-

commutative and the exterior algebras Λg±1 are naturally embedded into Ũ . One has
Ũ = Λ(g−1)UΛ(g1). As ad g0-modules g±1 are irreducible and dual one to another.

All odd roots are isotropic and so the notion of “typical” coincide with the notion of
“strongly typical”.

Extend the above Z-grading on U(g); evidently U(g)r = 0 if |r| > dim g1. Moreover

for r = dim g1 one has U(g)±r = UΛr(g±1). By default, “the degree” of an element of Ũ
means its degree with respect to this Z-grading.

6.1.1. Distinguished triangular decomposition. Set n±
d := n±

0 + g±1. The decomposition
g = n−

d ⊕ h ⊕ n+
d is called a distinguished triangular decomposition. By default, all

highest weight modules, positive/negative roots, Harish-Chandra projection P and PRV
matrices/determinants are constructed with respect to the distinguished triangular de-
composition.

Note that (ρ, α) = (ρ0, α) for any α ∈ ∆0 since ∆+
1 = Ω(g1) is W -invariant. In

particular, w.µ = w(µ+ ρ0) − ρ0 for any w ∈W and µ ∈ h∗.

The Verma modules constructed using a distinguished triangular decomposition have
the following nice structure: M̃(µ) = Indg

g0⊕n
+

1

M(µ) where the action of n+
1 on M(µ) is

assumed to be trivial.

6.1.2. For α ∈ ∆+
0 denote by eα (resp., fα) an element of the weight α (resp., −α) of g.

For β ∈ ∆+
1 (resp., β ∈ ∆−

1 ) denote by xβ (resp., yβ) an element of the weight β of g.

Denote by I the set of the positive odd roots with a fixed total order. Then {xi}i∈I
(resp., {yi}i∈I) is a basis of g1 (resp., g−1). For any J ⊆ I set xJ :=

∏
i∈J xi, yJ :=

∏
i∈J yi

where the products are taken with respect to the total order on I. If we change the order
of factors in the product yJ the result is equal either to yJ or to (−yJ), since g±1 are
supercommutative. Note that yyI = xxI = 0 for any y ∈ g−1, x ∈ g1.

Evidently xI ∈ Λtopg1, yI ∈ Λtopg−1 and so xI , yI are invariant with respect to the
adjoint action of [g0, g0]. Moreover xIyI is ad g0-invariant due to the duality g∗

1
∼= g−1.

6.1.3. Sometimes we will deal with a non-distinguished triangular decomposition g =
n− ⊕ h ⊕ n+. We shall use the following notation: b := h + n+; Pb will be the Harish-
Chandra projection with respect to this triangular decomposition, ∆(b) will be the set of
non-zero roots of b and also

I+ : = I ∩ ∆(b),
I− : = I \ I+,
tb : = Pb(T )

Note that

tb : =
∏
β∈∆1∩∆b

(β∨ + (β, ρ)).
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As before, the triangular decomposition of g0 is assumed to be fixed and all triangular
decompositions of g which we consider are compatible with this triangular decomposition
of g0.

6.1.4. Case psl(n, n). This case is rather special. A Cartan algebra of g = psl(n + nε)
is “too small” and a distinguished triangular decomposition does not fit the definition
given in 2.2. Moreover the restriction of the Harish-Chandra projection determined by
the distinguished triangular decomposition to the zero weight space is not an algebra
homomorphism: for instance, both yI , xI have zero weight, P(yI) = P(xI) = 0 however
P(xIyI) = t—see Corollary 6.3.3.

A possible treatment to this problem is the following “enlargement of a Cartan subsu-
peralgebra”. The Lie superalgebra g is an ideal in the Lie superalgebra ĝ := gl(n, n)/(CX)
where X stands for the identity matrix. One has g1 = ĝ1 and ĝ0 = g0 × Cz where z is a
central element of the Lie algebra ĝ0.

Let ĥ be a Cartan subsuperalgebra of ĝ0 spanned by h and z. One can easily sees that ĥ

acts semisimply on g and a distinguished triangular decomposition of g is determined, in
a sense of 2.2, by a certain regular element h ∈ ĥ. For µ ∈ ĥ∗ set Ũ |µ := {u ∈ Ũ| [h, u] =

µ(h)u, ∀h ∈ ĥ}. Then the restriction of the Harish-Chandra projection determined by

the distinguished triangular decomposition on Ũ |0 is an algebra homomorphism because

Ũ |0 ∩ U(n− + h)n− = 0.

It is easy to see that for any weight g-module M one can extend (not uniquely) its g-
module structure to a ĝ-module structure. This implies that Lemma 4.1.1 remains true for
the distinguished triangular decomposition if we define Ũ |0 as above. For ad g-submodules

of Ũ consider the natural ĝ-module structure coming from the embedding Ũ into U(ĝ).

In the sequel, we substitute the categories Irr and Õ for g by the same categories for ĝ

(these ĝ-categories have the same sets of objects as their g-analogues but less morphisms).
Under these conventions all propositions of Sections 4, 5 remain true for g = psl(n, n).

6.2. Useful assertions. The following lemma is an immediate consequence of the su-
percommutativity of g±1.

6.2.1. Lemma. Let Ñ be a g-module and N be its g0-submodule such that Ñ = ŨN .
Then the canonical map Indg

g0
N → Ñ is an isomorphism iff for each collection {vJ}J⊆I

of elements of N one has

xI
∑

J⊆I

yJvJ = 0 =⇒ vJ = 0, ∀J ⊆ I.

Recall that M̃(λ) is typical iff t(λ) 6= 0 or, equivalently, TM̃(λ) 6= 0. .
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6.2.2. Lemma. A typical Verma module M̃(λ) contains a simple Verma submodule.

Proof. Recall that (ρ0, α) = (ρ, α) for any α ∈ ∆0. Comparing the factorizations of
Shapovalov forms (see 2.5.8) for the Lie superalgebras g and g0, one concludes that a

typical g-module M̃(λ) is simple iff the g0-module M(λ) is simple. Let M̃(λ) be a typical
Verma module and v be its highest weight vector. Then U(n−

0 )v ∼= M(λ) contains a
simple submodule M(λ′). Therefore there exists u ∈ U(n−

0 ) such that n+
0 uv = 0. The

ad g0-invariance of g1 yields g1(uv) = ug1v = 0. Thus the vector uv is primitive and so

Ũ(uv) is a quotient of M̃(λ′). The non-zero elements of U(g0) are non-zero divisors in Ũ
since the non-zero elements of S(g0) are non-zero divisors in S(g) = S(g0)Λ(g1). Thus

Ũ(uv) ∼= M̃(λ′). Since M(λ′) is simple, M̃(λ′) is also simple. The lemma is proven.

6.3. Element T . For the classical Lie superalgebras of type I the element T takes a very
simple form given by the following

6.3.1. Lemma. Up to a non-zero scalar T = (ad′ yIxI)1.

Proof. Recall 3.3.2. It is enough to show that if v is a generator of a trivial g0-module V (0)
then yIxIv spans a trivial g-submodule of Indg

g0
V (0). In other words, one has to verify

that g(yIxI) ⊂ Ũg0. The ad g0-invariance of yIxI forces g0(yIxI) = (yIxI)g0. Moreover

g−1(yIxI) = 0. Thus it remains to check that xβyIxI ∈ Ũg0 for any β ∈ ∆+
1 . Setting

J := I \ {β} one has

xβyIxI = ±xβy−βyJxI = ±([xβ , y−β]−y−βxβ)yJxI = ±([xβ , y−β]yJxI−y−β((ad xβ), yJ)xI)

since xβxI = 0.

The term yIxI is of the zero weight and so the weight of yJxI is equal to β. The term
[xβ , y−β] lies in h; one has [[xβ, y−β], xβ] = 0 since x2

β = 0. Therefore β([xβ, y−β]) = 0 and

so [xβ, y−β]yJxI = yJxI [xβ , y−β] ∈ Ũg0.

Let us show that y−β((ad xβ)yJ)xI) ∈ Ũg0. For any β ′ ∈ J one has (ad xβ)y−β′ ∈
(n−

0 + n+
0 ). Since Λr(g−1) is ad g0-invariant for all r, this implies that

(adxβ)yJ ∈ Λl−2(g−1)(C + n−
0 + n+

0 ) (6)

where l := dim g1. If yJ ′ ∈ Λl−2(g−1) has the same weight as the element (adxβ)yJ ,
then the set I \ J ′ contains two elements whose sum is equal to 2β. Since the multiset I
contains exactly one element equal to β, this implies β ∈ J ′ that is y−βyJ ′ = 0. Then (6)
gives

y−β((adxβ)yJ) ∈ y−βΛ
l−2(g−1)(n

−
0 + n+

0 )

and so

y−β((adxβ)yJ)xI ∈ Λl−1(g−1)(n
−
0 + n+

0 )xI = Λl−1(g−1)xI(n
−
0 + n+

0 ) ∈ Ũg0

since xI is ad([g0, g0]-invariant. The assertion follows.
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Take any triangular decomposition g = n− ⊕ n ⊕ n+ and retain notation of 6.1.3.

6.3.2. Lemma. Up to a non-zero scalar one has

Pb(xI+yI+)Pb(yI−xI−) =
∏

β∈∆1(b)

(β∨ + β∨(ρb)).

Proof. The right-hand side is equal to tb = Pb(T ). By Lemma 6.3.1, up to a non-zero
scalar T = (ad′ xIyI)1. Thus one should verify that

Pb((ad′ yIxI)1) = Pb(xI+yI+)Pb(yI−xI−)

up to a non-zero scalar.

Since g1 is supercommutative, (ad′ xI)1 = 2dimg1xI and

Pb((ad′ yIxI)1) = 2dim g1Pb((ad′ yI)xI) = ±2dimg1Pb((ad′ yI+ ad′ yI−)xI).

Recall that for α ∈ I+ one has y−α ∈ n− and so P((ad′y−α)u) = ±P(uy−α) for all u ∈ Ũ .
Therefore, up to a non-zero scalar,

Pb((ad′ yIxI)1) = Pb(((ad′ yI−)xI)yI+).

Similarly for any α ∈ I− one has y−α ∈ n+ and so Pb(uy−αyI+) = Pb(±uyI+y−α) = 0.
Therefore

Pb(((ad′ yI−)xI)yI+) = Pb(yI−xIyI+) = ±Pb(yI−xI−xI+yI+) = ±Pb(yI−xI−)Pb(xI+yI+)

where the last equality is a consequence of the fact that the restriction of the Harish-
Chandra projection to the zero weight space is an algebra homomorphism. Hence

Pb((ad′ yIxI)1) = ±2dimg1Pb(xI+yI+)Pb(yI−xI−).

The lemma is proven.

6.3.3. Corollary. Up to a non-zero scalar one has P(xIyI) = t =
∏
β∈∆+

1
(β∨+β∨(ρ)).

6.3.4. Lemma. If λ ∈ h∗ is such that Pb(xI+yI+)(λ) = 0 then xIM̃b(λ) = 0. If

Pb(yI−xI−)(λ) = 0 then yIM̃b(λ) = 0.

Proof. Both assertions are similar. To verify the first one, fix λ such that Pb(xI+yI+)(λ) =

0 and set M̃ := M̃b(λ). Denote by v a highest weight vector of M̃ . One has

xIM̃ = xIU(n−
0 )

∑

J1⊆I+,J2⊆I−

xJ2
yJ1
v = U(n−

0 )
∑

J1⊆I+

xIyJ1
v

since xI is ad n−
0 -invariant and xIxJ = 0 for J 6= ∅. Note that Ũkv = 0 if k > #I−.

Therefore xIyJ1
v = 0 if (#I − #J1) > #I− that is if #J1 < #I+. Consequently

xIM̃ = U(n−
0 )xIyI+v = U(n−

0 )xI−xI+yI+v = U(n−
0 )xI−Pb(xI+yI+)(λ)v = 0

as required.
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7. Separation and Annihilation theorems for type I case.

Throughout this section g is a basic classical Lie superalgebras of type I that is g =
gl(m,n), sl(m,n)psl(n, n) or g = osp(2, n). In this section we establish separation and
annihilation type theorems for these algebras.

Retain notation of Section 6. Until 7.3.2 we will deal only with a distinguished trian-
gular decomposition.

7.1. Proposition. For a typical Verma module M̃ one has

(i) F (M̃, M̃) ∼= ⊕V ∈Irr0(Indg
g0
V )⊕ dimV |0.

(ii) For H being a harmonic space of U(g0) the restriction of the natural map

Ũ → F (M̃, M̃) to (ad Ũ)(HxIyI) is a bijection.

Proof. Let H be a harmonic space of U(g0). Recall that dimg0
(V,H) = dimV |0 for any

V ∈ Irr0.

Define the map ψ : Indg
g0

(H) → (ad Ũ)(HxIyI) by g⊗ h 7→ (ad g)(hxIyI). Since xIyI is
ad g0-invariant, HxIyI ∼= H as ad g0-modules and so ψ is a g-epimorphism. Denote by f
the natural map f : Ũ → F (M̃, M̃). To prove the theorem it is enough to show that the

map f ◦ ψ : Indg
g0

(HxIyI) → F (M̃, M̃) is a bijection.

Let µ be the highest weight of M̃ and v be a highest weight vector of M̃ . Then
M := U(g0)v ∼= M(µ). By 2.8.2, the restriction of the natural map U(g0) → F (M,M) to
H is bijective.

To prove that f ◦ ψ is a monomorphism recall Lemma 6.2.1. Let {aJ}J⊆I ⊂ H be such
that

bM̃ = 0 where b :=
(∑

J⊆I

(adxIyJ)(aJxIyI)
)
.

We need to show that aJ = 0 for all J ⊆ I. One has (ad yJ)(aJxIyI) = yJaJxIyI since
g−1yI = 0. Therefore

b = (ad xI)(
∑

J⊆I

yJaJxIyI).

Take u ∈ U(n−
0 ). The equality g−1yI = 0 implies

0 = b(yIuv) =
(
(ad xI)(

∑

J⊆I

yJaJxIyI)
)
yIuv =

∑

J⊆I

±yJaJxIyIxIyIuv

since yIxJ ′yI = 0 for J ′ 6= I (the degree of yIxJ ′yI is equal to r := #J ′ − #2I and

Ũr = 0 for r < −#I). By Corollary 6.3.3, P(xIyI) = t and so xIyIuv = uxIyIv = t(µ)uv.
Therefore b(yIuv) = t(µ)2 ∑

J⊆I ±yJaJuv. Hence b(yIM) = t(µ)2 ∑
J⊆I ±yJaJM . Since

t(µ) 6= 0 and aJM ⊂ M , the equality b(yIM) = 0 implies aJM = 0 for all J ⊆ I. However
the aJ belong to H and H ∩AnnM = 0 by Theorem 2.8.2. Therefore all aJ are equal to
zero. Hence f ◦ ψ is a monomorphism.
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Let us show that f ◦ ψ is surjective. Recall that as g0-module M̃ ∼= M ⊗ Λg−1. Take a
simple finite dimensional g0-module V . Using Frobenius reciprocity and 2.8.2, one obtains

dim Homg0
(V, F (M̃, M̃)) = dim Homg0

(M̃ ⊗ V, M̃)
= dim Homg0

(V ⊗ Λg−1 ⊗M,Λg−1 ⊗M)

= dim Homg0

(
V ⊗ Λg1, F (M,M)

)

= dim Homg0

(
V ⊗ Λg1, H

)
= dim Homg0

(
V,Λg1 ⊗H

)

= dim Homg0
(V, Indg

g0
H) = [Im(f ◦ ψ) : V ].

Since F (M̃, M̃) is a completely reducible ad g0-module and the multiplicity [Im(f ◦ψ) : V ]

is finite, this gives F (M̃, M̃) = Im(f ◦ ψ) and completes the proof.

Retain notation of 4.6.2.

7.1.1. Corollary. Let H be a harmonic space of U(g0) and L := (ad Ũ)(HxIyI). Then

L ∼= ⊕
Ṽ ∈Irr

E(Ṽ )⊕ dim Ṽ |0

and for any Ṽ ∈ Irr the determinant detJ (Ṽ ;L) admits a linear factorization. Moreover
each linear factor is a factor of a Shapovalov form.

Proof. Combining Proposition 7.1 and (3) one obtains

L ∼= ⊕
Ṽ ∈Irr0

f

E(Ṽ )⊕dim Ṽ |0.

Fix Ṽ ∈ Irr and set p := PRV (Ṽ ;L). Recall that M̃(µ) is simple iff µ is not a zero of
a Shapovalov form. In particular, an atypical Verma module is not simple. Taking into
account Corollary 4.1.2, one concludes from Proposition 7.1 that p(µ) 6= 0 provided that

M̃(µ) is simple. Thus any zero of p is a zero of a Shapovalov form. Since each Shapovalov
form admits a factorization into linear factors, this implies that the set of zeroes of p
lies in a union of countably many hyperplanes which correspond to the linear factors of
the Shapovalov forms. Therefore p is a product of linear factors which are factors of
Shapovalov forms.

7.2. Separation theorem. Combining Corollary 7.1.1, Theorem 4.7.4, Corollary 4.7.7
and 5.3 one obtains the following version of Separation Theorem

7.2.1. Theorem. Let H be a harmonic space of U(g0). Then the multiplication map

provides an isomorphism
(
(ad Ũ)HxIyI

)
⊗Z(g)[T−2]

∼
−→ Ũ [T−2].

7.3. Annihilation theorem. In this subsection we prove that Ann M̃b(λ) is a centrally

generated ideal iff M̃b(λ) is typical.
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7.3.1. Combining Corollary 7.1.1 and Theorem 5.3.2, one concludes that Ann M̃(λ) is

centrally generated if M̃(λ) is simple. By Lemma 6.2.2, any typical Verma module M̃(λ)

contains a simple Verma submodule. This implies that Ann M̃(λ) is centrally generated if

M̃(λ) is typical. Using 2.7, it is easy to generalize this statement to any Borel subsuperal-

gebra b. Indeed, a typical Verma module M̃b(λ) is isomorphic to a Verma module M̃(λ′).

Recall that a Verma module M̃b(λ) is typical iff its annihilator does not contain T—

see 3.3.2. Thus M̃(λ′) is typical and so Ann M̃b(λ) = Ann M̃(λ′) is a centrally generated

ideal. Hence Ann M̃b(λ) is centrally generated provided that M̃b(λ) is typical.

In the rest of this section we will show that Ann M̃b(λ) 6= Ũ AnnZ(g) M̃b(λ) if M̃b(λ) is
atypical that is tb(λ) = 0.

7.3.2. The proof goes as follows. Take λ ∈ h∗ such that tb(λ) = 0. Set χ̃ := AnnZ(g) M̃b(λ).

The idea is to find Ṽ ∈ Irr satisfying the following conditions

a) Homg(Ṽ , Ũ) 6= 0,

b) Ṽ is typical ,

c) ∀θ ∈ Homg(Ṽ , Ũ) θ(Ṽ ) ⊂ Ann M̃b(λ).

Assume that Ann M̃b(λ) is a centrally generated ideal. Then the above conditions imply

the equality Homg(Ṽ , Ũ) = χ̃Homg(Ṽ , Ũ) that yields

detJ (b, Ṽ ) ⊆ P(χ̃)detJ (b, Ṽ ).

Since detJ (b, Ṽ ) is a non-zero subset of S(h) and P(χ̃) is a subset of S(h) which does

not contain non-zero scalars, the last inclusion is impossible. Thus Ann M̃b(λ) is not a
centrally generated ideal.

7.3.3. Retain notation of 6.1.2. There exists z ∈ h such that ad z acts by zero on g0 and
by identity (resp., minus identity) on g1 (resp., g−1). Recall that ρ1 = 1

2

∑
β∈∆+

1
β and so

2ρ1(z) = dim g1.

7.3.4. Lemma. There exists ν ∈ h∗ such that

a) Homg(Ṽ (ν), Ũ) 6= 0,

b) Ṽ (ν) is typical,
c′) z(ν) = dim g1.

Proof. Recall that the condition b) is equivalent to the inequality t(ν) 6= 0 where t =∏
β∈∆+

1
(β∨ + (ρ, β)). Observe that z 6= β∨ for any β ∈ ∆+

1 , since β∨(β) = 0 6= z(β). Thus

the restriction of the polynomial t on the hyperplane

S := {µ ∈ h∗| z(µ) = dim g1, (Z(g) ∩ h)(µ) = 0}

is a non-zero polynomial (one has Z(g) ∩ h = 0 apart from the case g = gl(m,n)).
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Consider the set

X := {µ ∈ h∗| Homg0
(V (µ),U(g0)) 6= 0}.

It is easy to see that X is a Zariski dense subset of the hyperplane

{µ ∈ h∗| z(µ) = 0, (Z(g) ∩ h)(µ) = 0} = S − 2ρ1.

Thus t(ν ′ + 2ρ1) 6= 0 for a certain ν ′ ∈ X. Hence ν := ν ′ + 2ρ1 fulfills the conditions
b) and c’). Let show that ν satisfies a). Since ν ′ ∈ X, there exists a copy V ∼= V (ν)
inside U(g0). Let u be a highest weight vector of V . Then uxI is a non-zero primitive

(that is (n+
0 + g1)-invariant) element of Ũ having weight ν. Therefore the ad g-submodule

generated by uxI is a finite dimensional quotient of M̃(ν). Since t(ν) 6= 0, a unique finite

dimensional quotient of M̃(ν) is isomorphic to Ṽ (ν). Hence Homg(Ṽ (ν), Ũ) 6= 0.

7.3.5. Remark. Similarly there exists a typical simple module Ṽ with the lowest weight
ν such that Homg(Ṽ , Ũ) 6= 0 and z(ν) = − dim g1.

7.3.6. Fix λ ∈ h∗ such that Pb(xI+yI+)(λ) = 0. Set χ̃ := AnnZ(g) M̃(λ) and assume that

Ann M̃(λ) = Ũ χ̃.

Fix ν satisfying the conditions a)—c’) of Lemma 7.3.4. We claim that ν fulfills the
condition c) of 7.3.2.

Indeed, let v be a highest weight vector of Ṽ := Ṽ (ν). Take any θ ∈ Homg(Ṽ , Ũ).
By the assumption c’) zv = (dim g1)v that is [z, θ(v)] = (dim g1)θ(v). Therefore θ(v)

has degree dim g1 that is θ(v) ∈ U(g0)xI . Lemma 6.3.4 asserts that xIM̃b(λ) = 0 and so

θ(v) ∈ M̃b(λ) = 0. Since Ann M̃b(λ) is ad g-stable, it contains θ(Ṽ ).

By the assumption Ann M̃(λ) = Ũ χ̃ and so the element θ(v) can be written in a
form θ(v) =

∑
ziui where all zi belong to χ̃. Without loss of generality we can assume

that each element ui has the same weight and the same central character as θ(v) with

respect to the adjoint action of Z(g) ⊂ Ũ on Ũ . Since Ṽ is typical, Ṽ is a unique, up
to isomorphism, cyclic module in F in with this central character. Therefore ad g-span of
each ui is isomorphic to Ṽ that is ui ∈ θi(Ṽ ) for certain θi ∈ Homg(Ṽ , Ũ). Since ui has

weight ν and v spans Ṽ |ν , one can assume that ui = θi(v). Then θ(v) =
∑
ziθi(v) and so

θ =
∑
ziθi. Hence

Homg(Ṽ , Ũ) = χ̃Homg(Ṽ , Ũ).

Using the fact that Pb(zθ) = Pb(z)Pb(θ) for any z ∈ Z(g), θ ∈ Homg(Ṽ (ν), Ũ), one

concludes detJ b(Ṽ (ν)) ⊆ P(χ̃)detJ b(Ṽ (ν)). Since detJ b(Ṽ (ν)) is a non-zero subset of
a polynomial algebra S(h) and P(χ̃) does not contain non-zero scalars, the last inclusion

is impossible. Hence Hence Ann M̃(λ) 6= Ũ χ̃.

In the case Pb(yI−xI−)(λ) = 0 the proof is similar: one may choose Ṽ as in Remark 7.3.5.

Hence we prove that for any triangular decomposition the following theorem holds.
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7.3.7. Theorem. The annihilator of a Verma module is a centrally generated ideal iff
this module is typical.

7.4. Denote by MaxA the set of maximal ideals of an algebra A. In [PS1], the following
theorem is proven.

7.4.1. Theorem. For any χ̃ ∈ MaxZ(g) not containing T 2, there exists χ ∈
MaxZ(g0) such that the algebra Ũ/(Ũχ) is the matrix algebra over U(g0)/(U(g0)χ0).

One can deduce from this theorem that the annihilator of a typical Verma module is
centrally generated. On the other hand, one can deduce Theorem 7.4.1 from Proposi-
tion 7.1 and 7.3.1. In fact, take λ ∈ h∗ such that χ̃M̃(λ) = 0. Then t(λ) 6= 0 and
so

Ũ/(Ũ χ̃) = F (M̃(λ), M̃(λ)) = F (M(λ) ⊗ Λg−
1 ,M(λ) ⊗ Λg−

1 ) =
F (M(λ),M(λ)) ⊗ End(Λg−

1 ) = U(g0)/(U(g0)χ) ⊗ End(Λg−
1 )

where χ := AnnZ(g0)M(λ). Hence Ũ/(Ũχ) is a matrix algebra over U(g0)/(U(g0)χ).

8. Perfect pairs

In this section we find for each maximal ideal of Z(g) not containing T 2 a perfect mate
which is a maximal ideal in Z(g0) possessing certain properties.

8.1. Denote by MaxA the set of maximal ideals of an algebra A and by A − Mod the
full category of left A-modules. For an A-module N and χ ∈ MaxA set

Nχ := {v ∈ N | χrv = 0, ∀r >> 0}.

Call a maximal ideal of Z(g) a g-central character. For χ̃ ∈ MaxZ(g) (resp., χ ∈
MaxZ(g0)) set

Ũχ̃ := Ũ/(Ũ χ̃), Uχ := U/(Uχ).

We canonically identify the Ũχ̃-modules and the (non-graded) Ũ-modules annihilated by
χ̃.

8.1.1. Definition. Call χ̃ ∈ MaxZ(g) strongly typical if T 2 6∈ χ̃.

Throughout this section χ̃ denotes a strongly typical central character.
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8.1.2. For a fixed triangular decomposition set

W (χ̃) := {λ ∈ h∗| χ̃M̃(λ) = 0}.

Recall that P(Z(g)) ⊃ P(T 2)S(h)W. and so W (χ̃) forms a single W.-orbit.

Remark that χ̃ is strongly typical iff any λ ∈W (χ̃) is strongly typical.

For any pair (χ̃, χ) ∈ MaxZ(g) × MaxZ(g0) there is a functor Ψχ̃,χ : Ũχ̃ − Mod →

Uχ − Mod given by Ñ 7→ Ñχ. One of our goals is to prove that any strongly typical
g-central character χ̃ has a “perfect mate” χ ∈ MaxZ(g0) such that the above functor
provides the equivalence of categories. For the basic classical Lie superalgebras of type I
this is proven in cite [PS1]. In [G], we will prove it for the basic classical Lie superalgebras
of type II.

For type I case, it turns out that for any λ ∈ W (χ̃) χ := AnnZ(g0)M(λ) is a perfect
mate for χ̃ (provided that χ̃ is strongly typical)— see also 7.4. This does not hold for
type II case.

It is easy to see that if the functor Ψχ̃,χ provides the equivalence of the categories, then

χ has, at least, the following properties: for a Verma Ũχ̃-module M̃ the g0-module M̃χ

is a Verma g0-module and for any Ũχ̃-module Ñ the g0-module Ñχ is non-zero. We call
χ a mate of χ̃ if it possesses the first property and a perfect mate if it possesses both
properties. As we shall show in [G], these two properties really ensure the equivalence of

categories Ũχ̃ − Mod and Uχ − Mod provided that χ̃ is strongly typical.

A pair (χ̃, χ) ∈ MaxZ(g)×MaxZ(g0) is called a perfect pair if χ is a perfect mate for
χ̃.

The goal of this section is to find a perfect mate for any strongly typical χ̃. This is done
in the following way. Lemma 8.3.4 gives a combinatorial criterion on χ to be a perfect
mate for χ̃. In 8.5 we fix, for each basic classical Lie superalgebra of type II a triangular
decomposition, in terms of which we will describe a perfect mate χ for χ̃. In 8.6 we
consider χ̃ satisfying a certain genericity condition. For such a “generic” χ̃ we show that
for a suitable λ ∈ W (χ̃) the g0-central character of M(λ) is a perfect mate for χ̃. The
case when χ̃ is not generic is treated in 8.7. It turns out that for g of the types B(m,n),
G(3) any strongly typical χ̃ is “generic”. The remaining basic classical Lie superalgebras
of type II are treated case by case.

8.2. Notation.

8.2.1. We say that a Ũ-module Ñ has a finite support suppZ(g) Ñ = {χ̃1, . . . , χ̃k} if for

any v ∈ Ñ there exist r1, . . . , rk ∈ N+ such that
∏
i χ̃

ri
i v = 0. In this case,

Ñ = ⊕iÑχ̃i
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and each Ñχ̃i
is canonically isomorphic to the localization of the module Ñ by the maximal

ideal χ̃i. If Ñ has a finite support and 0 → Ñ ′ → Ñ → Ñ ′′ → 0 is an exact sequence
then, for any χ̃′ ∈ MaxZ(g), the sequence 0 → Ñ ′

χ̃′
→ Ñχ̃′ → Ñ ′′

χ̃′
→ 0 is also exact.

For a g-module Ñ and a maximal ideal χ̃′ ∈ MaxZ(g) define χ̃′-depth of Ñ to be a

minimal r ∈ N ∪∞ such that (χ̃′)rÑχ̃ = 0.

We adopt the similar notation for Z(g0) and U-modules.

8.2.2. Denote by Γ the set of subsets of ∆+
1 . For γ ⊆ ∆+

1 set

|γ| :=
∑

β∈γ

β.

Define the action of the Weyl group W on Γ by setting

w∗γ := w
(
γ ∪−(∆+

1 \ γ)
)
∩ ∆+

1 .

Then

|w∗γ| = w(|γ| − ρ1) + ρ1.

8.2.3. As a g0-module, a Verma module M̃(λ) has a filtration 0 = M0 ⊂ M1 ⊂ . . . ⊂

Mr = M̃(λ) such that the set of factors Mi+1/Mi coincides with the multiset {M(λ− γ) :
γ ∈ Γ}— see [M1], 3.2.

It is easy to check that for any w ∈W, γ ∈ Γ

w.λ− |w∗γ| + ρ0 = w(λ− |γ| + ρ0). (7)

Therefore the g0-central characters of M(w.λ− |w∗γ|) and M(λ− |γ|) coincide. Thus for
fixed χ̃ the multiset of g0-central characters of {M(λ − γ) : γ ∈ Γ} does not depend on
the choice of λ ∈W (χ̃).

8.2.4. Definition. Call χ ∈ MaxZ(g0) a mate for χ̃ ∈ MaxZ(g) if for some M̃(λ)

satisfying χ̃M̃(λ) = 0, the g0-module M̃(λ)χ is isomorphic to a Verma module M(λ−|γ|)
for some γ ∈ Γ.

One can easily deduce from 8.2.3 that if χ is mate for χ̃ then for any M̃(λ) satisfying

χ̃M̃(λ) = 0, the g0-module M̃(λ)χ is isomorphic to a Verma module M(λ− |γ|) for some

γ ∈ Γ. In particular, if χ is mate for χ̃ then for any M̃ satisfying χ̃M̃ = 0, the χ-depth
of M̃ is equal to 1.
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8.2.5. Definition. Let us call χ ∈ MaxZ(g0) a perfect mate for χ̃ ∈ MaxZ(g) if it is

a mate for χ̃ and for any non-zero Ũχ̃-module Ñ one has Ñχ 6= 0.

Definition 8.2.4 is given in terms of the category Õ. However, 2.7 implies that if for
some triangular decomposition χ is a mate for χ̃, then it is a mate also with respect to
all other choices of triangular decomposition.

8.3. Throughout this subsection a strongly typical g-central character χ̃ is assumed to
be fixed. Our first goal is to reformulate Definition 8.2.5 in terms of category Õ.

8.3.1. Lemma. There exist χ1, . . . , χk ∈ MaxZ(g0) and r1, . . . , rk ∈ N+ such that

for any Ũχ̃-module Ñ one has

Ñ = ⊕k
1Ñχi

and χriÑχi
= 0.

Proof. Theorem 2.5 of [M1] implies that for any x ∈ Z(g0) there exist z0, . . . , zl ∈ Z(g)
(where l = #Γ) such that

∑l
0 zix

i = 0 and zl = T 2 (notice that 2.1 of [M1] contains a
misprint; to correct it one has to substitute g by g2 in 2.1 and in Theorem 2.5). Therefore

for any x ∈ Z(g0) there exists c0, . . . , cl−1 ∈ C such that xl +
∑l−1

0 cix
i ∈ (Z(g0) ∩ Ũ χ̃).

Consequently, the ideal (Z(g0)∩Ũ χ̃) has a finite codimension in Z(g0) and so there exist
χ1, . . . , χk ∈ MaxZ(g0) and r1, . . . , rk ∈ N+ such that

(Z(g0) ∩ Ũ χ̃) ⊇
k∏

i=1

χrii .

Then, for any Ũχ̃-module Ñ

k∏

i=1

χrii ⊆ AnnZ(g0) Ñ.

The assertion follows.

8.3.2. Corollary. If χ is a perfect mate for χ̃ then

Ñ = ŨÑχ

for any Ũχ̃-module Ñ .

Proof. Since suppZ(g0) Ñ is finite, one has (Ñ/(ŨÑχ))χ = 0. Hence Ñ/(ŨÑχ) = 0 because
χ is a perfect mate for χ̃.
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8.3.3. Lemma. If χ ∈ MaxZ(g0) is a mate for χ̃ ∈ MaxZ(g) and Ṽ (λ)χ 6= 0 for all
λ ∈W (χ̃), then χ is a perfect mate.

Proof. Suppose that Ṽ (λ)χ 6= 0 for all λ ∈ W (χ̃). One has to verify that Ñχ 6= 0 for

any non-zero Ũχ̃-module Ñ . Since Ũ is Noetherian, Ñ has a simple subquotient Ñ ′.

Lemma 8.3.1 implies that Ñχ 6= 0 provided Ñ ′
χ 6= 0. Hence it is enough to check that

Ñχ 6= 0 for any simple Ũχ̃-module Ñ .

Take a simple Ũχ̃-module Ñ . The ideal Ann Ñ is primitive and so, according to [M2],

Ann Ñ = Ann Ṽ where Ṽ is a simple highest weight module. Obviously, χ̃Ṽ = 0 and so,
by our assumption, Ṽχ 6= 0. As a g0-module, Ṽ has a finite length. Therefore

AnnZ(g0) Ñ = AnnZ(g0) Ṽ = χr1χr22 . . . χrkk

where {χ, χ2, . . . , χk} = suppZ(g0) Ṽ , r1, . . . , rk ∈ N+. Then Ñ ′ := χr22 . . . χrkk Ñ 6= 0 and

χr1Ñ ′ = 0. Hence Ñχ 6= 0. The lemma is proven.

8.3.4. Lemma. Take λ ∈W (χ̃), γ ∈ Γ and set χ := AnnZ(g0)M(λ− |γ|).

(i) ∀γ′ ∈ Γ \ {γ} (λ− |γ′| + ρ0) 6∈ W (λ− |γ| + ρ0) ⇐⇒ χ is a mate for χ̃
(ii) If χ is a mate for χ̃ and StabW (λ− |γ| + ρ0) ⊆ StabW (λ+ ρ) then χ is a perfect mate.

Proof. The equivalence (i) follows from 8.2.3.

For (ii) recall Lemma 8.3.3. Suppose that χ is a mate for χ̃ but it is not a perfect mate.

Then M̃(λ)χ = M(λ − |γ|) and Ṽ (w.λ)χ = 0 for some w ∈ W . The equality (7), implies
that for any y ∈ W

M̃(y.λ)χ = M(y.λ− |y∗γ|).

Therefore Ṽ (y.λ)χ is a quotient of M(y.λ− |y∗γ|).

The module Ṽ (w.λ) is a homomorphic image of M̃(w.λ). Denote the kernel of this

homomorphism by Ñ . The module Ñ has a finite length and the factors of its Jordan-
Gölder series have the form Ṽ (µ) for some µ ∈ W.λ satisfying µ < wλ. Since 0 =

Ṽ (w.λ)χ = (M̃/Ñ))χ one concludes that the g0-module Ñχ = M̃χ = M(w.λ− |w∗γ|) has
a finite filtration such that each factor of this filtration is a quotient of M(y.λ−|y∗γ|) for
some y ∈W satisfying y.λ < w.λ. Therefore

w.λ− |w∗γ| = y.λ− |y∗γ|

for some y ∈ W satisfying y.λ < w.λ. By (7), the above equality is equivalent to the
condition y−1w ∈ StabW (λ+ρ0 −|γ|). However, y.λ < w.λ implies y−1w 6∈ StabW (λ+ρ).
Thus StabW (λ+ ρ0 − |γ|) 6⊆ StabW (λ+ ρ) as required.

8.4. Throughout this subsection a strongly typical g-central character χ̃ is assumed to
be fixed.
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8.4.1. Right version. One may repeat the above reasonings for the right g-modules. Sup-
pose now that (χ̃, χ) is a perfect pair in the “left sense”. We claim that it is a perfect
pair in the “right sense”.

Indeed, the superantiautomorphism σ (see 2.3) provides the duality between the left

and the right Ũ -modules given by N 7→ Nσ:

vσ.a := (−1)d(a)d(v)σ(a).v, a ∈ Ũ , v ∈ N.

By 2.3.4, σ stabilizes the elements of Z(g); thus the restriction of the above duality gives

the duality between the left and the right Ũχ̃-modules. Since σ also stabilizes the elements
of Z(g0), in order to show that (χ̃, χ) is a perfect pair in the “right sense”, it is enough
to check that χ is mate for χ̃ in the “right sense”.

Take a minimal element λ ∈ W (χ̃). Then M̃ := M̃(λ) is a simple Verma module and

M̃σ is a right simple module which is a Verma module with respect to a suitable triangular
decomposition of g. Since χ is a mate for χ̃, M̃χ is a Verma g0-module, say M . Then

χM̃
σ := {v ∈ M̃σ| v.χr = 0, r >> 0} = (M̃χ)

σ = Mσ

since σ stabilizes the elements of Z(g0). Therefore χM̃
σ is a (right) g0-submodule of a

(right) Verma g-module and, at the same time, it is dual to a Verma g0-module. Since a

Verma g-module is U(n−
0 )- torsion-free, χM̃

σ is a (right) Verma g0-module. Hence χ is a
mate for χ̃ in the “right sense”.

8.4.2. Let χ be a perfect mate for χ̃ and L be a non-zero Ũ-bimodule such that χ̃.L =
L.χ̃ = 0. Let us show that

χLχ := {v ∈ L| χr.v = v.χr = 0, r >> 0}

is non-zero.

Indeed, according to Lemma 8.3.1, there exist pair-wise distinct g0-central characters
χ1, . . . , χk and positive integers r1, . . . , rk such that

∏k
1 χ

ri
i .L = 0. Recall that Lχ 6= 0

since (χ̃, χ) is a perfect pair. Thus χ = χi for a certain i; we can assume that χ = χ1. One
has χr11 +

∏k
2 χ

ri
i = Z(g0) since χ1, . . . , χk ∈ MaxZ(g0) are pair-wise distinct. Therefore

0 6= Lχ =
k∏

2

χrii .L

and it is a right submodule of L. Clearly

χLχ = {v ∈ Lχ| v.χ
r = 0, r >> 0}.

Using 8.4.1, one obtains χLχ 6= 0 as required.
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8.5. By 8.2.5, to prove the existence of a perfect mate for a strongly typical g-central
character, one can choose any triangular decomposition. Below we describe, for each
basic classical Lie superalgebra of type II, a triangular decomposition we choose for the
proof. We use notation of Kac— see [K1], 2.5.4 for all cases except D(1, 2, α) where we
use δ, ǫ1, ǫ2 instead ǫ1, ǫ2, ǫ3. The chosen triangular decomposition always corresponds to
the first “simplest system of simple roots” in [K1].

B(m,n) : g0 = so(2m+ 1) × sp(2n)
π = {δ1 − δ2, . . . , δn − ǫ1, ǫ1 − ǫ2, . . . , ǫm−1 − ǫm, ǫm},
∆+

0 = {δi ± δj ; 2δi}1≤i<j≤n ∪ {ǫi ± ǫj , ; ǫi}1≤i<j≤m,
∆+

1 = {δi; δi ± ǫj}1≤i≤n,1≤j≤m,
ρ1 = (m+ 1

2
)(δ1 + δ2 + . . .+ δn)

where {δ1 − δ2, . . . , 2δn} is a system of simple roots of sp(2n) and {ǫ1 − ǫ2, . . . , ǫm−1 −
ǫm, ǫm} is a system of simple roots of so(2m+ 1).

D(m,n) : g0 = so(2m) × sp(2n)
π = {δ1 − δ2, . . . , δn − ǫ1, ǫ1 − ǫ2, . . . , ǫm−1 − ǫm, ǫm−1 + ǫm},
∆+

0 = {δi ± δj , 2δi}1≤i<j≤n ∪ {ǫi ± ǫj}1≤i<j≤m,
∆+

1 = {δi ± ǫj}1≤i≤n,1≤j≤m,
ρ1 = m(δ1 + δ2 + . . .+ δn)

where {δ1 − δ2, . . . , 2δn} is a system of simple roots of sp(2n) and {ǫ1 − ǫ2, . . . , ǫm−1 −
ǫm, ǫm−1 + ǫm} is a system of simple roots of so(2m).

D(2, 1, α) : g0 = sl(2) × sl(2) × sl(2),
π = {δ1 + ǫ1 + ǫ2,−2ǫ1,−2ǫ2},
∆+

0 = {2δ1;−2ǫ1,−2ǫ2},
∆+

1 = {δ1 ± ǫ1 ± ǫ2},
ρ1 = 2δ1.

F (4) : g0 = sl(2) × so(7),
π = {1

2
(ǫ1 + ǫ2 + ǫ3 + δ1),−ǫ1, ǫ1 − ǫ2, ǫ2 − ǫ3},

∆+
0 = {δ1} ∪ {−ǫi, 1 ≤ i ≤ 3;±ǫi − ǫj , 1 ≤ i < j ≤ 3},

∆+
1 = {1

2
(δ1 ± ǫ1 ± ǫ2 ± ǫ3)},

ρ1 = 2δ1

where δ1 is a simple root of sl(2) and {−ǫ1, ǫ1 − ǫ2, ǫ2 − ǫ3} is a system of simple roots of
so(7).
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G(3) : g0 = sl(2) ×G2,
π = {δ1 + ǫ1, ǫ2, ǫ3 − ǫ2},
∆+

0 = {2δ1} ∪ {ǫ2, ǫ3,−ǫ1, ǫ3 − ǫ2, ǫ3 − ǫ1, ǫ2 − ǫ1},
∆+

1 = {δ1; δ1 ± ǫi, i = 1, 2, 3},
ρ1 = 7

2
δ1

where ǫ1 + ǫ2 + ǫ3 = 0, {ǫ2, ǫ3 − ǫ2} is a system of simple roots of G(2) and 2δ1 is a simple
root of sl(2).

The restriction of the non-degenerate invariant bilinear form (−,−) on g0 is a non-
degenerate invariant bilinear form. Thus

(δi, δi′) = (δi, ǫj) = 0 ∀i 6= i′

and

(ǫj , ǫj′) = 0 ∀j 6= j′

if g is not of the type G(3).

Till the end of this section g will denote one (unless otherwise specified, an arbitrary one)
of the basic classical Lie superalgebras of type II with the fixed triangular decomposition
described above.

8.5.1. More notation. For all above root systems denote by n the number of δ’s and by
m the number of ǫ’s (that is n = 1 for D(1, 2, α), F (4), G(3) and m = 2 for D(1, 2, α),
m = 3 for F (4), G(3)). Remark that for all above systems

ρ1 = p
n∑

i=1

δi

for a certain scalar p ∈ 1
2
N+.

Denote by W1 (resp., W2) the subgroup of W which acts on {δi}
n
i=1 (resp., on {ǫj}

m
j=1).

Then W = W1 ×W2. Remark that W1 is always the group of signed permutations of
{δi}

n
i=1: for B(m,n) and D(m,n) it is the Weyl group corresponding to sp(2n) and for

D(1, 2, α), F (4), G(3) it is the Weyl group corresponding to sl(2).

For µ ∈ h∗ write

µ =
n∑

i=1

kiδi +
m∑

j=1

ljǫj

and set µδi := ki, µǫj := lj.

Say that χ̃ is generic if there exists λ ∈W (χ̃) such that (λ+ ρ)δi 6= 0 for i = 1, . . . , n.
Remark that T 2 6∈ χ̃ implies that χ̃ is generic if δ1 ∈ ∆1 that is in the cases B(m,n) and
G(3).

Define a lexicographic order on C by setting c1 > c2 if Re c1 > Re c2 or Re c1 = Re c2
and Im c1 > Im c2.
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One can easily sees that for any γ ∈ Γ and i = 1, . . . , n one has 0 ≤ |γ|σi
≤ 2p and,

moreover, γ = ∅ iff |γ|σ1
= . . . = |γ|σn

= 0. We will use many times the following easy
lemma.

8.5.2. Lemma. Let d; a1, . . . , as; r1, . . . , rs be complex numbers such that d, a1, . . . , as >
0 and 0 ≤ r1, . . . , rs ≤ 2d. Suppose there exists a signed permutation σ which maps
(a1 + d, . . . , as + d) to (a1 + d − r1, . . . , as + d − rs). Then σ is a usual (non-signed)
permutation and r1 = . . . = rs = 0.

Proof. The permutation σ is non-signed because ai + aj > 0 ≥ −2d+ rj and so ai + d 6=
−(aj + d− rj) for any indexes i, j. Since σ is a usual permutation,

s∑

i

(ai + d) =
s∑

1

(ai + d− ri)

that is
∑
ri = 0. The inequalities r1, . . . , rs ≥ 0 imply the assertion.

8.6. Generic case. Fix a generic central character χ̃ . Since W1 acts by signed permu-
tation on {δi}

n
i=1, there exists λ ∈ W (χ̃) such that (λ+ ρ)δi > 0 for all i = 1, . . . , n. Fix

such a λ and let us show that the g0-character of M(λ) is a perfect mate for χ̃.

To verify that the g0-central character of M(λ) is a mate for χ̃, recall Lemma 8.3.4 (i).
Suppose that

(λ+ ρ0) = w(λ+ ρ0 − |γ|)

for some γ ∈ Γ, w ∈W . Write

λ+ ρ =
n∑

1

kiδi +
m∑

1

ljǫj , |γ| =
n∑

1

siδi +
m∑

1

rjǫj.

Recall that ki > 0 and 0 ≤ si ≤ 2p for i = 1, . . . , n. One has

λ+ ρ0 = λ+ ρ+ ρ1 =
∑

(ki + p)δi +
∑

ljǫj

and

λ+ ρ0 − |γ| =
∑

(ki + p− si)δi +
∑

(lj − rj)ǫj .

Write w = w1w2 where w1 ∈W1, w2 ∈W2. Then
∑

(ki + p)δi = w1

(∑
(ki + p− si)δi

)

By Lemma 8.5.2, this implies s1 = . . . = sn = 0 and thus γ = ∅. Hence the g0-central
character of M(λ) is a mate for χ̃.

One has

StabW (λ+ρ0) = StabW
(∑

(ki+p)δi+
∑

ljǫj
)

= StabW
(∑

kiδi+
∑

ljǫj
)

= StabW (λ+ρ)

since p; k1, . . . , kn > 0. Using Lemma 8.3.4 (ii), one concludes that the g0-central character
of M(λ) is a perfect mate for χ̃.
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8.7. The case when χ̃ is not generic. Suppose that g is of the type D(m,n), D(1, 2, α)
or F (4) and χ̃ is not generic.

8.7.1. Case D(m,n). Since χ̃ is not generic, for any λ ∈W (χ̃) there exists i ∈ {1, . . . , n}
such that (λ+ρ)δi = 0. On the other hand, T 2 6∈ χ̃ implies (λ+ρ, β) 6= 0 for any β ∈ ∆1.
In particular, (λ + ρ, δi + ǫj) 6= 0 and so (λ + ρ)ǫj 6= 0 for j = 1, . . . , m. Taking into
account that W1 acts on {δi}

n
1 by signed permutations and W2 acts on {ǫj}

m
1 by signed

permutations changing even number of signs, one concludes the existence of λ ∈ W (χ̃)
such that

λ+ ρ =
n∑

i=1

kiδi +
m∑

j=1

ljǫj

where
k1 ≥ k2 ≥ . . . ≥ kn−d > kn−d+1 = kn−d+2 = . . . = kn = 0,
l1 ≥ l2 ≥ . . . ≥ lm−1 > 0, lm−1 ≥ lm, lm−1 ≥ −lm, lm 6= 0.

Fix λ as above and set

γd := {δi − ǫj : n− d < i ≤ n, 1 ≤ j ≤ m− 1} ∪ {δi − sn(lm)ǫm : n− d < i ≤ n}

where sn(lm) := 1 if lm > 0 and sn(lm) := 1 if lm < 0.

Let us show that the g0-central character of M(λ − |γd|) is a perfect mate for χ̃. To
verify that it is a mate suppose that (λ−γd+ρ0) = w(λ−γ+ρ0) for some γ ∈ Γ, w ∈W .
Write

|γ| =
n∑

1

siδi +
m∑

1

rjǫj .

Observe that si ∈ {0, 1, . . . , 2m} for i = 1, . . . , n. One has

λ− |γ|d + ρ0 = λ+ ρ+ (ρ1 − |γd|)
=

∑n−d
1 (ki +m)δi +

∑m−1
1 (lj + d)ǫj + (lm + sn(lm)d)ǫm

(8)

and

λ+ ρ0 − |γ| =
n−d∑

1

(ki +m− si)δi +
n∑

n−d+1

(m− si)δi +
m∑

1

(lj − rj)ǫj .

Write w = w1w2 where w1 ∈W1, w2 ∈W2. Then

n−d∑

1

(ki +m)δi = w1

(n−d∑

1

(ki +m− si)δi +
n∑

n−d+1

(m− si)δi
)
.

For any indexes i, i′ such that 1 ≤ i ≤ n− d < i′ ≤ n one has ki +m > m ≥ ±(m− si′).
Therefore w1 = w′

1w
′′
1 where w′

1 (resp., w′′
1) is a signed permutation of {δi}

n−d
1 (resp., of

{δi}
n
n−d+1). Then

∑n−d
1 (ki +m)δi = w′

1

(∑n−d
1 (ki +m− si)δi

)
and so s1 = . . . = sn−d = 0

by Lemma 8.5.2. On the other hand, 0 = w′′
1

(∑n
n−d+1(m− si)δi

)
gives sn−d = . . . = sn =

m.

It is easy to see that s1 = . . . = sn−d = 0 implies rj ∈ {0,±1, . . . ,±d} for all j =
1, . . . , m.
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Suppose that lm > 0. Then

w2

( m∑

1

(lj − rj)ǫj
)

=
m∑

1

(lj + d)ǫj

and, by Lemma 8.5.2, rj = −d for all j = 1, . . . , m. Thus |γ| = |γd|. It is easy to check
that this implies the required equality γ = γd.

Suppose that lm < 0. Then

w2

( m∑

1

(lj − rj)ǫj
)

=
m−1∑

1

(lj + d)ǫj + (lm − d)ǫm

where w2 is a signed permutation of {ǫj}
m
1 . Then

w′
2

(m−1∑

1

(lj − rj)ǫj + (rm − lm)ǫm
)

=
m−1∑

1

(lj + d)ǫj + (−lm + d)ǫm

for another signed permutation w′
2 of {ǫj}

m
1 . Since l1, . . . , lm−1,−lm > 0, Lemma 8.5.2

gives r1 = . . . = rm−1 = d and rm = −d. Thus again |γ| = |γd| and so γ = γd. Hence the
g0-central character of M(λ− |γ|d) is a mate for χ̃.

One has

StabW (λ+ ρ) = StabW (
(∑n−d

1 kiδi +
∑m

1 ljǫj
)

= StabW (
(∑n−d

1 (ki +m)δi +
∑m−1

1 (lj + d)ǫj + (lm + sn(lm)d)ǫm
)

= StabW (λ− |γd| + ρ0)

since m; d; k1, . . . , kn; l1, . . . , lm−1 > sn(lm)lm > 0. Using Lemma 8.3.4 (ii), one concludes
that the g0-central character of M(λ− |γ|d) is a perfect mate for χ̃.

8.7.2. Case D(2, 1, α). Set δ := δ1. Since χ̃ is not generic, (λ+ρ)δ = 0 for any λ ∈W (χ̃).
On the other hand, T 2 6∈ χ̃ implies (λ+ρ, β) 6= 0 for any β ∈ ∆1. Since ∆+

1 = {δ±ǫ1±ǫ2},
one obtains (λ + ρ)ǫj 6= 0 for j = 1 or j = 2. Recall that W ∼= Z2 × Z2 × Z2 where the
copies of Z2 act by sign on δ; ǫ1; ǫ2 respectively. Therefore there exists λ ∈ W (χ̃) such
that

λ+ ρ = l1ǫ1 + l2ǫ2

where l1, l2 ≥ 0 and at least one of l1, l2 is non-zero. Fix such a λ. Both cases l1 > 0 and
l2 > 0 are similar so we can assume l1 6= 0. Set

γd := {δ − ǫ1 − ǫ2; δ − ǫ1 + ǫ2}.

Let us show that the g0-central character of M(λ− |γd|) is a perfect mate for χ̃.

One has ρ1 − |γd| = 2ǫ1 and

λ− |γd| + ρ0 = λ+ ρ+ ρ1 − |γd| = (l1 + 2)ǫ1 + l2ǫ2.

Assume that (λ−|γd|+ρ0) ∈W (λ−|γ|+ρ0) for some γ ∈ Γ. Then (λ−|γ|+ρ0)ǫ1 = ±(l1+2)
that is |γ|ǫ1 = l1±(l1+2). Taking into account that l1 > 0 and that |γ|ǫ1 ∈ {0,±1,±2}, one
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concludes |γ|ǫ1 = −2. This implies γ = γd. Hence the g0-central character of M(λ− |γd|)
is a mate for χ̃. Since l1 > 0

StabW (λ+ ρ) = StabW (l1ǫ1 + l2ǫ2) = StabW ((l1 + 2)ǫ1 + l2ǫ2) = StabW (λ− |γd| + ρ0).

By Lemma 8.3.4, the g0-central character of M(λ− |γd|) is a perfect mate for χ̃.

8.7.3. Case F (4). Set δ := δ1. Since χ̃ is not generic, (λ + ρ)δ = 0 for any λ ∈ W (χ̃).
On the other hand, T 2 6∈ χ̃ implies (λ + ρ, β) 6= 0 for any β ∈ ∆1. Since ∆+

1 = {1
2
(δ ±

ǫ1 ± ǫ2 ± ǫ3}, one obtains (λ+ ρ)ǫj 6= 0 for some j ∈ {1, 2, 3}. Recall that W = W1 ×W2

where W1
∼= Z2 acts by sign on δ and W2 is the group of signed permutations of {ǫj}

3
1.

Therefore there exists λ ∈W (χ̃) such that

λ+ ρ = l1ǫ1 + l2ǫ2 + l3ǫ3

where
l1 ≥ l2 ≥ l3 ≥ 0 & l1 6= 0.

Fix such a λ. Set

γd := {1
2
(δ − ǫ1 ± ǫ2 ± ǫ3)} if l1 > l2,

γd := {1
2
(δ − ǫ1 − ǫ2 − ǫ3);

1
2
(δ + ǫ1 − ǫ2 − ǫ3);

1
2
(δ − ǫ1 + ǫ2 − ǫ3);

1
2
(δ − ǫ1 − ǫ2 + ǫ3)} if l1 = l2.

We show below that the g0-central character of M(λ− |γd|) is a perfect mate for χ̃.

Indeed, assume that (λ − |γd| + ρ0) = w(λ − |γ| + ρ0) for some γ ∈ Γ, w ∈ W . Write
|γ| = sδ +

∑3
1 rjǫj and w = w1w2 where w1 ∈W1, w2 ∈W2. One has

λ− |γ| + ρ0 = (2 − s)δ +
3∑

1

(lj − rj)ǫj .

Suppose l1 > l2. Then

|γd| = 2δ − 2ǫ1 that is λ− |γd| + ρ0 = (l1 + 2)ǫ1 + l2ǫ2 + l3ǫ3.

The equality (λ− |γd| + ρ0) = w(λ− |γ| + ρ0) implies s = 2. Thus γ contains 4 elements
and so r1, r2, r3 ∈ {0;±1;±2}. Then l1 + 2 > lj − rj for j = 1, 2 and l1 + 2 > −(lj − rj)
for j = 1, 2, 3. Thus w2(ǫ1) = ǫ1 and so r1 = −2. Since γ contains 4 elements, this implies
γ = γd. Hence the g0-central character of M(λ− |γd|) is a mate for χ̃.

Suppose l1 = l2. Then

|γd| = 2δ − ǫ1 − ǫ2 − ǫ3 that is λ− |γd| + ρ0 =
3∑

1

(lj + 1)ǫj .

Again γ contains 4 elements and so r1, r2, r3 ∈ {0;±1;±2}. Assume that w2 is not a
usual permutation that is w2(ǫj) = −ǫj′ for some j, j′. Then lj′ + 1 = −(lj − rj) that is
rj−1 = lj′ + lj > 0 because l1 = l2 > 0 and l3 ≥ 0. Then rj = 2 and, consequently, rj′′ = 0
for all j′′ 6= j. In particular, w2 can change a sign of at most one of ǫ1, ǫ2, ǫ3. Therefore
l1 + 1 = l2 + 1 = lj′′ − rj′′ for some j′′ 6= j. Then l1 + 1 = lj′ that contradicts to the
inequality l1 ≥ l3. Thus w2 is a usual permutation. This implies

∑3
1(lj + 1) =

∑3
1(lj − rj)
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that is r1 + r2 + r3 = −3. Taking into account that rj ∈ {0;±1;±2} and that the equality
of the form rj = ±2 implies rj′ = 0 for j′ 6= j, one concludes r1 = r2 = r3 = −1 that
is |γ| = |γd|. It is easy to check that this gives the required equality γ = γd. Hence the
g0-central character of M(λ− |γd|) is a mate for χ̃.

If l1 > l2 ≤ l3 ≤ 0 then

StabW (λ+ρ) = StabW (l1ǫ1+l2ǫ2+l3ǫ3) = StabW ((l1+2)ǫ1+l2ǫ2+l3ǫ3) = StabW (λ−|γd|+ρ0).

If l1 = l2 > 0 then l3 6= 0 since (λ+ ρ, δ + ǫ1 − ǫ2 + ǫ3) 6= 0. Therefore

StabW (λ+ ρ) = StabW (l1ǫ1 + l2ǫ2 + l3ǫ3)
= StabW ((l1 + 1)ǫ1 + (l2 + 1)ǫ2 + (l3 + 1)ǫ3) = StabW (λ− |γd| + ρ0).

Hence the g0-central character of M(λ− |γd|) is a perfect mate for χ̃.

9. Annihilation Theorem

This section is devoted to the proof of Theorem 9.5.

9.1. Lemma. Let M̃ be a strongly typical Verma module and v ∈ M̃ be a prim-
itive vector. Then Ũv is a Verma module. In particular, M̃ contains a simple Verma
submodule.

Proof. Set χ̃ := AnnZ(g) M̃ . Since M̃ is strongly typical, χ̃ is also strongly typical and so

for χ̃ there exists a perfect mate χ ∈ MaxZ(g0)— see Section 8. Let Ñ be a submodule

of M̃ generated by a primitive vector. Then Ñ is a quotient of a Verma module M̃ ′ and
χ̃M̃ ′ = 0. By 8.2.4, M ′ := M̃ ′

χ is a Verma g0-module. Since χ is a perfect mate for χ̃,

the g0-module Ñχ is a non-zero quotient of M ′. Taking into account that Ñχ ⊂ M̃ is

torsion-free over U(n−
0 ), one concludes Ñχ = M ′. Thus (M̃ ′/Ñ)χ = 0 and so Ñ = M̃ ′ is a

Verma module.

Recall that M̃ has a finite length and so it contains a simple submodule Ñ . A highest
weight vector of Ñ is primitive. Hence Ñ is a simple Verma module.

9.2. Lemma. Let M̃ be a strongly typical Verma module and M̃ ′ be a simple submodule
of M̃ . Then the natural maps F (M̃, M̃) → F (M̃ ′, M̃) and F (M̃ ′, M̃ ′)

∼
−→ F (M̃ ′, M̃) are

g-bimodule isomorphisms.

Proof. Denote by ι the natural map F (M̃, M̃) → F (M̃ ′, M̃) and by ι′ the natural map

F (M̃ ′, M̃ ′) → F (M̃ ′, M̃) (both maps are induced by the embedding M̃ ′ to M̃). Both
maps are g-bimodule homomorphisms.

To show that ι′ is a bijection and that ι is a monomorphism, we use the following
reasoning which is essentially the same as in [J1].
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By [J1], F (N1, N2) = 0 if the GK-dimension of any simple quotient of N1 is greater
than GK-dimension of N2 or if the GK-dimension of N1 is less than GK-dimension of any
simple submodule of N2. Moreover, the GK-dimension of a Verma module is equal to the
GK-dimension of the algebra U(n−).

Let v be a highest weight vector of M̃ and u ∈ U(n−) be such that uv is a highest

weight vector of M̃ ′. Since M̃ ′ is a Verma module, u is a non-zero divisor in U(n−). This
implies

GK dim M̃ ′ = GK dim M̃ > GK dim M̃/M̃ ′.

The only simple quotient of M̃ ′ is M̃ ′ itself; thus the inequality GK dim M̃ ′ > GK dim M̃/M̃ ′

implies F (M̃ ′, M̃/M̃ ′) = 0. Therefore ι′ is an epimorphism. Obviously, ι′ is a monomor-

phism. Hence ι′ is bijective. By Lemma 9.1, any simple submodule of M̃ is a Verma
module. Thus the GK-dimension of M̃/M̃ ′ is less than the GK-dimension of any simple

submodule of M̃ and so F (M̃/M̃ ′, M̃) = 0. Consequently, ι is a monomorphism.

It remains to verify the surjectivity of ι. Since ι′ is bijective, it is enough to check the
surjectivity of the composed map ι′′ := (ι′)−1 ◦ ι : F (M̃, M̃) → F (M̃ ′, M̃ ′). Denote by
N the cokernel of the map ι′′. This is a g-bimodule and its left and right annihilators
contain χ̃ := AnnZ(g) M̃ . Let χ ∈ MaxZ(g0) be a perfect mate for χ̃. Using notation
of 8.4.2, one has

χF (M̃, M̃)χ
∼

−→ F (M̃χ, M̃χ), χF (M̃ ′, M̃ ′)χ
∼

−→ F (M̃ ′
χ, M̃

′
χ).

Since χ is a mate for χ̃, both M := M̃χ and M ′ := M̃ ′
χ are Verma g0-modules. For any

V ∈ Irr0 one has Homg0
(V, F (M,M)) == dimV |0 = Homg0

(V, F (M ′,M ′))— see [J1], 6.4.
Taking into account the injectivity of ι′′, one concludes that ι′′(F (M,M)) = F (M ′,M ′)
and so χNχ = 0. Thus N = 0 by 8.4.2. Hence ι, ι′ are isomorphisms. The lemma is
proven.

Using Lemma 9.1 one obtains the

9.2.1. Corollary. Let M̃, M̃ ′ be strongly typical Verma modules and M̃ ′ be a submodule
of M̃ . Then the g-bimodules F (M̃, M̃) and F (M̃ ′, M̃ ′) are isomorphic.

9.3. Proposition. If M̃ is a strongly typical projective (in Õ) Verma module then

F (M̃, M̃) ∼= ⊕
Ṽ ∈Irr

E(Ṽ )⊕dim Ṽ |0 .

Proof. Step 1. Let us show that for any g0-modules N1, N2 the following ad g-modules

L := F (Indg
g0
N1, Indg

g0
N2), L′ := Coindg

g0
(F (N1, N2) ⊗ Λg1)

are isomorphic.
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Indeed, using the Frobenius reciprocity, one obtains

Homg0
(V, F (Indg

g0
N1, Indg

g0
N2)) ∼= Homg0

(V, F (N1, N2) ⊗ Λg1 ⊗ Λg1)
∼= Homg0

(V,Coindg
g0

(F (N1, N2) ⊗ Λg1))

for any V ∈ Irr0. Hence L ∼= L′ as ad g0-modules. Note that dim Homg0
(V, L) < ∞ for

all V ∈ Irr0.

On the other hand, for any Ṽ ∈ Irr one has

Homg(Ṽ , F (Indg
g0
N1, Indg

g0
N2)) ∼= Homg(Indg

g0
N1, Indg

g0
N2 ⊗ Ṽ ∗)

∼= Homg0
(N1, Indg

g0
N2 ⊗ Ṽ ∗) ∼= Homg0

(N1, N2 ⊗ Λg1 ⊗ Ṽ ∗)
∼= Homg0

(Ṽ , F (N1, N2) ⊗ Λg1)
∼= Homg(Ṽ ,Coindg

g0
(F (N1, N2) ⊗ Λg1)).

Hence SocL ∼= SocL′. Since L′ is injective in F in, it contains a submodule isomorphic
to L. Taking into account the ad g0-isomorphism L ∼= L′, one concludes that L ∼= L′ as
ad g-modules.

Step 2. Let χ be a perfect mate of AnnZ(g) M̃ . Then M := M̃χ is a Verma g0-module

and M̃ = ŨM by Corollary 8.3.2. Thus M̃ is a quotient of Indg
g0
M . Since M̃ is projective,

it is a direct summand of Indg
g0
M Then the ad g-module F (M̃, M̃) is a direct summand of

the ad g-module F (Indg
g0
M, Indg

g0
M). The last is isomorphic to Coindg

g0
(F (M,M)⊗Λg1)

and so is injective in F in. Hence the ad g-module F (M̃, M̃) is injective in F in.

By Lemma 9.1, M̃ contains a simple Verma submodule M̃ ′. Combining Corollary 9.2.1
and 11.1.5 one obtains

SocF (M̃, M̃) ∼= SocF (M̃ ′, M̃ ′) ∼= ⊕
Ṽ ∈Irr

Ṽ ⊕ dim Ṽ |0 .

Now the injectivity of F (M̃, M̃) implies the required assertion.

9.4. Proposition. If M̃ is a strongly typical Verma module then the natural map
Ũ → F (M̃, M̃) is surjective.

Proof. Denote by N the cokernel of the natural map f : Ũ → F (M̃, M̃). This is a g-

bimodule and its left and right annihilators contain χ̃ := AnnZ(g) M̃ . Let χ ∈ MaxZ(g0)

be a perfect mate for χ̃. Using notation of 8.4.2 one has χF (M̃, M̃)χ
∼

−→ F (M̃χ, M̃χ).

Since χ is a mate for χ̃, M := M̃χ is a Verma g0-module. As a g0-module, M̃ has a finite
length and so

AnnZ(g0) M̃ = χ
k∏

i=1

χrii

where {χ, χ1, . . . , χk} = suppZ(g0) M̃ and r1, . . . , rk ∈ N+. Any element of
∏k
i=1 χ

ri
i

annihilates
∑k
i=1 M̃χi

and acts by scalar on M̃χ. Taking into account that the natural
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map U → F (M,M) is surjective (see [J1], 6.4), one concludes that

f(U
k∏

i=1

χrii ) =χF (M̃, M̃)χ.

and thus χNχ = 0. By 8.4.2, N = 0 as required.

9.5. Theorem. For a strongly typical Verma g-module M̃

Ann M̃ = Ũ AnnZ(g) M̃.

Proof. Set χ̃ := AnnZ(g) M̃ . Let M̃ ′′ be a projective (in Õ) Verma module such that

χ̃M̃ ′′ = 0 and let M̃ ′ be a simple submodule of M̃ ′′ (by 9.1, M̃ ′ is a Verma module).
Combining 9.2.1 and 9.3, one obtains

F (M̃ ′, M̃ ′) ∼= ⊕
Ṽ ∈Irr

E(Ṽ )⊕ dim Ṽ |0.

Summarizing 5.1,5.2 and 9.4, one concludes that Ann M̃ ′ = Ũ χ̃ and that the natural map
f ′ : Ũ/(Ũ χ̃) → F (M̃ ′, M̃ ′) is bijective.

Denote by f the natural map Ũ/(Ũ χ̃) → F (M̃, M̃) and by p the composition map

f ◦ (f ′)−1 : F (M̃ ′, M̃ ′) → F (M̃, M̃). Obviously p is a Ũ-bimodule map. By 9.4, p is
surjective. Let us show that p is bijective.

Let χ be a perfect mate for χ̃; set M := M̃χ,M
′ := M̃ ′

χ. Using notation of 8.4.2, one
has

χF (M̃, M̃)χ = F (M,M), χF (M̃ ′, M̃ ′)χ = F (M ′,M ′)

and so χF (M̃, M̃)χ,χ F (M̃ ′, M̃ ′)χ are isomorphic ad g0-modules. It is easy to see that

χ(Im p)χ = p(χF (M̃ ′, M̃ ′)χ).

Therefore p(χF (M̃ ′, M̃ ′)χ) =χ F (M̃, M̃)χ since p is surjective. Taking into account that
the multiplicity of each simple g0-module V in F (M,M) is finite, one concludes that the

restriction of p to χF (M̃ ′, M̃ ′)χ is a monomorphism. Thus χ(ker p)χ = 0 and ker p = 0

by 8.4.2. This means that p is bijective and so f : Ũ/(Ũ χ̃) → F (M̃, M̃) is bijective as
well. The assertion follows.

9.6. Corollary. For a strongly typical central character χ̃

Ũ/(Ũ χ̃) ∼= ⊕
Ṽ ∈Irr

E(Ṽ )⊕dim Ṽ |0.

10. Remark about Verma modules.

In this section we study the g0-structure of Verma g-modules.
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10.1. Retain notation of Section 8. Take strongly typical χ̃ ∈ MaxZ(g) and λ ∈W (χ̃).

Recall that as an g0-module M̃(λ) has a finite filtration with the factors {M(λ−|γ|), γ ∈
Γ}. Therefore

Ũ χ̃ ∩ Z(g0) = Ann M̃(λ) ∩ Z(g0) =
∏

i

χrii (9)

where the χi are the pairwise distinct elements of the multiset {AnnZ(g0)M(λ−|γ|), γ ∈ Γ}

and the ri are positive integers. Thus for any Ũχ̃-module Ñ

Ñ = ⊕iÑχi
, χrii Ñχi

= 0.

Suppose that M̃(λ) = ⊕γ∈ΓM(λ − γ) and so Z(g0) acts semisimply on M̃(λ). If,
in addition, λ is strongly typical then (9) implies that Z(g0) acts semisimply on any

Ũχ̃-module for χ̃ = AnnZ(g) M̃(λ).

10.2. Proposition. For M̃(λ) being a simple Verma module the following conditions
are equivalent

(i) M̃ = ⊕γ∈ΓM(λ− |γ|)
(ii) ∀γ, γ′ ∈ Γ (|γ| − |γ′|) ∈ Z∆0 \ {0} =⇒ (λ− |γ| + ρ0) 6∈W (λ− |γ′| + ρ0)
(iii) M(λ− |γ|) is simple for any γ ∈ Γ.

Proof. The implication (ii) =⇒ (i) follows from the fact that any exact sequence 0 →
M(µ) → N →M(µ) → 0 in O splits (see, for instance, 2.5.3).

Let us verify the implication (i) =⇒ (iii). Recall 2.5.6. Since M̃(λ) is simple it is

isomorphic to M̃(λ)# = ⊕γ∈ΓM(λ− |γ|)#. The module M̃(λ) is U(n−
0 )-torsion-free; thus

all M(λ− |γ|)# are also U(n−
0 )-torsion-free. This forces (iii).

The implication (iii) =⇒ (ii) follows from the fact that if M(µ),M(µ′) are simple
Verma g0-modules with the same g0-central character and (µ − µ′) ∈ Z∆0 then µ = µ′.
This fact can be deduced from [J2], A.1.14 and A.1.1 (vii).

Hence the conditions (i),(ii) and (iii) are equivalent provided that M̃(λ) is simple.

10.3. Corollary. If M̃(λ) contains a simple typical Verma submodule then the condi-
tions (i) and (ii) are equivalent.

Proof. The implication (ii) =⇒ (i) follows from the same argument as in Proposition 10.2.

To verify the implication (i) =⇒ (ii), assume that M̃(λ) = ⊕Mi is a direct sum of Verma
g0-modules and that

λ− |γ′| + ρ0 = w(λ− |γ′′| + ρ0)
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for some w ∈ W and γ′, γ′′ ∈ Γ satisfying (|γ′′| − |γ′|) ∈ Z∆0 \ {0}. Take w′ ∈ W such

that M̃(w′.λ) is a simple submodule of M̃(λ). In the notation of 8.2.2 one has

w′.λ− |w′
∗γ

′| + ρ0 = w′(λ− |γ′| + ρ0) = w′w(λ− |γ′′| + ρ0)
= w′w(w′)−1(w′.λ− |w′

∗γ
′′| + ρ0)

by (7). Furthermore |w′
∗γ

′| − |w′
∗γ

′′| = w(|γ′′| − |γ′|) ∈ Z∆0 \ {0}. Thus the condition

(ii) does not hold for a simple Verma module M̃(w′.λ). Therefore M̃(w′.λ) has a g0-
submodule N which is isomorphic to a non-splitting extension of M(µ) by M(µ′) for

some µ, µ′ ∈ {λ − |γ| : γ ∈ Γ}. Since M̃(w′.λ) is a submodule of M̃(λ), N is a g0-

submodule of M̃(λ). Since N is indecomposable, it is isomorphic to a submodule of a
Verma module Mi. However the Gelfand-Kirillov dimension of any proper quotient of a
Verma g0-module is strictly less than the Gelfand-Kirillov dimension of M(µ′)—see [J1].
This gives the required contradiction.

Remark. Recall that a strongly typical Verma module contains a simple strongly typical
Verma submodule.

10.4. Denote by Γ0 (resp., Γ1) the set of subsets of ∆+
1 containing an even (resp., an

odd) number of elements. Take an arbitrary λ ∈ h∗ and fix a Z2-grading on a Verma

module M̃(λ) in such a way that a highest weight vector becomes even. As a g0-module,

M̃ = M̃0 ⊕ M̃1. Let us show that each M̃(λ)j has a finite filtration with factors {M(λ−
γ)|γ ∈ Γj} (j = 0, 1).

Set
Q0(π) := {

∑
α∈∆ kαα| kα ∈ Z,

∑
α∈∆1

kα is even},
Q1(π) := {

∑
α∈∆ kαα| kα ∈ Z,

∑
α∈∆1

kα is odd}.

Note that both Q0(π), Q1(π) are W -stable. We claim that Q0(π) ∩ Q1(π) = ∅ (for g =

psl(n, n) we substitute h by ĥ—see 6.1.4). Indeed, if g is of the type I then h ∩ Z(g0)
contains an element z such that z(α) = 1 for any α ∈ ∆+

1 . Therefore
∑

α∈∆

kαα(z) =
∑

α∈∆+

1

(kα − k−α)

and so µ(z) is an even (resp., an odd) integer for µ ∈ Q0(π) (resp., µ ∈ Q1(π)). Let g

be of the type II. Retain notation of 8.5. One can immediately sees that for g 6= F (4)
the sum

∑n
1 µδi is an even (resp., an odd) integer for µ ∈ Q0(π) (resp., µ ∈ Q1(π)). For

the remaining case g = F (4), µδ1 is integer if µ ∈ Q0(π) and belongs to the set Z + 1
2

if
µ ∈ Q1(π). This implies our claim.

The weights of M̃(λ)0 (resp., M̃(λ)1) belong to the set (λ−Q0(π)) (resp., (λ−Q1(π))).
The weights of M(λ − |γ|) belong to (λ − Qj(π)) iff γ ∈ Γj (j = 0, 1). This proves that

M̃(λ)j has a finite filtration with the factors {M(λ− γ)|γ ∈ Γj} (j = 0, 1).

Using arguments as above, it is easy to show that for g of the type II

Q0(π) = Z∆0
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and for g of the type I

Q0(π) ∩ {µ ∈ h∗| µ(z) = 0} = Z∆0.

This implies that the condition (ii) of Proposition 10.2 is equivalent to the condition

∀γ′, γ′′ ∈ Γj (λ− |γ′| + ρ0) ∈W (λ− |γ′′| + ρ0) =⇒ |γ′| = |γ′′| (10)

for j = 0, 1.

10.5. Remark. The case g = osp(1, 2l) was treated in [M1], 3.7 and [GL2], 7.2.

11. Appendix

This section contains some lemmas used in the main text. We also give an alternative
proof of the fact that the Z(g)-rank of Homg(Ṽ , Ũ) is equal to dim Ṽ |0 for any Ṽ ∈ Irr.
This alternative proof does not use Separation Theorem 2.8.1.

11.1. In this subsection we prove some lemmas which were used in the main text.

11.1.1. Recall that a simple g0-module V (λ) is finite dimensional iff λ+ ρ0 > w(λ+ ρ0)
for any w ∈ W,w 6= id. In principle, the similar fact does not hold for simple finite
dimensional g-modules. For instance, there are triangular decompositions such that the
corresponding ρ is equal to 0 and so w.0 = 0 for all w ∈ W even though Ṽ (0) is one-
dimensional.

However, if Ṽ (λ) is finite dimensional and strongly typical then λ > w.λ for all w ∈
W,w 6= id. This can be checked in the following way. Fix a strongly typical weight ν such
that Ṽ (ν) is finite dimensional. Write the character formula (1) in the form

D′ ch Ṽ (ν) =
∑

w∈W

sn(w)ew.ν, where D′ := (ch M̃(0))−1. (11)

Combining the facts that StabW (ν+ρ) is generated by the reflections it contains and that

ch Ṽ (ν) 6= 0, one obtains w.ν = w′.ν iff w = w′. A strongly typical Verma module M̃(w.ν)

has a finite filtration with the factors of the form Ṽ (w′.ν) where w′.ν ≤ w.ν. Therefore

ch M̃(w.ν) =
∑
w′ aw,w′ ch Ṽ (w′.ν) where (aw,w′) form “an upper triangular matrix” that

is aw,w′ = 0 if w′.ν 6≤ w.ν and aw,w = 1. Consequently,

D′ ch Ṽ (w.ν) =
∑

w′

bw,w′ew
′.ν

where bw,w′ = 0 if w′.ν 6≤ w.ν and bw,w = 1. Comparing the last equality with (11), one
obtains w′.ν < ν for all w′ ∈W,w′ 6= id.
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11.1.2. Lemma. Assume that N1, N2 are finite dimensional h-diagonalizable g-modules
and all simple subquotients of N1⊗N2 are typical. Then N1⊗N2 is a completely reducible
module.

Proof. Since central characters separate non-isomorphic typical finite dimensional mod-
ules, it is enough to show that N1 ⊗ N2 does not contain non-trivial extensions Ṽ by Ṽ
for any typical finite dimensional module Ṽ . Let N be such an extension. Then the high-
est weight subspace of N is two dimensional and admits a basis {v1, v2} such that v1 is

primitive and v1 ∈ Ũv2. Then v1 ∈ U(h)v2 and so the action of h on N is not semisimple.
Hence N1 ⊗N2 does not contain submodule isomorphic to N . The assertion follows.

11.1.3. Lemma. For any simple finite dimensional module Ṽ and any µ ∈ h∗, the set
of λ ∈ h∗ such that Ṽ (λ) is finite dimensional and

dim Homg(Ṽ ,Hom(Ṽ (λ− µ), Ṽ (λ)) = dim Ṽ |µ

is Zariski dense in h∗.

Proof. Fix a simple finite dimensional module Ṽ . Let R be the subset of h∗ consisting
of the weights λ such that Ṽ (λ) is a typical finite dimensional module and the tensor

product Ṽ ∗ ⊗ Ṽ (λ) is the direct sum of typical simple modules. Let us show that R is
Zariski dense in h∗.

Indeed, take a finite dimensional g0-module V (λ). The induced module Indg
g0
V (λ)

has a simple submodule Ṽ (λ′) which is finite dimensional. The g0-module V (λ′) is a g0-

submodule of Ṽ (λ′) and so is a g0-submodule of Indg
g0
V (λ). As a g0-module Indg

g0
V (λ) ∼=

V (λ)⊗Λg1. For finite dimensional g0-modules L, V (µ), the inequality Homg0
(V (ν), V (µ)⊗

L) 6= 0 implies (ν − µ) ∈ Ω(L). Therefore (λ− λ′) ∈ Ω(Λg1). Thus for any λ ∈ h∗ such

that V (λ) is simple, there exists λ′ ∈ λ + Ω(Λg1) such that Ṽ (λ′) is simple. Taking into
account that the set of λ’s such that dimV (λ) <∞ is Zariski dense in h∗, one concludes

that the set of λ’s such that dim Ṽ (λ) <∞ is also Zariski dense in h∗.

The condition on weight to be atypical is polynomial (see 2.5.2) and so the set of

λ’s such that Ṽ (λ) is typical finite dimensional is also Zariski dense. A module Ṽ (λ) is a

submodule of Coindg
g0
V (λ) and so Ṽ ∗⊗ Ṽ (λ) is a submodule of Ṽ ∗⊗Coindg

g0
V (λ). Again

Homg0
(V (ν), Ṽ ∗⊗Coindg

g0
V (λ)) 6= 0 implies (ν−λ) ∈ Ω(Ṽ ∗⊗Λg1). Therefore if Ṽ ∗⊗Ṽ (λ)

has a subquotient isomorphic to Ṽ (ν), then (ν − λ) ∈ Ω(Ṽ ∗ ⊗Λg1). Using Lemma 11.1.2

and the fact that the set Ω(Ṽ ∗ ⊗Λg1) is finite, we conclude that R is Zariski dense in h∗.

Frobenius reciprocity gives

Homg

(
Ṽ ,Hom(Ṽ (λ− µ), Ṽ (λ))

)
∼= Homg

(
Ṽ (λ− µ), Ṽ ∗ ⊗ Ṽ (λ)

)
.
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Take λ ∈ R and denote by mν the multiplicity of Ṽ (ν) in the completely reducible

module Ṽ ∗ ⊗ Ṽ (λ). The character formula (1) gives

D ch(Ṽ ∗ ⊗ Ṽ (λ)) =
∑

w∈W

sn(w)ew.λ ch Ṽ ∗ =
∑

ν

mν

∑

w∈W

sn(w)ew.ν.

For typical finite dimensional modules Ṽ (ν), Ṽ (ν ′) the equality w.ν = w′.ν ′ implies ν = ν ′

and w = w′ (see 11.1.1). Therefore dim Homg

(
Ṽ (λ− µ), Ṽ (λ) ⊗ Ṽ ∗

)
= mλ−µ is equal to

the coefficient of the term eλ−µ in the expression
∑
w∈W sn(w)ew.λ ch Ṽ ∗. For “sufficiently

large” λ ∈ R this coefficient is equal to dim Ṽ ∗|−µ. More precisely, take λ ∈ R,w 6= id and
α ∈ π0 such that sαw < w. Then w−1α ∈ ∆−

0 and so (w(λ+ ρ), α) = (λ + ρ, w−1α) < 0
by 11.1.1. Then

(λ− µ− w.λ, α) = (λ+ ρ− µ, α) − (w(λ+ ρ), α) > (λ+ ρ− µ, α).

As a consequence, for any λ belonging to the set

R1 := {λ ∈ R| (λ, α) > (ξ + µ− ρ, α) ∀ξ ∈ Ω(Ṽ ∗), α ∈ π0}

the inclusion (λ−µ) ∈ (w.λ+Ω(Ṽ ∗)) implies w = id. Hence mλ−µ = dim Ṽ ∗|−µ = dim Ṽ |µ
for any λ ∈ R1.

For any λ ∈ R and α ∈ π0, the value (λ, α) belongs to N+, since g0-module V (λ) is
finite dimensional. Thus R1 is obtained from R by removing the points lying at finitely
many hyperplanes. Taking into account that R is Zariski dense in h∗, one concludes that
R1 is also Zariski dense. This completes the proof.

Remark. In Proposition 11.3.1 we prove a stronger assertion for the particular case
µ = 0.

11.1.4. Lemma. For all λ, ν ∈ h∗ and all simple finite dimensional Ṽ one has

dim Homg

(
Ṽ ,Hom(M̃(λ− µ), M̃(λ)#)

)
= dim Ṽ |µ

Proof. Frobenius reciprocity gives

Homg

(
Ṽ ,Hom(M̃(λ− µ), M̃(λ)#)

)
∼= Homg

(
M̃(λ− µ), M̃(λ)# ⊗ Ṽ ∗

)
.

Using notation of 2.5.1 one has

Homg

(
M̃(λ− µ), M̃(λ)# ⊗ Ṽ ∗

)
∼= Homb

(
Cλ−µ, M̃(λ)# ⊗ Ṽ ∗

)
. (12)

All Verma modules are isomorphic as n−-modules. Therefore their duals are isomorphic
as n+-modules. Furthermore for any λ′ ∈ h∗ the b-modules M̃(λ)# and M̃(λ′)# ⊗ Cλ−λ′

are isomorphic. Taking into account (12), one concludes that

k := dim Homg

(
Ṽ ,Hom(M̃(λ− µ), M̃(λ)#)

)
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does not depend on λ (for fixed Ṽ and µ).

Recall that Ṽ (λ − µ) is a quotient of M̃(λ − µ) and Ṽ (λ) is a submodule of M̃(λ)#.

Consequently k ≥ dim Homg

(
Ṽ (λ− µ), Ṽ (λ) ⊗ Ṽ ∗

)
for all λ ∈ h∗. Using Lemma 11.1.3,

one obtains k ≥ dim Ṽ |µ.

To verify that k ≤ dim Ṽ |µ fix λ such that M̃(λ)# is simple. Denote by m1 (resp., m2)

a highest weight vector of M̃(λ− µ) (resp., M̃(λ)#). Consider a map

ι : Homg

(
Ṽ ,Hom(M̃(λ− µ), M̃(λ)#)

)
→ Ṽ ∗|−µ s.t

ι(ψ)(v)m2 = ψ(v)(m1) ∀v ∈ Ṽ |µ, ψ ∈ Homg

(
Ṽ ,Hom(M̃(λ− µ), M̃(λ)#)

)

Let us show that ι is a monomorphism. Take a non-zero element ψ ∈ Homg

(
Ṽ ,Hom(M̃(λ−

µ), M̃(λ)#)
)
. The vector space ψ(Ṽ )(M̃(λ − µ)) is a non-zero g-submodule of a simple

module M̃(λ)#; thus it coincides with M̃(λ)#. One has

ψ(Ṽ )(M1) = ψ(Ṽ )(U(n−)m1) = U(n−)ψ(Ṽ )(m1)

since ψ(Ṽ ) is ad g-stable. Therefore ψ(Ṽ )(m1) contains the highest weight vector m2 that

is ψ(v)(m1) = m2 for a certain v ∈ Ṽ . Obviously one can choose v be a weight vector; then

v ∈ Ṽ |µ and ι(ψ)(v) = 1. Hence ι is a monomorphism and so k ≤ dim Ṽ ∗|−µ = dim Ṽ |µ
as required.

11.1.5. Remark. If M̃(λ) is simple, the above lemma gives

dim Homg(Ṽ ,Hom(M̃(λ), M̃(λ)) = dim Ṽ |0

for any simple finite dimensional Ṽ .

11.1.6. Lemma. Let A be a polynomial algebra and W be a finite group acting on
A. Assume that p, p′ ∈ A are such that p′/p is W -invariant and let q be a maximal
W -invariant divisor of p|W |. Then there exist q′ ∈ AW such that p′/p = q′/q.

Proof. Any non-zero polynomial has a unique factorization into irreducible ones. Let a/b
be a reduced form of the fraction p′/p. For any s ∈ W one has s(a)/s(b) = a/b and so
b/s(b) is a scalar. Since W is finite, 1 = (b/s(b))|W | = b|W |/s(b|W |). Hence b|W | ∈ AW .
Since p is divisible by b, p|W | is divisible by b|W |. Therefore q is divisible by b|W |. Then
there exist q′ ∈ A such that q′/q = a/b = p′/p. The W -invariance of both q and p′/p
implies the W -invariance of q′.

11.2. In this subsection we present alternative proofs of Corollary 4.5.2 and Theo-
rem 4.7.4.

Another proof of Corollary 4.5.2.
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11.2.1. Fix a subset Y of Irr and set X := {ν ∈ h∗| Ṽ (ν) ∈ Y }. For each ν ∈ X choose a

Z(g)-basic system θν1 , . . . , θ
ν
s(ν) of Homg(Ṽ (ν), Ũ). Let zν ∈ Z(g) be such an element that

Homg(Ṽ (ν), Ũ [z−1
ν ]) is a free Z(g)[z−1

ν ]-module generated by θν1 , . . . , θ
ν
s(ν) (such an element

exists by Proposition 4.4.3). Let S ⊂ Z(g) \ {0} be a multiplicative closed set containing

{T 2; zν , ν ∈ X}. Denote by A the localization of Z(g) on S and by ŨA the localization

of Ũ on S. Both actions ad g and ad′ g can be canonically extended to ŨA. Note that as
ad g-module (resp., ad′ g-module) ŨA belongs to F in. For any ν ∈ X the localized algebra

Z(g)[z−1
ν ] is a subalgebra of A and so Homg(Ṽ (ν), ŨA) is a free A-module generated by

θν1 , . . . , θ
ν
s(ν). Clearly ŨA inherits the structure of a superalgebra and its centre is equal to

A. Now we are ready to formulate the

11.2.2. Lemma. There exist ad g-submodules H,N of ŨA such that

(i) the multiplication map induces a monomorphism H ⊗ A→ ŨA,
(ii) ŨA = HA⊕N,

(iii) H ∼= ⊕ν∈X E(Ṽ (ν)sν),

(iv) SocH =
∑
ν∈X

∑s(ν)
i=1 θ

ν
i (Ṽ (ν)),

(v) Homg(Ṽ (ν), N) = 0 ∀ν ∈ X.

Proof. Since θν1 , . . . , θ
ν
s(ν) is a Z(g)-basic system of Homg(Ṽ (ν), Ũ), the sum

L :=
∑

ν∈X

s(ν)∑

i=1

θνi (Ṽ (ν))

is direct. By 3.3.2, the ad g-module T Ũ is injective. Since T 2 ∈ Z(g), the ad g-module

T−1Ũ is an injective submodule of ŨA. Therefore T−1Ũ contains an injective envelope
H of L and H ∼= ⊕ν∈X E(Ṽ (ν)sν ). The multiplication map induces a g-homomorphism

φ : H ⊗A→ ŨA.

Recall that Homg(Ṽ (ν), Ũ [z−1
ν ]) is a free Z(g)[z−1

ν ]-module generated by θν1 , . . . , θ
ν
s(ν)

for any ν ∈ X. Therefore the module Homg(Ṽ (ν), ŨA) is a free A-module generated by

θν1 , . . . , θ
ν
s(ν). This means that for any ν ∈ X the restriction of φ on

∑s(ν)
i=1 θ

ν
i (Ṽ ) ⊗ A is a

monomorphism and its image coincides with the isotypical component of Ṽ (ν) in the socle

of ŨA. Then the restriction of φ on L⊗A is a monomorphism and Soc ŨA = φ(L⊗A)⊕N ′

where Homg(Ṽ (ν), N ′) = 0 for any ν ∈ X. Recall that SocH = L and so Soc(H ⊗ A) =
L⊗A. Therefore φ is a monomorphism by 3.1.2. From 3.2.3, it follows that H ⊗A is an
injective module in F in. Therefore ŨA contains a submodule N such that ŨA = HA⊕N .
Then Soc ŨA = HA⊕ SocN and thus SocN ∼= N ′. This completes the proof.
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11.3. In this subsection we prove that the Z(g)-rank of the module Homg(Ṽ , Ũ) is equal

to dim Ṽ |0 for any Ṽ ∈ Irr. Recall that, by Remark 4.4.5, in order to prove this assertion

it is suffices to find λ ∈ h∗ such that the image of Soc Ũ in EndC(Ṽ (λ)) contains an

ad g-submodule L ∼= Ṽ ⊕ dim Ṽ |0.

To find this element λ, we use Density Theorem stating the surjectivity of the natural
map Ũ → End(Ṽ ) for any Ṽ ∈ Irr. As it is shown in Lemma 11.1.3, for any Ṽ ∈ Irr there

exists λ such that EndC(Ṽ (λ)) contains a submodule Ṽ ⊕dim Ṽ |0. This would imply the

assertion when Ũ = Soc Ũ that is for completely reducible Lie superalgebras (however for
these algebras the assertion immediately follows from Separation theorems). The general
case requires a certain extra work: one should choose λ in such a way that any copy of
Ṽ inside the socle of EndC(Ṽ (λ)) lies in the image of Soc Ũ . This can be done with the
help of Proposition 11.3.1.

11.3.1. Proposition. For any Ṽ ∈ Irr the set of λ ∈ h∗ such that dim Ṽ (λ) <∞ and
there exists a monomorphism

E(Ṽ )⊕dim Ṽ |0 → EndC(Ṽ (λ)).

is a Zariski dense subset of h∗.

Proof. Fix Ṽ ∈ Irr. For any λ ∈ h∗ denote by fλ the natural homomorphism Ũ →
EndC(Ṽ (λ)) and by C

Ṽ
(λ) the isotypical component of Ṽ in the socle of EndC(Ṽ (λ)).

Let X be the set of ν ∈ h∗ such that dim Ṽ (ν) ∈ Irr and E(Ṽ (ν)) has a subquotient

isomorphic to Ṽ . We claim thatX is finite. Indeed, E(Ṽ (ν)) is a submodule of Coind V (ν).
As g0-module, CoindV (ν) ∼= V (ν) ⊗ Λg1 and so the weight of any g0-primitive weight

vector of CoindV (ν) belongs to the set ν+Ω(Λg1). Thus the highest weight of Ṽ belongs
to this set for any ν ∈ X. Therefore X is finite.

Retain notation of 4.2. For each ν ∈ X choose a Z(g)-basic system θν1 , . . . , θ
ν
s(ν) of

Homg(Ṽ , Ũ). The collection Ψθν1 , . . . ,Ψθ
ν
s(ν) is a Z(g)-basic system of I(Ṽ ) and so it is also

a S(h)-basic system of I(Ṽ )S(h) (see Lemma 4.4.2). Denote pν a minor of this S(h)-basic
system. Recall that X is finite and take z ∈ Z(g) such that P(z) = t2

∏
ν∈X

∏
w∈W w.pν.

By Proposition 4.4.3, for any ν ∈ X the localized module Homg(Ṽ (ν), Ũ)[z−1] is freely
generated over Z(g)[z−1] by {θν1 , . . . , θ

ν
s(ν)}. Therefore one can apply Lemma 11.2.2 to the

setX and the algebra A := Z(g)[z−1]. This gives ŨA = (HA)⊕N where Homg(Ṽ (ν), N) =

0 for any ν ∈ X. Thus SocN = ⊕i∈I Ṽ (µi) where µi 6∈ X for each i ∈ I. By 3.2.2, N

is isomorphic to a submodule of E(SocN) ∼= ⊕i∈I E(Ṽ (µi)). Each module E(Ṽ (µi)) does

not have a subquotient isomorphic to Ṽ because µi 6∈ X. Therefore N also does not have
a subquotient isomorphic to Ṽ .
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From Lemma 11.1.3 it follows that the set

R := {λ ∈ h∗| dim Ṽ (λ) <∞, C
Ṽ
(λ) = Ṽ ⊕Ṽ |0, P(z)(λ) 6= 0}

is Zariski dense in h∗. Let us show that for any λ ∈ R there exists an injective map
required in the proposition.

Take λ ∈ R. The module Ṽ (λ) is finite dimensional and, by Density Theorem, the

map fλ is surjective. Since z acts on Ṽ (λ) by a non-zero scalar, one can extend fλ to

the epimorphism ŨA → EndC(Ṽ (λ)). Taking into account that N has no subquotient

isomorphic to Ṽ , one concludes that C
Ṽ
(λ) ⊆ fλ(HA) = fλ(H).

Let us show that the restriction of fλ to H is a monomorphism. By 3.1.2, it is enough
to verify that the restriction of fλ to

SocH =
∑

ν∈X

s(ν)∑

i=1

θνi (Ṽ (ν))

is a monomorphism. Since Ṽ (ν) are pairwise non-isomorphic for different ν, it suffices

to check that the restriction of fλ to
∑s(ν)
i=1 θ

ν
i (Ṽ (ν)) is a monomorphism for each ν ∈ X.

This follows from Corollary 4.1.2. Indeed, fix ν ∈ X. Recall that pν is a non-zero

s(ν) × s(ν)-minor of the matrix
(
P(θj(vi))

)j=1,s(ν)

i=1,r
where v1, . . . , vr is basis of Ṽ (ν)|0.

Since P(z)(λ) 6= 0 one has pν(λ) 6= 0 and so, by Corollary 4.1.2, the restriction of fλ on
∑s(ν)
i=1 θ

ν
i (Ṽ (ν)) is a monomorphism.

Combining the facts that H is injective and that C
Ṽ
(λ) ⊆ fλ(H) ∼= H , one completes

the proof.

11.3.2. Corollary. For any simple finite dimensional module Ṽ the Z(g)-rank of

Homg(Ṽ , Ũ) is equal to dim Ṽ |0.

Proof. Set r := dim Ṽ |0. By Proposition 11.3.1 one can choose λ ∈ h∗ such that Ṽ (λ) is
finite dimensional and there exists a monomorphism

φ : L := E(Ṽ )⊕r −→ EndC(Ṽ (λ)).

By Density Theorem the natural map fλ : Ũ → EndC(Ṽ (λ)) is surjective. Since L is

projective in F in, Ũ contains a submodule L′ such that the restriction of fλ to L′ provides
an isomorphism L′ ∼

−→ L. In the light of Remark 4.4.5, a basis θ1, . . . , θr of Homg(Ṽ , L)

is a Z(g)-basic system of Homg(Ṽ , Ũ).

Another proof of Theorem 4.7.4
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11.3.3. Theorem. An ad g-submodule L of Ũ is a generic harmonic space iff

(a) L ∼= ⊕
Ṽ ∈Irr

E(Ṽ )⊕dim Ṽ |0

and one of the following conditions holds

(b) ∀Ṽ ∈ Irr detJ (Ṽ ;L) 6= 0

(c) the multiplication map provides an embedding L⊗Z(g) → Ũ .

Proof. Applying Lemma 11.2.2 for Y := Irr and S := (Z(g) \ {0}), we conclude the
existence of a generic harmonic space satisfying the condition (a).

Let us show that all generic harmonic spaces are pairwise isomorphic as ad g-modules.
Indeed, let L and L′ be generic harmonic spaces. Since Ũ is countably dimensional, one can
choose the corresponding sets S, S ′ ⊂ Z(g) \ {0} having countable number of elements.
Take a maximal ideal m of Z(g) such that m ∩ (S ∪ S ′) = ∅. Then as ad g-modules

L ∼= Ũ/(mŨ) ∼= L′. Hence all generic harmonic spaces satisfy the condition (a).

Let L be a generic harmonic space. Then the condition (c) obviously holds. Moreover,

for any Ṽ ∈ Irr a basis θ1, . . . , θr of Homg(Ṽ , L) is a Z(g)-basic system of Homg(Ṽ , Ũ).

Therefore detJ (Ṽ ;L) 6= 0 and so (b) holds as well.

Fix L satisfying (a) and (b). For Ṽ ∈ Irr denote by q(Ṽ ) a maximal W.-invariant divisor

of
(
detJ (Ṽ ;L)

)|W |
. Take S ⊂ Z(g) such that P(S) consists of the elements t2q(Ṽ ) where

Ṽ ∈ Irr. It is easy to deduce from Proposition 4.4.3 that the multiplication map provides
an isomorphism SocL⊗ Z(g)[S−1]

∼
−→ Soc(Ũ [S−1]). Since L is injective, L⊗ Z(g)[S−1]

is also injective and so L⊗ Z(g)[S−1]
∼

−→ Ũ [S−1]. Hence L is a generic harmonic space.

Finally, fix L satisfying (a) and (c). For any Ṽ ∈ Irr a basis of Homg(Ṽ , L) contains

dim Ṽ |0 elements due to the condition (a) and these elements Z(g)-linearly independent

due to condition (c). Hence these elements form a Z(g)-basic system of Homg(Ṽ , Ũ) that

is detJ (Ṽ ;L) 6= 0. Thus L fulfills the condition (b) as well. This completes the proof.
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