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ANNIHILATION THEOREM AND SEPARATION THEOREM FOR
BASIC CLASSICAL LIE SUPERALGEBRAS

MARIA GORELIK

ABSTRACT. In this article we prove that for a basic classical Lie superalgebra the an-
nihilator of a strongly typical Verma module is a centrally generated ideal. For a basic
classical Lie superalgebra of type I we prove that the localization of the enveloping alge-
bra by a certain central element is free over its centre.

1. INTRODUCTION

1.1. Let g be a complex semisimple Lie algebra, U/ be its universal enveloping algebra
and Z(g) be the centre of U. Consider U as a g-module with respect to the adjoint action.
Separation Theorem of Kostant (see [Kd|) states the existence of a submodule H of U
such that the multiplication map provides the bijection H ® Z(g) — U. Moreover the
multiplicity of each simple finite dimensional module V' in H is equal to the dimension
of its zero weight space. Such an ad g-invariant subspace H is called a harmonic space.
An easy proof of Separation Theorem was found by Bernstein and Lunts—see [BL]. This
theorem is an important ingredient in the proof of the annihilation theorem of Duflo
(see [D], 8.4.3) asserting that the annihilator of a Verma module is generated by its
intersection with Z(g). The annihilation theorem is reproven by Joseph and G. Letzter.
They also generalize it to the quantum case— see [J1],[J3].

In this paper we obtain analogous theorems in the case of basic classical Lie superalge-

7T

bras. This was done earlier for the completely reducible case— see [MI],[[GLI].

Let g = go © g1 be a basic classical Lie superalgebra, U be its universal enveloping
superalgebra and Z(g) be the centre of U. Let T be a special ghost element constructed
in [G]. Call a highest weight module strongly typical if it is not annihilated by 7.

We prove the following version of Annihilation Theorem.

1.1.1. Theorem. The annihilator of a strongly typical Verma g-module M is a
centrally generated ideal.
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Moreover, for a strongly typical Verma module M , We de~scribe t/hve quotient U / Ann M
as an ad g-module and show that the natural map from &/ Ann M to the locally finite
part of End¢(M) is bijective.

1.1.2.  The proof of Theorem [[.I.]] goes as follows. As in [JT]], we use the Parthasarathy—
Ranga-Rao— Varadarajan (PRV) determinants. We generalize the notion of PRV deter-
minants (see [PRV]]) to basic classical Lie superalgebras. Our construction is based on
the fact that the two-sided ideal YT = TU, considered as ad g-module, is injective in a
category of locally finite modules.

_In the completely reducible case one assigns to each simple finite dimensional module
V' a PRV determinant which is a polynomial in S(b).

On the contrary, for the non-completely reducible case the lack of harmonic space forces
us to substitute the PRV determinant by a set of PRV determinants corresponding to the
same V. However, we do not have to calculate these determinants, but only verify that
they are non-zero. We use these determinants to show that if the locally finite part
F (]\7 M ) of the endomorphisms Endc(]\7[ ) of a strongly typical Verma module M has
“a right size” as an ad g-module and the natural map U—F (M , M ) is surjective, then
Ann M is centrally generated.

For type I we directly verify both conditions. The crucial point in the study of type II
case is the construction in Section § of a perfect mate x € Max Z(go) for each strongly
typical Y € Max Z(g). We call a maximal ideal x € Max Z(go) a perfect mate for
X € Max Z(g) if the following conditions are satisfied.

(i) For any Verma g-module annihilated by ¥, its go-submodule annihilated by a power
of x is a Verma go-module.

(ii) Any g-module annihilated by Y has a non-trivial go-submodule annihilated by .

The condition (ii) seems to be difficult to check. However, it turns out that it is enough
to verify (ii) only for simple highest weight g-modules. This is deduced from [MZ].

For g = 0sp(1, 2[) the annihilator of a Verma g-module Misa centrally generated ideal
iff M is strongly typical—see [GLI]. In this paper we prove the similar equivalence for
the basic classical Lie superalgebras of type I.

As it is shown in [PST], if g has type I then for any strongly typical x € Z(g) the
algebra U /(UX) is the matrix algebra over U(go)/U(go)x) for a suitable y € Max Z(go).
As it was pointed out by V. Serganova this result implies Theorem for type I case.
The opposite implication is also easy (see [7.4).

1.2, Let g be a basic classical Lie superalgebra which is not completely reducible. Then
U is not a domain (see [AT]) and Z(g) is not Noetherian ([MI], 2.8). However all non-
zero central elements are non-zero divisors and Z(g) contains an element z such that the



localized algebra Z(g)[27!] is isomorphic to a localization of a polynomial algebra. One
can take z := T? where T is the element mentioned above. The element T' is even; it
commutes with the even elements of ¢ and anticommutes with the odd ones. Moreover,
the image of T' in the symmetric algebra S(g) belongs to the top exterior power of g;.
These properties determine 71" up to a scalar.

It is easy to show (see [[G], 4.5) that U, considered as an ad g-module, does not admit a
factorization of the form H ® Z(g). For type I Lie superalgebras, we prove the following
version of Separation Theorem.

1.2.1. Theorem. Forg of the type I, there exists ad g-invariant subspace H of U such
that the multiplication map provides the bijection H @ Z(g)[T 2] — U[T2].

Clearly, Z(g)[T~?] coincides with the centre of U[T2]. As an ad g-module, H is injective
in an appropriate category of locally finite modules and for any simple ﬁmte dimensional
module V one has dim Homy(V, H) = dim V|, where V|, is the zero weight space of V.
For a basic classical Lie superalgebra of type II, we obtain a weaker result, namely that
the similar assertions hold if we substitute z by a certain subset S of Z (g) This set S
can be described in terms of the PRV determinants.

A natural conjecture is that one can always choose S equal to {T?}. A possible way to
prove this conjecture is to show that an irreducible factor of a PRV determinant is either
a factor of Shapovalov form or is of the form (Y +3Y(p)) for some odd coroot 3. However
it is not clear how to calculate these determinants if g is not completely reducible.

1.3. Content of the paper. In Section ] we recall some facts about the basic classical
Lie superalgebras.

In Section f| we define a category Fin of locally finite g-modules and provide some
properties of Fin. We also recall the construction and properties of the element 7.

In Section ] we investigate the g-module structure of U given by the adjoint action.
We start with studying Homgy(V,U) for a simple finite dimensional module V. For each
V we construct a central element z such that the localized module Homy(V,U[z7"]) =
Homy(V,U)[z7"] is a free Z(g)[z~]-module whose rank is equal to dim V|o. In [0 we
generalize a notion of PRV determinants to the case of non-completely reducible Lie
superalgebras. We also establish properties of these determinants which are similar to the
properties of the original PRV determinants. In l7 we show that for a suitable subset
S of Z(g) the localized algebra U[S™!] is free over its centre Z(g)[S™']. We describe
the ad g-module structure of the corresponding “generic harmonic space” H. We show
that one may choose H to be the ad g-module generated by H'T where H' is a certain
harmonic space of U(go).

In Section f] we establish a connection between PRV determinants and the annihilators
of simple modules. We show that if all PRV determinants do not vanish at a point A € h*



and if a simple module V(A) is strongly typical then its annihilator is a centrally generated
ideal. Moreover, for a simple strongly typical Verma module V(A) all PRV determinants
do not vanish at a point A\ € h* iff the natural map Y — F (]\7 M ) is surjective and
F (]\7 M ) has a certain nice structure as ad g-module (it should be isomorphic to the
“generic harmonic space” H).

Sections [ ] are devoted to type I case. Preliminary facts are concentrated in Section .
In Section [] we prove that for a suitable ad g-stable H the multiplication map provides
an isomorphism H ® Z(g)[T % — U[T~?]. We also prove that the annihilator of a Verma
module is centrally generated iff this module is strongly typical.

Sections Bf are devoted to type II case.

In Section B we describe, for each strongly typical ¥ € Max Z(g) its perfect mate
X € Max Z(go). Note that in type I case for any strongly typical ¥ € Max Z(g) and for
any A such that ¥ annihilates M()), the ideal Annz g,y M(X) is a perfect mate for y. This
does not hold for type IL. For certain “generic” ¥, the ideal Annz,) M () is a perfect

mate if one chooses \ satisfying, apart from YM (A\) = 0, also a kind of “dominance”
condition. For B(m,n) and G(3) all strongly typical central characters are generic. For
the remaining superalgebras D(m,n), D(2,1, «) and F'(4) we select perfect mates for non-
generic strongly typical central characters case by case.

In Section ff we prove Theorem [[.T.T} The existence of a perfect mate for each strongly
typical ¥ € Max Z(g) enables~us to SB)W Nthat for a Verma modgle M with the central
character X the natural map U — F(M, M) is surjective and F'(M, M) = H. According

Section [, these two conditions imply that the annihilator of M is centrally generated
ideal.

In Section [[(] we study the go-structure of Verma g-modules.

Appendix [[] contains some lemmas used in the main text. It also contains alternative
proofs of some results (non-vanishing of the PRV determinant,Corollary [.5.9 and The-
orem [.74). These proofs do not use Kostant’s Separation Theorem. Probably, these
proofs may be useful in the case when separation theorem does not hold.
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2. PRELIMINARIES

In this paper the ground field is C. Everywhere in the paper apart from Sections f,[],
g = go D g1 denotes one (unless otherwise specified, an arbitrary one) of the basic classical
complex Lie superalgebras gl(m,n),sl(m,n), osp(m,n),psl(n,n). Each of these Lie su-
peralgebras possesses the following properties: it admits a g-invariant bilinear form which
is non-degenerate on [g, g] and the even part go is a reductive Lie algebra.

In Sections [[], g = g5 ® g7 denotes one of the basic classical complex Lie superalgebras
of type I: gl(m,n),sl(m,n), osp(2,n), psl(n,n). We shall slightly change our notations
since these superalgebras admit Z-grading g = g_; ® go @ g1. The even part gg coincides
with go and the odd part g7 is the sum of two dual go-modules g_; and g;.

In this section we present the main preliminary facts about the structure of the basic
classical complex Lie superalgebras and their representations, which we shall use in this

paper.

2.1. Conventions. We denote by NT the set of positive integers and by #I the number
of elements of the given set I. If A is an algebra, N is an A-module and X, Y are subsets
of A and N respectively, we denote by XY the set of the products xy where x € X,y € Y.

For a Zs-homogeneous element u of a superalgebra denote by d(u) its Zy-degree. In all
formulas where this notation is used, u is assumed to be Zs-homogeneous.

For a superalgebra m denote by U(m) its universal enveloping superalgebra. Set U=
U(g) and U := U(go).

In this text all modules are assumed to be left modules. For given module N we denote
by N®" the direct sum of n-copies of N. We say that A-module N is locally finite if
dim Av < oo for all v € N.

The symbol V (resp., V) is always used for a simple g (resp., go) module and the symbol

M (resp., M) for a Verma g (resp., go) module.

2.2. Triangular decompositions. Triangular decompositions of the superalgebras are
defined in [PSY as follows. A Lie subsuperalgebra fh C g is called a Cartan subsuperal-
gebra if b is nilpotent and coincides with its centralizer in g. For the basic classical Lie
superalgebras the set of Cartan subalgebras coincides with the set of Cartan subalgebras
of go. Fix a Cartan subalgebra b; it acts semisimply on g:

0= Ducy 0l 9l ={acglVhebh, [ha =pula)}

Denote by A the set of non-zero roots that is the set {a € h*| g|o # 0} \ {0}. An element
h € b is called regular if Rea(h) # 0 for all &« € A. Any regular element determines the
decomposition A = AT[[A~ where

AT :={a € A| Rea(h) >0}, A™ :={a e A| Rea(h) < 0}.




Moreover it determines a decomposition g = n~ @ b G n* where
nt o= @a€A+g|a> no= @aeA*ng'

Such decompositions of g are called triangular decompositions. It is clear that n* are
nilpotent Lie subsuperalgebras of g.

A Lie subsuperalgebra b C g is called a Borel subsuperalgebra if b = b @ n™ for some
triangular decomposition g = n~ & h & nt. A Borel subsuperalgebra determines the
triangular decomposition; we will add a lower index to designate the corresponding Borel
subsuperalgebra in the case where the choice of triangular decomposition is not clear from
the context. We denote by A(b) the set of non-zero roots of b. We say that a vector of v
of g-module is b-primitive if [b, bjJv = 0 and hv € Co.

A triangular decomposition g = n~ @ b @ n' induces the triangular decomposition of
the even part go = ng ®bh®ng. The group of inner automorphisms of gy acts transitively
on all triangular decompositions of gy and the action of this group can be extended to g.
Hence the theory does not depend from the choice of a triangular decomposition of gg.
In the sequel we fix a triangular decomposition gy = ng @ b ® ng and consider triangular
decompositions of g which induce this fixed triangular decomposition of g,.

2.2.1. Denote by Ay the set of non-zero even roots of g and by A; the set of odd roots
of g. Set AT := AgNA* and AT := A NA*,

Denote by (—, —) a g-invariant bilinear form on g which is non-degenerate on [g, g] and
the induced W-invariant bilinear form on h*. A root a € A is called isotropic if (o, ) = 0.
For a root av denote by " the element of b satisfying o¥(u) = («, u) for each p € h*.

Set
Ay={acAfla/2¢ AT}, BAl={BeAf|20¢ A7}
The set of isotropic roots coincides with ZT.
Remark that Y ca+ noc = 0 for some n, € N implies n, = 0 for all @« € A*. This
allows us to define the standard partial order relation on h* by A < p <= pu— X €

> aea+ Na. One can easily sees that the minimal (with respect to this partial order)
elements of AT form a basis of simple roots.

Denote by m the basis of simple roots of gg and by W the Weyl group of Ay. Denote
by |W| the number of elements in W. For w € W set sn(w) := (—1)"*) where I(w) is the
length of w. For a non-isotropic root « define s, € Aut h* by setting
(a; )

(@, a)

Sa(A) = A =2

Evidently s, = s, and so the subgroup of Aut h* generated by the s, coincides with W.

Set
p(]::% Z «, pl::% Z &, p=pPo— pP1-

aeAf aeAT



For a simple root a one has 2(«, p) = (o, ).

Define the translated action of W on h* and on the symmetric algebra S(h) by the
formulas:
w=wA+p)—p, w.f\):=flwN), VAEh weW.

2.2.2. For a gg-module N and an element p € h* set
N|, :={m € M| hm = p(h)m, Yh € bh}.
We shall consider mainly h-diagonalizable modules that is satisfying N = 3 cp« N|,. Set

Q(N) = { € b°| N, £ 0}.
If dim V|, < oo for each p € h* , set ch N := 3",y (dim N, ) et

When we use the notation I/ |1, the action of g on U is assumed to be the adjoint action.

2.3.  An important property of the basic classical Lie superalgebras is the existence
of a Cartan superantiautomorphism o coming from the supertransposition of matri-
ces. Recall that an even linear endomorphism ¢ of a Lie (resp., associative) superal-
gebra is called a superantiautomorphism if o([z,y]) = (—=1)*@9W)[1(y), o(x)] (resp., t(xy) =
(—1)¥@)14W) () 1(z)) for all homogeneous elements z,y. The Cartan superantiautomor-
phism ¢ has the following properties:

a) o2(g) = (-1)"g, Vgeg,
b) o(nt)=n",
&) olh)=h, Wh e b,

The restriction of o to gy is a Cartan antiinvolution:

2.3.1. Symmetric algebra. Denote by F the canonical filtration of U given by F* := g*.
This filtration is ad g-invariant and the associated graded superalgebra S(g) inherits an
ad g-module structure. The superalgebra S(g) is supercommutative: it is the product of
the symmetric (even) algebra S(go) and the external superalgebra Ag;.

For u € U denote by gru its image in S(g); identify 2 (h) and its image S(h).

2.3.2. Centre. By definition, the (super)centre Z(g) := U?. One has gr Z(g) = S(g)°.

Denote by gr P the projection S(g) — S(h) along S(g) gr(n™ + nt). The restriction
of gr P to S(g)® provides a monomorphism ¢ : S(g)® — S(h)". As a consequence, all

non-zero elements of S(g)® (resp., Z(g)) are non-zero divisors in S(g) (resp., U). The
image of ¢ is described in [KZ], [B1]], [BZVI; ¢ is bijective iff g = osp(1,21).



Denote by Py the projection S(g) — S(go) with the kernel K := 3,5, S(go)A’gs. It is
easy to see that K is ad go-invariant and so Fy is an ad go-map. Moreover Py provides a
monomorphism S(g)? — S(go)%® since gr P = gr P o Py and so the injectivity of Py on
S(g)? follows from the injectivity of gr P.

2.3.3. Harish-Chandra projection. Denote by P the Harish-Chandra projection U — S(h)
with respect to the decomposition U = (Unt +nU) ®U(H). The restriction of P to
U lo=U (Y is an algebra homomorphism. An element a € U" acts on a primitive vector of
weight 4 by the multiplication by the scalar P(a)(u).

The Harish-Chandra projection provides a monomorphism Z(g) — S(h)W-. If N is a
g-module generated by a primitive vector of weight A, then a central element 2 acts on N
by the multiplication by the scalar P(z)(\).

Call ¥ € Max Z(g) a central character of a g-module N if "N = 0 for r >> 0.

2.3.4. Let z be an element of Z(g). Since z has weight zero, z = P(2) + >, u; u;
where u; € Uh™)n™, ui € UHT)nT for all . One has o(u; u) = +o(u)o(u;
U )N U )nT. Therefore

o(z) = —l—Z:ta u;) € P(z) +Un™

that is P(c(z)) = P(z). Thus the superantiautomorphism o stabilizes the central ele-
ments. This implies that Z(gg), Z(g) C U°.

2.3.5. For a Zy-graded gp-module L denote by Indg L a vector space U Qy L (here
U is considered as a right U-module and a left U-module through the multiplication)
equipped by the natural structure of a left Z/-module. Denote by Coind] L a vector space
Homy, (U, L) (here U is considered as a left ¢{-module) equipped by the following structure
of a left Y-module: (wf)(u') := f(u'u) for any f € Homy (U, L), u,u’ € U. For a g-module
N and a go-module L one has the canonical bijections

Homyg, (N, L) ;Homg(N Coind] L),
Homyg, (L, N) = Homg(Indj L, N)

y [BY], Ind} L = Coind} L

2.4. Hopf algebra structure. The enveloping algebra U is a supercommutative Hopf
superalgebra. This means, in particular, that the antipode S is a superantiautomorphism
of U and that the comultiplication A" : U — U @ U is a homomorphism of superalgebras
satisfying the relation s o A’ = A’ where s is a linear map s : U @ U — U ® U given by



s(uy ® ug) 1= (—1)%)4w2) (yy @ ;). The Hopf algebra structure on I is given by

A’(g) —g®1+1®g,
(g) =

S(g) =

for any g € g.

The Hopf superalgebra structure on U gives a g-module structure on the tensor product
N1 ® Ny := N1 ®@c N, of two g-modules Ny, Ny. The map n; ®@ng +— (—1)4™)4Mm2) provides
the canonical g-isomorphism Ny ® Ny — Ny ® Nj.

2.4.1. Throughout the paper we shall write “ad g-module” instead “g-module with re-
spect to the adjoint action”.

View U as g-module through the adjoint action given by
(ad g)u = ug — (—1)19*Wyg VYgeguel.

As ad g-module, U is locally finite.

For any g-modules Ny, Ny view Hom(N;, Ny) := Home (N7, Ny) as a g-module through
the adjoint action:

(ad g)¥(v) = gip(v) — (D)™ Wy (gv) Vg € g, € Hom(Ny, Ny).

We denote by F'(Ni, Ny) the locally finite part of ad g-module Hom(Ny, N). Notice that
F(Ny, Ns) coincides with the ad go-locally finite part of Hom(Ny, Ny), since U is a finite
extension of U.

Throughout the paper an action of g on U and on F (N1, N) is assumed, by default, to
be the adjoint action.

For a g-module N, the natural map 4 — End(N), coming from the action of & on N,
is an ad g-homomorphism and its image lies in F'(N, N).

2.4.2. Let L be a finite dimensional g-module. Equip the dual supervector space L* by
g-module structure through the antipode S:

9-f(v) = (=)D f(S(g)v) = (~1)"D f(—gv), Vv € L, g € g.
We shall use the following form of the Frobenius reciprocity
Homg (L, Hom(Ny, Na)) 2 Homg(L ® N1, N) & Homg(Ny, Ny @ L)

for any g-modules Ny, Ny and a finite dimensional g-module L.
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2.5. The category O and Verma modules. Denote by @ the full subcategory of
finitely generated h-diagonalizable go-modules which are locally ng-finite. Denote by O
the similarly defined category of g-modules.

Since U(n™) is finite over U(ng ), a g-module N belongs O iff as go-module N belongs
to O. In particular, any module of category O has a finite length.

2.5.1. For A € h* denote by C, a simple b-module such that n*v = 0 and hv = A(h)v
for any h € h,v € C,. Define a Verma module M (\) by setting

M()\) =U O () C,.

The module M (M) has a unique simple quotient, which we denote by ‘7()\) Similarly,
denote by M () and V() respectively, Verma and simple go-modules of the highest weight
A

2.5.2. Definition. A weight A € h* is called typical if (A + p,3) # 0 for any isotropic
[CASWANE

2.5.3. If X is typical then Annz, M()\) = Annz g M(N) implies N € W.A— see [KJ],
Theorem 2. In particular, if a typical weight A is a minimal element in its orbit W.A then
M()) is simple.

On the other hand, if a typical weight A is a maximal element in W.\ then M (\) is
projective in @. Indeed, take a short exact sequence 0 — N’ — N — M(\) — 0 in O.
One may assume that XkN = 0 where Y := Annz(g ]\7[()\) and k is a positive integer.

Then the weight of a primitive vector of any simple subquotient of N belongs to W..
Since \ is a maximal element of W.A one has Q(N) N {\ + ZA*t} C {A — NAT}. Thus
a preimage of a highest weight vector of M (\) is primitive and the above exact sequence
splits.

By a similar argument, a short exact sequence 0 — M(XN) — N — M(\) — 0 in O
splits if X £ A.

2.5.4. Definition. A weight \ € h* is called strongly typical if (A + p,3) # 0 for any
[CASWANE

2.5.5.  Call the highest weight modules V()), M()) typical (resp., strongly typical) if A
is typical (resp., strongly typical).

Apart from the cases B(m,n) (that is osp(2m+1,2n)) and G(3), all odd roots of g are
isotropic and thus the notions of “typical” and “strongly typical” coincide.
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2.5.6. Take N € O. Equip the graded dual vector space N# := Buep (N],)* by the
following g-module structure

w.f(v) = (=)W f(5(u)w)), Yuel,fe N* ve N

where o : U — U is the superantiautomorphism defined in P.3. One can easily sees that
N +— N7# defines a duality functor on O.

~ Since the restriction of ¢ on b is equal to identity, ch N # = ch N. In particular,
V(A)# = V()) and it is isomorphic to the socle of M(A\)#.

2.5.7.  According to [CM], for any Zariski dense S C h*
ﬂ)\eg Ann M()\) =0.

2.5.8. A Verma module is not irreducible iff its highest weight is a root of a Shapovalov
form. Shapovalov forms are polynomials in S(f) indexed by the weights of U(n~). Each
polynomial admits a linear factorization which was established by Kac. The linear factors
of these polynomials are

oV + (p,0) —n(a,a)/2 neNt ael,

oV + (p,0) —n(a,a)/2 ne2N+1,ae (AF\A)),

a’ + (p, ), aen;.
Hence M ()) is not irreducible iff (A4 p, @) = n(a, @) /2 for a positive root a and a positive
integer n which should be odd for odd «a.

2.6. Finite dimensional modules. Necessary and sufficient conditions for V()) to be
finite dimensional are given in [K1], Theorem 8. One can immediately sees from these
conditions that any typical finite dimensional V(\) is strongly typical. If V()\),V are
finite dimensional satisfying Annz g V(\) = Ann Z(q) V and V is typical then V = V()\)—
see [KJ], Prop. 2.7.

The following character formula of a typical finite dimensional module is established
by Kac (see [KZ],[K3)):
chV(\) =D 3 sn(w)e”?”, where D= [[ 1—e )" [[ A +e?). (1)

weWw aeAf BeAf

2.7. Odd reflections. The odd reflections were introduced by I. Penkov and V. Serganova—
see [PS], 3.1. If g is a basic classical Lie superalgebra, the definition takes the following
form. Two Borel subsuperalgebras b, b’ C g are connected by an odd reflection along (3 iff

[ is a simple odd isotropic root of b’ and

A(b) = {-BLUA(b) \ {5}
Note that Ag(b) = Ag(b’) and so by = bjy. As it is shown in [PSZ], 3.1, any Borel
subsuperalgebras b, b’ C g satisfying by = b{, are connected by a chain of odd reflections.
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Let b and b’ be Borel subsuperalgebras connected by the odd reflection along an odd
isotropic root (3. Then b’ = b N b’ + Cx where x is a non-zero element of 9s- If visa b-

primitive vector such that zv = 0 then v is also a b/-primitive. This implies Vi(\) = Vir())
for A satisfying (A, 8) = 0. If 2v # 0 then zv is a b’-primitive since [z, 2] = 0. This implies
Vo(A) = Ve (A+ ) and My(\) = My (A +3) for (X, 8) # 0. Remark that (py, ) = 0, since
3 is a simple isotropic root, and so (A, 5) = 0 iff ()\ + po, ) = 0. Taking into account that
pe = pw + 3, one concludes that for Borel subsuperalgebras b, b’ satisfying by = b{, and a

b-typical weight A one has Vy(A) = Vi (V) and My(A) = My (X)) where A + pp = N + py.

2.8. Completely reducible Lie superalgebras. Recall that a Lie superalgebra is
called completely reducible if all its finite dimensional modules are completely reducible.
According to the theorem of Djokovié and Hochschild (see [Scli], p. 239), any finite dimen-
sional completely reducible Lie superalgebra is a direct sum of semisimple Lie algebras
and algebras osp(1,2l) (I > 1). The superalgebra g == o0sp(1,2]) has many features of
the semisimple Lie algebra; in particular, I/ is a domain and Z (g) is a polynomial algebra.

2.8.1. Separation Theorem. In [Kd] Kostant establishes the following theorem which is
called sometimes “Separation Theorem”.

Theorem. Let g be a semisimple complex Lie algebra. There exists an ad g-tnvariant
subspace H in U(g) such that the multiplication map induces an isomorphism Z(g) ®
H — U(g). Moreover, for every simple finite dimensional module V', [H : V] = dim V.

Such an ad g-invariant subspace H is called a harmonic space.

In [MI] Musson proves the analogous theorem for g = osp(1,210).

2.8.2. Annihilation Theorem. In [0J] Duflo proves the following theorem.

Theorem. Let g be a semisimple complex Lie algebra. Then for any A € h*

Ann M(X) = U(g) Annz g M(N).

Let g be a semisimple complex Lie algebra and M be a Verma module. The multiplicity
of each simple finite dimensional module in F'(M, M) is equal to dim Vo if M is a go-
simple Verma module. Combining the above theorem and Theorem P.8.7], one concludes
that for such M the natural map U/ Ann M(\) — F(M, M) is an isomorphism. In [JT],
6.4 Joseph generalizes this result to any go-Verma module.

2.8.3. For the case g = osp(1,2]) the following results are obtained in [GLI],[GLZ].

Theorem. The annihilator of a Verma module M coincides with Z]Anng(g) M iﬁM
1s strongly typical.



13

Using Separation Theorem, one concludes that for a strongly typical M one hasU /(Ann M ) =
H.

To describe the non-centrally generated annihilators of Verma modules, it is convenient
to substitute the centre Z(g) by the algebra Z(g) defined in B3

Theorem. For any \ € h*

Ann M(\) = Z:IAnanv(g M(\).

)
If X is not strongly typical then the ideal Anng(g) M()) is a mazimal ideal of the algebra

Z(g).

The algebra U is free over Z (g); more precisely, U contains ad go-submodule K such
that the multiplication map induces the ad go-isomorphism K ® Z (g) — U. Moreover, as
ad go-modules H =2 K @& K and K = U /(Ann M) if M is not strongly typical .

3. CATEGORY Fin AND A TWISTED ADJOINT ACTION

3.1. Category Fin. Denote by Fing the full category of go-modules whose objects are
sums of simple finite dimensional modules. Denote by Fin the full category of g-modules
whose objects, considered as go-modules, belong to Fing. Since U is a finite extension
of U(go), any module N € Fin is locally finite. In other words, the objects of Fin
are the locally finite h-diagonalizable modules (go is reductive and so all locally finite
h-diagonalizable are completely reducible).

Denote by Irr the set of isomorphism classes of simple finite dimensional g-modules and
by Irrg the set of isomorphism classes of simple finite dimensional go-modules. Note that
U considered as ad g-module belongs to Fin.

Throughout this section all modules are objects of Fin. Everywhere in the paper,
injectivity and projectivity mean, by default, injectivity and projectivity in the category
Fin.

3.1.1.  Recall that the socle Soc N of the module NN is the sum of its simple submodules.
Since any module in Fin is locally finite, it has a finite dimensional submodule and so a
non-trivial socle.

Recall that a module N is called an essential extension of its submodule N’ if for any
non-zero submodule N” of N one has N’ N N” # 0. Any module in Fin is an essential
extension of its socle.

3.1.2. For a homomorphism ¢ : N — N’ denote by Soc1) its restriction to Soc N. If
Soc ) is a monomorphism then v is also a monomorphism, since ker ¢ N Soc N = 0 and
N is an essential extension of Soc V.
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3.2. Injective and projective objects in Fin. Recall that an injective envelope E(NN)
of the module N is an injective module which is an essential extension of V. An injective
envelope of a given module is unique up to isomorphism.

A typical simple finite dimensional module is injective and projective in Fin (see R.5.3).

A standard reasoning of [McIl], 3.11 shows that any submodule N of an injective module
E has an injective envelope which is a direct summand of £. In Lemma we show
that any module in Fin has an injective envelope.

3.2.1. A finite dimensional gg-module L is projective and injective in Finy and so
Coind§ L = Ind§ L is projective and injective in Fin— see 2.3.5

Let N‘N/ be a simple finite dimensional g-module and V' be its simple go-submodule.
Then V' is a submodule of the injective module Coind§ V. Therefore V' has an injective

envelope E(V) which is a direct summand of Coindj V. The last is projective and so

E(V) is projective as well.

3.2.2. Lemma. Any module N € Fin has an injective envelope E(N). Moreover
E(N) = E(Soc N).

Proof. By B.1.1], N is an essential extension of Soc N. Therefore, by [McI], 3.11.1, there
exists a monomorphism ¢ : N — E(Soc N) whose socle is the natural embedding Soc N —
E(Soc N). Since E(Soc N) is an essential extension of Soc N, it is also essential extension
of N. Hence E(Soc N) is an injective envelope of N. O

3.2.3. Lemma. Any direct sum of injective modules in Fin is injective.

Proof. Let E;,1 € I be a collection of injective modules. One has to check that for any
monomorphism ¢ : A — B and any homomorphism ¢ : A — @,/ F; there exists a
homomorphism v : B — ®;c;FE; such that ¢ = ¢. By a standard reasoning based on
Zorn’s lemma, it is enough to verify the above assertion assuming B being cyclic. Any
cyclic module in Fin is finite dimensional. If B is finite dimensional, then A is also finite
dimensional and so ¢(A) lies in a finite subsum @;c;F; (J is a finite subset of I). Since
each FEj; is injective, @;csF; is injective and so there exists ¢ : B — @, F; such that
Yi(a) = ¢(a) for all a € A. The assertion follows. O

3.2.4. Corollary.
E(®ic1Ni) = ier E(V;)
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3.2.5. Proposition. Any injective module in Fin is projective.

Proof. Take an injective module N and write Soc N = _,.; L; where the L; are simple.
Combining Lemma B:2.9 and Corollary B-2-4, one obtains N = @,y E(L;). By B2, all
E(L;) are projective so N is also projective. O

3.3. Twisted adjoint action. In this subsection we present some results from [[§] which
are used in the sequel.

Define a twisted adjoin action of g on U by setting
(ad’ g)u = gu — (—1)4DEO g Vg e g, u e Y.
Note that ad g = ad' g for g € go.

The anticentre A(g) is the set of invariants of & under the twisted adjoint action
ad’'g. The product of two anticentral elements is central. For g being a basic classical
Lie superalgebra, A(g) is even and so any anticentral element commutes with the even
elements of U and anticommutes with the odd ones. Therefore “the ghost centre”

Z(g) :== Z(g) + Alg)

is a commutative subalgebra of U.

For g = osp(1,20), Z(g) is a polynomial algebra and, moreover, Z(g) = Z(g) & TZ(g)
where 7' is the element defined in B.3.2.

3.3.1. Let L be an ad go-submodule of 4. Then the ad’ g-submodule generated by L in
U is isomorphic to the induced module Indg L. As ad’ g-module U is generated by U
and so U = Indg0 U. Using the isomorphism Indgou = Coindg0 U, one obtains a linear
isomorphism Z(gg) — .A(g) given by z — (ad’ u)z where u € U is such an element that
uV(0) is the trivial g-submodule of Ind V(0).

An anticentral element z acts on a module generated by a primitive vector v in the
following way. It acts as P(z)(\)id on U and as (—P(z)(\)id) on Uyv Uy, U, are
homogeneous components of I ). From P57 it follows that the Harish-Chandra projection
provides a monomorphism A(g) — S(h)"-. The image of this monomorphism is equal to

tS(h)"- where
t:= [T (3" + (p, ).

BeAaf

Any non-zero element of A(g) is a non-zero divisor in .

3.3.2. Denote by T the element of A(g) such that P(7) = t. Remark that a Verma
module is strongly typical iff its annihilator does not contain T'.
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Up to a non-zero scalar, T is equal to the image of 1 under the above linear isomorphism
Z(go) — A(g). The image of T in the symmetric algebra is a non-zero element of the
one-dimensional vector space APg;.

Remark that T'A(g) C Z(g) and the restriction of the Harish-Chandra projection pro-
vides an isomorphism T'A(g) — t2S(h)"-. For g = osp(1,2l), this implies that A(g) is a
free module over Z(g) generated by T.

It is easy to check that (adg)(uT) = ((ad g)u)T. Since T is a non-zero divisor, the
ideal UT considered as ad g-module is isomorphic to I considered as ad’ g-module. Hence
as ad g-module UT = Ind§ U and, in particular, it is injective in Fin. Note that UT is
a two-sided ideal. Remark that, apart from the case when g is completely reducible, U
itself as ad g-module is neither injective nor projective in Fin: it contains, as a direct
summand, a trivial representation generated by 1

3.3.3. For any N € Fing one has
dim Homg(V (v), Coindj N) = dim Homy, (V(v),N).
Therefore

Indg N = Comdg N = &~

Velrr

E(WV) ™), #(V) == dim(Homg, (V. N)).  (2)

This has the following useful consequence. Let H be a harmonic space of U(gg) that is
an ad go-submodule of U(gg) such that the multiplication map provides an isomorphism
H ® Z(go) — U(go)—see BB Then H = Byepy, VMV, Taking into account §-3.1]
and (f), one obtains

(ad/ Z;?)H >~ Indgo H — @VEII‘I‘O COlnng VEB dimV\O — 69‘761rr E(V)EB dimv‘o (3)

since Yy ey, dim Vo - dim(Homgo(‘N/, V)) = dim V|, for any V € Irr.

4. THE STRUCTURE U AS ad g-MODULE.

In this section we study the ad g-module structure of U. We start from the studying
Homg(f/,ljl ) for a simple finite dimensional module V. For each V we construct a cen-
tral element z such that the localized module Homgy(V,U[z""]) = Homgy(V,U)[z""] is a
free Z(g)[z~']-module whose rank is equal to dim V|]o. In f£§ we define and study PRV
determinants for non-completely reducible basic classical Lie superalgebras.

In [ we show that for a suitable S C Z(g) the localized algebra U[S™'] is free over
its centre Z(g)[S™!] and that the corresponding harmonic space H (“generic harmonic
space”) is injective (m Fin) ad g-module. Moreover, the multiplicity of a simple finite
dimensional module V in Soc H is equal to dim V|0
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4.1.  The following lemma of A. Joseph and G. Letzter provides a connection between
Homy(V,U) and Hom(V|y, S(h)).

4.1.1. Lemma. An adg-submodule N of U lies in the annihilator of V()\) iff
P(NJo)(A) = 0.

Proof. The proof is the same as in [JJ], 7.2. Remark that P(N) = P(N|o). Let vy be a
highest weight vector of V/(A) and V(\)_:=U(n")n"v. One has

P(N)(\) =0 <= Nuy CV(\)_.
In particular, NV(\) = 0 forces P(N)(\) = 0.

For the inverse implication, assume that P(N|o)(A) = 0 that is Nvy € V(A)_. The
ad g-invariance of N implies U(n~)N = NU(n~) and thus

NV(A) = NU®m vy =Un")Noy, CURTIVN)_ C V() - V(A).

The ad g-invariance of N implies also U(g)N = NU(g) and so N V() is a submodule of
V(A). Hence NV (A) = 0 as required. O

4.1.2. Corollary. Take V € Irr, a basis vy, ... v, be of ‘7|0 and A € b*. For any

01, ...,0, € Homy(V,U), the image of the space Y5, 6;(V) under the natural map U —
=1,k

End(V (X)) is isomorphic to V™ where m is the rank of the matriz (P(Hj(vi))()\)),

i=1,r )
4.1.3. Combining .5.7] and Lemma fL.T.T one concludes that for an ad g-submodule N of

U the equality P(N|o) = 0 implies N = 0. Moreover N = 0 provided that P(N|o)(R) =0
for a Zariski dense subset R of h*.

4.2. Notation. Fix V € Irr and consider Homy(V,U) as a Z(g)-module with respect to
the action induced by the multiplication.

The Harish-Chandra projection induces the map ¥ : Homy(V,U) — Homgy(V]o, S(h))
given by o N
U(p(v) =P(p(v)), V¢ € Homg(V,U),v € V.

This map is a monomorphism by f.1.3. Denote by Z(V') the image of .

Define the action of Z(g) on S(h) by setting zp := P(z)p. This action induces the
structure of a Z(g)-module on Hom(Vp, S(h)). Obviously, ¥ is a Z(g)-map. Thus
the study of Z(g)-module structure of Homgy(V',U) reduces to the study of Z(g)-module

structure of Z(V).
The vector space Hom(V |y, S(h)) has the natural structure of S(h)-module. We denote

by Z(V)S(h) the S(h)-span of Z(V) inside Hom(V |y, S(h)).
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4.3. Examples.

4.3.1. Example. Let g be a completely reducible simple Lie superalgebra. In this
case P(Z(g)) = S(h)"". Separation Theorem (see P-8.1]) state the existence of an ad g-
submodule H of U such that the multiplication map induces isomorphism H ® Z(g) —
U. Thus for any V € Trr, a basis of the vector space Homgy(V,H) is a free Z(g)-
basis of Homg(V,U). Consequently, Homy(V,U) is a free Z(g)-module of the rank

dim Homy(V, H) = dim V|, (see E3.1)).

4.3.2. Example. Consider the case g = sl(2,1). Then h = span{z, h} where z is
a central element of the reductive algebra gy = s[(2) x C and h is an element of the
Cartan subalgebra of sl(2). Then Ay = {*a}, Ay = {£0;+(a + F)}. Choose such a
triangular decomposition that AT = {a, 3, + #}. The subalgebras ny = g; N n* are
supercommutative and are ad go-submodules of g. Let {x1, 25} (resp., {y1,v2}) be a basis
of ni (resp., ny).

The algebra S(h)"" is a polynomial algebra generated by z and t = (2 — h)(z + h + 2).
The image P(Z(g)) in S(h)" is spanned by 1 and the elements {t"2* n > 0,k > 0}.

Denote by v a highest weight vector of V := V(a4 206); one has Vl]y = Cyyyov. It is
easy to see that a highest weight vector of any copy of V inside U is of the form uzqzs
where u € Z(go). Up to a scalar, P((ad y1y2)(ux129)) = (2 — h)(z + h+ 2)P(u) = tP(u).
One has P(Z(go)) = S(h)"" and 50 (V) = Hgm((C,S(f))W't). Since S(h)"* is not free

over P(Z(g)), the Z(g)-module Z(V') = Homy(V,U) is not free.

One might expect from the aboveNexample that Z(V') is stable with respect to the
multiplication on S(h)"-. However Z(V(0)) = Hom(C,P(Z(g))) is not stable with respect
to the multiplication on S(h)"* apart from the case when P(Z(g)) = S(h)"-.

4.4. TIn this subsection we show that the Z(g)-rank of the module Homgy(V,) is not
greater than dimVlp. The crucial point is Lemma [{.4.] asserting that any elements

of Z(V) which are “linearly dependent” over S(h) are “linearly dependent” over Z(g).
Throughout this subsection V' € Irr is fixed.

4.4.1. Basic definitions. Let A be a commutative domain. For an A-module N define
an A-rank of N to be the dimension over the field of fractions Fract A of the localized
module N ®4 Fract A. Call elements 6,...,0, € N A-linearly independent if their
images in the localized module N ® 4 Fract A are linearly independent. Call the elements
A-linearly dependent if they are not A-linearly independent. Call an A-basic system of N
a collection 6y, ... ,0, € N such that the image of this collection in the localized module
N ® 4 Fract A forms its Fract A-basis.

Let L be a vector space and vq,... ,v, be a basis of L. Let N be an A-submodule of
Hom(L, A) and k be the A-rank of N. The collection 6;,... ,0; € N is a A-basic system
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=1,k
’ 11 € Mat(«r)(A) has a (k x k) non-zero minor. Call such

i=1,r

of N iff the matrix (Hj(vi))
a non-zero minor (which is an element of A) a minor of a basic system 01, .. .0y.

If p € Ais a minor of a basic system 6,,...6, then for any 8 € N one has pf =
Z;‘?zl p;0; for certain (unique) collection py,...,py € A. In particular, the localized
module N ®4 A[p~!] is a free A[p~!]-module and the images of 6y, ...0; form a basis of
this free module.

Recall that t2S(h)"- C P(Z(g)) (see B:32).

4.4.2. Lemma.

(i) Elements of Z(V) are Z(g)-linearly independent iff they are S(b)-linearly indepen-
dent.

(i) If 0y ... , 0, € Z(V) are S(h)-linearly independent and

> pit; =0
=0
for some 6y € I(V) and po, ... ,ps € S(h), then there exists zy, ... ,zs € Z(g) such that

i—02i0; = 0 and P(20) = t2q where q is a mazimal W.-invariant divisor ofpi)m.

Proof. Obviously, elements of Z(V') are Z(g)-linearly independent provided that they are
S(h)-linearly independent. The inverse implication follows from (ii) because we always
can choose a minimal (with respect to the inclusion) subset of S(h)-linearly dependent
elements in a set of S(h)-linearly dependent elements.

Let us prove (ii). The equality >5_, p;0; = 0 means that for any u € h* one has
Vo e Vip 0= pi()0;(v)(1) = > p;(W)P(¥'0;)(v))(1).
5=0

i=0

In the light of Lemma [.T.]), this gives
Ve b (3 pi (e (6;)) (V) C AnnV(p);
=0

here the sum belongs to Homgy(V,U) because W~'(6;) € Homy(V,U) and p,(u) € C.
Fix a root a € m; let s, € W be the corresponding reflection. Assume that p € b* is
such that V(u) = M(p)/M(sa-pt). Then, for “sufficiently large” y, any copy of V' inside

U which annihilates V(u), annihilates also M () and so V(se.u). To be more precise,
choose w € QA such that (w,a’) > 0 for all @/ € AT and (w, ) = 1. Set

R :={p e bl (a) n(n) €NT, (b) n(p) > (—v,w), (VB € AT\{Qa} (u+p,8) ¢ Q}.

where v stands for the lowest weight of V and n(u) := 2(u + p, @) /(o ). It is easy to
see that R is Zariski dense in h* and that any element in R is typical. Take u € R.
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By B.5.8, M (p) is not simple because n(y) € Nt. If M(y/) is a subquotient of M(p), then
(' —p) € NA™ and, by R.5.3, ¢/ = w.u for some w € W. Using the fact that any w € W
can be written as the product sg, - - - sg,, where 3y,... , 3, € A§ are linearly independent,
it is easy to deduce from the condition (c) that (w.u—u) € NA™ for any w # id, s,. Thus
V(p) = M(u)/M(sa.pt) and M (sq.p) is simple. Observe that sq.u = p — n(p)o and so
for any & € Q(M (sq.11)) one has (€,w) < (p,w) — n(p). Thus (1 + v) € QUM (s4.11)) due
to the condition (a).

Let N be a copy of V inside Ann V(u) Let u, be a lowest weight vector of N and v, be

a highest weight vector of M (). Since u, V(1) = 0 the vector u,v, belongs to M (Sq.1t).
However the latter does not have non-zero elements of weight (1 + v). Thus w,v, = 0.
One has u, M () = u,U(n" v, = U0 )u,v, because u, is a lowest weight vector that is
(adn~)u, = 0. Therefore u, M (p) = 0. Since Ann M (p) is ad g-stable, N C Ann M (u)

and, in particular, N C Ann V(s4.p).
Hence >25_ p; (11)(U=6;)(V) annihilates V (sq.p) for any u € R. Then, by Lemma [E1.]]

(Z(Sa-l’j)ej(v)) (W) =0
=0
for any v € Vo and any ’ such that s,.i/ € R. The terms >5—0(Sa-p;)0;(v) are polynomi-
als in S(h). Since R is a Zariski dense subset of h*, one concludes that these polynomials
are equal to zero. Consequently

s

Z(Sa-pj)ej = 0.

5=0
Taking into account that >7_op;0; = 0 and that 6;,...6; are S (h)-linearly independent,

one concludes that p;/po = (54-p;)/(Sa-po) for all j =1,... . s. Thus p;/po is W.-invariant
forall j =1,...,s. Then, by Lemma [T.I.g, for each j = 0,... , s there exists ¢; € S(h)""

such that ¢;/q = p;/po. By B3.9, 2S(h)"" € P(Z(g)) and thus #3¢; € P(Z(g)) for all
j=0,...,s. Since g;/q = p;/po one has

(t2Q)‘90 + i(tij)ej =0.

j=1

This completes the proof. O

4.4.3. Proposition. Lety,...,0, € (V) be a S(h)-basic system of T(V)S(h), p be
a minor of this system and z € Z(g) be such that P(z) = t3q where q is a maximal W.-

invariant divisor of V1. Then the localized module Homy(V ,U[271]) is freely generated
over Z(g)[z7] by {U10,,... , 0714, }.

Proof. Recall that W provides a Z(g)-isomorphism from Homg(V, ) onto Z(V). Therefore
the required assertion is equivalent to the following statement: the localized module
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Z(V) ®z Z(g)[z7"] is freely generated over Z(g)[z~']| by {6,...,6s}. In other words,

one has to show that for any 6, € Z(V') there exists a unique collection z,... , z; such

that 20, + >_1 2;0; = 0 or, equivalently, that there exists a unique collection ay,... ,as €
P(Z(g)) C S(h) such that

(t2q)90 + Z ajé’j = 0.
1

The uniqueness immediately follows from the fact that the collection 6y,...,6, is a
S(h)-basic system of Z(V)S(h). To prove the existence, recall that Z(V)S(h) is a S(h)-
submodule of Hom(V|o, S(h)). By [E41], for any 6, € Z(V) there exists a unique collec-
tion py, ... ,ps € S(h) such that pdy + >25_; p;#; = 0. Now the required existence follows

from Lemma [[.4.2 O

4.4.4. Corollary. The Z(g)-rank of Homy(V,U) is not greater than dim V|.

4.4.5. Remark.  Set r = dimV]y. Assume that Homgy(V,U) contains the collection
01,... 0, possessing the following property: for a certain A € h* the images of the modules

0,(V),...,0,(V) under the map U — U/ Ann V(\) form a direct sum. We claim that
b1,...,0, is a Z(g)-basic system of Homy(V,U).

In fact, choose a basis vy ...v, of V]o. By Corollary [L1.9, the rank of the matrix
j=1,r
(73(6’]-(1),-))()\))],_1 is equal to 7. Hence the rank of the matrix

Jj=Lr J

(v(0,0)) " = (P6;(0)_" € Mat(rnS(h)

i=1,r i=1,r

is also equal to r and so Wb,,... , V0, are S(h)-linearly independent in Z(V)S(h). Since
Z(V)S(h) is a S(h)-submodule of Hom(V|o, ), its rank is not greater than r. Hence

oy, ..., V0, is a S(h)-basic system of Z(V)S(h). Therefore 0y,... 0, is a Z(g)-basic
system of Homy(V,U) by Proposition [l.4.3.

4.5. In this subsection we show that the Z(g)-rank of Homy(V, ) is equal to dim V|o.

4.5.1. Separation Theorem claims the existence an ad go-submodule H of ¢/ such
that the multiplication map provides an isomorphism H ® Z(gg) — U. In both proofs
([Kd], [BO]) one constructs, actually, an ad go-submodule H’ of the symmetric algebra
S(go) such that the multiplication map provides an isomorphism H' ® S(go)% —— S(go).

Lemma. Let H be an ad go-submodule of U such that the multiplication map provides
an isomorphism gr H @ S(go)® — S(go). Then the ad g-module L := (adU)(HT) is

1somorphic to
By et E(f/)@dim Vlo
and the multiplication induces the monomorphism L ® Z(g) — U.
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Proof. Fix H satisfying the above condition. According to B.3, L := (adU)(HT) =
(ad’U)(H)T and as ad g-module L is isomorphic to the ad’ g-module (ad't/)(H) = Ind§ H.
Now the required isomorphism follows from ([).

Since L = (ad’U)(H)T and T is a non-zero divisor, the injectivity of the map L ®
Z(g) — U is equivalent to the injectivity of the map (ad'U)(H) ® Z(g) — U (both
maps are restrictions of the multiplication map). To check the injectivity of the map
(ad’U)(H) ® Z(g) — U it is enough to check the injectivity of its “graded version”:

gr((ad’U)(H)) ® gr Z(g) — S(g).

Recall that gr Z(g) = S(g)®. Let {x;}icr be an ordered basis of g;. For any J C I set
vy = [ljes x; where the product is taken with respect to the given order. Assume that

Z ZkJ gr((ad/xJ)hk) = 0
JCI;k=1,...,s
for some non-zero hy,...,hs € H and some z; ; € S(g)?. To check the injectivity one
has to show that all elements z; ; are equal to zero. Suppose not. For x € g, u € U one
has (ad’ z)u = 22u — (ad x)u. This implies gr((ad’ z;)u) = 2Vlgra; gru for any J C I
and u € U. For each J C I denote by P; the projection S(g) — S(go) grx, with the
kernel Ny := 3 cr 25 S(g0) gra . By 3.2, the restriction of Py to S(g)? provides a
monomorphism S(g)® — S(go)%. Choose J C I such that z; ; # 0 for some £k and J is a
minimal (under inclusion) subset of I possessing this property. Then

0 =P( X mreadesh))

JICILk=1,...,s

_ PJ( Z 2|JI‘Z]§,J’ grTy grhk))
JICLk=1,...s

:2|J‘gILL’J Z P@(zk,J)grhk.

k=1,...,s

Since gr H ® S(go)® —— S(go), all elements z; ; are equal to zero. The lemma is proven.
U

4.5.2. Corollary.  The Z(g)-rank of Homy(V,U) is equal to dim V|,.

Proof. Fix V € Irr and set r := dim V. Choose H satisfying the assumption of Lemma 5.1,
Then the vector space Homg(V, L) has dimension r; let 64, . .. , 6, be a basis of Homg(V, L).
The injectivity of the map L® Z(g) — U, induced by the multiplication, implies the Z(g)-
linear independence of ;... 6, in Homy(V,U). Thus the Z(g)-rank of Homy(V,U) is
greater than or equal to . Comparing with Corollary 4.4, one concludes the required
assertion. O

4.6. PRV determinants.
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4.6.1. Definitions. Fix V € Trr and set r = dim Vl]p. Lemma [EZ3 (i) implies that
b1,... .0, is a Z(g)-basic system of Homy(V,U) iff U6;,..., ¥, is a S(h)-basic system

of Z(V)S(h). By [E4.1], the last is equivalent to the condition that det C' # 0 where
C = (P(0;(1v:))) € Mat(rsr)(S(D))
and {vy,...,v,} is a basis of V.

Call such a matrix a PRV matriz (corresponding to the basic system 6y, ... ,6,) and
the determinant det C' a PRV-determinant. Note that for different choices of a basis
{v1,...,v.} of V|o the PRV-matrix corresponding to 64, ... , . differ by the multiplication
on an invertible scalar matrix.

Denote by J (1:/) the set of all PRV-matrices and by det 7 (V) the set of PRV determi-
nants (for fixed V' € Irr). One has

det J (V') = {det (P(0;(v:)))| 61, ,0, € Homg(V, 1)} \ {0}.

For each v € h” such that dim V() < oo set det J(v) = det J(V(v)). For A € h* we
write det J(V)(A\) = 0 if (det C')(\) =0 for all C' € J(V).

If 6y,...,0, is a Z(g)-basic system of Homgy(V,u), then for any non-zero z € Z(g)
the collection 201,60, ... 0, is also a Z(g)-basic system. Consequently, det 7 (V) is closed
under the multiplication on the non-zero elements of P(Z(g)).

4.6.2. Let N be an ad g-submodule of I such that dim Homy(V,N) = dimV|],. By
slightly abuse of notation, we shall denote by det J(V; N) the determinant of the matrix
(P(Hj(v,-))) where 6y,... ,0, (vesp, vy, ... ,v,) is a basis of Homg(V, N) (resp., Vo). Note
that det J(V; N) can be zero.

For different choices of a basis 61, ... ,0,, the values of det J (‘7, N) differ by a multi-

plicative constant. Hence det J (‘77 N) is a polynomial in S(h) defined up to a non-zero
scalar.

4.6.3.  Remark. The original definition of PRV determinants given in [PRV] for
the semisimple Lie algebras differ from our definition. Namely, the PRV determinant
p(V) is equal to the polynomial det J(V; H) where H is a harmonic space (see .81)).
This definition works for completely reducible Lie superalgebras as well. In our notation

det 7(V) = S(h)Vp(V) \ {0}— this follows from Separation Theorem 2:8.1].

4.64. Take V € Trr and p € det J(V). Let 6y,...,0, be a Z(g)-basic system of
Homg(f/,a) such that the determinant of the corresponding PRV matrix is equal to p.
Denote by g the maximal W.-invariant divisor of p. Combining Remark [f.4.5 and Propo-
sition 4.3, one concludes that z € Z(g) satisfying P(z) = t?¢!"! possesses the following
property: for any 6 € Homg(f/,I;{) one has z0 = >!_, 2z;0; for certain z; € Z(g).
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In particular, for a := P(2)" = t>"¢"!"! one has
a-det J(V) CP(Z(8))p € S(h)"p.
On the other hand, P(Z(g))p C det J (V) by [6.1.

4.6.5. Corollary. Take V € Irr. For any p € det J(V) there ezists a € S(h)"" such
that

P(Z(9) \ {0})p C det T (V)  S(5)" [ ]p.

4.6.6. Fix V € Irr. Take a basic system 60y, ... ,6, and denote by C the corresponding
PRV matrix. Recall that det C' # 0. For each A € h* denote by C(\) the complex
matrix which is obtained from C' by the evaluation of all entries at A. Clearly det C'(\) =
(det C)(A). By Corollary 1.3,

corank C'(\) = dim Hom, (‘7, AnnV(\) N > 9](‘7))
j=1

In particular, Ann V(\) N> -1 0,(V) = 0 iff det C(\) # 0. Then, for f, being the natural
map U — End(V())), one has

dim Homy(V, fr(Soclf)) = max{rank C(\)|C' € J(V)}. (4)

Combining [T.T-H and ([]) one obtains

4.6.7. Corollary. Assume that ]\7{(2\) is simple. Then the image of the socleNon/N{
under the natural map U — F(M(X), M(X)) coincides with the socle of F(M(X), M(X))
iff det J(V)(X) # 0 for any V € Irr.

4.6.8. Change of Borel. In the definition of PRV matrices we use the Harish-Chandra
projection. Therefore this definition depends on the choice of triangular decomposition. In
the sequel we will add a lower index to designate the corresponding Borel subsuperalgebra
in the cases when the choice of triangular decomposition is not clear from the context.

For instance, Ju(V) is the set of PRV matrices of the form (Pb(ﬁj (vl))) where 01, ... ,0,
is a Z(g)-basic system of Homg(V,U) and vy, ... ,v, is a basis of V.

_ Let b and b’ be connected by the odd reflection along an odd isotropic root 3. By 2.7,
Vo(A) = Vi (X') where A = X" if A is such that (A, 3) = 0 and A = X' + 8 otherwise. Then
for any V' € Irr the equality ([l) implies

max{rank C'(\)] Ce Jo, (V)} = max{rank C(\)| C € jb2(17)},

det To (V)(N) =0 <= det Jo,(V)(N) = 0.
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4.6.9.  Remark. The equality A) has the following consequence: for any PRV determi-
nant p € det J(V) and any A € h*, the order of zero of p at the point A is greater than
or equal to the value (dim V' |y — dim Homy(V, End(V'(X))).

In the case when g is completely reducible, this property is used for the calculation of
PRV determinants—see [JI],[J3],[[GLI]. Recall that, in this case, the PRV determinant is
a polynomial defined up to a non-zero scalar (see Remark [£.6.3).

4.7. Separation type theorem.

4.7.1. Definition. Call an ad g-submodule L of U a generic_harmonic space if the
multiplication map provides an isomorphism L ® Z(g)[S™!] — U[S™!] for certain S C

(Z2(g) \ {0}).

In Theorem [.7.4 we describe all generic harmonic spaces in U. Of course, if L is a
generic harmonic space then L ® Z(g)[S™!] — U[S™!] for S := Z(g) \ {0}. However it
is always possible to find a smaller S; in Corollary we describe such S in terms of
PRV determinants. As it is shown in Section [i, for g = sl(m, n) or osp(2,2n) there is a
generic harmonic space in U such that one can take S = {T?}.

4.7.2. Lemma. If an ad g-submodule L of U is such that

(a) L=ap, BIV)etmve,
(b) VW elrr detJ(V;L)#0

then it is a generic harmonic space.

Proof. Set b} = {v]| dim V(v) < co}. For each v € b} choose a basis 07,... 6y, of
Hom,(V (v), L). Recall that 7’( ) = dlmV( )lo- By [:6-1], the collection 67, ... , 0y, forms

a Z(g)-basic system of Homy(V (v),U). By 6.4, for a suitable 2(v) € Z(g) the collection
0, ... .07, forms a free Z(g)[z(v)~']-basis of the localized module Homgy(V (), U[z(v)~1]).

Set S := {2(v), v € b}}. Denote by 1 the map L ® Z(g)[S™'] — U[S~'] induced
by the multiplication. For any v € b} the collection 67, ... 0y, forms a free Z(g)[S™"]
basis of the localized module Homgy(V (v),4[S™']). This means that the restriction of ¢
on the space 33 6"(V) @ Z(g)[S~!] is a monomorphism and its image coincides with
the isotypical component of V() in the socle of [S™!]. Then the restriction of ¢ on
SocL @ Z(g)[S7'] is a monomorphlsm and SocZ/{[ 'l = ¢(Soc L ® Z(g)[S™']). Using
the equality Soc L ® Z(g)[S™!] = Soc(L ® Z(g)[S™!]) and B-1.2, one concludes that ¢ is a
monomorphism. From B.2.3, it follows that L @ Z(g)[S™'] is an injective module in Fin.

Since the image of ¢ contains SocU [S~1], 4 is a bijection. The lemma is proven. O

r(v)
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4.7.3. Corollary. If H satisfies the assumption of Lemma J5.4 then (adU)(HT) is
a generic harmonic space.

Proof. By Lemma [E5.1], L := (adU)(HT) fulfills the condition (a) of Lemma 7.3,
Fix V € Irr and choose a basis 6; ... , 0, of Homg(f/, L). Observe that r = dim 17|0.

The injectivity of the map L @ Z(g) — U, induced by the multiplication, implies the
Z(g)-linear independence of 6y, ..., 6, in Homy(V,U). Since the Z(g)-rank of the latter
is equal to r, the collection 6y, ... ,6, forms a Z(g)-basic system of Homy(V,U). Then,

by E6.1], det 7 (V; L) # 0. By Lemma 7.3, (adi{)(HT) is a generic harmonic space. [

4.74. Theorem. An adg-submodule L of U is a generic harmonic space iff

(a) L=&y, E(V)®dimVio

and one of the following conditions holds

(b) VYV elrr detJ(V;L)#0

(¢)  the multiplication map provides an embedding L @ Z(g) — U.

Proof. By Lemma [.7.9, L satisfying (a) and (b) is a generic harmonic space. Arguing as
in Corollary one concludes that L satisfying (a) and (b) is also a generic harmonic
space.

It remains to show that any generic harmonic space L fulfills the conditions (a)-(c). The
condition (c) obviously holds. Moreover, for any V' € Irr a basis 61, .. , 6, of Homg(V', L)
is a Z(g)-basic system of Homy(V,U). Therefore det J7(V; L) # 0 and so (b) holds as

well.

To verify the condition (a), let us show that all generic harmonic spaces are pairwise
isomorphic as ad g-modules. Indeed, let L and L' be generic harmonic spaces. Since U is
countably dimensional, one can choose the corresponding sets S, 5" C Z(g) \ {0} having
countable number of elements. Take a maximal ideal m of Z(g) such that mN(SUS’") = 0.

Then as ad g-modules L = U/(mi) = L'. In Corollary we construct a generic
harmonic space satisfying (a). Hence all generic harmonic spaces satisfy the condition
(a). The theorem is proven. O

4.7.5. Now we can formulate the following “receipt”. For each V e It fix a Z(g)-basic
system 6}, ... ,0Y of Homg(V, ). The module >V emy

inside an injective ad g-module T. This injective envelope is a generic harmonic space
by Theorem [.7.4.

TQH;?(V) has an injective envelope

4.7.6. Combining and the proof of Lemma [£.7.9, one obtains the
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4.7.7. Corollary.  Let L be a generic harmonic space and S C Z(g) \ {0} satisfies the

following property: for any V € Irr there exists s € S such that P(s) = t>q where q is a

- W
mazimal W.-invariant divisor of (det J(V; L))‘ I. Then the multiplication map provides

an isomorphism L ® Z(g)[S™'] == U[S™].

5. APPLICATION TO THE DESCRIPTION OF VERMA MODULE ANNIHILATORS

In this section we prove Theorem [5.9 which provides a connection between PRV deter-
minants and the annihilators of simple modules.

5.1. Proposition. For a simple strongly typical Verma moduleM(X) the following
conditions are equivalent:

(i) For any V € Trr one has det 7 (V)(\) # 0.
(it) The natural map U — F(M(X), M())) is surjective and

F(M(N), M(V) = @, BV VD,

\7€Irr

Proof. Fix a strongly typical A such that M (A) is simple. Denote by f the natural map

U — F(M(N), M(N)).

Let us show that (i) implies (i). Indeed, if both conditions of (i) hold then F(M (), M (X))
is projective in Fin and so f has a left inverse f~!. Denote by N the image of f~!. Take
V € Irr and choose a basis 6, ... ,6, of Homg(IN/,N). By Remark .43, 60,,...,6, is a
Z(g)-basic system of Homg(V, ). Denote by C' the corresponding PRV matrix. Since the
restriction of f to N is a monomorphism corank C'(A\) = 0, by [.6.6. Hence det C'(\) # 0
and so det 7 (V)(\) # 0 as required.

Let us show that (i) implies (ii). Suppose that (i) holds. By Corollary 6.4, f(Socl)
coincides with the socle of F(M(X), M(\)). The socle of U is a completely reducible
g-module and so it contains a submodule L such that the restriction of f gives an isomor-
phism L < Soc F(M(X), M()\)). The central element T2 acts on M()\) by a non-zero
scalar t(\)? (because A is strongly typical) and thus one can choose L lying in T2U.
By B.3.2, TU is an injective ad g-submodule of U and so it contains an injective envelope
E(L) of L. The restriction of f to E(L) is a monomorphism because the restriction of f

to L is a monomorphism. Therefore f(E(L)) is an injective module containing the socle

of F(M(X), M()\)). Using B.I.T), one concludes that the restriction of f provides an iso-

morphism E(L) — F(M(X), M()\)). In particular, f is surjective and the ad g-module
F(M(X), M (X)) is injective in Fin. Combining these facts and [[1.1.9, one obtains (ii). O
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5.2. Theorem.  Suppose that A € h* is strongly typical and det T(VYN) # 0 for all
Ve lrr. Then AnnV(A) = U Anngg V(A).

Proof. For each V(v) € Irr choose p, € det J(v) such that p,(\) # 0. Let 67, ... 070 €

Homy(V(v),U) be a Z(g)-basic system such that the determinant of the PRV matrix
corresponding to this system is equal to p,. Let ¢, be the maximal W.-invariant divisor
of pWl and 2, € Z(g) be such that P(z,) = t?q,. Note that z, ¢ Annz V(\) since
(£2py)(A) # 0.

Let S be the multiplicative closure of the set {T2: z,| V(v) € Irr} . Denote by A
the localization of Z(g) by S and by Uy the localization of 2/ by S. The action of U
on V(\) can be canonically extended to the action of the localized algebra U, since
SN Annzg V(M) = 0. The action of & on V()\) can be canonically extended to the
action of the localized algebra U4 acts on V()). Clearly, the ideal Anny V()) is maximal
in A.

Let us show that Anng V(\) = Uy Anny V()). Combining 7.4 and Corollary fE7.7,

one concludes the existence of ad g-submodule H of I such that

r(v)
SocH= Y Y T°Im¢, (5)

V:v(u)elrr =1

and that the multiplication map induces an isomorphism H & A % Us. To verify
Anng V(A) = Us Anny V(A it is enough to check that # N AnnV(A) = 0. Observe
that det J(V(v); H) = p,t¥® and so det J(V(v), H)(\) # 0 for all V(v) € Irr. Then,
by B.6.6,

r(v) _

(> Im#6,) N AnnV(X) = 0.

i=1
that is Soc H N Ann ‘7(& — 0. Therefore H N AnnV(\) = 0 as required. Hence
Anng M(X) =Ua Anny M(N).

Take u € Anng; V(\). Write u = Y7, u;z; where u; € H, z; € Anny V()). Choose z € S
such that zu; € U and zz € Z(g) for all i = 1,... ,m. Observe that zz; € Annz g V(N
forall i =1,...,m. Therefore

ZPu=> (zu)(2z) € L?Annz(g) V(N).
i=1

Recall that S N Annzg V(M) = 0 and so (22 — ¢) € Annzg V(\) for a certain non-zero
scalar c. Hence u € U Annz(g V(A). This completes the proof. O
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5.3. PRV determinants and Shapovalov form factorization. Assume that for some
V € Irr the set det J (f/) contains a non-zero polynomial p whose all irreducible factors
are either a divisor of a Shapovalov form (see R.5.§) or a divisor of . An irreducible factor
of a Shapovalov form takes either a form (a¥ — (p,a) — n) (a first type factor) for some
non-isotropic positive root o and some n € N* or a form (a" — (p,a)) (a second type
factor) for some isotropic positive root «. Note that the factors of the second type are
divisors of t. Observe that for n # 0 the element

So-(a’ — (p,a) —n) = —a’ + (p,a) —n

is neither a divisor of a Shapovalov form nor a divisor of ¢t. This forces the maximal
W.-invariant factor of p/"! to be a divisor of ™ for some m € N.

Then f.7.4- [.7.5 imply

5.3.1. Theorem. Assume that for any V € Trr there exists a non-zero element
in det J(V') whose any irreducible factor is either a divisor of a Shapovalov form or a
divisor of t. Then there exists an ad g-submodule H of U such that

0= 69\f;elrr E(V)@dim‘/\o

and the multiplication map induces an isomorphism H @ Z(g)[T 2] — U[T~2].

Recall that M (A) is simple iff all Shapovalov forms are non-zero at the point A. Theo-
rem B.7 yields

5.3.2. Theorem. Assume that for any V. € Irr there exists a non-zero element
in det J(‘N/) whose any irreducible factor is either a divisor of a Shapovalov form or a
divisor of t. Then the annihilator of ]\7()\) is centrally generated provided ]\7[()\) being
simple strongly typical.

As it is shown in [[GLI] the condition of the last two theorems holds for g = osp(1,2n).
We will prove that this condition also holds for the basic classical Lie superalgebras of
type L. Contrary to the case osp(1,2n), the proof is not based on the calculations of PRV
determinants.

6. THE BASIC CLASSICAL LIE SUPERALGEBRAS OF TYPE I.

Throughout this section g is a basic classical Lie superalgebras of type I that is g =
gl(m,n),sl(m,n),psl(n,n) or g = osp(2,n). We describe some common properties of
these superalgebras which are used in the next section.

6.1. Notation. The Lie superalgebras of type I are Z-graded. We denote by g, (r € Z)
the corresponding homogeneous component of g and by gg (resp., gy) the even (resp., the
odd) part of g.
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One has go = gg and gy = g1 + g—1. In particular, both superalgebras g4 are super-
commutative and the exterior algebras Ag.; are naturally embedded into &. One has
U=A(g_1)UA(g1). As ad go-modules g, are irreducible and dual one to another.

All odd roots are isotropic and so the notion of “typical” coincide with the notion of
“strongly typical”.

Extend the above Z-grading on U(g); evidently U(g), = 0 if [r[ > dimg;. Moreover
for r = dim gy one has U(g)+, = UA"(g+1). By default, “the degree” of an element of U
means its degree with respect to this Z-grading.

6.1.1. Distinguished triangular decomposition. Set ni := ng + g+;. The decomposition
g =n; ®hdn; is called a distinguished triangular decomposition. By default, all
highest weight modules, positive/negative roots, Harish-Chandra projection P and PRV
matrices/determinants are constructed with respect to the distinguished triangular de-
composition.

Note that (p,a) = (po, ) for any a € Ag since A = Q(g;) is W-invariant. In
particular, w.u = w(p + po) — po for any w € W and p € h*.

The Verma modules constructed using a distinguished triangular decomposition have
the following nice structure: M (u) = Indﬁ0 ot M () where the action of ni on M(u) is
1

assumed to be trivial.

6.1.2. For a € A denote by e, (resp., f.) an element of the weight o (resp., —a) of g.
For 8 € AT (resp., 8 € A7) denote by x5 (resp., ys) an element of the weight 3 of g.

Denote by I the set of the positive odd roots with a fixed total order. Then {z;};cs
(vesp., {yi}ier) is a basis of g1 (vesp., g-1). For any J C I set x; := [lics @i, Y7 := [Lics ¥i
where the products are taken with respect to the total order on I. If we change the order
of factors in the product y; the result is equal either to y; or to (—yy), since g+ are
supercommutative. Note that yy; = xz; =0 for any y € g_1, 7 € g1.

Evidently z; € A'Pgy, y; € APg_; and so z;,y; are invariant with respect to the
adjoint action of [gg, go]. Moreover x;y; is ad go-invariant due to the duality gf = g_;.

6.1.3. Sometimes we will deal with a non-distinguished triangular decomposition g =
n~ @ bhdnt. We shall use the following notation: b := h + n*; Py will be the Harish-
Chandra projection with respect to this triangular decomposition, A(b) will be the set of
non-zero roots of b and also

I+ .= I N A(b),
I =I\1,,
tbi :Pb(T)

Note that
tb = HﬁEAlﬂAb (ﬁ\/ _I_ (ﬁ?p))
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As before, the triangular decomposition of gg is assumed to be fixed and all triangular
decompositions of g which we consider are compatible with this triangular decomposition
of do-

6.1.4. Case psl(n,n). This case is rather special. A Cartan algebra of g = psl(n + ne)
s “too small” and a distinguished triangular decomposition does not fit the definition
given in P.3. Moreover the restriction of the Harish-Chandra projection determined by
the distinguished triangular decomposition to the zero weight space is not an algebra
homomorphism: for instance, both y;, x; have zero weight, P(y;) = P(x;) = 0 however

P(z1yr) = t—see Corollary p-3-3.

A possible treatment to this problem is the following “enlargement of a Cartan subsu-
peralgebra”. The Lie superalgebra g is an ideal in the Lie superalgebra g := gl(n,n)/(CX)
where X stands for the identity matrix. One has g7 = g1 and go = go X Cz where z is a
central element of the Lie algebra go.

Let 6 be a Cartan subsuperalgebra of go spanned by h and z. One can easily sees that 6
acts semisimply on g and a distinguished triangular decomposition of g is determined, in
a sense of 2.3, by a certain regular element h € h. For u € h* set U|, := {u € U| [h,u] =
w(h)u, Yh € f)}. Then the restriction of the Harish-Chandra projection determined by
the distinguished triangular decomposition on U lo is an algebra homomorphism because

Ul NUM™ +h)n~ =

It is easy to see that for any weight g-module M one can extend (not uniquely) its g-
module structure to a g-module structure. This implies that Lemma f.T.T remains true for
the distinguished triangular decomposition if we define |y as above. For ad g-submodules
of U consider the natural g-module structure coming from the embedding U into U (9).
In the sequel, we substitute the categories Irr and O for g by the same categories for g
(these g-categories have the same sets of objects as their g-analogues but less morphisms).
Under these conventions all propositions of Sections [, f remain true for g = psl(n,n).

6.2. Useful assertions. The following lemma is an immediate consequence of the su-
percommutativity of gi;.

6.2.1. Lemma. Let N be a g-module and N be its go-submodule such that N =UN.
Then the canonical map Ind§ N — N is an isomorphism iff for each collection {v;}jcr
of elements of N one has

ZL’]ZyJ’l}JZO — 'UJZO, vJ CI.
JCI

Recall that M () is typical iff £(\) # 0 or, equivalently, TM(\) # 0. .
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6.2.2. Lemma. A typical Verma module ]\7()\) contains a simple Verma submodule.

Proof. Recall that (pg, ) = (p,«) for any o« € Ay. Comparing the factorizations of
Shapovalov forms (see £:5.§) for the Lie superalgebras g and go, one concludes that a
typical g-module M () is simple iff the go-module M ()) is simple. Let M () be a typical
Verma module and v be its highest weight vector. Then U(ny)v = M(A) contains a
simple submodule M()'). Therefore there exists u € U(ngy ) such that njuv = 0. The
ad go-invariance of g; yields g;(uv) = ugiv = 0. Thus the vector wv is primitive and so
U(uv) is a quotient of M(N'). The non-zero elements of U(gy) are non-zero divisors in U
since the non-zero elements of S(go) are non-zero divisors in S(g) = S(go)A(g7). Thus

U(uv) = M(X). Since M(X) is simple, M(X) is also simple. The lemma is proven. [

6.3. Element T'. For the classical Lie superalgebras of type I the element T takes a very
simple form given by the following

6.3.1. Lemma. Up to a non-zero scalar T = (ad'y;x;)1.

Proof. Recall B-3.3. It is enough to show that if v is a generator of a trivial go-module V' (0)
then y;zjv spans a trivial g-submodule of Ind§ V(0). In other words, one has to verify
that g(y;x;) C Ugo. The ad go-invariance of y;z; forces gg(yI:EI) = (yrxr)go. Moreover

g_1(yrry) = 0. Thus it remains to check that zgyrz; € Ugo for any 3 € AT. Setting
J =1\ {0} one has

vayrvr = *wgy_pysrr = £([vs, y_pl—y-prs)ysrr = £([2s, y_plyszr—y-s((ad xs), ys)21)
since xgry = 0.

The term yrx; is of the zero weight and so the weight of y;x; is equal to 5. The term
[23,yp] lies in b; one has [[zg,y_g], x5] = 0 since 23 = 0. Therefore 5([xs,y—s]) = 0 and

s0 [xg, y—slyszr = ysxrlzs, y—s) € Ugo.
Let us show that y_g((adzs)ys)z;) € Uge. For any 3 € J one has (adzg)y_s €
(ng +ng). Since A"(g_,) is ad go-invariant for all 7, this implies that
(ad2)ys € A72(g_1)(C +ng +ng) (6)

where [ := dimg;. If y; € A'""%(g_;) has the same weight as the element (adzs)y;,
then the set I\ J' contains two elements whose sum is equal to 2(3. Since the multiset [
contains exactly one element equal to 3, this implies § € J’ that is y_gy,» = 0. Then (@)
gives

y-s((adz5)ys) € y—sA"?(g-1)(ng +ng)
and so

y—s((adzg)y)zer € N go1)(ng +nd)zy = A (go1)zr(ng + 1) € Ugo

since z; is ad([go, go|-invariant. The assertion follows. O
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Take any triangular decomposition g = n~ @ n @ n' and retain notation of p.1.3.

6.3.2. Lemma. Up to a non-zero scalar one has

Po(xr,yr, ) Po(yr_ ) = H (BY 4+ 3" (pv))-
BEA1(b)

Proof. The right-hand side is equal to t, = Py(7"). By Lemma [.3.0], up to a non-zero
scalar T' = (ad’ z;y;)1. Thus one should verify that

Po((ad" yrar)1) = Po(wr yr, ) Po(yr_x1_)
up to a non-zero scalar.
Since g; is supercommutative, (ad’ z;)1 = 24™ %z, and
Po((ad yrep)1) = 24 Py((ad’ yp)ar) = £29 8 Py((ad’ yr, ad yr_)wr).

Recall that for a € I, one has y_, € n~ and so P((ad'y_o)u) = £P(uy_,) for all u € U.
Therefore, up to a non-zero scalar,

Po((ad’ yrzr)1) = Po(((ad’ yr_)z1)yr, ).

Similarly for any o € I_ one has y_, € n* and so Py(uy_ayr,) = Pe(Ffuyr, y-o) = 0.
Therefore

Po(((ad"yr)xn)yr,) = Pe(yr_zryr,) = £Pe(yr_zr_ 21, yr,) = £ Pe(yr_ 21 )Pe(@r.yr, )

where the last equality is a consequence of the fact that the restriction of the Harish-
Chandra projection to the zero weight space is an algebra homomorphism. Hence

Pb((ad/ yrer)l) = 24 glpb(xIerIJr)Pb(yIJEL)'

The lemma is proven. O

6.3.3. Corollary. Up to a non-zero scalar one has P(z1yr) =t = [lzea+ (8 +5"(p)).

6.3.4. Lemma.  If A € b* is such that Po(zr,yr,)(\) = 0 then xMy(\) = 0. If
Polyr_xr_)(A) =0 then y; My(X) = 0.

Proof. Both assertions are similar. To verify the first one, fix A such that Py(z;, yr, )(A) =
0 and set M := Mpy(\). Denote by v a highest weight vector of M. One has

/M = zU(ng) Yo wpynv=Ulg) Y rysv

JCIp,JaCl- JCly

since x; is adng-invariant and z;z; = 0 for J # (). Note that z]w =0if k > #I_.
Therefore z;y v =0 if (#1 — #J1) > #1_ that is if #J; < #1,. Consequently

LL’[M = U(ng)x1y1+v = U(ﬂ6)$[7$[+y[+v = U(ﬂ6)$[77)b($[+y[+)(>\)v =0

as required. O
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7. SEPARATION AND ANNIHILATION THEOREMS FOR TYPE I CASE.

Throughout this section g is a basic classical Lie superalgebras of type I that is g =
gl(m,n),sl(m,n)psl(n,n) or g = osp(2,n). In this section we establish separation and
annihilation type theorems for these algebras.

Retain notation of Section . Until 3.2 we will deal only with a distinguished trian-
gular decomposition.

7.1. Proposition. For a typical Verma module M one has
(i) F(M,M) = ®yep,(Indg, V)&dmVio,
(i1) For H being a harmonic space of U(go) the restriction of the natural map
U— F(M,M) to (adU)(Hzyyr) is a bijection.

Proof. Let H be a harmonic space of U(go). Recall that dimg (V, H) = dim V|, for any
V € Irrg.

Define the map ¢ : Ind§ (H) — (adU)(Hzyy;) by g @ h — (ad ¢)(hayy;). Since zyy; is
ad go-invariant, Hxry; = H as ad go-modules and so ¢ is a g-epimorphism. Denote by f
the natural map f: U — F (M M ). To prove the theorem it is enough to show that the
map f o : Indg (Hxryr) — F(M, ]\7) is a bijection.

Let p be the highest weight of M and v be a highest weight vector of M. Then
M :=U(go)v = M(p). By B8, the restriction of the natural map U(go) — F (M, M) to
H is bijective.

To prove that f o1 is a monomorphism recall Lemma [6.2-]. Let {a;};cr C H be such
that

bM =0 where b:= (Z(adeyJ)(aJ:cIy[)).

JCI
We need to show that a; = 0 for all J C I. One has (ady,)(aszryr) = ysasxry; since
g_1y;r = 0. Therefore
b= (adxj)(z YjasTryr).
JCI
Take u € U(ny ). The equality g_1y; = 0 implies

0 = b(yruv) = ((ad xl)(z yJaJIIyI))yIUU = Z tysa,T1y1eryruv
JCI JCI
since yrxypy; = 0 for J' # I (the degree of yrzyyr is equal to r := #J — #2I and
U, = 0 for r < —#1I). By Corollary [.3.3, P(xy;) = t and so zyyuv = uzyv = t(p)uw.
Therefore b(yjuv) = t(u)* Y c; tysauv. Hence b(y; M) = t(u)? Y c; +ysa;M. Since
t() # 0 and a; M C M, the equality b(y; M) = 0 implies a; M = 0 for all J C I. However
the a; belong to H and H N Ann M = 0 by Theorem P.8.3. Therefore all a; are equal to

zero. Hence f o) is a monomorphism.
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Let us show that f o is surjective. Recall that as go-module MM Ag_q. Take a
simple finite dimensional go-module V. Using Frobenius reciprocity and 2.8.2), one obtains

dim Homyg, (V, F(M,M)) = dim Homg, (M @ V, M)
= dim Homy (V ® Ag_y ® M,Ag_; @ M)
= dim Homg, (V ® Agr, F(M, M))
= dim Homg, (V ® Agr, H) = dim Homy, (V, Agr ® H)
= dim Homg, (V,Ind3 H) = [Im(f o)) : V].

Since F(M, M) is a completely reducible ad go-module and the multiplicity [Im(fo¢) : V]
is finite, this gives F'(M, M) = Im(f o ¢) and completes the proof. O

Retain notation of [£.6.9.

7.1.1. Corollary. Let H be a harmonic space of U(go) and L := (adU)(Hzy;). Then

L Y @ E(V)@dlm\f;h)

;EIrr

and for any V € Irr the determinant det J(V; L) admits a linear factorization. Moreover
each linear factor is a factor of a Shapovalov form.

Proof. Combining Proposition [/-]] and (B]) one obtains

L= 69\A}Elrr

E(V EBdimWO.
 E(V)

Fix V € Irr and set p := PRV(V; L). Recall that M (y) is simple iff 1 is not a zero of
a Shapovalov form. In particular, an atypical Verma module is not simple. Taking into
account Corollary [.T-2, one concludes from Proposition [[-]] that p(p) # 0 provided that

M () is simple. Thus any zero of p is a zero of a Shapovalov form. Since each Shapovalov
form admits a factorization into linear factors, this implies that the set of zeroes of p
lies in a union of countably many hyperplanes which correspond to the linear factors of
the Shapovalov forms. Therefore p is a product of linear factors which are factors of
Shapovalov forms. O

7.2. Separation theorem. Combining Corollary [.I.1], Theorem [.7.4, Corollary f.7.7
and .3 one obtains the following version of Separation Theorem

7.2.1. Theorem. Let H be a harmonic space of U(go). Then the multiplication map
provides an isomorphism ((adL{)Hny[) ® Z(g)[T?] — U[T2].

7.3. Annihilation theorem. In this subsection we prove that Ann My()) is a centrally
generated ideal iff My()) is typical.
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7.3.1. Combining Corollary and Theorem [.3.3, one concludes that Ann M()\) is
centrally generated if M()) is simple. By Lemma 6.2, any typical Verma module M(\)
contains a simple Verma submodule. This implies that Ann M (\) is centrally generated if
M ()) is typical. Using .7, it is easy to generalize this statement to any Borel subsuperal-
gebra b. Indeed, a typical Verma module My()) is isomorphic to a Verma module M(N).
Recall that a Verma module Mb()\) is typical iff its annihilator does not contain 7'—
see B3, Thus M(X) is typical and so Ann My(A\) = Ann M(X) is a centrally generated
ideal. Hence Ann My()\) is centrally generated provided that My()) is typical.

In the rest of this section we will show that Ann My()\) # I/N{Anng(g) Me(\) if My()\) is
atypical that is tp(A) = 0.

7.3.2. The proof goes as follows. Take A € h* such that t5(\) = 0. Set ¥ := Annz g My(\).
The idea is to find V € Irr satisfying the following conditions

a) I;Iomg(V,LN{) # 0,

b) V is typical , N

c) VO € Homy(V,U) 6(V) C Ann My(N).
Assume that Ann ]\715( A) is a centrally generated ideal. Then the above conditions imply
the equality Homg(V,U) = ¥ Homy(V,U) that yields

det J(b,V) C P(¥)det T (b, V).

Since det 7 (b, V) is a non-zero subset of S(h) and P(X) is a subset of S(h) which does

not contain non-zero scalars, the last inclusion is impossible. Thus Ann Mb()\) is not a
centrally generated ideal.

7.3.3. Retain notation of f.1.9. There exists z € h such that ad z acts by zero on gg and
by identity (resp., minus identity) on g; (resp., g_1). Recall that p; = %ZﬁeAf £ and so

2p1(z) = dim gy.

7.3.4. Lemma. There exists v € b* such that
a) Homg(V(v),U) #0,
b) V(v) is typical,
d) z(v) =dimg;.

Proof. Recall that the condition b) is equivalent to the inequality (v ) 0 where t =
[geat (B + (p, 8)). Observe that z # 3 for any 3 € Af, since 3Y(3) = 0 # 2(3). Thus
the restriction of the polynomial ¢ on the hyperplane

S :={peb’| 2(p) = dimgy, (Z(g) Nbh)(n) =0}

is a non-zero polynomial (one has Z(g) N'h = 0 apart from the case g = gl(m,n)).
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Consider the set
X = {n € b*| Homg, (V(u),U(go)) # 0}
It is easy to see that X is a Zariski dense subset of the hyperplane

{neb| z(u) =0,(2(g) Nb)(u) =0} =S5 = 2p1.
Thus t(v' + 2p1) # 0 for a certain ¥ € X. Hence v := 1/ + 2p; fulfills the conditions
b) and ¢’). Let show that v satisfies a). Since 1/ € X, there exists a copy V = V(v)
inside U(gp). Let u be a highest weight vector of V. Then wuz; is a non-zero primitive
(that is (ng 4 g1 )-invariant) element of I having weight v. Therefore the ad g-submodule
generated by uz; is a finite dimensional quotient of M (). Since ¢(v) # 0, a unique finite
dimensional quotient of M (v) is isomorphic to V(v). Hence Homy(V (1), U) # 0. O

7.3.5.  Remark. Similarly there exists a typical simple module V with the lowest weight
v such that Homy(V,U) # 0 and z(v) = — dim g;.

7.3.6. Fix A € b* such that Py(z, yr,)(A) = 0. Set X := Annz(y M()\) and assume that
Ann M()\) = U¥.

Fix v satisfying the conditions a)—c’) of Lemma [.3.4. We claim that v fulfills the
condition ¢) of (32

Indeed, let v be a highest weight vector of V := V(v). Take any 6 € Homy(V,U).
By the assumption ¢’) zv = (dimgi)v that is [z,0(v)] = (dimg1)0(v). Therefore 6(v)
has degree dim g that is 6(v) € U(go)zs. Lemma p.3.4 asserts that 27 Me(A) = 0 and so
0(v) € My(X) = 0. Since Ann My()\) is ad g-stable, it contains 0(V').

By the assumption AnnM()\) = UX and so the element §(v) can be written in a
form 0(v) = X zu; where all z; belong to y. Without loss of generality we can assume
that each element u; has the same weight and the same central character as 6(v) with
respect to the adjoint action of Z(g) C U on U. Since V is typical, Vis a unique, up
to isomorphism, cyclic module in Fin with this central character. Therefore ad g-span of
each w; is isomorphic to V that is u; € HZ(V) for certain 6; € Homg(V,LN{). Since wu; has
weight v and v spans V|, one can assume that u; = 6;(v). Then 6(v) = 3 z0;(v) and so
0 =3 2z0;. Hence

Homy(V,U) = X Homy(V,U).
Using the fact that Py(20) = Py(2)Pe(6) for any z € Z(g),0 € Homy(V(v),U), one
concludes det Jo(V () € P(X)det Jo(V (v)). Since det J(V (1)) is a non-zero subset of
a polynomial algebra S(h) and P(X) does not contain non-zero scalars, the last inclusion
is impossible. Hence Hence Ann M(\) # UX.

In the case Py(y;_27_)(A) = 0 the proof is similar: one may choose V as in Remark [7-3.5

Hence we prove that for any triangular decomposition the following theorem holds.
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7.3.7. Theorem. The annihilator of a Verma module is a centrally generated ideal iff
this module is typical.

7.4. Denote by Max A the set of maximal ideals of an algebra A. In [PS]], the following
theorem is proven.

7.4.1. Theorem. For any X € Max Z(g) not containing T?, there ewvists x €
Max Z(go) such that the algebra U/(Ux) is the matriz algebra over U(go)/(U(go)Xo)-

One can deduce from this theorem that the annihilator of a typical Verma module is
centrally generated. On the other hand, one can deduce Theorem [7.4.1 from Proposi-
tion [.1] and [7.3.. In fact, take A € b* such that YM(A\) = 0. Then ¢(\) # 0 and
SO

U/URX) = F(M(\),M(\) = F(M()\) ® Agy, M(\) ® Agy) =
F(M(X), M()\)) ® End(Agy ) = U(go)/(U(g0)x) ® End(Agy)

where y := Annz(go)M(\). Hence U/(Ux) is a matrix algebra over U(go)/U(go)x).

8. PERFECT PAIRS

In this section we find for each maximal ideal of Z(g) not containing T? a perfect mate
which is a maximal ideal in Z(gy) possessing certain properties.

8.1. Denote by Max A the set of maximal ideals of an algebra A and by A — Mod the
full category of left A-modules. For an A-module N and y € Max A set

Ny :={ve N|xv=0, Vr >> 0}.

Call a maximal ideal of Z(g) a g-central character. For ¥ € Max Z(g) (resp., x €
Max Z(go)) set

Us =UJUR), Uy :=U/UX).
We canonically identify the Z/N{;—modules and the (non-graded) U-modules annihilated by
X-

8.1.1. Definition. Call ¥ € Max Z(g) strongly typical if T? & X.

Throughout this section X denotes a strongly typical central character.
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8.1.2. For a fixed triangular decomposition set
W(R) ={r € b XM(\) = 0}.
Recall that P(Z(g)) D P(T?)S(h)"- and so W(Y) forms a single W.-orbit.
Remark that y is strongly typical iff any A € W(x) is strongly typical.

For any pair (Y, x) € Max Z(g) x Max Z(go) there is a functor W5 : Z:{; — Mod —

U, — Mod given by N — NX. One of our goals is to prove that any strongly typical
g-central character Y has a “perfect mate” x € Max Z(go) such that the above functor
provides the equivalence of categories. For the basic classical Lie superalgebras of type I
this is proven in cite [PS]]. In [3], we will prove it for the basic classical Lie superalgebras
of type IL.

For type I case, it turns out that for any A € W(X) x := Annz(g,) M()) is a perfect
mate for ¥ (provided that Y is strongly typical)— see also [[.4. This does not hold for
type II case.

It is easy to see that if the functor Wy~ provides the equivalence of the categories, then

X has, at least, the following properties: for a Verma Z/{~ module M the go-module M

is a Verma gop-module and for any Z/{~ module N the go- module N is non-zero. We call
X a mate of X if it possesses the ﬁrst property and a perfect mate if it possesses both
[G], these two properties really ensure the equivalence of
categories Zjlg — Mod and U,, — Mod provided that ¥ is strongly typical.

A pair (Y, x) € Max Z(g) x Max Z(go) is called a perfect pairif x is a perfect mate for
X-

The goal of this section is to find a perfect mate for any strongly typical y. This is done
in the following way. Lemma R.3.4 gives a combinatorial criterion on x to be a perfect
mate for y. In B.J we fix, for each basic classical Lie superalgebra of type II a triangular
decomposition, in terms of which we will describe a perfect mate y for y. In B.§ we
consider Y satisfying a certain genericity condition. For such a “generic” ¥ we show that
for a suitable A € W (Y) the go-central character of M(\) is a perfect mate for . The
case when Y is not generic is treated in 8.7 It turns out that for g of the types B(m,n),
G(3) any strongly typical x is “generic”. The remaining basic classical Lie superalgebras
of type II are treated case by case.

8.2. Notation.

8.2.1. We say that a {-module N has a finite support SUpPP z (g N {X1,---,Xx} if for
any v € N there exist ri, ..., € NT such that [[; X;'v = 0. In thls case,

N = &;N;

Xi
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and each N)E is canonically isomorphic to the localization of the module N by the maximal

ideal y;. If N has a finite support and 0 — N’ ' — N — N — 0 is an exact sequence
then, for any Y’ € Max Z(g), the sequence 0 — N)’?, — Ny — N)’?’, — 0 is also exact.

For a g-module N and a maximal ideal X € Max Z(g) define Y'-depth of N to be a
minimal 7 € NU oo such that (Y')"N; = 0.

We adopt the similar notation for Z(gy) and U-modules.

8.2.2. Denote by I the set of subsets of Af. For v C Af set

vl =6

Bey

Define the action of the Weyl group W on I' by setting

wey = w(yU—(Af \ 7)) NAT.
Then
lwy| = w(ly| = p1) + pr.

8.2.3. As a go-module, a Verma module M()) has a filtration 0 = My € My C ... C
M, = M () such that the set of factors M; 1/M; coincides with the multiset {M (A —7) :
v € I'}— see [MT]], 3.2.

It is easy to check that for any w € W,y € I’
wA —wA] +po = w(A = [v] + po). (7)

Therefore the go-central characters of M (w.\ — |w,v|) and M (X — |y|) coincide. Thus for
fixed ¥ the multiset of go-central characters of {M(\ —~) : v € T'} does not depend on
the choice of A € W(X).

8.2.4. Definition.  Call x € Max Z(go) a mate for Y € Max Z(g) if for some M(\)
satisfying M (\) = 0, the go-module M ()), is isomorphic to a Verma module M (A —|v])
for some v € T'.

One can easily deduce from that if x is mate for Y then for any M (A) satisfying
XM (X\) = 0, the go-module M (), is isomorphic to a Verma module M (X — ||) for some
~v € I'. In particular, if x is mate for Y then for any M satisfying 21\7 = 0, the x-depth
of M is equal to 1.
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8.2.5. Definition. Let us call x € Max Z(go) a perfect mate for Y € Max Z(g) if it is
a mate for ¥ and for any non-zero L{~ module N one has N #0.

Definition is given in terms of the category O. However, Pq implies that if for
some triangular decomposition y is a mate for y, then it is a mate also with respect to
all other choices of triangular decomposition.

8.3. Throughout this subsection a strongly typical g-central character  is assumed to
be fixed. Our first goal is to reformulate Definition B.2.3 in terms of category O.

8.3.1. Lemma. There exist x1,...,xx € Max Z(go) and r1,... 1, € Nt such that
for any Uz-module N one has

N = @*N,,
and X’""j\fvxi =0.
Proof. Theorem 2.5 of [MI]] implies that for any z € Z(go) there exist z,...,z € Z(g)

(where [ = #I') such that ) ziz* = 0 and z = T? (notice that 2.1 of [’ contains a
misprint; to correct it one has to substitute g by g2 in 2.1 and in Theorem 2.5). Therefore
for any = € Z(go) there exists ¢y, ... ,c_1 € C such that 2! + X5 ezt € (2(go) NUX).
Consequently, the ideal (Z(go) NUX) has a finite codimension in Z(gy) and so there exist
X1s--- > Xk € Max Z(go) and 1, ..., € NT such that

(Z(go) NUX) 2 [T X7

i=1

Then, for any Z/N{;—module N
k —
[Txi* € Anngg) N.
The assertion follows. O
8.3.2. Corollary. If x is a perfect mate for X then
N 4N,
for any Z];—module N.

Proof. Since supp z(4,) N is finite, one has (N/(UN,)), = 0. Hence N /(UN,) = 0 because
X is a perfect mate for y. O
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8.3.3. Lemma. Ifx € Max Z(gq) is a mate for Y € Max Z(g) and V(A)X # 0 for all
A € W(X), then x is a perfect mate.

Proof. Suppose that V(\), # 0 for all A € W(X). One has to verify that Nx # 0 for
any non-zero Us-module N. Since U is Noetherian, N has a simple subquotient N’.
Lemma B.3.1 implies that N, # 0 provided N, # 0. Hence it is enough to check that
Ny # 0 for any simple U;-module N.

Take a simple Z/~{~ module N. The ideal Ann N is primitive and so, according to [M3J],

Ann N = AmnV Where V is a simple highest weight module. Obviously, YV =0 and so,
by our assumption, V +£ 0. As a go-module, V has a finite length. Therefore

Anng(go) N = Anng(go) V= X2 X

where {X, X2, ; Xk} = SUPDz(q)) V., r,...,rs € NT. Then N/ := y}2.. X;’“ﬁ # 0 and
X”N’ = 0. Hence Nx # 0. The lemma is proven. O

83.4. Lemma. Take A€ W(X), vy €l and set x := Annz,) M(A —[v]).

(0) vy el\{v} (A=[[+p) EWQA=[v[+p) <= Xxisamatefory
(17) If x is a mate for X and Staby (A — |v|+ po) C Staby (A + p) then x is a perfect mate.

Proof. The equivalence (i) follows from B2.3.

For (ii) recall Lemma [8.3.3 Suppose that x is a mate for Y but it is not a perfect mate.
Then M(\)y = M(A — |5]) and V(w.\), = 0 for some w € W. The equality (), implies
that for any y € W N

M(y-A)y = M(y-A = [y71)-
Therefore V(y.\), is a quotient of M (y.\ — |y.7]).

The module V(w A) is a homomorphic image of M(w.\). Denote the kernel of this
homomorphism by N. The module N has a finite length and the factors of its Jordan-
Golder series have the form V() for some p € WA satisfying p < w\. Since 0 =
V(w.\), = (M/N)), one concludes that the go-module N, = M, = M(w.\ — |w,7|) has
a finite filtration such that each factor of this filtration is a quotient of M (y.A — |y.7|) for
some y € W satisfying y.A < w.\. Therefore

— Jway| =y A = |y

for some y € W satisfying y.A < w.A. By ([]), the above equality is equivalent to the
condition y~tw € Staby (A + po —|7v|). However, y.A < w.\ implies y~'w & Staby (A + p).
Thus Staby (A + po — |7]) € Stabw (A + p) as required. O

8.4. Throughout this subsection a strongly typical g-central character y is assumed to
be fixed.
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8.4.1. Right version. One may repeat the above reasonings for the right g-modules. Sup-
pose now that (¥, x) is a perfect pair in the “left sense”. We claim that it is a perfect
pair in the “right sense”.

Indeed, the §uperantiautomorphism o (see P3) provides the duality between the left
and the right «/-modules given by N +— N:
vW.a = (=) 50w, ael,ve N.

By B-3.4, o stabilizes the elements of Z(g); thus the restriction of the above duality gives

the duality between the left and the right Z/;-modules. Since o also stabilizes the elements
of Z(gp), in order to show that (X, x) is a perfect pair in the “right sense”, it is enough
to check that x is mate for x in the “right sense”.

~ Take a minimal element A € W(X). Then M := M()\) is a simple Verma module and
M? is aright simple module which is a Verma module with respect to a suitable triangular
decomposition of g. Since x is a mate for y, M, is a Verma gop-module, say M. Then

XM“ ={ve M| vy =0, r>>0}= (]\7[X)U = M°

since o stabilizes the elements of Z(go). Therefore , M7 is a (right) go-submodule of a
(right) Verma g-module and, at the same time, it is dual to a Verma go-module. Since a

Verma g-module is U (ng )- torsion-free, , M? is a (right) Verma go-module. Hence y is a
mate for Y in the “right sense”.

8.4.2. Let x be a perfect mate for Y and L be a non-zero U-bimodule such that X-L =
L.x = 0. Let us show that

Ly ={vellx"v=vx"=0, r>>0}

1S non-zero.

Indeed, according to Lemma B.3.1], there exist pair-wise distinct go-central characters
X1,--- Xk and positive integers 71,... 7 such that [T x".L = 0. Recall that L,#0
since (X, x) is a perfect pair. Thus y = yx; for a certain i; we can assume that y = y;. One
has x7' + I15 X7 = Z(go) since x1, ..., xx € Max Z(gg) are pair-wise distinct. Therefore

k
0#Ly=]]xi'.L
2
and it is a right submodule of L. Clearly
Ly ={vel|vx"=0, r>>0}.

Using B.4.1], one obtains , L, # 0 as required.
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8.5. By B.2.5, to prove the existence of a perfect mate for a strongly typical g-central
character, one can choose any triangular decomposition. Below we describe, for each
basic classical Lie superalgebra of type II, a triangular decomposition we choose for the
proof. We use notation of Kac— see [KT]], 2.5.4 for all cases except D(1,2, «) where we
use 0, €1, €5 instead €, €9, €3. The chosen triangular decomposition always corresponds to
the first “simplest system of simple roots” in [KTJ.

B(m,n): go=s0(2m+ 1) x sp(2n)
™= {61 _527"‘ 7511_61761 — €2 ... ,E6n-1 _€m7€m}7
AT = {6 £ 6;:20; h1<ici<n U {6 £ €5, € i<icj<m,

I e e

where {d; — da,...,2d,} is a system of simple roots of sp(2n) and {e; — €,... , €1 —
€m, €m} 18 & system of simple roots of so(2m + 1).

D(m,n): go=s0(2m) x sp(2n)
™ = {51 —52,... ,5n—€1,€1 — €2, .. y€E@n_1 — €Em,Em—1 +€m},
AT = {6 £ 65,20, }1<ici<n U {6 £ € F1<ici<m,
AT = {0 £ ¢ i<icni<j<m,
P1 :m(51+52++5n)

where {§; — d2,...,20,} is a system of simple roots of sp(2n) and {e; — €,... , €1 —
€ms €Em—1 + €} 1S & system of simple roots of so(2m).

D(2,1,): g0 =5l(2) x sl(2) x sl(2),
™ = {51 + €1+ €9, —261, —262},
AS_ = {251; —261, —262},
Aii_ = {51 + €1 + 62},
p1 = 20;.

F(4): go = sl(2) x s0(7),
T = {%(61 + €9 + €3 + 51), —€1,€1 — €2,€2 — 63},
AF =10} U{—€,1<i<3:+e—¢,1<i<j<3},
Aii_ = {%((51 + €1 + €9 + 63)},
p1 = 20

where 07 is a simple root of s[(2) and {—e1,€; — €2, €2 — €3} is a system of simple roots of
50(7).
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G(B) B0 = 5[(2) X Gg,
™= {51 + €1,€9,€3 — 62},
A = {201} U{ea, €3, —€1,63 — €2,63 — €1, €2 — €1},
Aii_ = {51, 51 + Ei,’i = 1, 2,3},
p1 =16
where €1 + €3+ €3 = 0, {€2, €3 — €2} is a system of simple roots of G(2) and 24 is a simple
root of s((2).

The restriction of the non-degenerate invariant bilinear form (—,—) on gy is a non-
degenerate invariant bilinear form. Thus

(6;,0i) = (04,€¢;) =0 Vi #£4
and
(€, €5) =0 Vj#J
if g is not of the type G(3).
Till the end of this section g will denote one (unless otherwise specified, an arbitrary one)

of the basic classical Lie superalgebras of type II with the fixed triangular decomposition
described above.

8.5.1. More notation. For all above root systems denote by n the number of §’s and by
m the number of €’s (that is n = 1 for D(1,2,a), F(4),G(3) and m = 2 for D(1,2, a),
m = 3 for F(4),G(3)). Remark that for all above systems

n

for a certain scalar p € %N*.

Denote by Wy (resp., W) the subgroup of W which acts on {d;};-; (resp., on {¢;}7L,).
Then W = W; x W,. Remark that W is always the group of signed permutations of
{6;}~,: for B(m,n) and D(m,n) it is the Weyl group corresponding to sp(2n) and for
D(1,2,a), F(4),G(3) it is the Weyl group corresponding to s[(2).

For p € h* write
M= Zkz(;z + leEj
i=1 j=1
and set s, = ki, jie; = ;.

Say that Y is generic if there exists A € W(x) such that (A + p)s, Z0fori=1,... n.
Remark that T2 ¢ Y implies that Y is generic if §; € A, that is in the cases B(m,n) and
G(3).

Define a lexicographic order on C by setting ¢; > ¢y if Rec; > Recy or Rec; = Recy
and Im ¢y > Im c,.
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One can easily sees that for any v € I'and ¢ = 1,... ,n one has 0 < |y|,, < 2p and,
moreover, v = 0 iff |v|,, = ... = 7|5, = 0. We will use many times the following easy
lemma.

8.5.2. Lemma. Letd;ay,...,asr,...,7s be complex numbers such thatd,ay, ... a5 >
0 and 0 < rq,...,rs < 2d. Suppose there exists a signed permutation o which maps

(e +d,...,as+d) to (ay +d—1r1,... a5 +d —rs). Then o is a usual (non-signed)
permutation and r = ... =1, = 0.

Proof. The permutation o is non-signed because a; + a; > 0 > —2d + r; and so a; + d #
—(a; + d — r;) for any indexes i, j. Since o is a usual permutation,

Z(CLZ' +d> = Z(al -+ d— ’/’Z’)
i 1
that is >~ r; = 0. The inequalities r1,... ,r, > 0 imply the assertion. O

8.6. Generic case. Fix a generic central character ¥ . Since W) acts by signed permu-
tation on {d;} ,, there exists A € W(X) such that (A + p)s, >0 for all i =1,... ,n. Fix
such a A and let us show that the go-character of M(\) is a perfect mate for Y.

To verify that the go-central character of M (A) is a mate for Y, recall Lemma (i).
Suppose that

(A4 p0) = wA+po— )
for some v € I';w € W . Write

Atp= Zkidi + leeja V] = Zsidi + erej'
1 1 1 1
Recall that k; >0 and 0 < s; <2pfori=1,...,n. One has
At po=A+p+p=> (ki+p)di+D L
and
Atpo— =D (ki+p—s)0 + D (I — 7).
Write w = wywy where wy; € Wi, wy € W5, Then
> (ki +p)d; = wl(Z(ki +p— Si)5i>

By Lemma B.5.9, this implies s; = ... = s, = 0 and thus v = (). Hence the go-central
character of M(\) is a mate for Y.

One has
Stabw()\—Fpo) = Stabw (Z(kl—i-p)&—i-z lej) = StabW (Z ]{71524-2[]6]) = StabW()an)

since p; k1, ... , k, > 0. Using Lemma B.3.4 (ii), one concludes that the go-central character
of M(\) is a perfect mate for .
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8.7. The case when Y is not generic. Suppose that g is of the type D(m,n), D(1,2, «)
or F'(4) and Y is not generic.

8.7.1. Case D(m,n). Since X is not generic, for any A € W(x) there exists i € {1,... ,n}
such that (A4 p)s, = 0. On the other hand, 7% ¢ Y implies (A + p, 3) # 0 for any 3 € A;.
In particular, (A + p,d; +¢;) # 0 and so (A + p),, # 0 for j = 1,... ,m. Taking into
account that Wj acts on {0;}} by signed permutations and Wy acts on {¢;}{* by signed
permutations changing even number of signs, one concludes the existence of A € W (Y)
such that

i—1 =1

where
kl Zk2 > ... an—d>kn—d+1:kn—d+2:---:knzoa
ll Z l2 Z 2 lm—l > 0, lm—l Z lma lm—l Z _lma lm 7& 0.

Fix A as above and set
Yo ={0i—€:n—d<i<n,1<j<m—-1}U{§ —sn(lp)en: n—d<i<n}
where sn(l,,) :=1if [,, > 0 and sn(l,,) := 1 if [, < 0.

Let us show that the go-central character of M (A — |y4]) is a perfect mate for x. To
verify that it is a mate suppose that (A —~4+4po) = w(A—~vy+ po) for some vy € I';w € W.

Write . .
V=0 + > rjej
1 1
Observe that s; € {0,1,...,2m} for i = 1,... ;n. One has

A=va+po =A+p+ (p1— |7l (8)
= Zyll_d(ki + m)éi + ZT_l(lj + d)ej + (lm + Sn(lm)d)em

and .
>\+p0—|7|22(1€1+m—82)51+ Z (m—si)5i+2(lj—rj)ej.
1 n—d+1 1
Write w = wiywy where wy; € Wi, wy € W5, Then
n—d n—d n
1 1 n—d+1

For any indexes i,7 such that 1 <i<n—d < <nonehas k;+m >m > +(m — sy).
Therefore wy = wiw! where w! (resp., w/) is a signed permutation of {§;}7~% (resp., of

{637 _4i1). Then X7~ k; +m)s; = w} (Z’f‘d(ki +m — si)éi) andso sy =...=8,-4=0
by Lemma B.5.9. On the other hand, 0 = w’l’( _gyr(m — si)éi) gives Sp_q=...= 8, =
m.

It is easy to see that sy = ... = s,_4 = 0 implies r; € {0,£1,...,%d} for all j =

1,...,m.
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Suppose that [,, > 0. Then

w; (i::(lj —rj)ej) = i::(lj + d)e;

and, by Lemma B.5.9, r; = —d for all j = 1,... ,m. Thus |y| = |y4|- It is easy to check
that this implies the required equality v = 7,.

Suppose that [,, < 0. Then

m

m—1
wg(Z(l —r; e]) S+ d)e; + (L — d)em
1

1

where w, is a signed permutation of {¢;}}*. Then

m—1 m—1
w;(z (i =rj)es + (rm — ) S+ d)e + (=ln + d)e
1 1
for another signed permutation wj of {¢;}*. Since ly,... ,ly—1,—l» > 0, Lemma
gives r; = ... =r,_1 =d and r,, = —d. Thus again |y| = |v4| and so 7 = 74. Hence the
go-central character of M (X — |y|4) is a mate for X.

One has
Stabw (A + p) = Staby (S~ kb + X7 Lje;)
= Staby (X7 (ki +m)d; + 7711 + d)¢j + (L + s0(lm)d)em ) = Stabw (A — [al + po)

since m;d; k1, ... kol ..o b1 > sn(ly)ly, > 0. Using Lemma (ii), one concludes
that the go-central character of M(\ — |v|4) is a perfect mate for .

8.7.2. Case D(2,1,«). Set 6 := d;. Since X is not generic, (A+p)s = 0 for any A\ € W (¥).
On the other hand, T? ¢ y implies (A+p, 3) # 0 for any 8 € A;. Since A] = {0+¢€,+e},
one obtains (A + p); # 0 for j = 1 or j = 2. Recall that W = Zy x Zy X Zy where the
copies of Zy act by sign on 0;€;; €5 respectively. Therefore there exists A € W (Y) such
that

)\—l—,O = l1€1 +l2€2

where [q,ly > 0 and at least one of [, [, is non-zero. Fix such a A. Both cases [; > 0 and
ly > 0 are similar so we can assume [y # 0. Set

Ya:={0—€ —€3;0 —e1 + e}
Let us show that the gg-central character of M (X — |v4|) is a perfect mate for x.
One has p; — |74 = 2¢; and
— |yl +po = A+ p+ 1 — |4l = (L + 2)er + lses.

Assume that (A—|v4|4+p0) € W(A—|y|+po) for some v € T'. Then (A—|v|+po)e, = £(l1+2)
that is |v|, = [1£(l142). Taking into account that l; > 0 and that ||, € {0, £1, £2}, one



49

concludes |y|., = —2. This implies v = =4. Hence the gg-central character of M (A — |v4|)
is a mate for . Since [; >0

Stabw()\ + p) = Stabw(llﬁl + l2€2) = Stabw((l1 + 2)61 + l2€2) = Stabw()\ — |'7d| + po).
By Lemma B.3:4, the go-central character of M (X — |v4|) is a perfect mate for x.

8.7.3. Case F(4). Set § := ;. Since X is not generic, (A + p)s = 0 for any A € W(Y).
On the other hand, 7% ¢ X implies (A + p, ) # 0 for any 3 € Ay. Since A = {1(6 £
€1 & €2 & €3}, one obtains (A + p), # 0 for some j € {1,2,3}. Recall that W = W x W,
where W, = Zy acts by sign on ¢ and W is the group of signed permutations of {e;}3.
Therefore there exists A € W(x) such that

A+ P = l1€1 + l2€2 + l3€3
where
L>1L>103>0 & 3 #0.
Fix such a A. Set
Vd = {%(5 —€ e E 63)} if I > lg,
Yd = {5((5 — €] — €3 — 63); %(5 + €1 — €3 — 63); %(5 — €1 + €y — 63); %(5 — €] — € + 63)} if ll = lg.

We show below that the go-central character of M (X — |y4|) is a perfect mate for Y.

Indeed, assume that (A — |ya| + po) = w(A — |y| + po) for some v € T',w € W. Write
Iy| =56 + 33 rj€; and w = wywy where wy € Wi, wy € Wa. One has

3
A=y +po=2—=95)8+> (I; —rj)e;.
1

Suppose l; > l5. Then
|val =20 — 261 that is X — |v4| + po = (I + 2)€e1 + la€a + l3€5.

The equality (A — |va| + po) = w(A — |y| + po) implies s = 2. Thus ~ contains 4 elements
and so 71,719,173 € {0;x1;£2}. Then iy +2 > 1; —r; for j=1,2and l; +2 > —(l; — 1)
for j =1,2,3. Thus ws(€1) = €1 and so 73 = —2. Since v contains 4 elements, this implies
v = 7q4. Hence the gg-central character of M(\ — |v4|) is a mate for .

Suppose l; = ly. Then
3
el =20 —e1 — ey — ey thatis A — |yl +po = D_(; + Ve
1

Again v contains 4 elements and so 71,79, 73 € {0; £1; £2}. Assume that ws is not a
usual permutation that is wy(€;) = —ejr for some j, 5. Then l;; +1 = —(I; — r;) that is
rj—1=1;+1; > 0 because l; =l > 0 and l3 > 0. Then r; = 2 and, consequently, r;» = 0
for all j” # j. In particular, w, can change a sign of at most one of €1, €5, €3. Therefore
Lhi+1=1+1=1ly—rj for some j” # j. Then l; +1 = [ that contradicts to the
inequality [; > 3. Thus w, is a usual permutation. This implies >3(l; +1) = S3(1; — ;)
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that is 71 + 73+ 173 = —3. Taking into account that r; € {0; £1; 2} and that the equality
of the form r; = %2 implies r;y = 0 for j' # j, one concludes r; = ry = r3 = —1 that
is || = |7a4|- It is easy to check that this gives the required equality v = 74. Hence the
go-central character of M (X — |v4|) is a mate for Y.

Ifll > [y Slg < 0 then
Stabw()\+p) = Stabw(l1€1+l2€2+l3€3) = Stabw((l1+2)€1+l262+l363) = Stabw()\—|’7d|+po).
If Iy =1y > 0 then [3 # 0 since (A + p, 0 + €1 — €3 + €3) # 0. Therefore

Stabw()\ + p) = Stabw(llﬁl + l2€2 + l3€3)
= Stabw((ll + 1)61 + (lg + 1)62 + (lg + 1)63) = Stabw()\ - |’}/d| + ,00)

Hence the go-central character of M(\ — |v4|) is a perfect mate for .

9. ANNIHILATION THEOREM

This section is devoted to the proof of Theorem P.5.

9.1. Lemma. Let M be a strongly typical Verma module and v € M be a prim-
itive vector. Then Uv is a Verma module. In particular, M contains a simple Verma
submodule.

Proof. Set X := Annz g M. Since M is strongly typical, ¥ is also strongly typical and so
for X there exists a perfect mate xy € Max Z (go)— see Section f. Let N be a submodule
of M generated by a primitive vector. Then Nis a quotient of a Verma module M’ and
YM' = 0. By R24, M' = M)’( is a Verma go-module. Since y is a perfect mate for Y,
the go-module Nx is a non-zero quotient of M’. Taking into account that Nx c M is
torsion-free over U(ny ), one concludes N, = M’. Thus (M’/N), =0 and so N = M’ is a
Verma module.

Recall that M has a finite length and so it contains a simple submodule N. A highest
weight vector of N is primitive. Hence Nisa simple Verma module. O

9.2. Lemma. Let M be a strongly typical Verma module ancﬂ\?’l}e a simple submodule
of M. Then the natural maps F(M, M) — F(M', M) and F(M',M') — F(M', M) are
g-bimodule isomorphisms.

Proof. Denote by ¢ the natural map F(M,M) — F(M',M) and by // the natural map
FM', M) — F(M',M) (both maps are induced by the embedding M’ to M). Both
maps are g-bimodule homomorphisms.

To show that ¢ is a bijection and that ¢ is a monomorphism, we use the following
reasoning which is essentially the same as in [JT].
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By [, F(Ny, N2) = 0 if the GK-dimension of any simple quotient of IV; is greater
than GK-dimension of N, or if the GK-dimension of N; is less than GK-dimension of any
simple submodule of Ny. Moreover, the GK-dimension of a Verma module is equal to the
GK-dimension of the algebra U (n™).

Let v be a highest weight vector of M and u € U (n~) be such that uv is a highest
weight vector of M’. Since M’ is a Verma module, u is a non-zero divisor in 2/(n~). This
implies

GK dim M’ = GK dim M > GK dim M /M.
The only simple quotient of M’ is M’ itself; thus the inequality GK dim M’ > GK dim M / M
implies F’ (]\7 "M / M ) = 0. Therefore ¢/ is an epimorphism. Obviously, /' is a monomor-
phism. Hence ¢ is bijective. By Lemma P.]], any simple submodule of M is a Verma
module. Thus the GK-dimension of M /M’ is less than the GK-dimension of any simple
submodule of M and so F(M/M', M) = 0. Consequently, ¢ is a monomorphism.

It remains to verify the surjectivity of «. Since ¢/ is bijective, it is enough to check the
surjectivity of the composed map ¢/ := (/) ov: F(M,M) — F(M',M'). Denote by
N the cokernel of the map . This is a g-bimodule and its left and right annihilators

contain Y = Annz M. Let X € Max Z(go) be a perfect mate for y. Using notation
of B-4.2, one has

F(M, M)y = F(My, M), (F(M', M) = F(M, M,).
Since x is a mate for y, both M := Mx and M’ = f]\];{ are Verma go-modules. For any
V' € Irrg one has Homg, (V, F'(M, M)) == dim V|, = Homg, (V, F(M', M"))— see [I]]], 6.4.
Taking into account the injectivity of :”, one concludes that '(F(M, M)) = F(M', M)

and so ,N, = 0. Thus N = 0 by B.4.3. Hence ¢,/ are isomorphisms. The lemma is
proven. ]

Using Lemma P.1] one obtains the

9.2.1. Corollary. Let M, M’Qz strongly typical Verma modules and M’ be a submodule
of M. Then the g-bimodules F(M, M) and F(M', M') are isomorphic.

9.3. Proposition. ]f]\7 is a strongly typical projective (in (5) Verma module then

F(M, M) = @, B(V)®™ Vo,

\7€Irr

Proof. Step 1. Let us show that for any go-modules Ny, N, the following ad g-modules
L= F(Il’ldgo Nl, Indgo Ng), L/ = COil’ldgo(F(Nl, Ng) X Agl)

are isomorphic.
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Indeed, using the Frobenius reciprocity, one obtains

HomgO(V, F(Indgo Nl, Indgo Ng)) = HomgO(V, F(Nl, Ng) X Agl X Agl)
= HomgO(V, COinng(F(Nla Ng) (%9 Agl))

for any V' € Irrg. Hence L = L' as ad go-modules. Note that dim Homg,(V, L) < oo for
all V' &€ Irry.

On the other hand, for any V € Irr one has
Homg(V, F(Ind%, Ny, IndS, N,)) = Homg(Ind? Ny, IndS Ny @ V*)

= Homyg, (N7, Indg, N2 ® V*) 22 Homg, (Ny, Ny @ Agy @ V*)

= HOl'IlgO(VV, F(Nl, Ng) &® Agl)
= Homg(V, COingO(F(Nl, Ng) X Agl))
Hence Soc L = Soc L'. Since L’ is injective in Fin, it contains a submodule isomorphic

to L. Taking into account the ad go-isomorphism L = L', one concludes that L = L' as
ad g-modules.

Step 2. Let x be a perfect mate of Anng(g M. Then M := M is a Verma go-module
and M = UM by Corollary B:3.3. Thus M is a quotient of Ind§ M. Since M is projective,

it is a direct summand of Indg, M Then the ad g-module F’ (M M ) is a direct summand of
the ad g-module F'(Ind} M, Indg M). The last is isomorphic to Coindg (F'(M, M) ® Ag;)

and so is injective in Fin. Hence the ad g-module F' (M , M ) is injective in Fin.

By Lemma P.J,, M contains a simple Verma submodule M’. Combining Corollary J.2.]]
and [[T.T.7 one obtains

Soc F(M, M) = Soc F(M', M") = Pedim Vo

69VeIrr

Now the injectivity of F (M M ) implies the required assertion. O

9.4. Proposition. If M is a strongly typical Verma module then the natural map
U — F(M, M) is surjective.

Proof. Denote by N the cokernel of the natural map f : U — F(M, M) This is a g-
bimodule and its left and right annihilators contain Y := Annz, M. Let y € Max Z (go)
be a perfect mate for . Using notation of B4.9 one has  F(M, M), — F(M,, M,).
Since y is a mate for y, M = MX is a Verma go-module. As a go-module, M has a finite
length and so

k
Annzg) M = x H X;!
i=1
where {x, x1, .- - an} = SUPDPz(q) M and 71,...,7 € Nt. Any element of [[F, x}*
annihilates 3% M and acts by scalar on M Taking into account that the natural
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map U — F(M, M) is surjective (see [F1], 6.4), one concludes that
fu H Xi) = F (M, M),
and thus , N, = 0. By B.:4.3, N = 0 as required. O

9.5. Theorem. For a strongly typical Verma g-module M
Ann M = Z]Anng(g) M.

Proof. Set X := Annz M. Let M" be a projective (in @) Verma module such that

YM" = 0 and let M’ be a simple submodule of M” (by P, M’ is a Verma module).
Combining P.2.1] and P.3, one obtains

FOM', M) = E(V)@dim\ﬂo‘
Summarizing p.1,p.3 and P.4, one concludes that Ann M’ = U and that the natural map
fU/(Ux) — F(M', M') is bijective.

Denote by f the natural map U/(le) — F(M, M) and by p the composition map
fo(fH)™ F(M’ M’) — F(M M) Obviously p is a U-bimodule map. By b4, pis
surjective. Let us show that p is bijective.

) Let x be a perfect mate for X; set M := M,, M’ := M;{ Using notation of B.4.2, one
as

@\7611“1"

F(M, M), =F(M,M), F(M M), =FM,M)
and so  F'(M, M), F(M', M), are isomorphic ad go-modules. It is easy to see that
y(Imp), = p(XF(M’, M/>x)-

Therefore p(XF(M’, ]\7[’)X) =y F(M, M)X since p is surjective. Taking into account that
the multiplicity of each simple go-module V' in F'(M, M) is finite, one concludes that the
restriction of p to F(M’ M’)X is a monomorphism. Thus X(kerp) = 0 and kerp = 0

by B.:4.3. This means that p is bijective and so f : U/Ux) — F(M M) is bijective as
well. The assertion follows. O

9.6. Corollary. For a strongly typical central character x
UJUX) = By, BV)EIm Vo,

10. REMARK ABOUT VERMA MODULES.

In this section we study the go-structure of Verma g-modules.
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10.1. Retain notation of Section . Take strongly typical ¥ € Max Z(g) and A € W (Y).

Recall that as an go-module M(\) has a finite filtration with the factors {M(A—|7]),~ €
I'}. Therefore

U N Z(go) = Ann M(A) N Z(go) = Hx 9)

where the y; are the pairwise distinct elements of the multiset {Annz g M(A—|v]),y € T'}
and the r; are positive integers. Thus for any U/ -module N

N = @iﬁxw X:Z]A\fxl =0.

Suppose that M(\) = @,erM (A — ) and so Z(go) acts semisimply on M(X). If,
in addition, A is strongly typical then (f]) implies that Z(go) acts semisimply on any
Z/{~ module for ¥ = Annzg M(N\).

10.2. Proposition. For ]\7()\) being a simple Verma module the following conditions
are equivalent

(i) M =@M~ |y))
(i) vy,7y el (7] =[]) € ZAg\ {0} = (A = [7[+po) € W(A =7+ po)
(1i1) M\ — |v|) is simple for any v € T.

Proof. The implication (ii) = (i) follows from the fact that any exact sequence 0 —
M(u) - N — M(pu) — 0in O splits (see, for instance, 2.5.3).

Let us verify the implication (i) = (iii). Recall B.5.6. Since M()) is simple it is
isomorphic to M (A\)# = @,er M (A — |y])#. The module M (\) is U (ny )-torsion-free; thus
all M(\ — |y|)* are also U(ng )-torsion-free. This forces (iii).

The implication (iii) = (ii) follows from the fact that if M(u), M (') are simple

Verma go-modules with the same go-central character and (1 — p') € ZA, then p = 1.
This fact can be deduced from [J2], A.1.14 and A.1.1 (vii).

Hence the conditions (i),(ii) and (iii) are equivalent provided that M()) is simple. [

10.3. Corollary. If M()\) contains a simple typical Verma submodule then the condi-
tions (i) and (ii) are equivalent.

Proof. The implication (ii) = (i) follows from the same argument as in Proposition [[0.2
To verify the implication (i) = (ii), assume that M (\) = @M, is a direct sum of Verma
go-modules and that

— 191+ po = wA = |¥'| + po)
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for some w € W and /,7" € T' satistying (|7"| — [7/|) € ZAo \ {0}. Take w’ € W such
that M(w'.\) is a simple submodule of M(X). In the notation of one has
WA= [wy T+ po = w A= 1]+ po) = wwd =]y + po)
= wh(w') A~ [wla] + )

by (@). Furthermore |wiy'| — [wiy"| = w(|y"] = |7']) € ZA¢ \ {0}. Thus the condition
(i) does not hold for a simple Verma module M(w’.\). Therefore M(w'.\) has a go-
submodule N which is isomorphic to a non-splitting extension of M(u) by M(y') for
some g, 1/ € {\—|y| : v € T}. Since M(w'.\) is a submodule of M(X), N is a go-
submodule of M (M\). Since N is indecomposable, it is isomorphic to a submodule of a
Verma module M;. However the Gelfand-Kirillov dimension of any proper quotient of a

Verma go-module is strictly less than the Gelfand-Kirillov dimension of M (u')—see m]
This gives the required contradiction.

Remark. Recall that a strongly typical Verma module contains a simple strongly typical
Verma submodule.

10.4. Denote by I'y (resp., I'1) the set of subsets of A containing an even (resp., an
odd) number of elements. Take an arbitrary A € h* and fix a Z,-grading on a Verma
module M (M) in such a way that a highest weight vector becomes even. As a go-module,
M = My @ M. Let us show that each ]\7()\)]- has a finite filtration with factors { M (A —
Ny el} (G=01).
Set

Qo(m) == {Xaer katt| ko € Z, Y pcn, ka is even},

() = {Xaca katt| ko €Z, Y pcn, ka is odd}.
Note that both Qo(7), Q1(7) are W-stable. We claim that Qo(7) N Q1(w) = 0 (for g =

psl(n,n) we substitute § by h—see p-I4). Indeed, if g is of the type I then h N Z(go)
contains an element z such that z(a) = 1 for any a € Af. Therefore

S kaa(z) = D (ka—k-a)

a€A aeA;r
and so p(z) is an even (resp., an odd) integer for p € Qo(m) (resp., p € Q1(m)). Let g
be of the type II. Retain notation of B.J. One can immediately sees that for g # F(4)
the sum Y7 us, is an even (resp., an odd) integer for u € Qo(m) (resp., p € Q1(m)). For
the remaining case g = F(4), ps, is integer if 1 € Qo(m) and belongs to the set Z + § if
i € Q1(m). This implies our claim.

The weights of M (\)o (resp., M(\);) belong to the set (A —Qq()) (resp., (A—Q1(7))).
The weights of M (A — [y]) belong to (A — Q;(m)) iff v € I'; (j = 0,1). This proves that
M(\); has a finite filtration with the factors {M(A — )|y € I';} ( =0,1).

Using arguments as above, it is easy to show that for g of the type II
QO (7T) = ZAO
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and for g of the type I
Qo(m) N{p € b*| pu(z) =0} = ZA,.
This implies that the condition (ii) of Proposition [[0.9 is equivalent to the condition
Vel A=W+ p) e WA=P'T+p) = 1=} (10)
for j =0, 1.

10.5. Remark. The case g = osp(1,2]) was treated in [MI]], 3.7 and [GLZ], 7.2.

11. APPENDIX

This section contains some lemmas used in the main text. We also give an alternative
proof of the fact that the Z(g)-rank of Homy(V,U) is equal to dim V'|y for any V' € Irr.
This alternative proof does not use Separation Theorem 2.8.1].

11.1. In this subsection we prove some lemmas which were used in the main text.

11.1.1. Recall that a simple go-module V() is finite dimensional iff A 4+ pg > w (A + po)
for any w € W,w # id. In principle, the similar fact does not hold for simple finite
dimensional g-modules. For instance, there are triangular decompositions such that the
corresponding p is equal to 0 and so w.0 = 0 for all w € W even though V(0) is one-
dimensional.

However, if ‘7(>\) is finite dimensional and strongly typical then A > w.\ for all w €
W, w # id. This can be checked in the following way. Fix a strongly typical weight v such
that V(v) is finite dimensional. Write the character formula () in the form

D'chV(r) =3 sn(w)e®”, where D' := (ch M(0))". (11)
weWw
Combining the facts that Staby (v + p) is generated by the reflections it contains and that
ch V() # 0, one obtains w.v = w'.v iff w = w'. A strongly typical Verma module M (w.v)
has a finite filtration with the factors of the form V(w'.v) where w'.v < w.v. Therefore
ch M(w.v) = ¥, (o ¢h V(w'.v) where (@) form “an upper triangular matrix” that
is @y = 0if w'.v L w.v and a,, = 1. Consequently,

D'ch V(w.wv) = > by e

where by, v = 0 if w'.v £ w.v and by, = 1. Comparing the last equality with ([I]), one
obtains w'.v < v for all w’ € W,w' # id.
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11.1.2. Lemma. Assume that Ny, Ny are finite dimensional h-diagonalizable g-modules
and all simple subquotients of N1 ® Ny are typical. Then N1 &® Ny is a completely reducible
module.

Proof. Since central characters separate non-isomorphic typical finite dimensional mod-
ules, it is enough to show that N; ® N, does not contain non-trivial extensions V by V
for any typical finite dimensional module V. Let N be such an extension. Then the high-
est weight subspace of N is two dimensional and admits a basis {v1, v} such that vy is
primitive and v; € Uw,. Then vy € U(h)v, and so the action of h on N is not semisimple.
Hence N7 ® N5 does not contain submodule isomorphic to N. The assertion follows. [

11.1.3. Lemma. For any simple finite dimensional module V and any i€ b*, the set
of X € b* such that V() is finite dimensional and

dim Homg(V, Hom(V (A — p), V(\)) = dim V|,

18 Zariski dense in b*.

Proof. Fix a simple finite dimensional module V. Let R be the subset of b* consisting
of the weights A\ such that V(A) is a typical finite dimensional module and the tensor
product V*® ‘N/()\) is the direct sum of typical simple modules. Let us show that R is
Zariski dense in h*.

Indeed, take a finite dimensional go-module V()). The induced module Ind} V(\)
has a simple submodule V() which is finite dimensional. The go-module V (X) is a go-
submodule of V(') and so is a go-submodule of Ind] V(A). As a go-module Ind§ V/(\) =
V(A)®Ag;. For finite dimensional go-modules L, V (), the inequality Homg, (V(v), V(p)®
L) # 0 implies (v — u) € Q(L). Therefore (A — X) € Q(Ag;). Thus for any A € h* such
that V()\) is simple, there exists X € X + Q(Ag;) such that V(\) is simple. Taking into
account that the set of A’s such that dim V' (\) < oo is Zariski dense in h*, one concludes
that the set of A’s such that dim V(\) < oo is also Zariski dense in h*.

The condition on weight to be atypical is polynomial (see P.5.3) and so the set of
X's such that V(\) is typical finite dimensional is also Zariski dense. A module V(1)) is a
submodule of Coindg V'(A) and so V*@V () is a submodule of V* ® Coindg V(). Again
Homyg, (V(v), V*@Coindgo V(N)) # 0 implies (v—\) € Q(V*®Ag;). Therefore if V*@V ())
has a subquotient isomorphic to V(v), then (v — \) € Q(V* ® Agy). Using Lemma [T.1.9
and the fact that the set Q(V* ® Agy) is finite, we conclude that R is Zariski dense in b*.

Frobenius reciprocity gives

Homg(V, Hom(V (A — 1), V() = Homg(V(A — ), V- @ V().
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Take A € R and denote by m, the multiplicity of V(v) in the completely reducible
module V* ® V(A). The character formula ([) gives

Dch(VF@ V() = > sn(w) el A ch V* = Zm,, > sn(w)e”.
weWw weW

For typical finite dimensional modules V(v), V(') the equality w.v = w'.v/ implies v = v/
and w = w’ (see [I.I.1]). Therefore dim Homg(V()\ 1), VN @ V* ) = my_, is equal to

the coefficient of the term e** in the expression 3, ey sn(w)e? ch V*. For “sufficiently
large” A € R this coefficient is equal to dim V*|_,,. More precisely, take A € R, w # id and
a € m such that s,w < w. Then w™a € Ay and so (w(A+ p),a) = (A + p,w™'a) <0

by [T.I.]. Then
(A_M_w)‘va) = (A—i_p_/’l/?a{) - (w()\—i—p),oz) > (>\+p—,u,oz)
As a consequence, for any A belonging to the set
Rl = {)‘ S R‘ ()\,Oé) > (£+M—p,06) vé- S Q(V*>7a S 7T0}

the inclusion (A—z) € (w.A+Q(V*)) implies w = id. Hence my_, = dim V*|_, = dim V|,
for any A € R;.

For any A € R and «a € 7, the value (A, «) belongs to NT, since gg-module V() is
finite dimensional. Thus R; is obtained from R by removing the points lying at finitely
many hyperplanes. Taking into account that R is Zariski dense in h*, one concludes that
Ry is also Zariski dense. This completes the proof. O

Remark.  In Proposition [[1.3.1] we prove a stronger assertion for the particular case
w=0.

11.1.4. Lemma. For all \,v € b* and all simple finite dimensional V one has

dim Homg(V, Hom(M(X — ), M(N)*)) = dim V|,

Proof. Frobenius reciprocity gives
Homg(V, Hom(M (X — ), M(N)*)) = Homy(M (X — ), M(A\)* @ V).
Using notation of .57 one has
Homy (M (X — p), M(A\)* @ V*) 2 Homg (Cy_, M(A)* @ V7). (12)
All Verma modules are isomorphic as n~-modules. Therefore their duals are isomorphic

as nt-modules. Furthermore for any A’ € §* the b-modules M (\)# and M(X)# @ Cy_x
are isomorphic. Taking into account (), one concludes that

k= dim Homg(V, Hom(]\7[()\ — 1), ]\7[()\)#))
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does not depend on A (for fixed V and p).

Recall that V(A — p) is a quotient of M (X — ) and V(A) is a submodule of M(\)#.
Consequently & > dim Hom, (V()\ —n), VI ® V*) for all A € h*. Using Lemma [[1.1.3,
one obtains k& > dim 1~/| "

To verify that k < dim V], fix A such that M(\)# is simple. Denote by m; (resp., mo)
a highest weight vector of M(\ — p) (resp., M(\)#). Consider a map

v+ Homg (V, Hom(M (A — ), M(\)#)) = V*|_, st
L) (0)ma = (v)(m1) Yo € V|, ¢ € Homg(V, Hom(M (X — p), M(N)*))

Let us show that ¢ is a monomorphism. Take a non-zero element 1) € Homyg (‘7, Hom(]\7[ (A=
), ]\7[()\)#)) The vector space (V)(M (X — p)) is a non-zero g-submodule of a simple
module M (A)#: thus it coincides with M(A\)#. One has

G(V)(My) = (V) U (07 )m) = U)o (V) (ma)
since 1(V) is ad g-stable. Therefore ¥(V)(my) contains the highest weight vector ms that
is ¥(v)(m1) = my for a certain v € V. Obviously one can choose v be a weight vector; then

v € V|, and ¢(¢))(v) = 1. Hence ¢ is a monomorphism and so k < dim V*|_, = dim V|,
as required. O

11.15.  Remark. If M()) is simple, the above lemma gives
dim Homgy(V, Hom(M(\), M (X)) = dim V|,

for any simple finite dimensional V.

11.1.6. Lemma. Let A be a polynomial algebra and W be a finite group acting on
A. Assume that p,p’ € A are such that p'/p is W-invariant and let ¢ be a mazimal
W -invariant divisor of p™1. Then there exist ¢ € AW such that p'/p = ¢'/q.

Proof. Any non-zero polynomial has a unique factorization into irreducible ones. Let a/b
be a reduced form of the fraction p//p. For any s € W one has s(a)/s(b) = a/b and so
b/s(b) is a scalar. Since W is finite, 1 = (b/s(b))"! = bWl /s(b"1). Hence vl € AW.
Since p is divisible by b, p!"!I is divisible by b/"I. Therefore ¢ is divisible by b/"I. Then
there exist ¢ € A such that ¢'/q¢ = a/b = p'/p. The W-invariance of both ¢ and p'/p
implies the W-invariance of ¢'. O

11.2. In this subsection we present alternative proofs of Corollary and Theo-

rem [L.7.4.
Another proof of Corollary [[.5.3.
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11.2.1. Fix a subset Y of Irr and set X := {v € h*| V(v) € Y'}. For each v € X choose a
Z(g)-basic system 67, ... , 0y, of Homg(V (v),U). Let z, € Z(g) be such an element that
Homg(V (v),U[z;"]) is a free Z(g)[2;']-module generated by 6%, ... , 0%, (such an element
exists by Proposition -47]). Let S C Z(g) \ {0} be a multiplicative closed set containing
{T? z,,v € X}. Denote by A the localization of Z(g) on S and by Uy the localization
of U on S. Both actions ad g and ad’ g can be canonically extended to U,. Note that as
ad g-module (resp., ad’ g-module) U, belongs to Fin. For any v € X the localized algebra
Z(g)[z; Y] is a subalgebra of A and so Hom,(V (v),U,) is a free A-module generated by
0y,. .., 95 ) . Clearly U, inherits the structure of a superalgebra and its centre is equal to

A. Now we are ready to formulate the

11.2.2. Lemma. There exist ad g-submodules H, N of Uy such that

(1) the multiplication map induces a monomorphism H @ A — U,
(i) Uy =HAS N,

(i) H = @yex B(V(v)™),

(iv) SocH = Y,ex LI 0/(V(v)),

(v)  Homg(V(v),N)=0 Vv e X.

Proof. Since 67, ... is a Z(g)-basic system of Homy(V (v),U), the sum

) Z(I/)

s(v)

=2 >V

rveX 1=1

is direct. By B:3.d, the ad g-module TU is injective. Since T? € Z (g), the ad g-module

T-U is an injective submodule of U,. Therefore T~ contains an injective envelope
H of L and H = @,cx E(V(v)*). The multiplication map induces a g-homomorphism
¢:H®A— U,

Recall that Homg(V (v),U[z;']) is a free Z(g)[z;']-module generated by 67,... 0%
for any v € X. Therefore the module Homgy(V (v),Uy) is a free A- module generated by
07,... .05, This means that for any v € X the restriction of ¢ on PO GV(V) ®Aisa

monomorphism and its image coincides with the isotypical component of V( ) in the socle
of Uy. Then the restriction of ¢ on L® A is a monomorphism and Socly = ¢(L®A)® N’
where Homg(V (), N') = 0 for any v € X. Recall that Soc H = L and so Soc(H @ A) =

L ® A. Therefore ¢ is a monomorphism by B.1.2. From B.2.3, it follows that H ® A is an
injective module in Fin. Therefore U 4 contains a submodule N such that U W=HA®N.
Then SocUs = HA @ Soc N and thus Soc N 2 N’. This completes the proof. O
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11.3. In this subsection we prove that the Z(g)-rank of the module Homgy(V, ) is equal
to dim V|, for any V € Irr. Recall that, by Remark 4.5, in order to prove this assertion
it is suffices to find A € h* such that the image of SocU in Endg(V()\)) contains an
ad g-submodule L = /& dimVio,

To find this element A, we use Density Theorem stating the surjectivity of the natural
map U — End(V) for any V € Irr. As it is shown in Lemma [[T.1.3, for any V € Irr there
exists A such that Endc(V())) contains a submodule V4™ Vlo - This would imply the
assertion when U = Socl{ that is for completely reducible Lie superalgebras (however for
these algebras the assertion immediately follows from Separation theorems). The general
case requires a certain extra work: one should choose A in such a way that any copy of
V inside the socle of Endg(V())) lies in the image of Socl{. This can be done with the
help of Proposition [1.3.1].

11.3.1. Proposition. For any V € Irr the set of A € b* such that dim V()\) < oo and
there exists a monomorphism

E(V)@ dim\7\0 — EHdC(V()\))

1 a Zariski dense subset of h*.

Proof. Fix V € Irr. For any A € h* denote by fy the natural homomorphism U —
Endc(V/(A)) and by C3()) the isotypical component of V' in the socle of Endc(V())).

Let X be the set of v € h* such that dim V(v) € Irr and E(V(v)) has a subquotient
isomorphic to V. We claim that X is finite. Indeed, E(V (1)) is a submodule of Coind V (v).
As go-module, Coind V' (v) = V(v) ® Ag; and so the weight of any go-primitive weight
vector of Coind V() belongs to the set v+ Q(Ag;). Thus the highest weight of V belongs
to this set for any v € X. Therefore X is finite.

Retain notation of .3, For each v € X choose a Z(g)-basic system 67, ... 05, of

Homy(V, ). The collection W8, ... oy, is a Z(g)-basic system of Z(V) and so it is also
a S(h)-basic system of Z(V)S(h) (see Lemma [[ZJ). Denote p* a minor of this S(h)-basic
system. Recall that X is finite and take z € Z(g) such that P(z) = t*[[,cx [Twew w-p".
By Proposition E4.d, for any v € X the localized module Homg(V (v),U)[z7] is freely
generated over Z(g)[z7!] by {¢%,..., 95(,/)}. Therefore one can apply Lemma [[T.2.9 to the
set X and the algebra A := Z(g)[z~']. This gives Uy = (HA)®N where Hom,(V (v), N) =
0 for any v € X. Thus Soc N = @®;c;V (1;) where 1; ¢ X for each i € I. By BZ3, N
is isomorphic to a submodule of E(Soc N) 2 @&;c; E(V (11;)). Each module E(V (1;)) does
not have a subquotient isomorphic to V because i & X. Therefore N also does not have
a subquotient isomorphic to V.
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From Lemma it follows that the set
R:={\eb’| dmV()) < o0, Cs()) =V P(z)())+£0}

is Zariski dense in h*. Let us show that for any A € R there exists an injective map
required in the proposition.

Take A € R. The module f/()\) is finite dimensional and, by Density Theorem, the
map f) is surjective. Since z acts on V(A) by a non-zero scalar, one can extend fy to

the epimorphism Uy — Ende(V())). Taking into account that N has no subquotient
isomorphic to V', one concludes that Cpz(A) C fa(HA) = fia(H).

Let us show that the restriction of f) to H is a monomorphism. By B.1.3, it is enough
to verify that the restriction of f) to

s(v) _
SocH = > > 0/(V(v))
vex i=1

is a monomorphism. Since V(V) are pairwise non-isomorphic for different v, it suffices
to check that the restriction of fy to 325 6" (V(v)) is a monomorphism for each v € X.
This follows from Corollary f.1.2. Indeed, fix v € X. Recall that p, is a non-zero
s(v) x s(v)-minor of the matrix (P(Hj(vi)))],_l’s(u) where vy, ... v, is basis of V(v)]o.
Since P(2)(A) # 0 one has p”(\) # 0 and so, by7 Corollary [.1.2, the restriction of f\ on
Zfi”l) 07 (V(v)) is a monomorphism.

Combining the facts that H is injective and that C3(\) C fa(H) = H, one completes
the proof. 0

11.3.2.  Corollary. For any simple finite dimensional module V the Z(g)-rank of
Homy(V,U) is equal to dim V.

Proof. Set r := dim V|o. By Proposition one can choose A € h* such that V(\) is
finite dimensional and there exists a monomorphism

¢: L:=EV)® — Endc(V(N)).

By Density Theorem the natural map fy : U — Endc(V(N)) is surjective. Since L is

projective in Fin, U contains a submodule L’ such that the restriction of fx to L’ provides
an isomorphism L' = L. In the light of Remark [.4.5, a basis 6y, ... , 6, of Homy(V, L)

is a Z(g)-basic system of Homg(V,U). O

Another proof of Theorem
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11.3.3. Theorem. An adg-submodule L of U is a generic harmonic space iff

(a) L=&y, E(V)@G“mw0

and one of the following conditions holds

(b) VYV elrr detJ(V;L)#0

(¢)  the multiplication map provides an embedding L @ Z(g) — U.

Proof. Applying Lemma [[1.2.9 for Y := Irr and S := (Z(g) \ {0}), we conclude the
existence of a generic harmonic space satisfying the condition (a).

Let us show that all generic harmonic spaces are pairwise isomorphic as ad g-modules.
Indeed, let L and L’ be generic harmonic spaces. Since U is countably dimensional, one can
choose the corresponding sets S, 5" C Z(g) \ {0} having countable number of elements.
Take a maximal ideal m of Z(g) such that m N (S U S’) = 0. Then as ad g-modules

L =U/(ml) = L'. Hence all generic harmonic spaces satisfy the condition (a).

Let L be a generic harmonic space. Then the condition (c) obviously holds. Moreover,
for any V' € Irr a basis 01,... ,0, of Homy(V, L) is a Z(g)-basic system of Homg(V, ).
Therefore det J(V; L) # 0 and so (b) holds as well.

Fix L satisfying (a) and (b). For V € Irr denote by ¢(V) a maximal W.-invariant divisor

of (det TV L))'W‘. Take S C Z(g) such that P(S) consists of the elements t>q(V') where
Vel Itis easy to deduce from Proposition that the multiplication map provides

an isomorphism Soc L ® Z(g)[S~'] — Soc(U[S™"]). Since L is injective, L ® Z(g)[S™"]
is also injective and so L ® Z(g)[S™'] — U[S™']. Hence L is a generic harmonic space.

Finally, fix L satisfying (a) and (c). For any V € Irr a basis of Homy(V, L) contains
dim Vo elements due to the condition (a) and these elements Z(g)-linearly independent
due to condition (c). Hence these elements form a Z(g)-basic system of Homy(V,U) that
is det J(V; L) # 0. Thus L fulfills the condition (b) as well. This completes the proof. [
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