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2 THE CENTRE OF P(n).

1. INTRODUCTION

1.1.  The Lie superalgebra g := P(n — 1) is described in [K1]. It consists of the matrices
of the block form

a | b

where a,b,c are n X n-matrices over a base field k of characteristic zero such that a
is traceless, b is symmetric and c is skew-symmetric. The even part gy consists of the
matrices with b = ¢ = 0 and the odd part gy consists of the matrices with @ = 0. The Lie
bracket on g is given by the formula [x,y] = zy — yx if z or y is even and [z, y] = zy + yx
if both 2 and y are odd. The Lie superalgebra P(n — 1) is simple for n > 3; its even
part gg is a simple Lie algebra sl(n). The Lie superalgebra g admits also a Z-grading
g=9-1Dgo D g1 where gy coincides with gg, g1 consists of the matrices with a =b =0
and g_; consists of the matrices with a = ¢ = 0. The last grading induces a Z-grading on
the universal enveloping superalgebra U(g).

The central elements of the P-type Lie superalgebras were investigated by Scheunert
in [Sch]. It was shown that any central element without constant term is of degree —n
(with respect to the Z-grading above) and its order is at least sn(n + 1). The first
statement has the following important consequences. First, it shows that the centre
Z(g) of U(g) is highly degenerate: the product of any two central elements without
constant term vanishes. Second, this implies that such central elements annihilate all
completely reducible representations. For n = 3 Scheunert constructed the lowest-order
central element (of order 6).

1.2. Our goal is to determine the centre Z(g). It turns out that for P-type Lie superal-
gebras the structure of the centre Z(g) is similar to the structure of the anticentre A(g).
Recall that the even elements of the centre Z(g) commute with all element of U(g) and
the odd elements of Z(g) commute with the even elements of U(g) and anticommute with
the odd ones. By contrast, the odd elements of the anticentre A(g) commute with all
element of U(g) and the even elements of A(g) commute with the even elements of U(g)
and anticommute with the odd ones. In the situation when any even element of the Lie
superalgebra p = pg @ p7 annihilates the one dimensional module A'*Ppz, the anticentre
A(p) can be easily determined — see [G1]. Namely, there is an explicit construction of a
linear isomorphism from the centre Z(pg) to the anticentre A(p) and the image of A(p)
in the symmetric algebra S(p) is equal to A*PpsS(pg)¥o.

Since gg is a simple Lie algebra sl(n), A*Pp; meets the above condition and the iso-
morphism ¢' : Z(g5) — A(g) can be easily written down. Note that A(g) lies in the
homogeneous component U(g)_,, since the image of A(g) in the symmetric algebra S(g)
is equal to A*PgrS(gg)% = A*Pg;A™Pg 1S(gg)% and dimg; — dimg_; = —n. Using the
isomorphism ¢, we construct a linear isomorphism ¢ : Z(g5) — Z(g) NU(g)—,. This
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provides a full description of Z(g) since, due to Scheunert, Z(g) = k & Z(g)_,, where
2(g)-n = Z(g) NU(@) -

1.3. Remark that for other Lie superalgebras the structures of the centre and the anti-
centre are not so similar. However one might notice a certain connection. For instance,
for a non-simple P-type Lie superalgebra GP(n — 1) (n > 3) (consisting of the block
matrices of the same type as above but with an arbitrary matrix a) and for a Cartan type
superalgebra W(n) (n > 3) both centre and anticentre are trivial: the centre coincides
with the base field— see [Sch], [Sh] and the anticentre is equal to zero ([G1]).

The sum of the centre and the anticentre is a subalgebra of U(g) which we call ghost
centre. Contrary to the case of basic classical Lie superalgebras where all central and anti-
central elements are non-zero divisors, for g = P(n—1) (n > 3) one has Z(g)_,2Z(g)_n =
Z(g)_nA(g) = A(g).A(g) = 0. Thus the ghost centre Z(g) := Z(g)+.A(g) = kD Z(g) D
A(g) is an algebra with a trivial multiplication.

1.4.  As in the cases of basic classical Lie superalgebras (that are the general linear,
the special linear, and the orthosymplectic Lie superalgebras) we denote a lowest-order
anticentral element by 7" (this is an element of .A(g) whose image in the symmetric algebra
belongs to A*Pgg, the above condition determines 7" up to a scalar). For a basic classical
Lie superalgebra p the restrictions of Harish-Chandra projection P to the centre Z(p) and
to the anticentre A(p) are injections. The image of Z(p) is a subalgebra of the algebra
of W-invariant polynomials S(h)"" described in [K2], [S], [BZV]. The image of A(p) is
simply tS(h)"- where ¢ := P(T') takes the form

=TI (@ + (@), (1)

+
acA]

see [G1]. The element ¢ is “in charge” of strong typicality. This means that for A\ € h*
satisfying ¢(\) # 0 the category of p representations whose central character coincides
with the one of a simple module of the highest weight A is equivalent to the the category
of pg representations with a certain central character (see [PS],[P],[G2]).

A specific feature of g = P(n — 1) is the lack of symmetry: the fact that the anticentral
elements as well central elements without constant terms are homogeneous of degree —n
reflects the fact that the dimensions of g; and g_; are not equal (the difference is exactly
—n). Since the Harish-Chandra projection of an element of non-zero degree vanishes, we
substitute the Harish-Chandra projection by another map P_, : U(g)_, — S(h). The
restrictions of this map to the centre Z(g) NU(g)_, and to the anticentre .A(g) are again
injections. Moreover both images are equal to tS(h)"- where t := P_,(T) can be written
in the form

t= TI (" +(a,p) - 1). (2)

ozEAO+
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Observe that the linear factors of ¢ correspond to the odd coroots in the formula (1) and
to the even coroots in the formula (2). This difference is connected to the following fact:
if z,y are odd elements of a basic classical Lie superalgebra of the opposite weights 3 and
— (3 respectively then [z,y] is proportional to the odd coroot 3Y; by contrast, if z,y are
odd elements of g = P(n — 1) meeting the same condition then [x,y] is proportional to a
certain even coroot (see (3)).

1.5.  For a basic classical Lie superalgebra p a central (or anticentral) element z an-
nihilates a Verma module of the highest weight X\ iff P(z)(\) = 0. Since P(A(p)) =
P(T)S(h)"- it follows that a Verma module annihilated by 7" is annihilated by any anti-
central element. This last property remains true for g = P(n — 1); moreover, if a Verma
module is annihilated by 7" then it is annihilated not only by all anticentral elements but
also by all central elements without constant term (this immediately follows from Theo-
rem 4.1 (iii)). However, the equality P_,(z)(\) = 0 does not force that z € Z(g), U .A(g)
annihilates a Verma module of the highest weight A\ (see 4.3).

2. PRELIMINARIES

2.1. Notation. Let g = gg @ g7 be a Lie superalgebra P(n — 1) endowed with the Z-
grading described above. Extend this Z-grading to the universal enveloping algebra U(g)
and denote by U(g), (r € Z) the corresponding graded component. For any subspace N
of U(g) set N, :== N NU(g),. Denote by ad the adjoint action of U(g) on itself.

For a superalgebra p denote its universal enveloping algebra by U(p). Since gi; are
supercommutative pure odd Lie superalgebras, U(g+;) is canonically isomorphic to the
exterior algebra Ag.q.

2.1.1. Retain notation of 1.1. Denote by § the set of diagonal matrices belonging to
g0, by ng (resp., ng) the set of matrices whose upper-left block a is lower (resp., upper)
triangular and both blocks b and ¢ are equal to zero. Then gg := ny ®hdng is a “standard”
triangular decomposition of gy = sl(n). As usual, it is convenient to present h* as the
quotient of the n dimensional vector space with a basis {g;}} by the one-dimensional
subspace spanned by 37 ¢;. Denote by W the Weyl group of go; it acts on the set {&;}7
by the permutations. Denote by (—, —) the canonical W-invariant bilinear form on h*.

Set nf” := gy, ny := g_; and n* := nT +nf.
With this notation one has

AJF - (ng) = { - 8]}1<z<]<n7
AT =Q(nf) = {—& —¢jhi<ici<n,
1_ - Q(nl_ = {25u & + 6]}1<z<]<n

)
f

where Q(N) stands for the multiset of h-weights of N. Set p := %ZQGA(T Q.
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For r;s € {1,...,2n} let E, ¢ be the 2n x 2n matrix whose only non-zero entry is 1 at
the place (r,s). For each pair (i,7) with 1 <7< j <n set

eEi*Ej = Ei,j - En+j,n+iy

fﬁsthj = Ej,i - En+i,n+j7

(ei — €)Y = Eii — Ejj — Entimti + Entjntss
Tegime; = Enyji — Entiy,

Yeitre; = Einyj + Ejntis

Yoe, = Eini-

The set {ea}aeAar (resp., {f,a}aeAau) forms a basis of ng (resp., ny) and the set {zataeas

V' is the coroot

(resp., {ya}aeA;) forms a basis of ni (resp., ny). As always (&; — ¢;)
corresponding to (g; — ;) that is given by the formula (¢; — ;)Y (p) = (&; — €;, ) for any

1 € b*. One has
[eéi—z’fj7 f—8i+8j] - [x&‘i'f'&j?y—{:‘i—é‘j] = (81 - 8])\/ (3)

Denote by J the set of odd positive roots (that is A}) with a fixed total order. For a
subset J' C J denote by x and yy respectively the products [[sc 23, [1scs y—p taken
with respect to the total order. Set also

Yng = H Y—2¢;5

i=1
Yr = yniys
Since ni are supercommutative one has y; = tysyng, TpTge = Lxpog, ypym =

typug it JOJ" =0 and zpxp = ypym = 0if J N J" # (). Note that the elements
Y, Y,y lie in U(g)". Moreover z; € A*Pnf,y; € APy and, in particular, z,,y;
are go-invariant.

2.1.2. For p € b* and a vector subspace N C U(g) denote by N|, the corresponding
h-weight subspace of N.

We identify U (h) with S(h). Define a twisted action of the Weyl group W on S(h) by
setting
w.p(A) = plw™ (A +p) = p)
for any w € W,p € S(h), A € bh*.

Recall that the elements y5 ( 5 € A7) have degree —1 and the elements x5 ( § € AY)
have degree 1; thus one has U(g), = 0 if r < —#A] = —w or r > #A] = @
(where # stands for the cardinality).

The universal enveloping algebra U(g) admits the canonical filtration given by F*(U(g))
g*; the associated graded algebra is the symmetric algebra S(g) = S(go)Agy. For any
u € U(g) denote by gru the image of u in the symmetric algebra S(g).
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2.1.3. Verma modules. For A € h* denote by k) a one-dimensional (h + n*)—modll/le such
that n*v = 0 and hv = A(h)v for any h € h,v € ky. Define a Verma module M(A) by

setting M(\) := U(g) ®u(o) kr. Call the image of a fixed non-zero element of ky in M ()

a canonical generator of M(X). Similarly, denote by M(\) a Verma go-module of the
highest weight .

Suppose that A € h* is such that (A + p,a) is a positive integer for some a € AJ. Let
v be a canonical generator of M(\); then U(go)v = M()) contains an n-invariant vector
wv (with u € U(gp)) of the weight s,.\ (here s, € W is the reflection corresponding to
the root ). The vector uv is n-invariant because ni is ad go-invariant. Since u € U(go) is
a non-zero divisor in U(g), the vector uv generates a submodule isomorphic to M (sq.\).
Hence M(sq.\) C M(N).

Caution: The module M()) is never simple because [ys.,, n*] € n* and so for a canon-
ical generator v € M(\) the subspace U(g)(y2e,v) is a proper submodule.

2.1.4. Projections Py, P. Denote by P, the projection U(g) — U(n~ + ) with respect to
the decomposition U(g) =U(n~ + h) @U(g)n" and by P the Harish-Chandra projection
P :U(g) — U(h) with respect to the decomposition U(g) = U(h) & (n"U(g) + U(g)n™).
The restrictions of P, and P to the subalgebra U (g)g coincide and give an algebra ho-
momorphism. Note that the restrictions of P, and P to the subalgebra U(g)" do not
coincide and are not algebra homomorphisms — for instance, both 3, 2 lie in U(g)" and
P(y;) =0, but Py(ys) = ys and P(z;y;) # 0 by Lemma 3.1 below.

The inclusion U (g)n"U(h) C U(g)n*t implies that
Py (ab) = Py(a)P(b), Va €U(g),b e U(g)s. (4)

2.2. Anticentre A(g). The anticentre A(g) can be defined as the set of invariants of
U(g) with respect to a twisted adjoint action: A(g) = U(g)*¥ 9 where ad’ is given by the
formula

(ad’ g)u = gu — (=1)"IHyg

for all homogeneous g € g,u € U(g) (here d(.) stands for the Zy-degree of the element
that is d(u) = 0 for u € U(g)y and d(u) = 1 for u € U(g)7). Note that the odd elements
of the anticentre A(g) commute with all element of U(g) and the even elements of A(g)
commute with the even elements of (g) and anticommute with the odd ones.

By Theorem 3.3 of [G1], gr.A(g) = A*Pgygr(Z(go)). This can be rewritten as

gr A(g) = gr(z,yrZ(go))

because grxy; spans A*Pgy. Since A(g) is a graded subspace of U(g), the elements of
A(g) have degree equal to #J — #I = —n. Therefore,

A(g) = A(g) -
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3. USEFUL ASSERTIONS.

The element
t:=P(zyys)
plays an important role in the description of the centre and seems to be instrumental in
the study of representations of g.

3.1. Proposition. One has
t==+ [ (@ +(a.p)—1).

aeAaL

Proof. The proof has two steps. As a first step, let us prove by induction that for all
r=2,...,n one has

P( H ‘T"*El*tfj H ys1+sj) H (51 _5] +j - 2) (5)
1<j<r 1<j<r 1<5<r

For r = 2 the assertion immediately follows from the equality (3). For the induction step
observe that

P(Hl<j§r+l xfslfsj Hl<j§7‘+l y51+5]‘> = ip(nl<]§7“ :L’,EI,EJ, . x751757«+1 : y51+57«+1 Hl<j§r y81+5j)

= :I:P(H1<j§r Toey—e;((€1 — €r41)” = Yerter1Ter—e,1) Hicjsr yal—i—aj) (6)
It is easy to see that U(n™)|, # 0 for p = ¥, ¢e; only if ¢ + ¢4 + ... + ¢, > 0 for
all s =1,... n. In particular, U(n~ + h) does not contain a non-zero element of weight

(r—2)e1 +e2+ ... — €rq1. Therefore the element x_., . ., ITi<j<, ¥e,1e, belongs to
U(g)n' and thus (6) implies

P( H Tg)—¢; H ysl—i-sj) = :l:P( H x—sl—sj 5r+1 H yeﬁ-ej)

1<j<r+1 1<j<r+1 1<j<r 1<j<r
Taking into account that

51 - 5r+1 H y€1+€] - H yal—l—aj((gl - 5r+1)v +7r— 1)a

1<j<r 1<j<r
one obtains the required equality (5) by induction.
The second step of the proof is to show that for r =1,... ,n — 1 the term
ty = Pg_TSl_[Kan CUeiajn_rSl_[Kan yErHSj)
is given by the formula

b=+ JI ((—¢)+—g.p)—1). (7)

n—r<i<j<n
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We again proceed by induction. For r = 1 the equality (3) gives

t1=P(r e, e Ve rten) = (En1— 5n)v = ((Enfl - gn)v + (En1 = €nyp) — 1)

as required.

Assume that (7) holds for some r < n. For s = 1,... ,n —1let n, (resp., nz;)) be
the Lie subalgebra of n™ (resp., n*) spanned by the elements f_. ., voc,, e, 4c; (r€SP.,
Comejy Togme;) With n —s <i < j < n. Set Xy = [—r<jcn T—c,_,_,—¢,;- Let us show
that (adngy)X() € n"U(g). Indeed, fix a pair (i,7) with n —r <4 < j < n. The
equality (ad f_c4c,) Xy = 0 immediately follows from the supercommutativity of n*.
Furthermore it is easy to see that a homogeneous element of degree m belonging to the
algebralf(h+n ) has a weight of the form 37_, , _, ¢;e; with ¢, > —m. Combining
the facts that the terms (adye,+e;)X(), (adye:, )Xy lie in U’ :=U(n; ) + b+ n?;H)),
have degree r and weights of the form (—(r + 1)e,—,—1 + ... ), one concludes that these

terms lie in n~U(g) because U’ = n,, \U' ©U(n,, ) +b) and the rth graded component
of the algebra U (n?; ot h) does not contain non-zero elements of the weights of the above
form.

One has

try1 = P(anr71§i<j§n T—e;—¢; anr71§i<j§n y€i+€j)
=+P X(T) Hn—r§i<j§n Tg;—¢; Hn—r§i<j§n Yei+e; Hn—rﬁjgn yan—r—1+5j> (8)
=*P X(T)(tT’ + Zs u;us) Hn—rSan ysnfrfl"!‘sj)

where each term " belongs to n,, and u, are some elements of ¢/ (g). As we have shown
above (adn )X, lies in n"U(g) and thus P(X(T)us_us [l r<j<n ysn_r_ﬁe].) = 0 for any
index s. Therefore
try1 =£P( Xty Ilh—r<j<n yan_r_1+aj)
=+ P( X Hn—r§i<j§n<(€i — &)’ + (e —¢gj,p) — 1) nr<j<n yen7H+e]-)
= :I:P(anrgjgn Lepy1—¢j anrgjgn ?anﬂ;ﬁsj) anr§i<j§n((€i - 5j)v + (5z‘ — &5, P) - 1)~

The formula (5) implies that

P(anrgjgn Lep r1—¢ anrgjgn ysnfrfl""ej) = anrgjgn <€H—T—1 - €j>v +j - (n - r- 1) -1

= Hn—rgjgn (57%7“*1 - 5j>v + (gnfol - 5jap) —1).

Hence
tryr =+ 11 ((5Z —&;)V + (e —¢gj,p) — 1)

n—r—1<i<j<n

as required. Finally observing that ¢ = 4+¢,_; one completes the proof. Il
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3.2. Proposition. For any Zariski dense subset €2 of h* one has

ﬂ Annu(g) M()\) =0.
AEQ

Proof. Let € be a Zariski dense subset of h*. By Proposition 3.1, P(x y;) is a non-zero
polynomial and so the set Q' := QN {\ € b*| P(x,ys)(\) # 0} is also Zariski dense in
b*. Assume that N := e Ann M ()) is non-zero. One has U(g) = U(go + n) U(n}) =
U(go +ny)Anf. Since N is a right ideal, it contains a non-zero element of the form ux;

where u € U(go+n7). Let X be an element of ' and v be a canonical generator of M(\).
Then

0 = ux;(U(go)ysv) = uld(go)zsysv = uld (go) P(x5ys)(A)v.

Note that P(z;y;)(A)v € k*v since A € ' and thus the space U(go)P(z,ys)(A\)v is
isomorphic to a Verma go-module M (X). Writing v = Y- gc; ysus where ug € U(go), one
concludes that each ug annihilates M (\). However, by [D],

N Annyge) M(X) =0

AeqY

and thus all terms ug are equal to zero. This gives the required contradiction. Il

3.3. The map P_,,. The Harish-Chandra projection P annihilates the homogeneous
component U(g), for any r # 0. In particular, P(Z(g)_,) = 0 and thus P itself is
useless for a description of the centre Z(g). For this purpose it is convenient to use
a map P_, : U(g)", — U(h) constructed below. For a € U(g)", one has ysa €
Z/I(g)"ﬂU(g)#Al— = y1U(go)". This allows us to define the linear map P_, : U(g)",, — U(H)

by the condition
Py (ysa) = yrP-(a)

for any a € U(g)",.

3.3.1. Lemma. The restrictions of P_, to Z(g)_, and to A(g) are (vector space)
monomorphisms.

Proof. Take a non-zero element a € Z(g)_,UA(g)_,. Combining Proposition 3.1 and Propo-
sition 3.2 one concludes the existence of A € h* such that P(xy,)()) # 0 and aM(X) # 0.
Let v be a canonical generator of M()); the condition P(z,y;)(A) # 0 implies that
ryysv € k*v and so the vector y ;v generates M (A). Since a is either central or anti-
central, al{(g) = U(g)a and so the condition aM()\) # 0 forces a(ysv) # 0. One has
a(yyv) = Py(ayy)v = yrP_p(a)v. Hence P_,(a) # 0 as required. O
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3.3.2.  Set
T .= (ad' iL'J)y[.

Lemma. For anya € Z(g)_, U .A(g) one has

Pi(a)t = Py(T)P-y(a). (9)

Proof. Any a € Z(g)_, U A(g) commutes with the term z;y; and so Py(z;ysa) =
P, (a)P(zyys) by (4). On the other hand,

Pyi(zyysa) = Py(2, P (ysa)) = Pi(zsyrP-n(a)) = Pi(zyyr) P-p(a).

Therefore P, (zy;)P_n(a) = Py(a)P(z;y;) = Py(a)t for any a € Z(g)_, U A(g). Tt is
easy to see from the definition of ad’ that P, (T) = P, (zsy;). The assertion follows. [

4. MAIN RESULT

Recall that Z(g) = k @© Z(g)_n (see [Sch]). In this section we prove the following
theorem which describes Z(g)_,, and A(g) = A(g)_n.

4.1. Theorem. i) The map ¢ : Z(go) — U(g) given by z — (adzy)(yrz) induces a
linear isomorphism Z(go) — Z(g)—n.

ii) The map ¢' : Z(go) — U(g) given by z — (ad’ x;)(yrz) induces a linear isomorphism
Z(go) — Alg)-

iii) One has

Pi(¢(2)) = P(¢(2)) = P(T)P(z),
P_n(¢(2)) = Pn(¢/(2)) = tP(2).

iv) The restriction of P_, to Z(g)_, and to A(g) induces linear isomorphisms

Z(g)—n — tS(H)",  A(g) = tS(h)"".

4.2. Proof of Theorem 4.1.
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4.2.1. The image of ¢ lies in Z(g). To show that Im¢ C Z(g) fix z € Z(go). First, let
us check that (ad yae, )¢(2) = 0. One has (ad yae,)o(2) = (ad y2e,x5)(yrz). The element
Yoe, 77 belongs to U(g)(go + ny) because Anf does not contain a non-zero element whose
weight and degree coincide respectively with the weight and the degree of y,., ;. Since
the element y;z is ad(gg + ny )-invariant one obtains (ad yoe, ) (yr2) = 0.

Since x;,yr and z are ad go-invariant, ¢(z) = (adx;)(yr2) is ad go-invariant. Com-
bining the equalities (ad go)¢(z) = (ad yae, )d(z) = 0 and ny = [go, Yo, ], one concludes
(adny)é(2) = 0. The remaining equality (adni)@(z) = 0 immediately follows from the
supercommutativity of nf". Hence ¢(2) € Z(g).

4.2.2. Proof of (ii). Replacing the adjoint action ad by the twisted adjoint action ad” and
repeating the above reasoning one concludes that Im ¢/ C U(g)*¥'¢ = A(g).

Remark that (ad g)u = 2gu — (ad g)u for all ¢ € g1,u € U(g) and that gru and
gr((ad g)u) have the same degree in the symmetric algebra S(g). Therefore

gr((ad g)u) = 2(grg)(gru), Yg € g1,u € U(g) s.t. gr(gu) = (grg)(gru).

This implies gr ¢/(2) = gr((ad’ z;)(yr2) = 2#7 gr(zyy;2) for any 2z € Z(go). In particular,
gro’(z) # 0 and so ¢’ is a monomorphism. Moreover, by 2.2, gr A(g) = gr(z,;y:Z(g0))
that is gr A(g) = gr(Im ¢’). This proves that ¢ is an isomorphism.

4.2.3. Proof of (i11). Combining Lemma 3.3.1 and the definition of P_,, one concludes
that P, (a) # 0 for any non-zero a € Z(g)_, U A(g). Recall that T' = (ad' x;)y; = ¢'(1).
Applying the formula (4) one obtains

P(¢(2)) = Pr((ad’ 2))(y12)) = Pilzsyiz) = Pi(zsyn) P(2) = Py (T)P(2).
Similarly P (¢(z)) = P.(T)P(z). Taking a := ¢(z) in the formula (9) one gets
PAT)P(2)t = Py(T)Po(8(2)) = Po(T)P_(¢/(2).
Using the fact that the non-zero elements of U (h) are non-zero divisors in U(g) and the
inequality P, (T") # 0, one obtains
P_n(¢(2)) = Pon(d(2)) = tP(2).
This completes the proof of (iii).

4.2.4. Proof of (iv). Tt is well-known that the restriction of P to Z(go) induces the Harish-
Chandra (algebra) isomorphism Z(gg) — S(h)". Combining already proven assertions
(i) and (iii) of Theorem 4.1, one concludes that the restriction of P_, to A(g) induces a
linear isomorphism A(g) — tS(h)"".

Combining Lemma 3.3.1 and (iii) one concludes that the restriction of P_,, to Z(g)_,, is
an injective map whose image contains tS(h)"". Thus to show that the restriction of P_,,
to Z(g) induces a linear isomorphism Z(g) — tS(h)"", it remains to check that P_,(a) €
tS(h)"- for any a € Z(g)_,. We proceed in two steps. First, we verify that P_,(a) €
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tS(h). By (9) Pi(a) = P(T)(P-,(a)/t). Write P, (T) = X u,s, where u, are elements of
a basis of U(n™) and s, are elements of S(h). Then 3" u,s,.(P-,(a)/t) = Py(a) € U(n~ +h)
and so s.(P_,(a)/t) € S(bh) for all k. Lemma 4.2.5 asserts that P, (7T) ¢ U(b™)t or, in
other words, that s, € S(h)t for some r. This gives that P_,(a)/t € S(h) and completes
the first step. In the second step (Lemma 4.2.6) we show that the fraction P_,(a)/t is
W.-invariant.

4.2.,5. Lemma. The element P,(T) does not belong to U(b™)t.

Proof. This follows from 2.1.3 and the fact that ¢ is not W.-invariant. Indeed, if v is a
canonical generator of a Verma module M (\) then

ysTv =P (y;T)v = yr P (T)v = yrt(A)v (10)

and thus TM(X) # 0 provided ¢(\) # 0. By 3.1, t(A) = 0 iff (A + p,a) = 1 for some
a € Af. Take u such that (u+ p,e; — e2) = 1 and (i + p,a) € Z for the other roots
a € Af. A Verma module M := M (1) contains a submodule isomorphic to a Verma
module M’ := M(p— (e —€3)), see 2.1.3. Since (u— (61 —3) 4+ p,a) # 1 for all @ € Af,
one has TM' # 0 and, consequently, T' M # 0. Since T is anticentral, this implies that T’
does not annihilate a canonical generator of M that is P, (T)(u) # 0. Taking into account
that ¢(x) = 0 one obtains the required assertion. O

As we explained in 4.2.4, the above lemma implies that P_,(Z(g)) C tS(h). The
following lemma demonstrates that P_,(Z(g)) C tS(h)"-.

4.2.6. Lemma. For anya € Z(g)_, the fraction P_,(a)/t is W.-invariant.

Proof. Fix a € A§ and let s € W be the corresponding reflection. Let A € h* be such
that t(\) # 0,¢(s.A) # 0 and that (A + p, @) is a positive integer. Observe that the set of

suitable \’s is Zariski dense in h*. Let v be a canonical generator of M (A) and V' = uv
(u € U(go)) be a canonical generator of M(s.\) C M(\) (see 2.1.3). Take a € Z(g)_p.
One has av = P, (a)v, av’ = Py(a)v'. Applying (9) one obtains

av = T, where ¢ := P_,,(a)(\)/t(N),

av' =TV,  where ¢ := P_,(a)(s.\)/t(s.\).
On the other hand,

av’ = auv = uav = cuTv = cTuv = TV

By (10), the inequality ¢(\) # 0 implies T'v # 0. Thus ¢ = ¢’ and the assertion follows. [

4.2.7. Now (iv) follows from 4.2.4. Combining 4.2.1 with (iii) and (iv) one concludes (i).
Theorem 4.1 is proven.
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Remark. Lemma 4.2.6 might let one think that P_,, plays for Z(g)_, a role similar

to the one played by the Harish-Chandra projection for the centre of the enveloping algebra
of semisimple Lie algebra. However, Lemma 4.2.5 shows that ¢(A\) = 0 does not imply
¢(1)M (X)) = 0 even though P_,(¢(1)) = t.

[Sch]
[S]
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