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DENOMINATOR IDENTITIES FOR FINITE-DIMENSIONAL LIE

SUPERALGEBRAS AND HOWE DUALITY FOR COMPACT

DUAL PAIRS

MARIA GORELIK, VICTOR G. KAC, PIERLUIGI MÖSENEDER FRAJRIA,
AND PAOLO PAPI

Abstract. We provide formulas for the denominator and superdenominator of
a basic classical type Lie superalgebra for any set of positive roots. We establish a
connection between certain sets of positive roots and the theory of reductive dual
pairs of real Lie groups, and , as an application of these formulas, we recover the
Theta correspondence for compact dual pairs. Along the way we give an explicit
description of the real forms of basic classical type Lie superalgebras.
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1. Introduction

The Weyl denominator identity

(1.1)
∏

α∈∆+

(1− e−α) =
∑

w∈W
sgn(w) ew(ρ)−ρ

is one of the most intriguing combinatorial identities in the character ring of a
complex finite-dimensional simple Lie algebra. It admits far reaching generalizations
to the Kac-Moody setting, where it provides a proof for the Macdonald’s identities
(see [11]). Its role in representation theory is well-understood, since the inverse
of the l.h.s. of (1.1) is the character of the Verma module M(0) with the highest
weight 0.

In the first part of this paper we provide a generalization of formula (1.1) to the
setting of basic classical type Lie superalgebras. Deepening this problem, we came
across an interesting connection with representation theory of Lie groups which is
the theme of the second part of the paper.

By a basic classical type Lie superalgebra we mean an almost simple finite-
dimensional Lie superalgebra g = g0 ⊕ g1 with a non-degenerate invariant super-
symmetric bilinear form (·, ·) and g0 reductive. Choosing a Cartan subalgebra h

of g0, we get the set of roots ∆ = ∆0 ∪ ∆1, where ∆i is the set of roots of h in
gi, i = 0, 1. Choosing a set of positive roots ∆+ in ∆, we let ∆+

i = ∆+ ∩ ∆i. In
trying to extend (1.1) to a Lie superalgebra g, it is natural to replace the l.h.s of
(1.1) with the character of the Verma module M(0) over g, which is the inverse of

(1.2) R =

∏
α∈∆+

0
(1− e−α)

∏
α∈∆+

1
(1 + e−α)

,

called the denominator. Beyond the denominator R, very important for us will be
the superdenominator, defined as

(1.3) Ř =

∏
α∈∆+

0
(1− e−α)

∏
α∈∆+

1
(1− e−α)

.

Generalizations of formulas for R and Ř to affine superalgebras and their con-
nection with number theory and the theory of special functions are thoroughly
discussed in [14]. The striking differences which make the super case very different
from the purely even one are the following. First, it is no more true that subsets of
positive roots are conjugate under the Weyl group: to get transitivity on the sets of
positive roots one has to consider Serganova’s odd reflections, see (2.5). Moreover
the restriction of the nondegenerate invariant bilinear form (· , ·) to the real span
V∆ of roots may be indefinite, hence isotropic sets of roots appear naturally. One
defines the defect d = def g as the dimension of a maximal isotropic subspace of
V∆. A subset of ∆, consisting of linearly independent pairwise orthogonal isotropic
roots is called isotropic. It is known that any maximal isotropic subset of ∆ consists
of d roots ([14]).

In this paper we settle completely the problem of finding an analogue of (1.1)
for basic classical type Lie superalgebras, by providing an expression for the r.h.s.
which incorporates the dependence on the set of positive roots. The following result
is known.
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Theorem KWG. Let g be a basic classical type Lie superalgebra and let ∆+ be
a set of positive roots such that there exists a maximal isotropic subset S of ∆+,
contained in the set of simple roots corresponding to ∆+. Then

eρR =
∑

w∈W ♯

sgn(w)w

(
eρ∏

β∈S(1 + e−β)

)
,(1.4)

eρŘ =
∑

w∈W ♯

sgn′(w)w

(
eρ∏

β∈S(1− e−β)

)
.(1.5)

In the above statement ρ = ρ0 − ρ1, where ρi =
1
2

∑
α∈∆+

i
α, W ♯ is a subgroup of

the Weyl group Wg of g defined in (2.1) and sgn′ is defined in (2.3). This result
has been stated by Kac and Wakimoto in [14], and fully proved for d = 1 by using
representation theoretical methods. A combinatorial proof for arbitrary d has been
recently obtained by Gorelik [4].

Theorem KWG will be of fundamental importance for our generalization, which
is as follows: given any subset of positive roots ∆+, we want to express eρR by a
formula like the r.h.s. of (1.4), in which at the numerator appears the ρ correspond-
ing to ∆+ and at the denominator a suitable maximal isotropic subset S of ∆+, so
that the exponents at the denominator are linear combinations with non-positive
integer coefficients of simple roots: see (1.10), (1.11). We also provide a formula in
which the denominator is exactly as in the r.h.s. of of (1.4), but we have to perform
a correction on ρ, depending on S: see (1.15).

Let us discuss more in detail these formulas. First we construct a certain class S
of maximal isotropic subsets by the following procedure.

Definition 1.1. Denote by S(∆+) the collection of maximal isotropic subsets of ∆+

of the form S = S1∪ . . .∪St of ∆
+, where S1 is a non empty isotropic subset of the

set of simple roots, and, inductively, Si is such a subset in the set of indecomposable
roots of S⊥

i−1 \ Si−1, where S⊥
i−1 = {α ∈ ∆+ | (α, β) = 0 ∀ β ∈ Si−1}.

Denote by Q, Q0 the lattices spanned over Z by all roots and even roots, respec-
tively, and let, for S ∈ S(∆+) and γ ∈ S

ε(η) =

{
1 if η ∈ Q0,

−1 if η ∈ Q \Q0,
(1.6)

γ≤ = {β ∈ S | β ≤ γ}, γ< = {β ∈ S | β < γ},(1.7)

JγK =
∑

β∈γ≤

ε(γ − β)β, KγJ=
∑

β∈γ<

ε(γ − β)β,(1.8)

sgn(γ) = (−1)|γ
≤|+1,(1.9)

where, as usual, β ≤ γ if γ− β is a sum of positive roots or zero and |X| stands for
the cardinality of the set X .

Theorem 1.1. Let g = g0 ⊕ g1 be a basic classical type Lie superalgebra having
defect d, where g = A(d − 1, d − 1) is replaced by gl(d, d). Let ∆+ be any set of
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positive roots. For any S ∈ S(∆+) we have

C · eρR =
∑

w∈Wg

sgn(w)w

(
eρ∏

γ∈S(1 + sgn(γ)e−JγK)

)
,(1.10)

C · eρŘ =
∑

w∈Wg

sgn′(w)w

(
eρ∏

γ∈S(1− e−JγK)

)
,(1.11)

where

(1.12) C =
Cg∏

γ∈S

ht(γ)+1
2

,

and Cg = |Wg/W
♯|. Moreover, there exists Snice ∈ S(∆+) such that JγK ∈ Q+ =

Z+∆
+ for any γ ∈ Snice.

The explicit values of Cg are the following.

(1.13) Cg =





d! if g = A(m− 1, n− 1),

2dd! if g = B(m,n),

2dd! if g = D(m,n), m > n,

2d−1d! if g = D(m,n), n ≥ m,

1 if g = C(n),

2 if g = D(2, 1, α), F (4), G(3).

If def(g) = 1, and S ∈ S(∆+), then S consists of a single simple root. Hence
we are in the hypothesis of Theorem KWG, in which case (1.10), (1.11) hold with
C = Cg, and these formulas coincide with (1.4), (1.5). Therefore we have to deal
only with Lie superalgebras of type gl(m,n), B(m,n), D(m,n), which have defect
d = min{m,n}. We also treat the case A(d− 1, d− 1), see Subsection 3.2.2.

In these cases we introduce a combinatorial encoding of the elements of S(∆+)
using the notion of an arc diagram (see Definition 3.1). To any arc diagram X we
associate a maximal isotropic set S(X), and in Proposition 3.2 we show that this
is a bijection between all arc diagrams and S(∆+).

We introduce two types of operations on arc diagrams: odd reflections rv and
interval reflections r[v,w]. They have the following features:

(1) for any arc diagram X there exists a finite sequence of odd and interval
reflections which change X into an arc diagram X ′ such that S(X ′) consists
of simple roots (cf. Lemma 3.4);

(2) we are able to relate
∑

w∈W sgn(w)w
(

eρ∏
γ∈S(X)(1−e−JγK)

)
to the similar sums

where the product in the denominator of the l.h.s ranges over rvX and over
r[v,w]X (cf. (3.7)).

The above properties allow to prove formula (1.11) starting from Theorem KWG
applied to S(X ′). In Lemma 3.7 we show that formula (1.10) can be derived from
(1.11). We also single out a special set of arc diagrams (see Definition 3.2) which
have the property described in the last sentence of Theorem 1.1.

Further, we provide a different generalization of (1.5), in which only positive
roots appear in the denominator, namely we have
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Proposition 1.2. Let S ∈ S(∆+). Then

eρR =
∑

w∈W#

sgn(w)w

(
(−1)

∑
γ∈S |γ<|eρ+

∑
γ∈SKγJ

∏
β∈S(1 + e−β)

)
,(1.14)

eρŘ =
∑

w∈W#

sgn′(w)w

(
eρ+

∑
γ∈SKγJ

∏
β∈S(1− e−β)

)
.(1.15)

The main application of our formulas is a conceptually uniform derivation of the
Theta correspondence for compact dual pairs. Basic classical type Lie superalgebras
are linked to Howe theory of dual pairs through the notion of a distinguished set
of positive roots, which we introduce in Definition 4.1: it requires that the depth
of the grading, which assigns value 1 (resp. 0) to each generator corresponding to
a positive odd (resp. even) simple root, does not exceed 2. The distinguished sets
of positive roots for the basic classical type Lie superalgebras (which are not Lie
algebras) are classified in Subsection 4.4.

To understand the relationship with Howe theory, consider the complex symplec-
tic space (g1, 〈· , ·〉), where 〈· , ·〉 = (· , ·)|g1. A choice of a set of positive roots ∆+

determines a polarization g1 = g+1 ⊕g−1 , where g
±
1 =

⊕
α∈∆±

1

gα. Hence we can consider

the Weyl algebra W (g1) of (g1, 〈· , ·〉) and construct the W (g1)-module

(1.16) M∆+

(g1) = W (g1)/W (g1)g
+
1 ,

with action by left multiplication. The module M∆+
(g1) is also a sp(g1, 〈· , ·〉)–

module with T ∈ sp(g1, 〈· , ·〉) acting by left multiplication by

(1.17) θ(T ) = −1

2

dim g1∑

i=1

T (xi)x
i,

where {xi} is any basis of g1 and {xi} is its dual basis w.r.t. 〈· , ·〉, i.e. 〈xi, x
j〉 = δij .

It is easy to check that, in W (g1), relation

(1.18) [θ(T ), x] = T (x)

holds for any x ∈ g1. This implies that we have an h-module isomorphism

(1.19) M∆+

(g1) ∼= S(g−1 )⊗ C−ρ1

where S(g−1 ) is the symmetric algebra of g−1 , and C−ρ1 is the 1-dimensional h-module

with highest weight −ρ1. Hence the h-character of M∆+
(g1) is given by

(1.20) chM∆+

(g1) =
e−ρ1

∏
α∈∆+

1
(1− e−α)

.

Since ad|g1(g0) ⊂ sp(g1, 〈· , ·〉), we obtain an action of g0 on M∆+
(g1). Upon mul-

tiplication by eρ0
∏

α∈∆+
0
(1− e−α) the r.h.s. of (1.20) becomes eρŘ and equating it

to our formula we obtain the g0-character of M
∆+

(g1).
So far we have not used the special features of distinguished sets of positive roots

∆+. Restricting to distinguished sets of positive roots ∆+ for Lie superalgebras
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of type gl(m,n), B(m,n), D(m,n), we are able to build up a real form V of g1
endowed with a standard symplectic basis {eα, fα}α∈∆+

1
such that

⊕

α∈∆+
1

C(eα ±
√
−1fα) = g±1 .

It turns out that sp(V ) ∩ ad|g1(g0) = s1 × s2, si, i = 1, 2, being the Lie algebras of
a compact dual pair in Sp(V ). As stated in Proposition 4.8, distinguished sets of
positive roots turn out to correspond in this way to all compact dual pairs. Howe
theory and our denominator formula allow to recover the explicit computation of
the Theta correspondence done by Kashiwara-Vergne [15] and Li-Paul-Tan-Zhu [17]
and related results by Enright [2]. Before discovering formula (1.10), we used this
argument the other way around, to deduce the denominator identities from the
knowledge of the Theta correspondence: the relevant details are given in [13].

In Section 4.8 we show that relaxing the condition on the depth of the grading
which defines the distinguished sets of positive roots it is possible to generalize the
previous approach to all but one noncompact type I dual pairs (cf. Proposition
4.2). We plan to investigate in a subsequent paper if our methods can be pushed
further to obtain information on the Theta correspondence in these cases too.

In conclusion of the paper we use our superdenominator formula to confirm the
validity of the Kac-Wakimoto conjecture [14] for the natural representations of the
classical Lie superalgebras. We intend to extend this method to a large class of
representations in a subsequent publication.

The paper is organized as follows. In Section 2 we collect some basic notation and
definitions. In Section 3 we develop the combinatorial machinery needed to prove
our superdenominator formulas: we introduce arc diagrams and study the effect of
odd and interval reflection on arc diagrams. We finally prove the superdenominator
formula for the non-exceptional basic classical type Lie superalgebras and also prove
the denominator formula. The final subsection is devoted to the proof of formula
(1.15). In Section 4 we relate the distinguished sets of positive roots to Howe theory:
after a preliminary discussion on Cartan involutions we introduce and analyze the
definition of distinguished set of positive roots. Then we relate distinguished sets of
positive roots to real forms: as a byproduct of our analysis we obtain a conceptual
proof of the classification of real forms of basic classical type Lie superalgebras which
is in the same spirit as the classification of simple Lie algebra involutions, given in
[11]. This classification has been previously obtained by Kac, Parker and Serganova,
(cf. [9], [18], [21]). Finally we provide a concise discussion about certain sets of
positive roots related to noncompact dual pairs. In the follwoing four Sections we
deduce from our denominator formula the explicit form of the Theta correspondence
for all compact dual pairs. It is worthwhile to note that the pair (O(2m), Sp(2n,R))
has additional complications which require to use a version of the character formula
for disconnected compact groups due to Kostant [16]. In Section 9 we prove the
Kac-Wakimoto conjecture for the natural representation.

The ground field is C throughout the paper, unless otherwise specified.

2. Setup

In this section we collect some notation and definitions which will be constantly
used throughout the paper. Let g be a basic classical type Lie superalgebra. This
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means that g = g0⊕g1 is an almost simple finite-dimensional Lie superalgebra with
reductive g0 and that g admits a nondegenerate invariant supersymmetric bilinear
form (· , ·). Almost simple means that [g, g] modulo its center is simple. Super-
symmetric means that (g0, g1) = 0 and the restriction of (· , ·) to g0 (resp. g1) is
symmetric (resp. skewsymmetric). A complete list of the simple ones consists of
four series A(m,n), B(m,n), C(n), D(m,n) and three exceptional Lie superalge-
bras D(2, 1, α), F (4), G(3), and the non-simple ones are obtained by adding to a
simple one or to gl(n+1, n+1) a central ideal. These Lie superalgebras can be con-
structed, starting with a Cartan matrix, like simple finite-dimensional Lie algebras,
though inequivalent Cartan matrices may correspond to the same algebra (see [9]).

Choose a Cartan subalgebra h ⊂ g0, and let ∆,∆0,∆1 ⊂ h∗ be the set of roots,
even roots, odd roots, respectively. Let Wg ⊂ GL(h∗) be the group generated by
the reflections sα w.r.t. even roots α ∈ ∆0. Choose a set of positive roots ∆+ ⊂ ∆
and set ∆+

i = ∆i ∩∆+, i = 0, 1. Let Π be the set of simple roots corresponding to
the choice of ∆+, i.e. the set of indecomposable roots in ∆+. Set also, as usual, for
i = 0, 1, ρi =

1
2

∑
α∈∆+

i
α, ρ = ρ0 − ρ1. From time to time we will write ρ(∆+) or

ρ(Π) to emphasize the dependence of ρ from the choice of the set of positive roots.
Next, recall the notation skipped in the Introduction. Let h∨ be the dual Coxeter

number of g, i.e. 2h∨ is the eigenvalue of the Casimir operator of (g, (· , ·)) in the
adjoint representation. If h∨ 6= 0 (which holds unless g is of type A(n, n), D(n+1, n)
or D(2, 1, α)), we let [14]

∆♯
0 = {α ∈ ∆0 | h∨(α, α) > 0},

W ♯ = 〈sβ ∈ Wg | β ∈ ∆♯
0〉,(2.1)

We refer to [14, Remark 1.1, b)] for the definition of W ♯ when h∨ = 0. Set

(2.2) ∆0 = {α ∈ ∆0 | 1
2
α /∈ ∆}, ∆1 = {α ∈ ∆1 | (α, α) = 0}.

Finally, for w ∈ Wg, set

(2.3) sgn(w) = (−1)ℓ(w), sgn′(w) = (−1)m,

where ℓ is the usual length function on Wg and m is the number of reflections from

∆
+

0 occurring in an expression of w. Note that

w
(
eρŘ

)
= sgn′(w) eρŘ.

In particular, sgn′ is well-defined. Note also that sgn = sgn′ in types A and D.
Let now recall the definition of odd reflections [19]: for an isotropic root α ∈ Π

we define

(2.4) rα(∆
+) = (∆+ \ {α}) ∪ {−α}.

It is easy to prove that rα(∆
+) is a set of positive roots for g and that if we set

(2.5) rα(β) =






α + β if (α, β) 6= 0

β if (α, β) = 0, α 6= β

−α if β = α

for β ∈ Π, then rα(Π) = {rα(β) | β ∈ Π} is the corresponding set of simple roots.
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The importance of odd reflections lies in the fact that, up to Wg-action, any
two sets of positive roots can be obtained one from the other by applying a finite
sequence of odd refections. Note that, for an isotropic α,

(2.6) ρ(rα(∆
+)) = ρ(∆+) + α,

from which one deduces that

(2.7) eρ(∆
+) Ř(∆+) = −eρ(rα(∆

+)) Ř(rα(∆
+)) ∀α ∈ Π.

3. Denominator formulas

3.1. Arc diagrams. Let g be a Lie superalgebra of type gl(m,n), B(m,n), C(m),
D(m,n). We first need an encoding of the sets of positive roots. The explicit real-
izations of these Lie superalgebras given in [9], [10, Section 4] leads to a description
of their roots in terms of functionals ǫi, δi ∈ h∗.

We let

E = {ǫ1, . . . , ǫm}, D = {δ1, . . . , δn}
if g is of type gl(m,n), B(m,n) and let

E = {ǫ1, . . . , ǫm−1, ǫm} or E = {ǫ1, . . . , ǫm−1,−ǫm}, D = {δ1, . . . , δn}
if g is of type C(m) or D(m,n). Let

B = E ∪ D.

Then B is a basis of h∗ (for C(m) one has n = 1). We call two elements v1, v2 ∈ B
elements of the same type if {v1, v2} ⊂ E or {v1, v2} ⊂ D and elements of different
types otherwise.

Recall the structure of ∆ in terms of B: in type gl(m,n) we have

∆0 = {ǫi − ǫj | 1 ≤ i 6= j ≤ m} ∪ {δi − δj | 1 ≤ i 6= j ≤ n},
∆1 = {±(ǫi − δj) | 1 ≤ i ≤ m, 1 ≤ j ≤ n}.

As an invariant bilinear form on gl(m,n) we choose the supertrace form (a, b) =
str(ab), str being the supertrace of a matrix in gl(m,n), so that

(ǫi, ǫj) = δij = −(δi, δj).

In the other classical types see (5.1), (6.1) for the description of roots; the invariant
bilinear form is the restriction of the supertrace form.

Given a total order > on B = {ξ1 > . . . > ξm+n}, we define a set of simple roots
Π(B, >) for g as follows

g Π(B, >)

gl(m,n) {ξi − ξi+1}m+n−1
i=1

B(m,n) {ξi − ξi+1}m+n−1
i=1 ∪ {ξm+n}

C(m) {ξi − ξi+1}mi=1 ∪ {2ξm+1} if ξm+1 ∈ E
{ξi − ξi+1}mi=1 ∪ {ξm + ξm+1} if ξm+1 ∈ D = {δ1}

D(m,n) {ξi − ξi+1}m+n−1
i=1 ∪ {2ξm+n} if ξm+n ∈ D

{ξi − ξi+1}m+n−1
i=1 ∪ {ξm+n−1 + ξm+n} if ξm+n ∈ E .

Using Kac’s description of Borel subalgebras (see [9]), it is not difficult to prove the
following result.
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•
ǫ1

×
δ1

•
ǫ2

×
δ2

×
δ3

•
ǫ3

•
ǫ4

×
δ4

•
ǫ5

Figure 1. An arc diagram X for gl(5, 4).

Lemma 3.1. Up to Wg-equivalence, any set of positive roots for g has Π(B, >) as
a set of simple roots for some total order > on B.

It may happen in type D(m,n) that two different choices of B give rise to the
same set of simple roots Π, so we make the following choice. Let h ∈ h be such that
α(h) = 1 for each α ∈ Π. Choose B = {ǫ1, . . . , ǫm} ∪ {δ1, . . . , δn} if ǫm(h) ≥ 0, and
B = {ǫ1, . . . ,−ǫm} ∪ {δ1, . . . , δn} if ǫm(h) < 0.

Instead of the Dynkin diagram, we encode Π(B, >) by the ordered sequence
B, which is pictorially represented as an array of dots and crosses, the former
corresponding to vertices in E and the latter to vertices in D.

Examples for gl(5, 4), D(4, 3) are given in Figures 1, 2, 3 disregarding the arcs.
In the first case, we start from the total order {ǫ1 > δ1 > ǫ2 > δ2 > δ3 > ǫ3 > ǫ4 >
δ4 > ǫ5}, which corresponds to the set of simple roots {ǫ1 − δ1, δ1 − ǫ2, ǫ2 − δ2, δ2 −
δ3, δ3 − ǫ3, ǫ3 − ǫ4, ǫ4 − δ5}.

In Figure 2, we start from the total order ǫ1 > δ1 > ǫ2 > δ2 > ǫ3 > δ3 > ǫ4, which
gives rise to the set of simple roots {ǫ1−δ1, δ1−ǫ2, ǫ2−δ2, δ2−ǫ3, ǫ3−δ3, δ3±ǫ4}, while
in Figure 3 the total order is ǫ1 > δ1 > ǫ2 > δ2 > ǫ3 > −ǫ4 > δ4, which corresponds
to the set of simple roots {ǫ1 − δ1, δ1 − ǫ2, ǫ2 − δ2, δ2 − ǫ3, ǫ3 + ǫ4,−ǫ4 ± δ3}.

For v, w ∈ B, if v ≥ w, let [v, w] = {u ∈ B| v ≥ u ≥ w}. If B′ ⊂ B, we denote
by WB′ the subgroup of Wg consisting of (non-signed) permutations of B′ ∩ E and
of B′ ∩ D, so that we have WB′ ∼= Sk × Sl, where |B′ ∩ E| = k, |B′ ∩ D| = l.

We now introduce arc diagrams. These are combinatorial data that encode some
maximal isotropic subsets of the set of positive roots.

Definition 3.1. An arc diagram is the datum consisting of the ordered sequence
of vertices representing B, and of arcs between some of the vertices, satisfying the
following properties:

(i) the vertices at the ends of each arc are of different type;
(ii) the arcs do not intersect (including the end points);

(iii) for each arc
⌢
vw the interval [v, w] contains the same number of elements of

E and of D: |[v, w] ∩ E| = |[v, w] ∩ D|;
(iv) the number of arcs is min(m,n).

We also define the support of an arc diagram X as

Supp(X) = {v ∈ B | v is an end of an arc in X}.

If ∆+ is the set of positive roots corresponding to Π(B, >), we denote by A(∆+)
the set of arc diagrams whose underlying set of vertices is B and the underlying
total order is >.
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•
ǫ1

×
δ1

•
ǫ2

×
δ2

•
ǫ3

×
δ3

•
ǫ4

Figure 2. An arc diagram for D(4, 3).

•
ǫ1

×
δ1

•
ǫ2

×
δ2

•
ǫ3

•
−ǫ4

×
δ3

Figure 3. Another arc diagram for D(4, 3).

3.1.1. The maximal isotropic set S(X). Consider an arc diagram X . It encodes the
following isotropic set of positive roots:

S(X) = {v − w| v, w ∈ B are connected by an arc and v > w}.
For example, the arc diagram in Figure 1 encodes the isotropic subset S = {δ1 −
ǫ2, ǫ1−δ2, δ3− ǫ3, δ4− ǫ5}. The arc diagram in Figure 2 encodes the isotropic subset
S = {ǫ1 − δ1, δ2 − ǫ3, δ3− ǫ4}, whereas that in Figure 3 encodes the isotropic subset
S ′ = {ǫ1 − δ1, δ2 − ǫ3,−δ3 − ǫ4}.

We will often denote by ∆+(X),∆+
0 (X),∆+

1 (X),Π(X) the sets of positive, posi-
tive even, positive odd, and simple roots associated to the ordering of vertices of B
underlying X (the arc structure of X is irrelevant for that). One readily sees that
S(X) ⊂ ∆+(X) and S(X) is a basis of a maximal isotropic subspace in h∗ (since
the cardinality of S(X) equals the defect of g). This shows that S(X) is indeed a
maximal set of isotropic roots.

For each β ∈ ∆1 let

sn β = (β,
m∑

i=1

ǫi)

(that is sn(ǫi ± δj) = 1, sn(−ǫi ± δj) = −1). For β ∈ S(X) one has sn β = 1 (resp.,
−1) if the left end of the corresponding arc is in E (resp., in D). For each α ∈ S(X)
we have (cf. (1.8))

(3.1) JαK =
∑

β∈S(X),β≤α

snα · sn β · β,

namely

Jǫi − δjK =
∑

ξ∈[ǫi,δj ]∩E
ξ −

∑

ξ∈[ǫi,δj ]∩D
ξ, Jδi − ǫjK =

∑

ξ∈[δi,ǫj ]∩D
ξ −

∑

ξ∈[δi,ǫj ]∩E
ξ.

E.g., with reference to Figure 1, we have

Jǫ1 − δ2K = ǫ1 + ǫ2 − δ1 − δ2, Jδ1 − ǫ2K = δ1 − ǫ2.

Notice that for an arc
⌢
vw the element Jv − wK is W[v,w]-invariant.

3.1.2. Special arc diagrams.

Definition 3.2. We say that an arc is simple if it connects consecutive vertices.
We call an arc diagram simple if each arc is simple.

We call an arc diagram X nice if for each α, β ∈ S(X) such that α < β one has
snα = sn β (equivalently, if for any arc, its left end is of the same type as the left
ends of all arcs which are below this arc).
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One readily sees that simple diagrams correspond to the case when S(X) con-
sists of simple roots, and nice arc diagrams correspond to the case when JγK =∑

β∈S(X),β≤γ β. In particular, for a nice arc diagramX , JγK ∈ Q+ for each γ ∈ S(X).

We denote by Anice(∆+) the set of nice arc diagrams X such that ∆+ = ∆+(X).

3.1.3. Existence of arc diagrams and of nice arc diagrams. Fix an order > on B, set
Π = Π(B, >) and let ∆+ be the corresponding set of positive roots. Arc diagrams
can be easily constructed inductively. We start by drawing an arc between any two
consecutive vertices v, w of different types. Then we throw away these two vertices
and obtain an ordered set E ′ ∪ D′, where the cardinality of E ′ (resp., of D′) is less
by one than the cardinality of E (resp. of D). We take any arc diagram for E ′ ∪D′,

and we let Σ(X ′) be the set of its arcs. Then Σ(X) = Σ(X ′) ∪ { ⌢
vw} is the set of

arcs of an arc diagram X for B.
More generally, we can start by drawing any possible arc (i.e., the arc between

two vertices v, w of different types such that [v, w] has the same numbers of vertices
lying in E and in D). Then we can construct an arc diagram for the sequence which
is below the arc (i.e., for [v, w] \ {v, w}) and for the ordered set B \ [v, w]. The set
of arcs in the resulting arc diagram is the union of the sets of arcs in these two

diagrams and the arc
⌢
vw. As a result, there is an arc diagram X such that β ∈ ∆+

1

belongs to S(X) iff the interval defined by β (i.e., [v, w] for β = v−w) contains the
same numbers of vertices lying in E and in D.

Look now at the above procedure from an algebraic point of view: removing a
pair {u, v} of vertices of different type (or more generally a set Z = {ui, vi}ki=1

of pairs of vertices of different type) from the ordered set B gives the ordered set
corresponding to S⊥ \S where S = {u− v} (resp, S = {ui− vi}ki=1). This is clearly
related to the procedure explained in Definition 1.1. More precisely, we have

Proposition 3.2. If X is an arc diagram, then S(X) ∈ S(∆+). Viceversa, any
S ∈ S(∆+) is of the form S(X) for some arc diagram X.

Proof. Both assertions follow easily from the remark in the previous paragraph after
it is proved that an arc diagram has always a simple arc. To prove this, remark
that axioms in Definition 3.1 imply that all vertices below a given arc are ends of
some arcs. Thus the “lowest” arcs (the ones which do not have arcs below them)
are necessarily simple. �

Let us now explain how to construct nice diagrams.

Proposition 3.3. Anice(∆+) 6= ∅.
Proof. Let ǫ1 > ǫ2 > . . . > ǫm and δ1 > δ2 > . . . > δn. Assume that ǫ1 > δ1,
so that our sequence A0 = B starts with ǫ1, . . . , ǫk, δ1 (k ≥ 1). We draw the arc

a1 =
⌢

ǫkδ1 and consider the sequence A1 = B \ {ǫk, δ1}. We repeat the procedure
until the first element of the sequence As+1 is not in E . Note that the right end
of the arc aj obtained in the jth step is δj. Let U be the union of the ends in
all arcs aj , j = 1, . . . , s. Let us show that U = [ǫ1, δs]. Indeed, by the above, for
j = 1, . . . , s the right end of aj is δj so both ends lie in [ǫ1, δj] ⊂ [ǫ1, δs]. Therefore
U ⊂ [ǫ1, δs]. Moreover, δ1, . . . , δs ∈ U so ([ǫ1, δs] \ U) ⊂ E . Since the first element
in As+1 = A0 \ U lies in D, we conclude that [ǫ1, δs] = U as required. Thus the
sequence [ǫ1, δs] with the ends of the arcs in U is a nice diagram X and each element
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•
ǫ1

•
ǫ2

×
δ1

×
δ2

×
δ3

•
ǫ3

•
ǫ4

×
ǫ5

•
δ4

Figure 4. rδ1−ǫ2(X).

•
ǫ1

×
δ1

•
ǫ2

×
δ2

×
δ3

•
ǫ3

•
ǫ4

×
ǫ5

•
δ4

Figure 5. r[ǫ1,δ2](X).

of this sequence is an end of an arc. Now we construct a nice diagram Y for the
sequence As+1 (which is shorter than A0). The union of X and Y is a nice arc
diagram for the sequence A0. �

3.1.4. Operations with the arc diagrams. Consider all arc diagrams on the set B
endowed by a total order and introduce the following operations.

Odd reflections rv−w. Let v, w be two consecutive vertices of an arc diagram

X connected by an arc
⌢
vw. We define rv−w(X) to be the arc diagram with v, w

switched (i.e., rv−w(X) = (X\{ ⌢
vw}) ∪ { ⌢

wv}; the total order on B for rv−w(X) is
obtained from the total order for X by interchanging v and w). Figure 4 displays
rδ1−ǫ2(X) where X is the arc diagram of Figure 1. The odd reflection on an arc
diagram corresponds to an odd reflection with respect to a simple root lying in
S(X) (cf. (2.4)):

Π
(
rv−w(X)

)
= rv−w(Π(X)),

S(rv−w(X)) = S(X) \ {v − w} ∪ {w − v}.
Notice that snα · α = sn(−α) · (−α) and thus for γ ∈ S(X) ∩ S(rv−w(X)) the

element JγK defined for X and for rv−w(X) is the same.

Interval reflections r[e1,dk]. Suppose X has a subsequence e1, d1, e2, d2, . . . , ek, dk
(k > 1), where e1, . . . , ek are of the same type and d1, . . . , dk are of another type,

with the arcs
⌢

e1dk,
⌢

d1e2,
⌢

d2e3, . . . ,
⌢

dk−1ek . We define r[e1,dk](X) as the arc diagram
with the same total order on B, where the above arcs are substituted by the arcs
⌢

e1d1,
⌢

e2d2,
⌢

e3d3, . . . ,
⌢

ekdk . Hence

S
(
r[e1,dk](X)

)
=

(S(X) \ {e1 − dk, d1 − e2, . . . , ek − dk}) ∪ {e1 − d1, e2 − d2, . . . , ek − dk}.
Figure 5 displays r[ǫ1,δ2](X) where X is the arc diagram of Figure 1. Figure 6
provides further examples: the arc diagram X in the left display is not nice, since
Jǫ1−δ2K = (ǫ1−δ2)−(δ1−ǫ2). The middle display represents rδ1−ǫ2(X), which is nice,
and the right display represents r[ǫ1,δ2](X), which is simple (hence, in particular,
nice). This example also shows that both odd and interval reflections are necessary
moves to change an arc diagram into a simple one. They are also sufficient, as we
show next.
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•
ǫ1

×
δ1

•
ǫ2

×
δ2

•
ǫ1

•
ǫ2

×
δ1

×
δ2

•
ǫ1

×
δ1

•
ǫ2

×
δ2

Figure 6.

Lemma 3.4. There exists a finite sequence of odd and interval reflections which
change any arc diagram into a simple arc diagram.

Proof. We proceed by induction on the number k of non-simple arcs in the arc
diagram X . If k = 0, then X is a simple arc diagram and there is nothing to prove.

Assume k ≥ 1 and let
⌢

ed be a non-simple arc such that each arc
⌢
vw, e > v > w > d

is simple. Then, necessarily, we have [e, d] = ea1a
′
1a2a

′
2 . . . aha

′
hd, with arcs

⌢

ed,
⌢

aia
′
i

, i = 1, . . . , h. Use the odd reflections rai−a′i
, if necessary, to modify [e, d] in such a

way that vertices of different type alternate from e to d: call the resulting diagram
X ′. Then r[e,d](X

′) has k − 1 non-simple arcs and we are done by induction. �

3.2. Proof of Theorem 1.1. In this Section we prove formulas (1.10), (1.11). For
future applications we prove a slightly more general result (see Proposition 3.8).

For any subset U of Wg and any rational function Y with {eb | b ∈ B} as set of
variables, introduce the sum

(3.2) FU(Y ) =
∑

w∈U
sgn(w)w(Y ).

We will need also the sum

(3.3) F̌U(Y ) =
∑

w∈U
sgn′(w)w(Y ).

Notation 3.1. If U is a subgroup of Wg, and W ⊂ Wg is stable under the right
action of U , then W is a union of right cosets in Wg/U . We denote by W/U a set
of representatives.

Note that

FW (Y ) = FW/U

(
FU(Y )

)
, F̌W (Y ) = F̌W/U

(
F̌U(Y )

)
.

The formula displayed on the right follows since sgn′ : Wg → {±1} is a homomor-
phism.

Lemma 3.5. Let Π be a set of simple roots for g = gl(k|k), k ≥ 2, all of which are
isotropic. Let {β1, . . . , βk} ⊂ Π be the maximal isotropic subset. Then

(3.4) F̌Wg

( 1
∏k

i=2(1− e−βi)

)
=

1− e−
∑k

i=1 βi

k
F̌Wg

( 1
∏k

i=1(1− e−βi)

)
.

Proof. Let A = 1
∏k

i=1(1−e−βi )
, x0 = F̌Wg

(A) and for j = 1, . . . , k let

xj = F̌Wg

(
Ae−β1−β2−...−βj

)
.

Then the left-hand side of formula (3.4) is equal to x0 − x1: LHS = x0 − x1.
Write Π = {ǫ1 − δ1, δ1 − ǫ2, . . . , ǫk − δk} and βi = ǫi − δi. Observe that Wg

contains a subgroup permuting the βi’s, and all elements of this subgroup are even
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(the permutations (ǫi ǫj)(δi δj) switches βi and βj). Since F̌Wg
(A′) is Wg-skew-

invariant for any rational function A′, we conclude that

(3.5) xj = F̌Wg

(
Ae−

∑
i∈J βi

)

for any subset J ⊂ {1, 2, . . . , k} of cardinality j. Since the permutation (ǫ1 ǫ2)
stabilizes A, one has

F̌Wg

(
A

s∏

i=1

(1− e−βi)
)
= 0

for s = 2, . . . , k. Hence, using (3.5), we obtain that
∑s

j=0(−1)j
(
s
j

)
xj = 0 for

s = 2, . . . , k. We deduce by induction on j ≥ 2 that xj = j(x1 − x0) + x0 and thus

LHS = x0 − x1 =
x0 − xk

k
=

1

k
F̌Wg

(
(1− e−

∑k
i=1 βi)Y

)
=

1− e−
∑k

i=1 βi

k
F̌Wg

(A)

which is (3.4). �

For an arc diagram X we denote by ρX the element ρΠ(X) and by RX , ŘX the

fractions R, Ř constructed for Π(X), that is

RX =

∏
α∈∆+

0 (X)(1− e−α)
∏

α∈∆+
1 (X)(1 + e−α)

, ŘX =

∏
α∈∆+

0 (X)(1− e−α)
∏

α∈∆+
1 (X)(1− e−α)

.

Let

(3.6) P(X) =
∏

γ∈S(X)

ht γ + 1

2
· eρX∏

γ∈S(X)(1− e−JγK)
.

Corollary 3.6. Let X be an arc diagram and r[v,w] be an interval reflection. For
any subset W of the Weyl group which is stable under the right action of WSupp(X)

one has

(3.7) F̌W

(
P(X)

)
= F̌W

(
P(r[v,w](X))

)
.

Proof. Denote by Y the arc subdiagram corresponding to the interval [v, w] and let
Y ′ = r[v,w](Y ). Then X ′ = r[v,w](X) is obtained from X by substituting Y by Y ′.
View Y, Y ′ as arc diagrams of gl(k, k)-type. Then G = W[v,w] is the Weyl group of
Y and of Y ′.

Notice that (ρX − ρY , α) = 0 for each α ∈ Π(Y ) and thus ρX − ρY is G-invariant.
Since [v, w] ⊆ Supp(X), we have that WG = W . Therefore

F̌W

(
P(X)

)
= F̌W/G

( eρX−ρY

∏
β∈S(X)\S(Y )(1− e−JβK)

· F̌G(P(Y )
))

and a similar formula holds for X ′, Y ′ respectively. One has S(X)\S(Y ) = S(X ′)\
S(Y ′). Moreover, since Π(Y ) = Π(Y ′) and Π(X) = Π(X ′), one has ρY = ρY ′ and
ρX = ρX′ . Thus formula (3.7) follows from the following equality

(3.8) F̌G(P(Y )) = F̌G(P(Y ′)),

which we now prove.
Recall that, by definition of interval reflection, the interval [v, w] is of the form

v = e1 > d1 > e2 > d2 > . . . > es > ds = w, where the ei’s are of the same type and
the di’s are of another type. Then S(Y ) = {α} ∪ S ′, where α = v − w = e1 − ds
and S ′ = {di − ei+1}s−1

i=1 . Since S ′ ⊂ Π(Y ) one has JβK = β for β ∈ S ′. Recall that
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JαK is G-invariant and note that ρY is also G-invariant (since Π(Y ) consists of odd
roots). Therefore

F̌G(P(Y )) =
eρY

1− e−JαK
· F̌G

( 1∏
β∈S′(1− e−β)

)
.

Consider the simple arc diagram Z with the order d1 > e2 > d2 > . . . > ds > e1;
then S(Z) = S ′ ∪ {−α}. Using Lemma 3.5 we obtain

F̌G

( 1∏
β∈S′(1− e−β)

)
=

1− e−
∑

β∈S′ β+α

s
F̌G

( 1∏
β∈S(Z)(1− e−β)

)
.

Observe that s = htα+1
2

= ht(v−w)+1
2

and JαK = α−∑β∈S′ β = ρZ−ρY . Summarizing,
we obtain

F̌G(P(Y )) = eρY
1− eJαK

1− e−JαK
F̌G

( 1∏
β∈S(Z)(1− e−β)

)

= −eρZ F̌G

( 1∏
β∈S(Z)(1− e−β)

)
= −CŘZe

ρZ ,

where the last equality follows from (1.5) (because Z is a simple arc diagram). Since
S(Y ′) ⊂ Π(Y ′), Theorem KWG gives also F̌G(P(Y ′)) = CŘY ′eρY ′ .

Since Π(Z) corresponds to the total order d1 > e2 > d2 > . . . > ds > e1 and
Π(Y ′) corresponds to the total order e1 > d1 > e2 > d2 > . . . > ds, one has
Π(Z) = re1−ds . . . re1−e2re1−d1(Π(Y

′)). Using (3.10) we get

ŘY ′eρY ′ = (−1)2s−1ŘZe
ρZ = −ŘZe

ρZ .

This establishes (3.8) and completes the proof. �

To complete the proof of Theorem 1.1, we will need the following observation.

Lemma 3.7. Formula (1.10) follows from (1.11).

Proof. Fix any set of positive roots ∆+ and let Π be the associated set of sim-
ple roots. Take h ∈ h such that α(h) = 0 if α ∈ Π ∩ ∆0 and α(h) = 1 if
α ∈ Π ∩ ∆1. Then α(h) ≡ 0 mod 2 if α ∈ ∆0 and α(h) ≡ 1 mod 2 if α ∈
∆1. We claim that F (eα) = eπ

√
−1α(h)eα changes (1.11) to (1.10). Let k =

eπ
√
−1ρ(h). Then, obviously, F (eρ) = keρ, so we have F (eρŘ) = keρR. We need

only to check that F (ew(ρ)) = k sgn(w)
sgn′(w)

ew(ρ). First of all observe that F (w(eρŘ)) =

sgn′(w)F (eρŘ) = sgn′(w)keρR. On the other hand this equals F (ew(ρ)wŘ) =
F (ew(ρ))F (wŘ). Since w permutes the roots of the same parity, we have that
F (wŘ) = w(F (Ř)) and in turn F (ew(ρ))F (wŘ) = F (ew(ρ))w(F (Ř)). It follows that

F (ew(ρ)wŘ) = eπ
√
−1w(ρ)(h)ew(ρ)w(R) = eπ

√
−1w(ρ)(h)sgn(w)eρR. Hence

eπ
√
−1w(ρ)(h)sgn(w) = k sgn′(w),

and this relation implies our claim. �

We are finally ready to give the proof of Theorem 1.1: in the current setting,
formula (1.11) becomes

(3.9) F̌Wg
(P(X)) = Cge

ρX ŘX .

By Lemma 3.4, any arc diagram can be transformed to a simple one by a sequence
of odd and interval reflections. By Theorem KWG, F̌Wg

(P(X)) = CgŘXe
ρX if X
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is a simple diagram. For any odd reflection rα of Π one has ρrα(Π) = ρΠ + α (cf.
(2.6)), and so

(3.10) eρrαΠŘrαΠ = −eρΠŘΠ.

Since for α ∈ S(X) one has P(rα(X)) = −P(X), the fraction F̌Wg

(
P(X)

)
/(ŘXe

ρX )

is not changed by the action of rα. The interval reflections do not change ŘXe
ρX ,

since they do not change Π(X); moreover, applying Corollary 3.6 with W = Wg,
they do not change F̌Wg

(P(X)). This proves formula (3.9), hence (1.11). Lemma
3.7 implies that (1.10) also holds. By choosing X to be a nice arc diagram, we have
that JγK ∈ Q+ for any γ ∈ S(X). This concludes the proof of Theorem 1.1.

3.2.1. For future applications we will need a slightly stronger version of Theorem
1.1. Given an arc diagram X , let B′ be a subset of B containing Supp(X). Let
∆(B′) be the set of roots that are linear combinations of the simple roots that are
in the span of B′. Assume for simplicity that ∆(B′) is irreducible and let ∆♯(B′)
be the irreducible component of ∆0(B′) which is not the smallest one in the sense
of [4, Section 1.2]. Let W (B′) and W ♯(B′) be the corresponding Weyl groups.
Clearly WB′W ♯(B′) is a subgroup of W (B′) and let T = (WB′W ♯(B′))\W (B′). Set
Z = Wg/W (B′) and W0 = ZWB′W ♯(B′) so that Wg = W0T .

Proposition 3.8.

(3.11) F̌W0(P(X)) =
Cg

|T |e
ρX ŘX .

Proof. Recall that any arc diagram can be transformed into a simple arc diagram
by a sequence of odd and interval reflections. Note that these reflections permute
the ends of arcs and do not change the positions of other vertices (the interval
reflections do not change the order of vertices and the odd reflections permute two
vertices connected by an arc). Thus these reflections do not change B′ and Supp(X).
Since W0WSupp(X) = W0, we can argue as in the proof of Theorem 1.1 and assume
that X is simple. Let Y be the same arc diagram viewed as a diagram for ∆(B′).
Then, since (ρX − ρY , α) = 0 for any simple root of ∆(B′), we have that ρX − ρY is
W (B′)-invariant. Since X is simple, Y is also simple and (1.5) gives

FW ♯(B′)(P(Y ))
)
=

1

|T |FW ♯(B′)T (P(Y )).

It follows that

F̌W0

(
P(X)) = F̌W0/W ♯(B′)

(
eρX−ρY · FW ♯(B′)(P(Y ))

)

=
1

|T | F̌W0/W ♯(B′)

(
eρX−ρY · FW ♯(B′)T (P(Y ))

)

=
1

|T | F̌Wg

(
P(X)

)
=

Cg

|T |e
ρX ŘX .

This completes the proof. �

3.2.2. Comments on type A. Note that if m 6= n, formula (1.11) restricts plainly to
A(m,n) = sl(m + 1, n + 1). If instead m = n, the formula does not restrict to h

when JγK =
∑n+1

i=1 (δi − ǫi) for γ ∈ S. Note that the factor 1
1−e−JγK is Wg-invariant,
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hence it can be taken out of the sum. Since the left hand side of (1.11) restricts to
h, the sum

F̌Wg

( eρ∏
β∈S\{γ}

(1− e−JβK)

)

is divisible by 1−e−JγK. After simplifying, we may restrict to the Cartan subalgebra
of A(n, n) getting a superdenominator formula in this type too.

3.3. Proof of Proposition 1.2. Recall from (1.8) the definition of KγJ; note that
it may combinatorially rewritten as KγJ=

∑
β∈γ< sn β · sn γ · β and that KγJ= 0 if

γ ∈ Π. Let

Q(X) =
eρ+

∑
γ∈SKγJ

∏
β∈S(X)(1− e−β)

.

By Theorem KWG, we have F̌W#(Q(X)) = ŘXe
ρX if X is a simple arc diagram.

Notice that an odd reflection changes the sign of ŘXe
ρX and does the same on

Q(X). The interval reflections do not change RXe
ρX , since they do not change

Π(X). Thus, due to Lemma 3.4, in order to prove (1.15), it is enough to verify
that the interval reflections do not change F̌W (Q(X)). This is done in Lemma 3.9
below.

Lemma 3.9. Let X be an arc diagram and r[v,w] be an interval reflection. Then

F̌W#

(
Q(X)

)
= F̌W#

(
Q(r[v,w](X))

)
.

Proof. Denote by Y the arc subdiagram corresponding to the interval [v, w] and
let Y ′ = r[v,w](Y ). Then X ′ = r[v,w](X) is obtained from X by substituting Y by
Y ′. View Y, Y ′ as arc diagrams of gl(k, k)-type. Then G = W[v,w] ∩ W# is W#

constructed for Y and for Y ′.
Let e, d be vertices such that e − d ∈ S(X). Denote by ]e, d[ the interval [e, d] \

{e, d}. Then Ke − dJ= ±(
∑

ξ∈]e,d[∩E ξ −∑ξ∈]v,w[∩D ξ) with the sign ”+” if e ∈ E
and the sign ”−” if e ∈ D. We see that Ke − dJ is W]e,d[-invariant. In particular,
KγJ is G-invariant for each γ ∈ S(X) \ S(Y ), since if v′, w′ are vertices such that
v′ −w′ ∈ S(X) \S(Y ), then [v, w]∩ [v′, w′] = ∅ or [v, w] ⊂ [v′, w′] (because the arcs
do not intersect). Notice that (ρX − ρY , α) = 0 for each α ∈ Π(Y ), hence ρX − ρY
is G-invariant. Therefore

F̌W#

(
Q(X)

)
= F̌W#/G

( eρX−ρY +
∑

γ∈S(X)\S(Y )KγJ

∏
β∈S(X)\S(Y )(1− e−β)

· F̌G(Q(Y )
))

and the similar formula holds for X ′, Y ′ respectively. Notice that S(X) \ S(Y ) =
S(X ′) \ S(Y ′). Since Π(Y ) = Π(Y ′) and Π(X) = Π(X ′), one has ρY = ρY ′ ,
ρX = ρX′ . We see that the required equality F̌W#(Q(X)) = F̌W#(Q(X ′)) follows
from the equality

(3.12) F̌G(Q(Y )) = F̌G(Q(Y ′)),

which we verify below.
Recall that, by the definition of the interval reflection, the interval [v, w] is of the

form v = e1 > d1 > e2 > d2 > . . . > es > ds = w, where the ei’s are of the same type
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and the di’s are of another type. Then S(Y ) = {α}∪S ′, where α = v−w = e1−ds
and S ′ = {di − ei+1}s−1

i=1 . Since S ′ ⊂ Π(Y ) one has

∑

γ∈S(Y )

KγJ=KαJ=
s∑

i=1

(ei − di)− α.

Consider the simple arc diagram Z with the order d1 > e2 > d2 > . . . > ds > e1;
then S(Z) = S ′ ∪ {−α} and

ρZ =
1

2

s∑

i=1

(ei − di) = −ρY , that is ρZ = ρY + α+KαJ.

We have

F̌G(Q(Y )) = F̌G

( eρY +KαJ

∏
β∈S(Y )(1− e−β)

)
= −F̌G

( eρY +KαJ+α

∏
β∈S(Z)(1− e−β)

)
= −F̌G(Q(Z)).

Since Z and Y ′ are simple, one has F̌G(Q(Z)) = eρZ ŘZ and F̌G(Q(Y ′)) = eρY ′ ŘY ′ .
Arguing as in the proof of Corollary 3.6, one shows that eρZ ŘZ = −eρY ′ ŘY ′, and
this completes the proof of (3.12). �

Remark 3.1. Arguing as in Lemma 3.7, one deduces (1.14) from (1.15).

4. Distinguished sets of positive roots and compact dual pairs

4.1. Dual pairs and Theta correspondence. Let us now recall what dual pairs
and the Theta correspondence are: this involves some basic and well-known facts
on the oscillator representations of symplectic groups (see e.g. [1] for more details
and a rich list of references).

Let (V, 〈· , ·〉) be a 2n-dimensional real symplectic vector space. Fix a polarization
V = A+ ⊕ A− (A± are isotropic subspaces) and a standard symplectic basis w.r.t.
〈· , ·〉: A+ = ⊕n

i=1Rei, A
− = ⊕n

i=1Rfi, so that 〈ei, fj〉 = δij .
Starting from this polarization of V we can construct a complex polarization of

VC = V ⊗R C by setting

V +
C =

n⊕

i=1

C(ei +
√
−1fi), V −

C =
n⊕

i=1

C(ei −
√
−1fi).

This polarization is “totally complex”, i.e. V +
C ∩ V = {0}. As in (1.16) we can

consider the representation M = W (VC)/W (VC)V
+
C of the Weyl algebra W (VC)

of (VC, 〈· , ·〉C), and, by means of (1.17), we define an action of sp(VC, 〈· , ·〉C), on
M . This representation is usually called the oscillator representation. The choice
of a totally complex polarization is equivalent to assigning a compatible complex
structure J on V (i.e., J ∈ Sp(V ) such that J2 = −1). Explicitly J is defined by
setting J(ei) = −fi and J(fi) = ei. Let W be the space V seen as a complex space
via the complex structure J . The elements g ∈ Sp(V ) commuting with J form a
maximal compact subgroup K of Sp(V ) and we let k be its complexified Lie algebra
viewed as a subalgebra of sp(VC, 〈· , ·〉C). Since K commutes with J , we may let
it act C-linearly on W . We let det(k) be the determinant of the action of k ∈ K

on W . If K̃ is the
√
det cover of K, then M has an action of K̃ whose differential

coincides with the action of k as a subalgebra of sp(VC, 〈· , ·〉C).
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For future reference we describe explicitly this action. Recall that

K̃ = {(g, z) ∈ K × C× | z2 = det g}.
The covering map is the projection π on the first factor. The Lie algebra of K̃ is
the subalgebra of k× C given by

k̃ = {(A, tr(A)
2

) | A ∈ k}.
Note that dπ is the projection on the first factor and provides an isomorphism

between k̃ and k. We want to define an action of K̃ on M in such a way that

(4.1) exp(X) · v = edπ(X)(v)

for any X ∈ k̃. Identify V +
C with W by mapping v⊗ (a+ ib) to av+J(bv). Then M

is linearly isomorphic to the polynomial algebra P (W ) on W by identifying v ∈ V −
C

with the linear function on V +
C given by v(u) = 〈u, v〉. Recall that K acts on W ,

hence also on P (W ). With this identifications we can define an action of K̃ on
M ≃ P (W ) by

(4.2) (g, z) · p = z−1g · p.
We now check that (4.1) holds. According to our definitions, if X = (A, tr(A)

2
) ∈ k̃

then exp(X) · p = e−
tr(A)

2 eA · p. On the other hand, according to (1.17), A acts on
M by left multiplication by θ(A). Now, applying (1.18), we see that

θ(A)p = [θ(A), p] + pθ(A) · 1 = A · p+ pθ(A) · 1.
Choose a basis {xi} of V −

C and let {yi} be the basis of V +
C such that 〈xi, yj〉 = δij .

Then {xi, yi} is a basis of VC and {yi,−xi} is its dual basis. Hence

θ(A) · 1 =
1

2

∑

i

A(yi)xi · 1 =
1

2

∑

i,j

〈xj , A(yi)〉yjxi · 1

= −1

2

∑

i

〈xi, A(yi)〉 = −tr(A)

2
.

Therefore

θ(A)p = A · p− tr(A)

2
p.

Exponentiating, we find (4.1).
Let H be the element of sp(VC, 〈· , ·〉C) such that H|V ±

C

= ±I. Then bracketing

with H defines a Z-gradation

sp(VC, 〈· , ·〉C) =
⊕

n∈Z
sp(VC, 〈· , ·〉C)n.

We set p = ⊕n≥0sp(VC, 〈· , ·〉C)n. Clearly p is a parabolic subalgebra of
sp(VC, 〈· , ·〉C).

A reductive dual pair is a pair of real Lie subgroups G1, G2 of Sp(V ) which act
reductively on V and such that each is the centralizer of the other in Sp(V ). We say
that the dual pair is compact if one of the two subgroup is compact. In the following
we deal always with compact dual pairs, assuming G1 compact. We also assume
that G1 ⊂ K and let si be the Lie algebras of Gi (i = 1, 2). Denote by sCi , i = 1, 2

their complexifications. Let G̃1 be the lift of G1 to K̃. Since G1 ⊂ K it follows that
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the center of K is contained in G2. The center of K is {exp(
√
−1tH) | t ∈ R}, thus

we can conclude that H ∈ sC2 . It follows that p2 = p ∩ sC2 is a parabolic subalgebra
of sC2 . Howe duality in this setting gives the following result (see also [15]):

Theorem 4.1. [6] There is a set Σ of irreducible finite-dimensional representations

of G̃1 such that, as G̃1 × sC2 -module,

M =
⊕

η∈Σ
η ⊗ τ(η),

where τ(η) are irreducible quotients of p2-parabolic Verma modules.

The map η 7→ τ(η) is called the Theta correspondence.

We need also to recall the following structure theorem (cf. [7]).

Proposition 4.2.

(1) A compact dual pair (G1, G2) is of type I, i.e., G1G2 acts irreducibly on V .
(2) A reductive dual pair (G1, G2) is of type I if and only if there exists a divi-

sion algebra D over R with involution e, an Hermitian right D-vector space
(W1, (·, ·)1), a skew-Hermitian left D-vector space (W2, (·, ·)2) and an iso-
morphism V ∼= W1 ⊗D W2 of R-vector spaces such the symplectic form 〈·, ·〉
corresponds to TrD/R((·, ·)1 ⊗ e ◦ (·, ·)2) and under which G1 and G2 map to
the isometry groups U(G1, (·, ·)1), U(G2, (·, ·)2), respectively.

4.2. Cartan involutions. Suppose that g is a Lie superalgebra of basic classical
type. If g is simple of type A(1, 1) let ∆ be the set of roots of gl(2, 2). In all other
cases we let ∆ be, as usual, the set of roots of g. Choose a set ∆+ of positive roots
and let Π = {α1, . . . , αn} be the corresponding set of simple roots. If g is not of type
A(1, 1) then the root spaces have dimension 1, so we can choose for each α ∈ ∆+

root vectors Xα ∈ gα and X−α ∈ g−α with the property that (Xα, X−α) = 1, and
let hα = [Xα, X−α]. We set ei = Xαi

and fi = X−αi
. If g is simple of type A(1, 1),

then, given α ∈ ∆, we let Xα be the projection on g of the corresponding root
vector in gl(2, 2).

Recall from [9] that g is the minimal Z-graded Lie superalgebra with local part
n⊕

i=1

Cfi ⊕ h⊕
n⊕

i=1

Cei

and relations

(4.3) [ei, fj] = δijhαi
, [hαi

, ej] = (αi, αj)ej , [hαi
, fj] = −(αi, αj)fj ,

on the local part. From now on we assume that (αi, αj) ∈ R for any i, j. In
particular, if g is of type D(2, 1, α), we assume that α ∈ R.

We let Nα,β be the structure constants for the chosen basis of root vectors:

[Xα, Xβ] = Nα,βXα+β, if α, β, α+ β ∈ ∆.

Set σα = −1 if α is an odd negative root and σα = 1 otherwise, so that (Xα, X−α) =
σα. We also let p(α) be the parity of α: p(α) = 1 if α is odd and p(α) = 0 if α is
even. The following statement is a reformulation of Lemma 3.2 of [8].

Lemma 4.3. Given α, β ∈ ∆ such that α+β ∈ ∆, let p, q be non-negative integers
such that β + iα ∈ ∆ ∪ {0}, i ∈ Z if and only if −p ≤ i ≤ q.
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(1) If α is even, then Nα,βN−α,α+β = 1
2
q(p+ 1)(α, α)

(2) If α is odd and (α, α) 6= 0, then

Nα,βN−α,α+β =

{
−σα

1
2
q(α, α) if p is even

σα
1
2
(p+ 1)(α, α) if p is odd

.

(3) If α is odd and (α, α) = 0, then Nα,βN−α,α+β =

{
σα(α, β) if p is even

0 if p is odd
.

Proof. The first statement follows as in the case when g is a Lie algebra.
For the second statement, let us first assume that α and β are not proportional.

Then, as in [8, Lemma 3.2], we obtain

Nα,βN−α,α+β = σα

p∑

i=0

(−1)i(β − iα)(hα).

Since 2α is an even root, we see that the subspaces
∑

−p≤2i≤q

Cgβ+2iα,
∑

−p≤2i+1≤q

Cgβ+(2i+1)α

are the irreducible components of
∑

−p≤i≤q Cgβ+iα viewed as a 〈X2α, h2α, X−2α〉-
module. It follows that β(hα) + q(α, α) = −β(hα) + p(α, α) if p− q is even while, if
q−p is odd, then β(hα)+q(α, α) = −β(hα)+(p−1)(α, α) and β(hα)+(q−1)(α, α) =
−β(hα)+p(α, α). This implies that p−q is even and β(hα) =

p−q
2
(α, α). Substituting

we find the statement. Suppose now that α and β are proportional. There are only
two possibilities: β = α or β = −2α. Both cases follow directly from the Jacobi
identity

[[Xα, X−α], Xβ] = [Xα, [X−α, Xβ]] + (−1)p(α)p(β)[Xα, Xβ], X−α].

Finally, if (α, α) = 0, then, as in Lemma 3.2 of [8], we obtain

Nα,βN−α,α+β = σα

p∑

i=0

(−1)i(β − iα)(hα),

hence the statement follows readily. �

As shown in the proof Lemma 3.3 of [8], we have that

N−α,α+β = (−1)p(α)
σα+β

σβ

N−β,−α.

Substituting in Lemma 4.3, and using the fact that if α, β, α+β ∈ ∆ then Nα,β 6= 0,
we find

(4.4) Nα,βN−β,−α =
σβ

2σα+β
q(p+ 1)(α, α)

if α is even,

(4.5) Nα,βN−β,−α =

{
σασβ

2σα+β
q(α, α) if p is even

−σασβ

2σα+β
(p+ 1)(α, α) if p is odd

if α is odd and (α, α) 6= 0, and

(4.6) Nα,βN−β,−α =
−σασβ

σα+β
(α, β)
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if α is odd and (α, α) = 0.
Introduce the anti-involution T of g defined on the local part by




T (h) = h if h ∈ h,

T (ei) = fi if αi is even,

T (ei) =
√
−1fi if αi is odd.

Since it preserves relations (4.3), it can be extended to g, and T (gα) = g−α. As
shown in Lemma 3.8 of [8], we can chooseXα, X−α in such a way that (Xα, X−α) = 1

and T (Xα) =
√
−1

p(α)
σαX−α, and we can still assume that Xαi

= ei and X−αi
= fi.

It follows that, if α, β, α+ β ∈ ∆, then

Nα,β

√
−1

p(α+β)
σα+βX−α−β = T ([Xα, Xβ])

= [T (Xβ), T (Xα)] = N−β,−α

√
−1

p(α)+p(β)
σασβX−α−β,

hence

(4.7) Nα,β = (−1)p(α)p(β)
σασβ

σα+β
N−β,−α = −σασβ

σα+β
N−α,−β.

Combining (4.7) with (4.4), (4.5), (4.6), it follows that

(4.8) N2
α,β =

1

2
q(p+ 1)(α, α)

if α is even,

(4.9) N2
α,β =

{
(−1)p(β) q(α,α)

2
if p is even

−(−1)p(β) (p+1)(α,α)
2

if p is odd

if α is odd and (α, α) 6= 0, and

(4.10) N2
α,β = −(−1)p(β)(α, β).

if α is odd and (α, α) = 0. Thus Nα,β is either real or pure imaginary.
If (α, α) 6= 0, let ǫα = sgn(α, α). Let

ξα =

{
ǫα if p(α) = 0,

1 if p(α) = 1.

Lemma 4.4.

(4.11) Nα,β =
ξαξβ
ξα+β

Nα,β.

Proof. Since Nα,β = ±Nβ,α it is enough consider the following three cases:

(1) α is even;
(2) α is odd non-isotropic and β is odd;
(3) α and β are isotropic.

In case (1), by (4.8), we have Nα,β = ξαNα,β. Thus the result follows obviously if
β is odd. If β is even, then observe that (4.8) implies that Nα,β 6= 0 if and only if
ǫα = ǫβ = ǫα+β . This observation implies the result.

In case (2), by Lemma 4.3 (2), the product Nα,βN−α,α+β is real; by (1), N−α,α+β

is real iff ξα+β = 1, so Nα,β is real iff ξα+β = 1 as required.

In case (3), we have 2(α, β) = (α + β, α + β), so, by (4.10), Nα,β = ξα+βNα,β as
desired.
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�

In the above setting, given complex numbers λ1, . . . , λn such that λi ∈
√
−1R if

p(αi) = 1 and λi ∈ R if p(αi) = 0, one can define an antilinear involution ω : g → g

setting

(4.12) ω(ei) = λifi, ω(fi) = λ̄−1
i ei, ω(hαi

) = −hαi
, 1 ≤ i ≤ n.

Since ω preserves relations (4.3), it follows that it extends to g.
Clearly ω(Xα) is a multiple of X−α. We define λα for each α ∈ ∆ by

(4.13) ω(Xα) = −σαξαλαX−α.

Hence, if α, β, α+ β ∈ ∆, since ω is an antilinear automorphism, we have

−σα+βξα+βλα+βN̄α,β = σασβξαξβλαλβN−α,−β.

Using (4.7) and (4.11), we deduce that

(4.14) λα+β = λαλβ, λαλ−α = 1.

It follows that, if α =
∑n

i=1 niαi, then

(4.15) λα =
∏

i

(−ξαi
λi)

ni.

Endow g with the Z-grading

(4.16) g =
⊕

i∈Z
qi

which assigns degree 0 to h ∈ h and to ei and fi if αi is even, and degree 1 to ei
and degree −1 to fi, if αi is odd.

Let π = {i | 1 ≤ i ≤ n, p(αi) = 1}, πc = {1, . . . , n} \ π.

Proposition 4.5.

(1) The set gω0 of ω-fixed points in g0 is a real form of g0.
(2) qω0 is a compact form of q0 if and only if λi(αi, αi) < 0 for all i ∈ πc.
(3) If λi(αi, αi) < 0 for all i ∈ πc and

√
−1λi have the same sign for all i ∈ π,

then, for any positive integer r, (Xα, ω(Xα))(α, α) < 0 if Xα ∈ q4r ⊕ q−4r

and (Xα, ω(Xα))(α, α) > 0 if Xα ∈ q4r−2 ⊕ q−4r+2.

Proof. The proof of the first assertion is standard. For the latter two claims observe
that, by (4.13),

(4.17) (Xα, ω(Xα)) = −σαξαλα.

If α is an even root, the r.h.s. of (4.17) is a real number whose sign does not
depend on the choice of the basis of root vectors Xα. In fact, if {X ′

α} is another
basis with [X ′

α, X
′
−α] = σαhα, then X ′

α = cαXα for suitable complex numbers cα
and (X ′

α, ω(X
′
α)) = −|cα|2σαξαλα. Therefore we can use formula (4.15) to prove

the statements in a straightforward way. As for (2), recall that a real Lie algebra is
compact if the form (·, ω(·)) has signature opposite to that of the invariant form (·, ·).
If Xα ∈ q0 then λα =

∏
(−ξαi

λi)
ni . Therefore −ξασαλα = −ξα

∏
(−ξαi

λi)
ni > 0 for

any α if and only if λi(αi, αi) < 0 for all i ∈ πc. Claim (3) is proved in a similar
way. �
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Let

V = fixed point set of ω|g1 .

Clearly V is a real form of g1. Since a basis of V is given by

(4.18) {Xα + ω(Xα) | Xα ∈ qi, i ∈ 2Z+ 1},
it is checked easily that 〈· , ·〉 = (· , ·)|V is a real nondegenerate symplectic form.
Since ad|g1((g0)R) ⊂ ad|g1(g0) ∩ sp(V ), we have that

ad|g1((g0)R) = ad|g1(g0) ∩ sp(V )

and that ad|g1(g0) ∩ sp(V ) is a real form of ad|g1(g0).

4.3. Dynkin diagrams. We will briefly recall the usual encoding of sets of positive
roots by means of Dynkin diagrams. In the following N = n + m + 1 and ©, ⊗,
� correspond respectively to even, isotropic and nonisotropic (both even and odd)
roots. A · is a placeholder for even or isotropic roots. The possible diagrams in
each type are listed in [9]. We reproduce this list below.

4.3.1. Type gl(m+ 1, n+ 1).

(4.19) ·
α1

·
α2

. . . ·
αN

·
αN+1

4.3.2. Types B(m+ 1, n+ 1) and D(m+ 1, n+ 1). The possible diagrams in these
types are

(4.20) ·
α1

·
α2

. . . ·
αN

+3
�

αN+1

for type B(m+ 1, n+ 1), and

(4.21) ·
α1

·
α2

. . . ©
αN

ks ©
αN+1

(4.22) ·
α1

·
α2

. . . ·
αN−1

oo ⊗
αN

// ©
αN+1

(4.23) ©
αN+1

·
α1

·
α2

. . . ·
αN−1

??⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧

��❄
❄❄

❄❄
❄❄

❄❄
❄❄

❄

©
αN
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(4.24) ⊗
αN+1

·
α1

·
α2

. . . ·
αN−1

⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧

❄❄
❄❄

❄❄
❄❄

❄❄
❄❄

⊗
αN

for D(m+ 1, n+ 1).

4.4. Distinguished sets of positive roots.

Definition 4.1. We say that a set of positive roots ∆+ is distinguished if qi =
{0} for |i| > 2 in grading (4.16). We say that a set of positive roots ∆+ is very
distinguished if the corresponding set of simple roots contains a unique odd root.

Since max{aj | ∑n
i=1 aiαi ∈ ∆+, p(αj) = 1} = 2 for any choice of ∆+, we have

that if ∆+ is very distinguished, then it is distinguished. The sets of positive roots
which in [10] and in most of the subsequent literature are called distinguished are
all “very distinguished”. We have preferred to change the terminology because of
the relationships with the Theta correspondence.

We now discuss the possible distinguished subsets of positive roots up to Wg-
equivalence. The classification is basically a case by case inspection, looking at all
possible diagrams (cf. [9] and [22] for the exceptional types) and calculating the
coefficients which express the positive roots as a linear combination of the simple
roots.

4.4.1. gl(m,n). Given non negative integers p, q with p + q = m, we let ∆
(p,q)
gl be

the set of positive roots for gl(m,n), corresponding to the following set of simple
roots

Π
(p,q)
gl = {ǫ1 − ǫ2, . . . , , ǫp − δ1, δ1 − δ2, . . . , δn − ǫp+1, ǫp+1 − ǫp+2, . . . , ǫm−1 − ǫm}.

This is essentially the only possibility for a distinguished set of positive roots (in-
cluding the possibility p = 0 or q = 0, in which case qi = {0} for |i| > 1). The
other one is to take non negative integers r, s such that r + s = n and exchanging
ǫ’s with δ’s. But this case is equivalent to the above by exchanging m and n, so we
will not distinguish these two possibilities.

4.4.2. B(m,n). There is a unique, up to Wg-action, distinguished set of positive
roots ∆+

B. The corresponding set of simple roots, with notation as in [9], is

ΠB = {δ1 − δ2, . . . , δn − ǫ1, ǫ1 − ǫ2, . . . , ǫm−1 − ǫm, ǫm}.(4.25)

We also allow the case m = 0, in which the set of simple roots is {δ1−δ2, . . . , δn−1−
δn, δn}.
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4.4.3. D(m,n). There are three distinguished sets of positive roots, up toWg-action
: ∆+

D1,∆
+
D2,∆

+
D2′ . The corresponding sets of simple roots are

ΠD1 = {δ1 − δ2, . . . , δn − ǫ1, ǫ1 − ǫ2, . . . , ǫm−1 − ǫm, ǫm−1 + ǫm},
ΠD2 = {ǫ1 − ǫ2, . . . , ǫm−1 − ǫm, ǫm − δ1, δ1 − δ2, . . . , δn−1 − δn, 2δn},
ΠD2′ = {ǫ1 − ǫ2, . . . , ǫm−1 + ǫm,−ǫm − δ1, δ1 − δ2, . . . , δn−1 − δn, 2δn}.

4.4.4. C(n + 1). There are three distinguished sets of positive roots, up to Wg-
action: ∆+

C1,∆
+
C2,∆

+
C2′ . The corresponding sets of simple roots are

ΠC1 = {δ1 − δ2, . . . , δn−1 − δn, δn − ǫ, δn + ǫ},
ΠC2 = {ǫ− δ1, δ1 − δ2, . . . , δn−1 − δn, 2δn},
ΠC2′ = {−ǫ− δ1, δ1 − δ2, . . . , δn−1 − δn, 2δn}.

4.4.5. Exceptional types. A direct inspection shows that the distinguished sets of
positive roots correspond to the following diagrams

(4.26)

❡

��

⊗��

❅❅

❡
❅❅

⊗ ❡ < ❡

for D(2, 1, α) (left display; it will be denoted by ∆+
D(2,1,α)), G(3) (right display; it

will be denoted by ∆+
G), and to

(4.27) ⊗ ❡ < ❡ ❡ ❡ > ⊗ ❡ < ❡

for F (4) (they will be denoted by ∆+
F1, ∆

+
F2, respectively).

4.5. Distinguished sets of positive roots and real forms. If ∆+ is distin-
guished we choose ω corresponding to λi = −ǫαi

if αi is an even simple root and
λi =

√
−1 if αi is an odd simple root. Set, for any α ∈ ∆+

1 ,

eα =
1√
2
(Xα −

√
−1X−α), fα =

1√
2
(X−α −

√
−1Xα).

Since g1 = q1+ q−1, applying formula (4.18) with our choice of ω, we get that these
vectors form a standard symplectic basis of V . Since

⊕

α∈∆+
1

C(eα ±
√
−1fα) = g±1 ,

the oscillator representation is exactly M∆+
(g1) as a sp(g1)-module.

Observe now that for any Lie superalgebra of basic classical type we have

(4.28) g0 = g10 × g20

with g10, g
2
0 reductive Lie algebras. Set

(4.29) si = ad|g1(g
i
0) ∩ sp(V ), i = 1, 2.
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A case by case check in the distinguished sets of positive roots shows that we can
always choose g10, g

2
0 so that:

g10 ⊂ q0, g20 = (q0 ∩ g20)⊕ (q−2 + q2).

In the case of g = gl(m,n), we choose g10 = gl(m), g20 = gl(n) or the other way
around. Combining these observations with Lemma 4.5 we readily obtain the fol-
lowing result.

Proposition 4.6. If ∆+ is any distinguished set of positive roots of a Lie super-
algebra of basic classical type, then si is a real form of ad|g1(g

i
0). Moreover s1 is a

compact form of ad|g1(g
1
0) and there is a Cartan decomposition k⊕ r of s2 such that

kC = ad|g1(g
2
0 ∩ q0) and rC = ad|g1(q2 ⊕ q−2).

In particular, if q2 = q−2 = {0} then s1 × s2 is a compact form of ad|g1(q0) =
ad|g1(g0).

4.6. Detour: classification of real forms. We now deepen some aspects of the
theory developed in the last two Subsections, in order to obtain an explicit con-
struction of all real forms of Lie superalgebras of basic classical type, which have
been classified in [9], [18] and [21]. In this section when referring to type A(m,n)
we mean either g = gl(m,n) or the simple superalgebra of type A(m,n).

Let gR be a real form of g and let ω be the corresponding complex conjugation.
Then ω|g0 is an antilinear involution of the Lie algebra g0, hence there is a corre-
sponding Cartan decomposition g0 = k ⊕ p, with Cartan involution ζω. We will
describe explicitly the involution ζω.

Let K0 be a compact Lie group having kω as Lie algebra and let tR be the Lie
algebra of a torus in K0. Then t = tR ⊗R C is a Cartan subalgebra of k. Let h

be the centralizer in g0 of t. It is clear that both t and h are ω-stable. Since h is
ζω-stable, we have h = (h∩ k)⊕ (h∩ p); since ωζω = ζωω, we have ω(h∩ p) ⊆ h∩ p.
So h ∩ p = (h ∩ p)ω +

√
−1(h ∩ p)ω. It is known that tR ⊕

√
−1(h ∩ p)ω is a Cartan

subalgebra of a compact real form of g0; therefore roots are purely imaginary-valued
on it. So the real span of roots is contained in

√
−1tR ⊕ (h ∩ p)ω. Now fix a set of

positive roots ∆+ and let ω0 be the involution given by (4.12) with the following
choice of parameters:

(4.30) λi = −ǫαi
for i /∈ π, λi =

√
−1 for i ∈ π.

Then

(ω ◦ ω0)|t = I, (ω ◦ ω0)|h∩p = −I.

In particular, t is a Cartan subalgebra of gω◦ω0
0 . It follows from [11, Chapter 8] that

(ω ◦ ω0)|g0 = η0 ◦ ead(h) with η0 a diagram automorphism of g0 and h ∈ t. Clearly

η = ω ◦ ω0 ◦ e−ad(h) is an extension of η0 to g hence we can write that

ω = η ◦ ead(h) ◦ ω0,

with η an automorphism of g such that η|g0 is a diagram automorphism of g0. We
now list the possible choices for automorphisms η of g0, such that η|g0 is a diagram
automorphism of g0.

Lemma 4.7. There exists η ∈ Aut(g) such that η|g0 is a nontrivial diagram auto-
morphism if and only if g is of type A(m,n), D(m,n), D(2, 1, α), α ∈ {1, (−2)±1},
and η|g0 is as follows.
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(1) If g is of type A(n,m) with n 6= m, then η|g0 restricts to the nontrivial
diagram automorphism of both An and Am.

(2) If g is of type A(n, n), then η|g0 is either the nontrivial diagram automor-
phism of both An components, or it is the flip automorphism between the two
An components, or the composition of these two automorphisms.

(3) If g is of type D(m,n), m > 2, then η|g0 is the unique diagram automorphism
of g0.

(4) If g is of type D(2, 1) ∼= D(2, 1, α), α ∈ {1, (−2)±1}, then η is the unique
diagram automorphism of the diagram in the left display of (4.26).

Proof. No η as in the statement can exist if g0 has no nontrivial diagram automor-
phisms. This rules out the cases F (4), G(3), B(m,n) with (m,n) 6= (2, 2). The
case when g is of type B(2, 2) is also excluded because the flip automorphism
of g0 ∼= B2 × B2 sends the unique odd simple root to a weight which is not a
root. Let us now deal with type A(m,n). An automorphism of g of type A(m,n)
which restricts to the nontrivial diagram automorphisms of both An and Am is

given by

(
A B
C D

)−st

=

(
−At Ct

−Bt −Dt

)
. The flip automorphism F is given by

F

(
A B
C D

)
=

(
D C
B A

)
and the composition F ◦ (−st) gives the remaining au-

tomorphism. We are left with proving that there is no automorphism of g of type
A(m,n) which restricts trivially to, say, An and nontrivially to Am or it is obtained
from this one by composing it with the flip. This is easily checked by observing
that these latter automorphisms map the simple odd root to a weight that is not a
root.

If g is of type D(m,n), an automorphism that restricts to the unique dia-

gram automorphism of g0 is Ad(J) with J =

(
Im−1,1 0

0 In

)
, where Im−1,1 =

(
Im−1 0
0 −1

)
∈ gl(m).

We now deal with the case when g is of type D(2, 1, α). If α ∈ {1, (−2)±1}, then g

is isomorphic to D(2, 1) and claim Ad(J) gives as above the desired automorphism.
We need to check that, if α /∈ {1, (−2)±1}, then there is no automorphism η of g
which restricts to a non trivial diagram automorphism of g0 and that, if α = 1, then
Ad(J)|g0 is the only one. We check this as follows. Recall that g0 ∼= (sl(2,C))×3,
and let β1, β2, β3 be the simple roots of these copies of sl(2,C) Since the form
(η(·), η(·)) is invariant, then there exists a constant c such that (η(·), η(·)) = c(·, ·).
If η restricts to a diagram automorphism of g0, then η(βi) = βσ(i), i = 1, 2, 3, for
a suitable permutation σ. Hence (βσ(i), βσ(i)) = c−1(βi, βi). We check directly that
this is not possible for a real value of α different from 1, (−2)±1 and also that, if
α = 1, then the only possibility is given by Ad(J). �

The case of g being the simple Lie superalgebra of type A(1, 1) needs special care,
so we postpone the discussion of this case to the end of this section. Until then, we
are excluding this case from our discussion.

In order to complete the classification we choose a very distinguished set of posi-
tive roots. If g is of type D(m,n), we choose ∆+

D1. We wish to compute the action
of ω on the generators ei, fi. We will often use the following result of Serganova.
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Let δλ be the map on g defined by setting

(4.31) δλ|g0 = Id, δλ|g+1 = λId, δλ|g−1 = λ−1Id.

If g is of type I, then δλ is an automorphism of g for any λ ∈ C. If g is of type II,
then δλ is an automorphism of g if and only if λ = ±1. By [20, Lemmas 1 and 2],
an automorphism of g that restricts to Idg0 is necessarily δλ.

Since the form (η(·), η(·)) is invariant, we have that there is sη ∈ C such that
(η(·), η(·)) = sη(·, ·). Since η2 = Id on g0, we see that sη = ±1. Let now i0 be the
index of the unique odd simple root. Set γ = η(αi0). Then there is λ ∈ C such that
η(ei0) = λXγ so that η(fi0) = sησγλ

−1X−γ. If η|g0 = Id|g0 , then we set η1 = Idg. If
η|g0 6= Id|g0 and g is of type A(m,n), then we set η1 = η ◦ δλ−1 , while, if g is of type
D(m,n) we set η1 = Ad(J) with J as in the proof of Lemma 4.7. Then, in all cases
η1(ei0) = Xγ and we can write

ω = η1δλe
ad(h)ω0.

We want to find conditions on h and λ for which ω = η1δλe
ad(h)ω0 has order 2.

First assume that η|g0 = Id. In this case h = t and η = δλ for some λ ∈ C.

We see that ω(ei0) =
√
−1λ−1e−αi0

(h)fi0 , ω(ei) = −ǫαi
e−αi(h)fi if i 6= i0, ω(fi0) =√

−1λeαi0
(h)ei0 , ω(ei) = −ǫαi

e−αi(h)fi if i 6= i0. Since ω is an involution we obtain
that λeαi0

(h) ∈ R and eαi(h) ∈ R if i 6= i0, hence setting λi0 =
√
−1λ−1e−αi0

(h) and
λi = −ǫαi

e−αi(h) we see that ω has the form of (4.12).
Assume now that η|g0 6= Id. Recall that η acts on g0 as a diagram automorphism.

Since, by our choice of the set of positive roots, the simple roots of g0 are simple in
g if g is of type A(m,n) while, in type D(m,n), η1 is a diagram automorphism of
g, η1 induces in both cases a transposition i 7→ i′ on the indices corresponding to
the simple even roots. If i /∈ π, then

ω(ei) = ηead(h)ω0(ei) = −ǫαi
η(ead(h)fi) = −ǫαi

e−αi(h)η(fi) = −ǫαi
e−αi(h)sηfi′ .

Hence
ω2(ei) = e−αi(h)eαi′ (h)ei.

Since h ∈ t we have αi′(h) = αi(h), therefore we get eαi(h) ∈ R.
We distinguish the following cases.

(1) If g is of type D(m,n), then η(αi0) = αi0 and sη1 = 1, hence

ω2(ei0) = eαi0
(h)e−αi0

(h)ei0 .

Therefore eαi0
(h) ∈ R.

(2) If g is of type A(m,n) and (η1)|g0 = (−st)|g0 , then σγ = −1 and (η1) =
(−st)δµ for some µ. Hence (η1)

2 = (−st)2, and we see that (η1)
2
|g1 = −Id.

Moreover sη1 = 1.
It follows that

ω2(ei0) = |λ|−2eγ(h)e−αi0
(h)ei0 .

Since h ∈ t, we have γ(h) = αi0(h), hence |λ| = 1 and eαi0
(h) ∈ R.

(3) If g is of type A(n, n) and (η1)|g0 is the flip, then (η1)|g0 = F|g0 . It follows
that σγ = −1 and η1 = Fδµ for some µ. Hence (η1)

2 = F 2, so (η1)
2
|g1 = Id.

Moreover sη1 = −1.
It follows that

ω2(ei0) = |λ|−2eγ(h)e−αi0
(h)ei0 .
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Since h ∈ t, we have γ(h) = αi0(h), hence |λ| = 1 and eαi0
(h) ∈ R.

(4) If g is of type A(n, n) and (η1)|g0 = F (−st) then γ = αi0 and sη1 = −1.
It follows that

ω2(ei0) = −λeαi0
(h)λ−1e−αi0

(h)ei0 ,

hence λeαi0
(h) ∈

√
−1R.

Let us now return to the general case. Fix h as above and define

ωh =





δλe
ad(h)ω0 if η|g0 = Idg0

ead(h)ω0 in cases (1), (2), (3)

δ√−1λe
ad(h)ω0 in case (4).

As observed above ωh is an antilinear involution of the form of (4.12).
We are now ready to give an explicit formula for the Cartan involution corre-

sponding to ω|g0 . Define the map ζωh
: g → g by

(4.32) ζωh
(x) = x, x ∈ h, ζωh

(Xα) = sgn(λh
α)Xα,

where λh
α is the multiplier defined in (4.13). It is easy to check using (4.14) that

ζωh
is an involution of g0. We claim that

ζω = η1 ◦ ζωh
.

is the Cartan involution corresponding to ω|g0 .
First we prove that sgn(λh

α) = sgn(λh
η1(α)

) for α ∈ ∆+
0 . We prove in fact that

λh
α = λh

η1(α)
. A direct computation shows that λh

α = cαe
−α(h) for any α ∈ ∆+

0 ,

where cα =

{
1 if Xα ∈ q0

−λ∓2 if Xα ∈ q±2

. The claim follows since our choice of h forces

α(h) = η1(α)(h).
Clearly η1(Xα) = dαXη1(α). We now prove that |dα| = 1 for any α ∈ ∆0. For this

observe that d−α = sη1d
−1
α and dη1(α) = d−1

α . Hence, since ω2(Xα) = (η1ωh)
2(Xα) =

Xα, it follows that
1 = ǫαǫ−η1(α)λ

h
αλ

h
−η1(α)

d̄−αdη1(α),

so 1 = ǫαǫ−η1(α)sη1 |dα|−2 = |dα|−2 as wished.
In order to prove that ζω is the Cartan involution corresponding to ω|g0 , we need

only to check that ω and ζω commute and that ω|g0 ◦ ζω is the conjugation of a
compact real form of g0. The first claim is a simple computation:

ω|g0ζω(Xα) = −ǫη1(α)sgn(λ
h
α)λ

h
η1(α)d̄αd−η1(α)X−α = −sη1ǫη1(α)sgn(λ

h
α)λ

h
αX−α,

while

ζωω|g0(Xα) = −ǫαsgn(λ
h
−η1(α)

)λh
αd−αd−η1(α)X−α = −ǫαsgn(λ

h
α)λ

h
αX−α,

so the claim follows from the observation that sη1ǫη1(α) = ǫα.
For the second claim it is enough to check that ǫα(Xα, ωζω(Xα)) < 0 for any

α ∈ ∆0. Indeed

ǫα(Xα, ωζω(Xα)) = −ǫαsgn(λ
h
α)λ

h
η1(α)

ǫη1(α)sη1 = −sgn(λh
α)λ

h
α,

and this number is always negative.

Recall that we are excluding the case when g is the simple Lie superalgebra
of type A(1, 1). It follows from [9, Prop. 5.3.2] that, if ω and ω′ are antilinear
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involutions of g such that gω0 is isomorphic to gω
′

0 , then ω′ is conjugated by an
isomorphism of g to either ω or ω ◦ δ−1. Consider now the antilinear involution ωR

on g defined by ωR(ei) = ei, ωR(fi) = fi, and ωR(h) = h for h ∈
√
−1hω. Then,

since ωh is an antilinear involution of the type described in (4.12), we have that
ωRωhωR = ωhδ−1. Moreover, if η1(g

+
1 ) ⊂ g+1 , we have that ωRη1 = η1ωR, so ωR

provides a real isomorphism between gω and gωδ−1 . If instead η1(g
+
1 ) ⊂ g−1 , then

g is of type A(m,n), and δ√−1 provides an isomorphism between gω and gωδ−1 . It
follows that we need only to classify the symmetric pairs (g0, k) up to isomorphism.
First of all we consider cases (3) and (4). In both cases (ζω)|g10 gives an isomorphism

from g10 → g20, so the map (X, Y ) 7→ X + ζω(Y ) gives an isomorphism between
g10 × g10 and g0 that maps the diagonal copy of g10 to the set of fixed points of ζω.
Thus the real form gω0 is isomorphic to g10 seen as a real Lie algebra.

Let us now turn to the other cases. Choose t ∈ h in such a way that eαi(t) =
sgn(λh

αi
) for i 6= i0. We claim that we can choose t ∈ t. Since sgn(λh

αi
) =

sgn(λh
η1(αi)

), it is clear that we can choose t so that η1(αi)(t) = αi(t) for i 6= i0. It

remains to check that we can choose t so that αi0(t) = η1(αi0)(t). This is clear if
η1(αi0) = αi0 , so we are left only with case (3). In this case we know that

eαi0
(h) = eη1(αi0

)(h) = e−αi0
(h)
∏

i 6=i0

e−αi(h).

This implies that (eαi0
(h))2 =

∏
i 6=i0

e−αi(h). It follows that
∏

i 6=i0
e−αi(h) > 0 so that

eαi0
(t) = e−αi0

(t)
∏

i 6=i0

sgn(e−αi(h)) = eη1(αi0
)(t)

hence we can choose t ∈ t as wished.
If g is not of type A(m,n), then the simple roots of g are linearly independent,

so we can further assume that eαi0
(t) ∈ R. If g is of type A(m,n) and η1 = Idg,

then we can choose λ so that λeαi0
(t) ∈ R. If, instead, we are in case (3), then, as

shown above, (eαi0
(t))2 = 1, so, again, eαi0

(t) ∈ R. This implies that we can define
an antilinear involution ω′ = η1δλe

ad(t)ω0. Observe that ζω = ζω′ so ω and ω′ define
the same real form. Moreover ζω = η1e

ad(t′) with t = t′ if g is of type C(n + 1) or
A(n,m) and t′ defined by setting αi(t) = αi(t

′) for i 6= i0, αi0(t
′) = π

2

√
−1 + αi0(t)

in the other cases.
We will now use Kac classification of Lie algebra involutions [11] to classify ζω.

Let {βi
1, . . . , β

i
k} be the simple roots of (gi0)

η1 corresponding to the set of positive
roots ∆+

|t . Recall that β
i
j = α|t for some simple root of gi0 corresponding to ∆+

0 . Let

X i
N be the diagram of gi0 and let (X i

N)
(ri) be the corresponding affinization with

ri = 1 if (η1)|gi0 = Id and ri = 2 otherwise. Let aij be the labels of (X i
N)

(ri) and set

θi =
∑

j≥1 a
i
jβ

i
j . Using the analysis done in [12, §3] we find that there is τ ∈ t and

w in the Weyl group of gη10 such that 2π
√
−1t′′ = w(t′) + τ with ead(τ) = δµ and

t′′ ∈ t ∩ [g0, g0] having the following property: if sij = βi
j(t

′′) and si0 = 1
ri
− θi(t

′′),
then

(4.33) sij ∈ {0, 1
2
, 1} and

∑

j≥0

aijs
i
j =

1

ri
.
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It follows that e2π
√
−1w(αi)(t

′′) = eαi(t
′) for all i 6= i0 and that λµ−1ew(αi0

)(2π
√
−1t′′) =

λeαi0
(t′). This implies that e2π

√
−1αi(t

′′) ∈ R for all i 6= i0. Moreover, in type A(m,n)

and C(n + 1) with η1 = Idg, λµ
−1eαi0

(2π
√
−1t′′) ∈ R. In type A(m,n) with η1 as

in case (3), since τ ∈ t we must have µ2 = 1 so eαi0
(2π

√
−1t′′) ∈ R. In the other

cases we have e2π
√
−1αi0

(t′′) ∈
√
−1R. In turn, this implies that there is an antilinear

involution ω′′ such that ζω′′ = η1e
2π

√
−1ad(t′′). Since ζω′′ is conjugated to ζω, we see

that ω and ω′′ define isomorphic real forms. The outcome is the following:
(1) If g is of type C(n + 1) or A(m,n) and η1 = Idg, then the list of all t′′ ∈

h ∩ [g0, g0] that satisfy (4.33) and such that there is λ ∈ C with λeαi0
(2π

√
−1t′′) ∈ R

gives a list of all real forms. Since the latter is an empty condition, we see that the
list of all real forms is given by all the t′′ ∈ h ∩ [g0, g0] that satisfy (4.33).

(2) If g is of type A(m,n) and η1 is as in case (3), then the list of all t′′ ∈ t∩[g0, g0]
that satisfy (4.33) and such that e2π

√
−1αi0

(t′′) ∈ R gives a list of all real forms.
(3) In all the remaining cases the list of all t′′ ∈ t∩ [g0, g0] that satisfy (4.33) and

such that e2π
√
−1αi0

(t′′) ∈
√
−1R gives the list of all real forms.

The set of t′′ ∈ t ∩ [g0, g0] that satisfy (4.33) is finite, so we need only to check
the above conditions on this finite set. The outcome of this computation is given
in the following tables. In all cases except A(m,n) and C(n + 1) define ̟i ∈ h by
αj(̟i) = δij where the simple roots of g are enumerated from left to right. If g
is of type A(m,n) or C(n + 1) we define ̟i for i 6= i0 to be the unique element
in h ∩ [g0, g0] such that αi(̟j) = δij for all i 6= i0. In the following tables we
assume that ∆+ is a very distinguished set of positive roots. For types D,C, F we
choose ∆+

D1, ∆
+
C2, ∆

+
F1, respectively. Table I displays the real forms corresponding

to antilinear involutions with η|g0 = Idg0 and Table II covers the remaining cases.
In Table I we also list the parameters (λ1, . . . , λn) occurring in (4.12), setting, only
once in the paper, i =

√
−1; the λj which are not listed are equal to 1.
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g real form of g0 t′′ (λ1, . . . , λn)

gl(m,n) u(p,m− p)× u(q, n− q) 1
2
̟p + 1

2
̟n+q, λm = i

(0 ≤ p ≤ m− 1, 1 ≤ q ≤ n) λj = λm+q = −1
(1 ≤ j ≤ m, j 6= p)

A(m− 1, n− 1), su(p,m− p)× su(q, n− q)× R 1
2
̟p + 1

2
̟n+q, same as above;

m 6= n (0 ≤ p ≤ m− 1, 1 ≤ q ≤ n)

A(n− 1, n− 1) su(p, n− p)× su(q, n− q) 1
2
̟p + 1

2
̟n+q, same as above

(0 ≤ p ≤ n− 1, 1 ≤ q ≤ n) with m = n;
B(0, n) sp(2n,R) 1

4
̟n λn = i

λj = −1
(1 ≤ j ≤ n− 1)

B(m,n) so(2m+ 1)× sp(2n,R) 1
4
̟n λn = i

λn+k = −1
(1 ≤ k ≤ m)

B(m,n) so(2p, 2m+ 1− 2p)× sp(2n,R) − 1
4
̟n + 1

2
̟n+p, λn = −i

(1 ≤ p ≤ m) λn+k = −1
(1 ≤ k ≤ m, k 6= p)

D(m,n) so(2m)× sp(2n,R) 1
4
̟n, λn = i

λn+k = −1
(1 ≤ k ≤ m)

D(m,n) so(2p, 2m− 2p)× sp(2n,R) − 1
4
̟n + 1

2
̟n+p, λn = −i

(1 ≤ p ≤ m− 2) λn+k = −1
(1 ≤ k ≤ m, k 6= p)

D(m,n) sp(n)× so∗(2m) 1
4
̟n + 1

2
̟m+n λn = i

λn+k = −1
(1 ≤ k ≤ m− 1)

D(m,n) sp(q, n− q)× so∗(2m) 1
2
̟q −

1
4
̟n + 1

2
̟m+n, λn = −i

(1 ≤ q ≤ n− 1) λq = λn+k = −1
(1 ≤ k ≤ m− 1)

C(n+ 1) sp(n)× R 0 λ1 = i

C(n+ 1) sp(2n,R)× R 1
2
̟n+1 λ1 = i, λn+1 = −1

C(n+ 1) sp(q, n− q)× R 1
2
̟q+1, 1 ≤ q ≤ n− 1 λ1 = i, λq = −1

D(2, 1, α) (sl(2,R))×3 − 1
4
̟1 +

1
2
̟2 +

1
2
̟3 (−i, 1, 1)

D(2, 1, α) su(2) × su(2) × sl(2,R) 1
4
̟1 (i,−1,−1)

F (4) so(7) × sl(2,R) 1
4
̟1 (i,−1,−1,−1)

F (4) su(2) × so(1, 6) 1
2
̟2 −

3
4
̟1 (i, 1,−1,−1)

F (4) su(2) × so(2, 5) 1
2
̟4 −

1
4
̟1 (−i,−1, 1,−1)

F (4) so(3, 4)× sl(2,R) 1
2
̟3 −

1
4
̟1 (−i,−1,−1, 1)

G(3) G2,0 × sl(2,R) 1
4
̟1 (i,−1)

G(3) G2,2 × sl(2,R) − 1
4
̟1 +

1
2
̟3 (−i, 1)

Table I

g η|g0 real form of g0 t′′

gl(m,n) −st gl(m,R))× gl(n,R) 0
A(m,n), m 6= n −st sl(m,R))× sl(n,R)× R 0
A(n, n) −st sl(m,R))× sl(n,R) 0
gl(2m, 2n) −st u∗(2m))× u∗(2n) 1

2
̟m + 1

2
̟2m+n

A(2m, 2n), m 6= n −st su∗(2m))× su∗(2n)× R 1
2
̟m + 1

2
̟2m+n

A(2n, 2n) −st su∗(2m))× su∗(2n) 1
2
̟m + 1

2
̟2m+n

gl(n, n) F gl(n,C) 0
A(n, n) F sl(n,C) 0
D(m,n) Ad(J) sp(2n,R)× so(2m− 2p− 1, 2p+ 1) −1

4
̟n +

1
2
̟n+p

(0 ≤ p ≤ m− 2)

Table II
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In Table II, we have not considered the case when g is of typeD(2, 1,−1
2
) with non

trivial η1, because D(2, 1,−1
2
) is isomorphic toD(2, 1). The corresponding real form

is, from Table II, sp(2,R) × so(3, 1). The special isomorphism so(3, 1) ∼= sl(2,C)
allows to recover the classification as stated in [18, Theorem 2.5].

Suppose now that g is simple of type A(1, 1). It needs special care since in this
case there is a large group of automorphisms acting identically on the even part
(this was apparently missed in previous discussions on real forms in the literature).
First observe that g0 ∼= sl(2,C)× sl(2,C), hence there are four non isomorphic real
forms of g0: sl(2,C), sl(2,R) × sl(2,R), su(2) × sl(2,R), su(2) × su(2). All these
real forms are obtained from real forms of g by restricting an antilinear involution
ω of gl(2, 2) to sl(2, 2). Since this restriction clearly stabilizes the center of sl(2, 2),
it can be pushed down to A(1, 1). Hence for any real form of g0 there is at least one
real form of A(1, 1) which induces it. The only non-trivial thing to prove is that
also in this case the real form of g0 determines the real form of g. Suppose that ω
and ω′ are antilinear involutions that restrict in the same way to g0. Then there is
an automorphism g of g such that g|g0 = Idg0 and ω′ = ωg. We now identify the
group S of automorphisms of g that restrict to the identity of g0 with SL(2,C):
indeed, if g is such an automorphism, then necessarily

g(Xα2) = aXα2 + bX−θ, g(X−α2) = cXθ + dX−α2(4.34)

g(Xθ) = aXθ + bX−α2 , g(X−θ) = cXα2 + dX−θ.(4.35)

The fact that g is an homomorphism implies that Mg =

(
a b
c d

)
∈ SL(2,C).

Hence we have a map to SL(2,C). To prove that this map is bijective, we consider
the local Lie superalgebra G−1⊕G0⊕G1 with G1 = CXα1 ⊕CXα2 ⊕CXα3 ⊕CX−θ,
G−1 = CX−α1 ⊕ CX−α2 ⊕ CX−α3 ⊕ CXθ, G0 = h and whose bracket is obtained
by restricting the bracket of A(1, 1). The corresponding minimal Z-graded Lie
superalgebra is g. A direct check shows that the map g defined by (4.34), (4.35)
and such that g|g0 = Id defines an automorphism of the local algebra, hence it
extends uniquely to an automorphism of g.

Suppose now that ω = η1e
ad(t)ω0. It is easy to see that for any g ∈ S there exists

a unique g′ ∈ S such that

Mg′ = AMgA,

with A =

(
0 1
1 0

)
if gω0 = su(2)×su(2) or sl(2,R)×sl(2,R), with A =

(
0 i
−i 0

)

if gω0 = sl(2,R)× su(2), and with A =

(
1 0
0 1

)
if gω0 = sl(2,C). If ω′ = ωg, then

the condition that (ω′)2 = Idg is equivalent to ω = gωg, hence we must have

AMgAMg =

(
1 0
0 1

)
.

Moreover we have that (g′)−1ωgg′ = ωg′′ with Mg′′ = AM−1
g′ AMgMg′ .

Consider the antilinear antiinvolution σ on SL(2,C) defined by σ(M) = AM
−1
A.

We have just shown that the set of Mg such that (ω ◦ g)2 = Id is the fixed point set
S of σ. Let us also consider the action of SL(2,C) on S by M · s = σ(M)sM . If
this action has a unique orbit then, as shown above, ω and ω ◦ g are conjugated, so
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the real forms gω and gω
′
are isomorphic. To check when this action has a unique

orbit we observe that the stabilizer of any point s ∈ S is the fixed point set of the
antilinear involution on SL(2,C) given by g 7→ s−1σ(g)−1s hence it is a real form
of SL(2,C). In particular all the orbits have the same dimension so the orbits are
the connected components of S. More explicitly

S = {
(

x z
−z̄ y

)
∈ SL(2,C) | x, y ∈ R, z ∈ C}

if gω0 = su(2)× su(2) or gω0 = sl(2,R)× sl(2,R), while

S = {
(

z
√
−1x√

−1y z̄

)
∈ SL(2,C) | x, y ∈ R, z ∈ C}

if gω0 = sl(2,C). In both cases S is the quadric in R4 of equation xy + a2 + b2 = 1
where z = a+

√
−1b, which is homemorphic to R× S2.

It remains to deal with the last case, i.e. gω0 = sl(2,R)× su(2), where

S = {
(

x z
z̄ y

)
∈ SL(2,C) | x, y ∈ R, z ∈ C},

which is the quadric of equation xy−a2−b2 = 1. This is homeomorphic to R3×S0,
hence disconnected. However, the two orbits are the orbit of MId and of Mδ−1 (cf.
(4.31)), so we need only to check if gω and gωδ−1 are isomorphic, but the argument
used in the other cases shows that ωR provides an isomorphism between gω and
gωδ−1 . Thus, A(1, 1) has no real forms other than those listed in Tables I and II.

Remark 4.1. Our treatment doesn’t cover the cases when the Cartan matrix is not
real, which happens only if g is of type D(2, 1, α), where α ∈ C\R, , α+ ᾱ = −1. In
this case one has one extra real form, with even part sl(2,C)× sl(2,R) (see [18]).

Remark 4.2. Our approach to classify real forms started by fixing a suitable set of
positive roots and henceforth the antilinear involution ω0. All antilinear involutions
are then gotten as η1e

ad(h)ω0, by letting h and η1 vary.
One can, in a different perspective, consider just the antilinear involutions η1ω0

and let the choice of ∆+ vary. In this way one can associate to any set of positive
roots a set of real forms indexed by the outer automorphism η1. It can be checked
that all real forms can be obtained in this way. The real forms discussed in Section
4.5 are precisely those corresponding to the distinguished sets of positive roots with
η1 = Idg. In Section 4.8 we will discuss the real forms corresponding to the sets
of positive roots of depth 4 when g is gl(m,n) or of type B(m,n) and D(m,n). It
will actually turn out that, in these cases, all real forms of g already appear as real
forms corresponding to positive sets of roots of depth at most 4.

Remark 4.3. It is possible to deal with the problem of classifying antilinear in-
volutions in a slightly different way. Consider marked sets of positive roots. For
this we mean the datum (Π, L) where Π = {α1, . . . , αn} is the set of simple roots
of a set ∆+ of positive roots and L = {li, . . . , ln} is a set of labels satisfying
li ∈ {±1} if p(αi) = 0, li ∈ {±

√
−1} if p(αi) = 1. Given a marked set of pos-

itive roots, we can define an antilinear involution ωL using formulas (4.12)–(4.15)
with λi = −ξαi

li, so that λαi
= li. We have a natural action of odd reflections

on marked set of positive roots: if rαi
denotes the odd reflection w.r.t. the simple

root αi (see (2.5)), we set rαi
(Π, L) = (rαi

(Π), L′), with L′ = {l′i, . . . , l′n}, l′j = lj
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if (αi, αj) = 0, i 6= j, l′i = l−1
i and l′j = ljli if (αi, αj) 6= 0. This action has the

following property: if rα(Π, L) = (Π′, L′), then, since ζωL
= ζωL′ , ωL and ωL′ define

isomorphic real forms. Using this action, one has a combinatorial recipe to detect
the real form corresponding to a given marked set of positive roots: since any two
sets of positive roots can be obtained from each other through a sequence of odd
reflections, it suffices to consider the marked sets (Πvd, Lvd), where Πvd is one of
the sets of simple roots corresponding to a very distinguished set of positive roots
we used for the classification. Given any marked set (Π, L) one can compute com-
binatorially the marked set (Πvd, Lvd) in the same equivalence class and apply our
classification to ωLvd

.

4.7. Compact dual pairs coming from distinguished sets of positive roots.

Let g = gl(m,n) or a Lie superalgebra of type B,C,D. Fix a distinguished set ∆+

of positive roots. Let ω be as in Subsection 4.5 and let V be the set of ω-fixed
points in g1. Also recall from (4.29) the definition of s1, s2.

In this Subsection we prove the following proposition.

Proposition 4.8. Let g be gl(m,n) or a Lie superalgebra of type B,C,D. If ∆+

is a distinguished set of positive roots, then there is a compact dual pair (G1, G2) in
Sp(V, 〈· , ·〉) with Lie(Gi) = si, i = 1, 2, such that the action of g0 on M∆+

(g1) gives
the Theta correspondence for (G1, G2) at the level of Lie algebras. The compact dual
pairs (G1, G2) are listed in the following table (in which m,n are positive integers):

(4.36)

g ∆+ (G1, G2)

gl(m,n) ∆
(p,q)
gl (U(n), U(p, q))

B(0, n) ∆+
B (O(1), Sp(2n,R))

B(m,n) ∆+
B (O(2m+ 1), Sp(2n,R))

D(m,n) ∆+
D1 (O(2m), Sp(2n,R))

D(m,n) ∆+
D2 (Sp(n), SO∗(2m))

D(m,n) ∆+
D2′ (Sp(n), SO∗(2m))

C(n+ 1) ∆+
C1 (O(2), Sp(2n,R))

C(n+ 1) ∆+
C2 (Sp(n), SO∗(2))

C(n+ 1) ∆+
C2′ (Sp(n), SO∗(2))

We shall prove Proposition 4.8 by realizing explicitly the superalgebras as sub-
algebras of some gl(r, s) and then checking the conditions of Proposition 4.2 in a
case by case fashion. For shortness we will give the details only in type D(m,n).

4.7.1. ∆+
D1. Endow the superspace C2m|2n with the bilinear form given by the matrix(

I2m 0
0 J2n

)
, where J2n =

(
0 In

−In 0

)
.

The Lie superalgebra osp(2m, 2n) of type D(m,n) is the set of linear transfor-
mations which are skewsupersymmetric w.r.t. a supersymmetric nondegenerate
bilinear form. If we choose the form as above, then osp(2m, 2n) can be realized as
the set of matrices 


A B1 B2

−Bt
2 C1 C2

Bt
1 C3 −Ct

1
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with A skewsymmetric 2m × 2m and C2, C3 symmetric n × n matrices. Denoting
by Ei,j the matrix units, set

hi =

{
−
√
−1Ei,m+i +

√
−1Em+i,i, 1 ≤ i ≤ m,

−
√
−1E2m+i,2m+n+i +

√
−1E2m+n+i,2m+i, m+ 1 ≤ i ≤ m+ n.

Then h = ⊕m+n
i=1 Chi is a Cartan subalgebra of g.

Set (X, Y ) = 1
2
str(XY ); then

(hi, hj) =

{
δij 1 ≤ i ≤ m,

−δij m+ 1 ≤ i ≤ m+ n.

In the chosen distinguished set of positive roots we have ∆+
1 = {δi ± ǫj | 1 ≤ j ≤

m, 1 ≤ i ≤ n}. We can choose for each α ∈ ∆+
1 root vectors Xα, X−α in such a

way that

V =

{(
0

√
−1A

−
√
−1J2n

tA 0

)
| A ∈ M2m,2n(R)

}
.

The map Ψ : g1 → M2m,2n(C),

(4.37) Ψ(

(
0 A

−J2n
tA 0

)
) = A

intertwines the adjoint action of g0 on g1 with its action on M2m,2n(C) given by

(4.38)

(
E 0
0 F

)
· A = EA− AF.

It is then clear that ad

(
E 0
0 F

)
(V ) ⊂ V if and only if E and F are real matrices,

i. e. E ∈ so(2m) and F ∈ sp(2n,R).
Consider now the map Φ : V → R2m ⊗ (R2n)∗ given by

Φ(
√
−1(Ei,2m+j + E2m+n+j,i)) = ei ⊗ f j 0 ≤ i ≤ 2m, 1 ≤ j ≤ n

Φ(
√
−1(Ei,2m+n+j −E2m+j,i) = ei ⊗ fn+j 0 ≤ i ≤ 2m, 1 ≤ j ≤ n

where {ei} is the standard basis of R2m and {f j} is the standard basis of (R2n)∗.
Note that Φ intertwines the action of ad|g1(g0) ∩ sp(V ) on V with the standard
action of so(2m)× sp(2n,R) on R2m ⊗ (R2n)∗.

Let (· , ·)2m be the standard symmetric bilinear form on R2n, (· , ·)2n the standard
symplectic form on (R2n)∗ and let 〈· , ·〉 be the tensor product (· , ·)2m ⊗ (· , ·)2n. It
is easy to check that, for j, k ∈ {0, . . . , 2m}, i, r ∈ {1, . . . , n}

〈Ej,2m+i + E2m+n+i,j , Ek,2m+r + E2m+n+r,k〉 = 0,

〈Ej,2m+n+i − E2m+n+i,j, Ek,2m+n+r + E2m+r,k〉 = 0,

〈Ej,2m+i + E2m+n+i,j , Ek,2m+n+r −E2m+r,k〉 = −δjkδir.

It follows that 〈Φ(X),Φ(Y )〉 = 〈X, Y 〉 for any X, Y ∈ V . According to the clas-
sification given in [5, § 5], the pair (O(2m), Sp(2n,R)) is a type I dual pair in
Sp(R2m⊗ (R2n)∗, 〈· , ·〉). Since Φ maps ad|g1(g0)∩sp(V ) ⊂ sp(V ) exactly on the Lie
algebras of this dual pair, we have proven Proposition 4.8 in this case.
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4.7.2. ∆+
D2. Endow the superspace C2m|2n with the bilinear form given by the matrix(

Im,m 0
0 J2n

)
, where Im,m =

(
0 Im
Im 0

)
.

With this choice of the form, the superalgebra osp(2m, 2n) can be realized as the
set of matrices 



A1 A2 B1 B2

A3 −tA1 B3 B4
tB4

tB2 C1 C2

−tB3 −tB1 C3 −tC1




with A2, A3 skewsymmetric m × m and C2, C3 symmetric n × n matrices. In this
case we set

hi =

{
Ei,i −Em+i,m+i, 1 ≤ i ≤ m,

Em+i,m+i − Em+n+i,m+n+i, m+ 1 ≤ i ≤ m+ n.

Then h = ⊕m+n
i=1 Chi is a Cartan subalgebra of g and

(hi, hj) =

{
δij 1 ≤ i ≤ m,

−δij m+ 1 ≤ i ≤ m+ n.

In the chosen distinguished set of positive roots we have ∆+
1 = {ǫi ± δj | 1 ≤ i ≤

m, 1 ≤ j ≤ n}. We can choose for each α ∈ ∆+
1 root vectors Xα, X−α in such a

way that

(4.39)

V =

{(
0 A

−J2n
tA 0

)
| A =

(
A1 A2√
−1Ā2 −

√
−1Ā1

)
, A1, A2 ∈ Mm,n(C)

}
.

Again, the map Ψ, given by (4.37), intertwines the adjoint action of g0 on g1 with

its action onM2m,2n(C), given by (4.38). It is then clear that ad

(
E 0
0 F

)
(V ) ⊂ V

if and only if

(4.40) E =

(
A1 A2

−Ā2 Ā1

)
, F =

(
B1 B2

−B̄2 B̄1

)

with A1, A2 ∈ Mm,m(C), B1, B2 ∈ Mn,n(C), A1, B1 skew-Hermitian, A2 antisym-
metric, and B2 symmetric.

Let H be the skew field of real quaternions. Set (Hn)∗ = EndH(H
n,H) where

Hn,H are viewed as left H-spaces. Endow (Hn)∗ with a right H-action by setting
(λq)(v) = λ(v)q. Identify V with (Hn)∗ ⊗H Hm as follows. The map Ψ above

followed by left multiplication by Lm =

(
Im 0
0

√
−1Im

)
maps V into the subspace

of M2m,2n(C) of matrices of the form

(4.41)

(
A −B̄
B Ā

)
.

Identifying Hr with Cr × Cr = C2r by x + yj ↔ (x, y) we see that the matrices
as in (4.41) are precisely those commuting with the left action of j. Thus V gets
identified with EndH(H

n,Hm) (here Hn,Hm are seen as left H-spaces). The natural
map λ⊗ v 7→ Tλ,v with Tλ,v(u) = λ(u)v identifies EndH(H

n,Hm) and (Hn)∗⊗H Hm.
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Let now Φ : V → (Hn)∗⊗HH
m be the (R-linear) isomorphism described above. Note

that, if E, F are as in (4.40), then both LmEL−1
m and F are of the form (4.41). Thus

we can identify them with elements TE, TF in EndH(H
m,Hm) and EndH(H

n,Hn)

respectively. Unwinding all the identifications we see that if X =

(
E 0
0 F

)
∈ g0

and ad(X)(V ) ⊂ V then Φad(X)Φ−1 acts on (Hn)∗ ⊗H Hm via the natural action
of TF ⊗ I + I ⊗ TE .

Let τ : H → H be the quaternionic conjugation: τ(a + bj) = ā − bj (a, b ∈ C).
It induces the complex conjugation in the above identification Hr = C2r. Let
(· , ·)′m be the skew-Hermitian form on Hm given by (v, w)′m =

∑
i vi

√
−1τ(wi)

and (· , ·)n the Hermitian form on Hn given by (v, w)n =
∑

i viτ(wi). Let (· , ·)n
denote also the form induced on (Hn)∗. Note that, since E, F are as in (4.40), then
TE ∈ u(Hm, (· , ·)′m) ≃ so∗(2m) and TF ∈ u((Hn)∗, ( , )n) ≃ sp(n).

Let 〈· , ·〉 be the real symplectic bilinear form on (Hn)∗ ⊗Hm given by

〈· , ·〉 = TrH/R(· , ·)n ⊗ τ ◦ (· , ·)m.
For 1 ≤ i ≤ m, 1 ≤ j ≤ n, set

Xij = Ψ−1(
√
−1Eij − Em+i,n+j),(4.42)

Yij = Ψ−1(Eij −
√
−1Em+i,n+j),(4.43)

Zij = Ψ−1(
√
−1Ei,n+j + Em+i,j),(4.44)

Wij = Ψ−1(Ei,n+j +
√
−1Em+i,j).(4.45)

If X, Y ∈ {Xij, Yij, Zij,Wij}, then it is easy to check that 〈X, Y 〉 = 0 except in the
following cases:

2 = 〈Xij , Yij〉 = −〈Yij, Xij〉 = 〈Zij,Wij〉 = −〈Wij , Zij〉.
On the other hand, letting {ei} be the canonical basis of Hm and {ei} the basis

dual to the canonical basis of Hn, we see that

Φ(Xij) = ej ⊗
√
−1ei,(4.46)

Φ(Yij) = ej ⊗ ei,(4.47)

Φ(Zij) = ej ⊗
√
−1jei,(4.48)

Φ(Wij) = −ej ⊗ jei.(4.49)

It follows that 〈Φ(X),Φ(Y )〉 = −2〈X, Y 〉 for any X, Y ∈ V .
According to the classification given in [5, § 5], the pair

(U((Hn)∗, (· , ·)n), U(Hm, (· , ·)m)) = (Sp(n), SO∗(2m))

is a Type I dual pair in Sp((Hn)∗ ⊗ Hm, 〈· , ·〉). Since the map Φ maps ad|g1(g0) ∩
sp(V ) ⊂ sp(V ) exactly on the Lie algebras of this dual pair, we have proven Propo-
sition 4.8 in this case.

4.7.3. ∆+
D2′. This case can be reduced to the ∆+

D2 case as follows: by a careful
choice of the root vectors, the space V is the set of matrices

(
0 A

−J2n
tA 0

)
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such that

A =




A1 A2

v w√
−1Ā2 −

√
−1Ā1

−
√
−1w̄

√
−1v̄


 ,

with A1, A2 ∈ Mm−1,n(C), v, w ∈ Cn. Define Sm,2m ∈ M2m,2m(C) as

Sm,2m =




Im−1 0 0 0
0 0 0 1
0 0 Im−1 0
0 1 0 0


 .

Let σ : g → g be the map
(

A B
−J2n

tB C

)
7→
(

Sm,2mASm,2m Sm,2mB
−J2n

tBSm,2m C

)
.

It is easy to check that σ is an automorphism of g. Since σ(V ) is the space described
in (4.39) we see that the map X 7→ Φ ◦ ad(σ(X)) ◦ Φ−1 identifies ad|g1(g0) ∩ sp(V )
with sp(n)× so∗(2m). Finally observe that str(σ(A)σ(B)) = str(AB) hence

〈Φ(σ(X)),Φ(σ(Y ))〉 = −2(X, Y )

for any X, Y ∈ V. This concludes the proof of Proposition 4.8 in this case.

4.8. Noncompact dual pairs and gradings of depth 4. In this subsection
we classify, up to Wg-action, the sets of positive roots such that the grading (4.16)
has depth at most 4 (i.e., qi = {0} for |i| > 4) and we show that these sets of positive
roots are related to the noncompact dual pairs (U(p, q), U(r, s)), (O(p, q), Sp(2n,R)),
(Sp(p, q), SO∗(2n)). These pairs exhaust the type I dual pairs, with the exception
of the pair (O(m,C), Sp(2n,C)). The latter pair cannot arise in our picture, since
O(m,C) × Sp(2n,C) is not a real form of g0 for any choice of g. It occurs as the
real form g0 ∩ gR with g = osp(m, 2n) × osp(m, 2n) and gR the diagonal copy of
osp(m, 2n) in g. Since we are chiefly interested in the application to dual pairs, we
confine to study gl(m,n), B(m,n), D(m,n), C(n+ 1).

In the following we choose ω0 (see (4.30)) as antilinear involution and let λ0
α be

the corresponding multipliers as defined in (4.13). Recall that the corresponding
involution ζω0 of g0 is defined by setting ζω0(Xα) = sgn(λ0

α)Xα.

Case g = gl(m,n). It is clear that diagrams of type A with three or four grey
nodes support sets of positive roots whose associated grading has depth 3 or 4,
respectively. These sets of positive roots correspond to the following sets of simple
roots:

{ǫ1 − ǫ2, . . . , ǫp − δ1, δ1 − δ2, . . . , δr − ǫp+1, ǫp+1 − ǫp+2, . . . ,(4.50)

ǫp+1 − δr+1, δr+1 − δr+2, . . . , δr+s−1 − δr+s},
{ǫ1 − ǫ2, .., ǫh − δ1, δ1 − δ2, .., δr − ǫh+1, ǫh+1 − ǫh+2, .., ǫh+q − δr+1,(4.51)

δr+1 − δr+2, .., δr+s−1 − δr+s, δr+s − ǫh+q+1, .., ǫh+k+q−1 − ǫh+k+q},
and are clearly the only ones with the required property about the grading, up to
switching the role of ǫ and δ. Here p + q = m, r + s = n in (4.50) and h + k =
p, p + q = m, r + s = n in (4.51). Fix (4.51) as a set of simple roots. To detect
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the real form corresponding to ω0, we need only to classify (ζω0)|gi0 , i = 1, 2 via the

parameters sij, i = 1, 2, 1 ≤ j ≤ ki, , k1 = m−1, k2 = n−1 as explained in Section

4.6. In this case the roots βi
j are the simple roots of gi0:

β1
j = αj, 1 ≤ j ≤ h− 1, β2

j = αh+j, 1 ≤ j ≤ r − 1,

β1
h = αh + αh+1 + . . .+ αh+r, β2

r = αh+r . . .+ αh+r+q,

β1
h+j = αh+r+j, 1 ≤ j ≤ q − 1, β2

r+j = αh+r+q+j, 1 ≤ j ≤ s− 1,

β1
h+q = αh+r+q + . . .+ αh+r+q+s,

β1
h+q+j = αh+r+q+s+j, 1 ≤ j ≤ k − 1.

while θi is the highest root of gi0. In this case ζω0 = e2π
√
−1t with βi

j(t) = 1
2
if

sgn(λ0
βi
j
) = −1 and βi

j(t) = 0 otherwise. Note that, letting sij = βi
j(t) and si0 =

1 − θi(t), then t satisfies (4.33). It follows that, since s1j = 0 for j 6= h, h + q,

s1h = s1h+q =
1
2
, s2i = 0 for i 6= 0, r, s20 = s2r =

1
2
, the corresponding real form of g0 is

u(p, q)× u(r, s).

Case g = B(m,n). Recall that in type B all diagrams have shape (4.20). Assume
|π| = 2. Suppose first αn+m ∈ π: then αn+m is odd and non isotropic. The grading
has depth 4. The simple roots of g0 that are not simple in g are both of degree
2, while the largest roots are of degree 4. Arguing as for gl(m,n) it is easy to see
that the corresponding real form is so(2m, 1)× sp(2n,R). The corresponding dual
pair is (O(2m, 1), Sp(2n,R)). Otherwise the set of positive roots is necessarily of
the form

{ǫ1 − ǫ2, . . . , ǫp − δ1, δ1 − δ2, . . . , δn − ǫp+1, . . . , ǫm−1 − ǫm, ǫm}

with p+ q = m. This grading has depth 4, since the highest root is ǫ1+ ǫ2. Arguing
as above, we can show that it gives rise to the dual pair (O(2p, 2q+ 1), Sp(2n,R)).
It is easily seen that if |π| ≥ 3 then the grading has depth strictly greater than 4.

Case g = D(m,n). If the diagram of the set of positive roots is like (4.21), then
arguing as in the previous case we deduce that the only sets of positive roots with
|π| = 2 and depth at most 4 (indeed exactly 4) are

{δ1 − δ2, . . . , δp − ǫ1, ǫ1 − ǫ2, . . . , ǫm−1 − ǫm, ǫm − δp+1, . . . , δp+q−1 − δp+q, 2δp+q},
{δ1 − δ2, . . . , δp − ǫ1, ǫ1 − ǫ2, . . . , ǫm−1 + ǫm,−ǫm − δp+1, . . . , δp+q−1 − δp+q, 2δp+q}.

with p + q = n, which gives rise to the dual pair (Sp(2p, 2q), SO∗(2m)). If instead
the diagram is like (4.23), we again obtain a unique set of positive roots:

(4.52) {ǫ1 − ǫ2, . . . , ǫp − δ1, δ1 − δ2, . . . , δn − ǫp+1, . . . , ǫm−1 − ǫm, ǫm−1 + ǫm}

with p + q = m, which gives rise to the dual pair (O(2p, 2q), Sp(2n,R)). In both
cases, if |π| ≥ 3 then the grading has depth strictly greater than 4.

The pairs (O(2p+ 1, 2q− 1), Sp(2n,R)) are gotten by considering the antilinear
involution ω = η1ω0 when the positive sets of roots are those in (4.52) and η1 =
Ad(J). We need to classify ζω = η1 ◦ ζω0. The extended Dynkin diagrams of g10, g

2
0



42 GORELIK, KAC, MÖSENEDER, PAPI

are of type D
(2)
m , C

(1)
n respectively. The corresponding roots βi

j are

β1
j = αj , 1 ≤ j ≤ p− 1, β2

j = αp+j, 1 ≤ j ≤ n− 1,

β1
p = αp + αp+1 + . . .+ αp+n, β2

2n = 2(αp+n . . .+ αm+n−2) + αm+n−1 + αm+n,

β1
p+j = αp+n+j, 1 ≤ j ≤ q − 2,

β1
m−1 =

1
2
(αm+n + αm+n−1).

The parameters for ζω are s1p = 1
2
and s1j = 0 for j 6= p, s2n = 1

2
and s2j = 0 for

j 6= n. It follows that the real forms of gi0 are respectively so(2p + 1, 2q − 1) and
sp(2n,R), which give rise to the dual pairs (O(2p+ 1, 2q − 1), Sp(2n,R)).

Note that the pair (O(1, 2m− 1), Sp(2n,R)) is obtained from the distinguished
set of positive roots whose set of simple roots is

(4.53) {δ1 − δ2, . . . , δn − ǫ1, ǫ1 − ǫ2, . . . , ǫm−1 − ǫm, ǫm−1 + ǫm}.

Case g = C(n + 1). According to [9, page 52], the only sets of simple roots which
correspond to non-distinguished sets of positive roots are

{δ1 − δ2, . . . , δi − ǫ1, ǫ1 − δi+1, δi+1 − δi+2, . . . , 2δn},
{δ1 − δ2, . . . , δi + ǫ1,−ǫ1 − δi+1, δi+1 − δi+2, . . . , 2δn}.

where i ranges from 1 to n− 1. The associated gradings have depth 4.

5. Theta correspondence for the pair (O(2m+ 1), Sp(2n,R))

In this section we use the denominator identity developed in the previous sections
to derive the Theta correspondence for the compact dual pair (O(2m+1), Sp(n,R)).
This pair, according to Proposition 4.8, corresponds to the distinguished set of
positive roots ∆+

B in a superalgebra g of type B(m,n). Recall that

∆0 = ±{ǫi ± ǫj , ǫi, δk ± δl, 2δk | 1 ≤ i 6= j ≤ m, 1 ≤ k 6= l ≤ n},(5.1)

∆1 = ±{δk ± ǫi, δk | 1 ≤ i ≤ m, 1 ≤ k ≤ n};
∆0 = ±{ǫi ± ǫj , ǫi, δk ± δl | 1 ≤ i 6= j ≤ m, 1 ≤ k 6= l ≤ n},(5.2)

∆1 = ±{δk ± ǫi | 1 ≤ i ≤ m, 1 ≤ k ≤ n}.
Also recall that the defect of g is d = min(n,m). In this Section we will use the
following notation

∆(Br) = ±{ǫi ± ǫj , ǫi | 1 ≤ i 6= j ≤ r},(5.3)

∆(Cr) = ±{δk ± δl, 2δk | n− r + 1 ≤ k 6= l ≤ n},(5.4)

∆(Ar−1) = ±{δk − δl | n− r + 1 ≤ k 6= l ≤ n},(5.5)

W (Ar−1) = Weyl group of ∆(Ar−1),(5.6)

W (Br) = Weyl group of ∆(Br),(5.7)

Wr = subgroup of Wg generated by {s2δi | i = 1, . . . , r},(5.8)

Wr
+ = {w ∈ Wr | w = s2δi1 . . . s2δik , k even},(5.9)

Wr
− = {w ∈ Wr | w = s2δi1 . . . s2δik , k odd}.(5.10)

Now fix the set of positive roots ∆+
B (cf. (4.25)). Then 2ρ1 = (2m+1)(δ1+. . .+δn).

Set ∆+(Cn) = ∆+
0 ∩ ∆(Cn), ∆+(Bm) = ∆+

0 ∩ ∆(Bm), and ∆+(An−1) = ∆+
0 ∩
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∆(An−1). We denote by ρC , ρB, ρA the corresponding ρ-vectors. With notation as
in Section 3.1, the total order corresponding to this choice of ∆+ is

δ1 > · · · > δn > ǫ1 > · · · > ǫm.

There is only one arc diagram associated to this total order, namely

X = {
⌢

δnǫ1, . . . ,
⌢

δn−d+1ǫd}.
The corresponding maximal isotropic set of roots is S(X) = {γ1, . . . , γd}, where
(5.11) γ1 = δn − ǫ1, γ2 = δn−1 − ǫ2, . . . , γd = δn−d+1 − ǫd.

We apply Proposition 3.8 with B′ = Supp(X). Note that, with notation as in 3.2.1,
∆(Supp(X)) = ∆(Bd)×∆(Cd), and we can choose ∆♯(Supp(X)) = ∆(Bd), so that
WSupp(X)W

♯(Supp(X)) = W (Ad−1)W (Bd). With notation as in (5.8), set

W = W (An−1)Wn−dW (Bm).

We can choose

Z = (W (An−1)/W (Ad−1))Wn−d(W (Bm)/W (Bd)),

so that W0 = W. Since
∏d

i=1
ht(γi)+1

2
= d!, Proposition 3.8 gives

(5.12) eρŘ = F̌W

( eρ
∏d

i=1(1− e−JγiK)

)
.

Dividing (5.12) by D0 = eρ0
∏

α∈∆+
0
(1− e−α), we find

chM∆+

(g1) =
e−ρ1

∏
α∈∆+

1
(1− e−α)

=
1

D0
F̌W

( eρ
∏d

i=1(1− e−JγiK)

)
.(5.13)

Let Pd = {a = (a1, . . . , ad) ∈ (Z+)d | a1 ≥ a2 ≥ · · · ≥ ad} the set of partitions
with at most d parts. Recall from Section 4 that there is an element H ∈ h such that
α(H) = 1 for all α ∈ ∆+

1 (g), thus the domain h+ = {h ∈ h | α(h) > 0 ∀α ∈ ∆+
1 } is

nonempty. Since, by our choice of W , in the denominators of (5.13) only sums of
roots in −∆+

1 occur, we can expand the r.h.s. of (5.13) in a product of geometric
series on h+, thus obtaining the following equality of formal power series:

(5.14) chM∆+

(g1) =
∑

a∈Pd

1

D0

F̌W

(
eρ−

∑d
i=1 aiγi

)
.

We can write D0 = eρ
C ∏

α∈∆+(Cn)
(1 − e−α)eρ

B ∏
α∈∆+(Bm)(1 − e−α). For a ∈ Pd,

define

µ(a) = −
d∑

r=1

(ad+1−r)δn−d+r, ε(a) =

m∑

r=1

arǫr.

Using (5.14), we obtain that

chM∆+

(g1) =
∑

a∈Pd




∑

w∈W (An−1)Wn−d

sgn′(w)
ew(ρC−ρ1+µ(a))−ρC

∏
α∈∆+(Cn)

(1− e−α)




×




∑

w∈W (Bm)

sgn(w)
ew(ρB+ε(a))−ρB

∏
α∈∆+(Bm)(1− e−α)


 .
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Here we used the fact that sgn(w) = sgn′(w) if w ∈ W (Bm). By the Weyl character
formula, we see that

∑

w∈W (Bm)

sgn(w)
ew(ρB+ε(a))−ρB

∏
α∈∆+(Bm)(1− e−α)

= chFB(ε(a)),

FB(ε(a)) being the finite-dimensional irreducible so(n)-module with highest weight
ε(a). We therefore obtain that

chM∆+

(g1) =
∑

a∈Pd

∑

w∈W (An−1)Wn−d

sgn′(w)
ew(−ρ1+µ(a)+ρC)−ρC

∏
α∈∆+(Cn)

(1− e−α)
chFB(ε(a)).(5.15)

If λ ∈ span(δi), set

(5.16) chFA(λ) =
∑

w∈W (An−1)

sgn(w)
ew(λ+ρA)−ρA

Πα∈∆+(An−1)(1− e−α)
.

As the notation is suggesting, when λ + ρA is regular and dominant integral for
∆(An−1), then chFA(λ) is the character of a finite-dimensional irreducible represen-
tation of sl(n,C), while, if λ+ ρA is singular, then chFA(λ) = 0.

Using the fact that sgn(w) = 1 if w ∈ Wn−d, we can rewrite (5.15) as

chM∆+

(g1) =
∑

a∈Pd

∑

w∈Wn−d

chFA(w(−ρ1 + µ(a) + ρC)− ρC)∏
α∈∆+(Cn)\∆+(An−1)

(1− e−α)
chFB(ε(a)).(5.17)

Recall from the previous section that we constructed a real symplectic subspace
V of g1 and a map Φ : V → R2m+1 ⊗ (R2n)∗ such that there is a dual pair (G1, G2)
in sp(V, ( , )) having the properties described in Proposition 4.8. We now want
to describe explicitly the set Σ and the map τ occurring in Theorem 4.1. In what
follows we show that all these information can be read off from formula (5.17).

First of all we need to parametrize the finite-dimensional irreducible representa-
tions of G̃1. To accomplish this we start by describing G̃1. With notation as in
the previous section, let J ′ : (R2n)∗ → (R2n)∗ be the complex structure such that
J ′(fi) = −fn+i and J ′(fn+i) = fi for i = 1, . . . , n. A direct computation shows
that, if J is the compatible complex structure on V introduced in the previous
section, then ΦJΦ−1 = Id ⊗ J ′. It follows that, if we let W ′ be the space (R2n)∗

seen as a complex space via the complex structure J ′, then, obviously, Φ is a C-
linear isomorphism between W and the complex space R2m+1 ⊗W ′. We look upon
O(2m + 1) as a subgroup of Sp(R2m+1 ⊗ (R2n)∗) via its action on the first factor.
Then G1 = {Φ−1gΦ | g ∈ O(2m+ 1)}. It follows that, if Φ−1gΦ ∈ G1, then

detW (Φ−1gΦ) = detR2m+1⊗W ′(g) = (detR2m+1(g))n.

Therefore

G̃1 =





{(Φ−1gΦ,±1) | g ∈ O(2m+ 1)} if n is even,

{(Φ−1gΦ,±1) | g ∈ SO(2m+ 1)}
∪{(Φ−1gΦ,±

√
−1) | −g ∈ SO(2m+ 1)} if n is odd.

Let G̃0
1 ≃ SO(2m+1) be the connected component of the identity of G̃1. From the

description of G̃1 we see that G̃1 = G̃0
1×Z with Z isomorphic to Z/2Z×Z/2Z if n is

even and isomorphic to Z/4Z if n is odd. The generators of Z are (−Id, 1), (Id,−1)
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in the first case, while Z is generated by (−Id,
√
−1) in the second case. It follows

that the finite-dimensional irreducible representations of G̃1 are pairs (F, χ) where

F is a finite-dimensional irreducible representation of G̃0
1 (hence of its complexified

Lie algebra sC1 ) and χ is a character of Z.
If n is even and ǫ ∈ {1,−1}, we let χǫ be the character of Z such that χǫ(−Id, 1) =

ǫ and χǫ(Id,−1) = −1. If n is odd we define χǫ to be the character of Z such that

χǫ(−Id,
√
−1) = −

√
−1ǫ. If a ∈ Pd set ǫ(a) = (−1)

∑d
i=1 ai .

In our case the set of roots of sC2 is ∆(Cn). In the identification of h with h∗

given by ( , ), we see that the element H ∈ h that corresponds to −∑n
i=1 δi has

the property that H|V ±
C

= ±I. Thus the parabolic subalgebra p2 defined by H is

p2 = h⊕
∑

α∈∆(An−1)

(g0)α ⊕ n,

where n =
∑

α∈∆+(Cn)\∆(An−1)

(g0)α is the nilradical.

Notation 5.1. If λ ∈ (h ∩ sC2 )
∗ is such that λ + ρA is regular and integral for

∆(An−1), we let L2(λ) be the irreducible quotient of the p2-parabolic Verma module
V 2(λ) for sC2 .

If µ ∈ (h ∩ sC2 )
∗ is such that µ is regular for ∆(An−1), we let {µ} be the unique

element in the W (An−1)-orbit of µ that is dominant with respect to ∆+(An−1) .
Finally, we set cµ = sgn(v), where v is the unique element of W (An−1) such that

v(µ) = {µ}.
Note that

chV 2(λ) = cλ+ρA
chFA(λ)∏

α∈∆+(Cn)\∆+(An−1)
(1− e−α)

.

Proposition 5.1. With notation as in Theorem 4.1, we have that, if (F, χ) ∈ Σ,
then there exists a ∈ Pd and ǫ ∈ {1,−1} such that

F = FB(ε(a)), χ = χǫ.

Furthermore, the h-character of the isotypic component of (FB(ε(a)), χ±ǫ(a)) in

M∆+
(g1) is

(5.18)
∑

w∈W±
n−d

chFA(w(ρ
C − ρ1 + µ(a))− ρC)∏

α∈∆+(Cn)\∆+(An−1)
(1− e−α)

chFB(ε(a)).

(W±
n−d are defined in (5.9), (5.10)).

Proof. If (F, χ) occurs inM∆+
(g1) then, by (4.1), F = FB(ε(a)) for some a ∈ Pd. As

in the previous section, we identify M∆+
(g1) with P (W ). Let P (W )+ and P (W )−

be the subspaces of homogeneous polynomials of even and odd degree respectively.

By the explicit expression for the action of K̃ given in (4.2), we see that Z acts by
χ1 on P (W )+ and by χ−1 on P (W )−. This proves the first assertion.

Let M(a, χǫ) be the isotypic component of (FB(ε(a)), χǫ). By Theorem 4.1, if
M(a, χǫ) 6= {0}, then

chM(a, χǫ) = chL2(λ)chFB(ε(a))

for some λ ∈ (h ∩ s2)
∗.
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Observe that H acts on a homogeneous polynomial p as H · p = (−ρ1(H) −
deg(p))p. Since M(a, χǫ) = L2(λ)⊗ FB(ε(a)), we see that we must have

ǫ = (−1)(λ+ε(a)+ρ1)(H).

It is well known that chL2(λ) =
∑

µ cλ,µchV
2(µ), where λ − µ =

∑
α∈∆(Cn)

nαα.

Since α(H) is even for any root in ∆(Cn) we deduce that

(5.19) chM(a, χǫ) =
∑

µ

cλ,µchV
2(µ)chFB(ε(a))

with ǫ = (−1)(µ+ε(a)+ρ1)(H).
Hence, if we set

(5.20) Wreg
n−d = {w ∈ Wn−d | w(−ρ1 + µ(a) + ρC) is regular for ∆(An−1)},

we derive from (5.17) that

chM(a, χ1) + chM(a, χ−1) =(5.21)
∑

w∈Wreg
n−d

cwchV
2({w(−ρ1 + µ(a) + ρC)} − ρC)chFB(ε(a)),

where cw = cw(−ρ1+µ(a)+ρC).
We need to compute

(−1)({w(−ρ1+µ(a)+ρC )}−ρC+ε(a)+ρ1)(H).

For this observe that ε(a)(H) = 0 and that w(µ(a)) = µ(a) for all a ∈ Pd and
w ∈ Wn−d, hence

(w(−ρ1+µ(a) + ρC)− ρC + ε(a) + ρ1)(H)

= µ(a)(H) + (−w(ρ1) + ρ1)(H) + (w(ρC)− ρC)(H)

≡ µ(a)(H) + (−w(ρ1) + ρ1)(H) mod 2.

Since (−1)µ(a)(H) = ǫ(a), ρ1 − s2δi(ρ1) = (2m + 1)δi, and v(H) = H for any v ∈
W (An−1), we see that

(−1)({w(−ρ1+µ(a)+ρC}−ρC+ε(a)+ρ1)(H) = ±ǫ(a) if w ∈ W±
n−d.

If w,w′ ∈ Wn−d with w 6= w′ then W (An−1)w ∩W (An−1)w
′ = ∅, hence the set of

characters {chV 2({w(−ρ1+µ(a)+ρC)}−ρC) | w ∈ Wreg
n−d} is linearly independent.

It follows that, if M(FB(ε(a)), χǫ(a)) 6= {0}, then, comparing (5.19) with (5.21), we
find

chM(FB(ε(a)), χǫ(a))

=
∑

w∈Wreg
n−d

∩W+
n−d

cwchV
2({w(−ρ1 + µ(a) + ρC)} − ρC)chFB(ε(a)).

Likewise, if M(FB(ε(a)), χ−ǫ(a)) 6= {0}, then
chM(FB(ε(a)), χ−ǫ(a))

=
∑

w∈Wreg
n−d∩W

−
n−d

cwchV
2({w(−ρ1 + µ(a) + ρC)} − ρC)chFB(ε(a)).

Since chFA(λ) = 0 if λ+ ρA is singular, (5.18) follows.
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Finally if M(FB(ε(a)), χ±ǫ(a)) = {0}, then the linear independence of the char-
acters involved implies that Wreg

n−d ∩W±
n−d = ∅, hence (5.18) holds as well. �

Let P∗
j denote the set of all partitions with exactly j parts and set

(5.22) P =
m⋃

j=max(0,m+1−(n−d))

P∗
j .

For max(0, m+ 1− (n− d)) ≤ j ≤ m and a ∈ P∗
j , we set

(5.23) ν(a) = −
n−j∑

r=n−d−m+j

δr −
n∑

r=n−j+1

an−r+1δr.

Corollary 5.2 (Theta correspondence). With notation as in Theorem 4.1, we have
that

Σ = {(FB(ε(a)), χǫ(a)) | a ∈ Pd} ∪ {(FB(ε(a)), χ−ǫ(a)) | a ∈ P}.
Moreover

τ(FB(ε(a)), χǫ(a))) = L2(−ρ1 + µ(a))

and, if a ∈ P, then

τ(FB(ε(a)), χ−ǫ(a))) = L2(−ρ1 + ν(a)).

Proof. By Proposition 5.1, (FB(ε(a), χ±ǫ(a)) ∈ Σ if and only if W±
n−d ∩Wreg

n−d 6= ∅.
Clearly 1 ∈ W+

n−d and −ρ1 + µ(a) = 1(−ρ1 + µ(a) + ρC) − ρC is dominant for

∆+(An−1), hence −ρ1 +µ(a)+ ρA is regular. This implies that (FB(ε(a), χǫ(a)) ∈ Σ
for all a ∈ Pd.

We now show that, if a ∈ P, then (FB(ε(a)), χ−ǫ(a))) ∈ Σ. First observe that, if
P 6= ∅, then d = m < n. Consider s = s2δn−d−m+j

. Then

s(−ρ1 + µ(a) + ρC) =

n−d−m+j−1∑

i=1

(n−m− i+
1

2
)δi + (−m− 1

2
+ j)δn−d−m+j

+

n−j∑

i=n−d−m+j+1

(n−m− i+
1

2
)δi +

n∑

i=n−j+1

(n−m− i+
1

2
− an−i+1)δi.

Let σ be the permutation (in cycle notation) σ = (n−j n−j−1 · · · n−d−m+j),
and let w be the element of W (An−1) such that w(δi) = δσ(i). Then

ws(−ρ1 + µ(a) + ρC) =

n−d−m+j−1∑

i=1

(n−m− i+
1

2
)δi +

n−j∑

i=n−d−m+j

(n−m− i− 1

2
)δi+

n∑

i=n−j+1

(n−m− i− 1

2
− (an−i+1 − 1))δi = −ρ1 + ν(a) + ρC ,

and, since ar ≥ 1 for r ≥ j, we see that ws(−ρ1+µ(a)+ρC) is regular for ∆(An−1).
It follows that s ∈ Wreg

n−d ∩W−
n−d.
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Suppose now that a ∈ Pd\P. Then ar = 0 for r > m− (n− d). In this case

−ρ1 + µ(a) + ρC =

2(n−d)∑

i=1

(n−m− i+
1

2
)δi

+
n∑

i=2(n−d)+1

(n−m− i+
1

2
− an−i+1)δi.

If w ∈ Wn−d, w 6= 1, then write w = s2δi1 . . . s2δik with 1 ≤ i1 < · · · < ik ≤ n − d.
It is clear that

(w(−ρ1 + µ(a) + ρC), δi1 − δ2(n−d)−i1+1) =

(−ρ1 + µ(a) + ρC ,−δi1 − δ2(n−d)−i1+1) = 0,

showing that Wreg
n−d = {1} in this case. This proves the first statement.

For the second statement recall that, if a ∈ P∗
j , then −ρ1 + ν(a) = {s(−ρ1 +

µ(a)+ρC)}−ρC . Note that, if τ(FB(ε(a)), χ±ǫ(a)) = L2(λ) then, by (5.18), λ(H) ≥
({w(−ρ1 + µ(a) + ρC)}− ρC)(H) for all w ∈ W±

n−d ∩Wreg
n−d. Hence if we show that,

for w ∈ W+
n−d ∩Wreg

n−d, w 6= 1,

(−ρ1 + µ(a))(H) > ({w(−ρ1 + µ(a) + ρC)} − ρC)(H),

and that, for a ∈ P∗
j , w ∈ W−

n−d ∩Wreg
n−d, w 6= s2δn−d−m+j

,

(−ρ1 + ν(a))(H) > ({w(−ρ1 + µ(a) + ρC)} − ρC)(H),

we are done.
Since v(H) = H if v ∈ W (An−1), it is enough to check that, for w ∈ W+

n−d∩Wreg
n−d,

w 6= 1,

(5.24) (−ρ1 + µ(a) + ρC)(H) > w(−ρ1 + µ(a) + ρC)(H),

and that, for a ∈ P∗
j , w ∈ W−

n−d ∩Wreg
n−d, w 6= s2δn−d−m+j

,

(5.25) s2δn−d−m+j
(−ρ1 + µ(a) + ρC)(H) > w(−ρ1 + µ(a) + ρC)(H).

If w = s2δi1 . . . s2δik , then (λ,H − w(H)) = (λ,−2δi1 − · · · − 2δik), hence

(−ρ1 + µ(a) + ρC)(H − w(H)) = 2(n− d− i1 +
1

2
) + · · ·+ 2(n− d− ik +

1

2
) > 0,

so, using the fact that w = w−1, we obtain (5.24). To obtain (5.25) we set j0 =
n−d−m+j and observe that, since a ∈ P∗

j , if j0 < ik ≤ n−d, then w(−ρ1+µ(a)+ρC)
is singular for ∆(An−1). We can therefore assume that ik ≤ j0. In this case we need
to evaluate (−ρ1 + µ(a) + ρC)(s2δj0 (H)− w(H)), which is equal to

(−ρ1 + µ(a) + ρC , 2δj0 − 2δi1 − · · · − 2δik).

If ik < j0 then this is 2(n−d−i1+
1
2
)+· · ·+2(n−d−ik+

1
2
)−2(n−d−j0+

1
2
) > 0. If

ik = j0 then, since w 6= s2δj0 , we have k > 1 so (−ρ1 +µ(a) + ρC)(s2δj0 (H)−w(H))

is equal to 2(n − d − i1 +
1
2
) + · · · + 2(n − d − ik−1 +

1
2
) > 0. The proof is now

complete.
�
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We conclude this section by observing that, as a byproduct, we have computed
the character of τ(η) for η ∈ Σ. In fact, combining Corollary 5.2 with Proposition
5.1, we find (cf. (5.20) for notation)

(5.26) ch(L2(−ρ1 + µ(a)) =
∑

w∈Wreg
n−d

∩W+
n−d

cwchV
2({w(−ρ1 + µ(a) + ρC)} − ρC)

and

(5.27) ch(L2(−ρ1 + ν(a)) =
∑

w∈Wreg
n−d∩W

−
n−d

cwchV
2({w(−ρ1 + µ(a) + ρC)} − ρC),

where cw = cw(−ρ1+µ(a)+ρC).

If λ ∈ (h ∩ sC2 )
∗, let Wλ be the subgroup of W (Cn) defined by Enright in [2,

Definition 2.1]. In our context, Wλ is the subgroup, generated by reflections in
roots α = δi + δj, such that:

(i) (λ, α∨) ∈ Z>0;
(ii) β ∈ ∆, (λ, β) = 0 =⇒ (α, β) = 0.

Following [2, Definition 2.1], we introduce the root system ∆λ as the set of the roots
α such that sα ∈ Wλ. Set ∆λ(An−1) = ∆λ ∩ ∆(An−1), ∆

+
λ = ∆+ ∩ ∆λ. Let also

Wλ(An−1) be the Weyl group of ∆λ(An−1). We denote by ℓλ the length function in
Wλ with respect to ∆+

λ and letWA
λ be the set of minimal length coset representatives

for Wλ(An−1)\Wλ. In [2, Corollary 2.3] Enright proved a character formula that
holds for any unitary highest weight module of a classical real reductive group.
This formula is also implied by a stronger result proved in [3]. In the following we
show how Enright’s formula for L2(−ρ1 + µ(a)) and L2(−ρ1 + ν(a)) can be derived
combinatorially from (5.26) and (5.27) respectively.

Corollary 5.3. If a ∈ Pd and λ0 = −ρ1 + µ(a) + ρC , then

ch(L2(−ρ1 + µ(a))) =
∑

w∈WA
λ0

(−1)ℓλ0(w)V 2({w(λ0)} − ρC).

Proof. Fix a ∈ A and consider λ0, whose coordinates in the basis {δi} are of the
form

v = (v1, . . . , vn) = (n−m+ 1
2
, n−m− 1

2
, . . . , 1

2
,−1

2
− b1, . . . ,−1

2
− bm),

where bi = am−i+1 + i− 1. We say that a positive entry a in v is singular or regular
according to whether −a appears in v or not. The group Wλ0 acts on λ0 as follows:
it is the identity if the number of regular entries is less or equal than one; if there are
exactly two regular entries, then the only nontrivial action is given by exchanging
positions and changing signs of both regular entries; if there are more than two
regular entries, it acts by an even number of sign changes of the regular entries
followed by a permutation of the result. All other entries are fixed.

If x ∈ Wreg
n−d, then it acts on λ0 by changing signs of some regular entries. Let

wx be the permutation that arranges the result in decreasing order. Since the set
W+

n−d ∩ Wreg
n−d is a set of coset representatives for Wλ0(An−1) in Wλ0 , we see that

WA
λ0

= {wxx | x ∈ W+
n−d ∩Wreg

n−d} (notice that this is true also when there are only
two regular entries). Let w′

x be the unique element ofW (An−1) such that w′
xwxx(λ0)
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is ∆+(An−1)-dominant. Since sgn(x) = 1, it follows from (5.26) that

ch(L2(−ρ1 + µ(a))) =
∑

x∈W+
n−d

∩Wreg
n−d

sgn(w′
xwxx)V

2({wxx(λ0)} − ρC).

To obtain our result we need only to prove that sgn(w′
x) = 1. We shall prove this

claim by induction on n − m. Let s be the number of singular entries in v and
let t ≥ 0 be maximal for which vn−m−t, . . . , vn−m are singular. Set v′ = wxx(v).
We want to prove that arranging v′ in decreasing order involves an even number of
simple transpositions. If x does not change the sign to v1, then induction applies in
a straightforward way. Otherwise we have v′ = (v′1, . . . ,−v1, vn−m−t, . . . , vn−m, . . .).
In making v′ dominant for An−1 we should pass −v1 through the t singular values
and the s negative values corresponding to negatives of the singular entries. So we
obtain after s+ t simple transpositions the element

v′′ = (v′1, . . . , vn−m−t, . . . , vn−m, . . .︸︷︷︸
s entries

,−v1, . . . . . .).

Consider now the vector

u = (u1, . . . , un) = (n−m− 1
2
, n−m− 3

2
, . . . , 1

2
,−1

2
− b′1, . . . ,−1

2
− b′m+1)

with bi = b′i for i = 1, . . . , s, b′s+1 = −x1, and b′i = bi−1 for i = s+ 2 . . . , m+ 1. Let
y = s2δ1x and set u′ = wy(u). Observe that v′′ is obtained from u′ by performing
exactly s− t simple transpositions. Hence v′ differs from u′ by an even number (2s)
of simple transpositions, and we can apply induction. �

Corollary 5.4. If a ∈ P and λ1 = −ρ1 + ν(a) + ρC, then

ch(L2(−ρ1 + ν(a))) =
∑

w∈WA
λ1

(−1)ℓλ1 (w)V 2({w(λ1)} − ρC).

Proof. Assume a ∈ A+
j and let σ be the permutation described in the proof of

Corollary 5.2. Let w be the element of WAn−1 such that w(δi) = δσ(i) and set
s = s2δn−d−m+j

. Recall that ws(λ0) = λ1.
We now show that Wλ1 = wWλ0w

−1. For this it is enough to check that α
satisfies conditions (i) and (ii) for λ0 if and only if w(α) satisfies both conditions for
λ1. This is clear if (α, δn−d−m+j) = 0, so that s(α) = α. If α = δn−d−m+j + δi, with
n−d−m+j < i ≤ n−j, then α does not satisfy condition (ii) and, if i > n−j then it
does not satisfy condition (i). On the other hand (w(α)∨, ws(λ0)) = (s(α)∨, λ0) < 0
so w(α) does not satisfy condition (i). It remains to check the case when α =
δi+ δn−d−m+j with i < n−d−m+ j. In this case one checks readily that α satisfies
condition (i). On the other hand s(α) ∈ ∆+(An−1), so (s(α)∨, λ0)) > 0, hence
(w(α), ws(λ0)) > 0. If β is a root such that (β, λ1) = 0, then (sw−1(β), λ0) = 0, so
(α, sw−1(β)) = 0. If (α,w−1(β)) 6= 0 the only possibility is that w−1(β) = ±α, but
this implies (s(α), λ0) = 0. This contradiction implies (α,w−1(β)) = (w(α), β) = 0.
This shows that if α satisfies condition (ii) then also w(α) does. Reversing this
argument we obtain that if w(α) satisfies condition (ii), then also α does. This
proves our claim.
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Notice now that w(∆+
λ0
) = ∆+

λ1
, thus WA

λ1
= wWA

λ0
w−1. By applying (5.27) we

can write

ch(L2(−ρ1 + ν(a)) =
∑

x∈Wreg
n−d

∩W−
n−d

sgn(w′
xwx)chV

2({wwxsxsw
−1(λ1)} − ρC).

As shown in Corollary 5.3, sgn(w′
x) = 1, so we need only to show that sgn(wx) =

sgn(wwxsxsw
−1), or, equivalently, that sgn(wx) = sgn(wxs). Recall that, for y ∈

Wreg, wy is the unique element of Wλ0(An−1) such that wyy(λ0) is dominant for
∆+

λ0
(An−1). Since s(λ0) is dominant for ∆+

λ0
, it follows that wx = wxs and we are

done. �

Remark 5.1. It should be noted that, even though the proofs of Proposition 5.1
and its corollaries do not use classical invariant theory, they depend on Theorem
4.1, which uses in a crucial way the first fundamental theorem of classical invariant
theory for O(2m+ 1).

6. Theta correspondence for the pair (Sp(n), SO∗(2m))

In this section we use the denominator identity developed in the previous sections
to derive the Theta correspondence for the compact dual pair (Sp(n), SO∗(2m)).
This dual pair, according to Proposition 4.8, corresponds to the distinguished sets
of positive roots ∆+

D2 and ∆+
D2′ in a superalgebra of type D(m,n).

We will develop the theory only for ∆+
D2: the formulas corresponding to ∆+

D2′

are obtained by simply applying the reflection sǫm to the formulas corresponding to
∆+

D2.
We have, for 1 ≤ i 6= j ≤ m, 1 ≤ k 6= l ≤ n,

∆+
0 ={ǫi + ǫj , δk + δl, 2δk | 1 ≤ i 6= j ≤ m, 1 ≤ k 6= l ≤ n}∪(6.1)

{ǫi − ǫj, δk − δl, | 1 ≤ i < j ≤ m, 1 ≤ k < l ≤ n},
∆+

1 ={ǫi ± δk | 1 ≤ i ≤ m, 1 ≤ k ≤ n}.
We have 2ρ1 = (2n)(ǫ1 + . . . + ǫm) and, as in type B(m,n), the defect of g is
d = min(m,n). Set also

∆(Dr) = ±{ǫi ± ǫj | m− r + 1 ≤ i 6= j ≤ m},
∆(Cr) = ±{δk ± δl, 2δk | 1 ≤ k 6= l ≤ r},

∆(Ar−1) = ±{ǫk − ǫl | m− r + 1 ≤ k 6= l ≤ m}.
Let W (Ar−1),W (Dr),W (Cr) be the Weyl groups of ∆(Ar−1),∆(Dr),∆(Cr), re-
spectively. Set ∆+(Cn) = ∆+

0 ∩∆(Cn), ∆
+(Dm) = ∆+

0 ∩∆(Dm), and ∆+(Am−1) =
∆+

0 ∩∆(Am−1). We denote by ρC , ρD, ρA the corresponding ρ-vectors. Set

(6.2) Wr = subgroup of Wg generated by {sǫisǫj | 1 ≤ i < j ≤ r}.
With notation as in Section 3.1, the total order corresponding to this choice of

∆+ is

ǫ1 > · · · > ǫm > δ1 > · · · > δn.

There is only one arc diagram associated to this total order, namely

X = {
⌢

ǫmδ1, . . . ,
⌢

ǫm−d+1δd}.
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The corresponding maximal isotropic set of roots is S(X) = {γ1, . . . , γd}, where
(6.3) γ1 = ǫm − δ1, γ2 = ǫm−1 − δ2, . . . , γd = ǫm−d+1 − δd.

We want to apply Proposition 3.8 with B′ = Supp(X). Note that, with notation
as in 3.2.1, ∆(B′) = ∆(Dd) × ∆(Cd), and we have that ∆♯(B′) = ∆(Cd), so that
WB′W ♯(B′) = W (Ad−1)W (Cd). With notation as in (6.2), set

Z0 = (W (An−1)/W (Ad−1))Wn−d(W (Cm)/W (Cd))

and, if m > n,

Z1 = (W (An−1)/W (Ad−1))Wm−dsǫm−d
sǫm−d+1

(W (Cm)/W (Cd)).

Then we can choose Z = Z0 if m ≤ n and Z = Z0 ∪ Z1 otherwise.
We define

W = W (Am−1)Wm−dW (Cn)

so that we have W0 = W if m ≤ n and while W0 = W ∪W1 with

W1 = (W (Am−1)/W (Ad−1))Wm−dsǫm−d
sǫm−d+1

W (Ad−1)W (Cn)

otherwise.
If m ≤ n, by Proposition 3.8, we have

eρŘ = F̌W

( eρ
∏d

j=1(1− e−Jγj K)

)
.(6.4)

If m > n, Proposition 3.8 gives

2eρŘ = F̌W

( eρ
∏d

j=1(1− e−JγjK)

)
+ F̌W1

( eρ
∏d

j=1(1− e−JγjK)

)
.

Lemma 6.1. If m > n then

(6.5) F̌W

( eρ
∏d

j=1(1− e−Jγj K)

)
= F̌W1

( eρ
∏d

j=1(1− e−JγjK)

)
.

In particular (6.4) holds for any m,n.

Proof. We need only to check that F̌W (P(X)) = F̌W1(P(X)). Since right mul-
tiplication by WSupp(X) stabilizes both W and W1, we can apply Corollary 3.6
to both sides of (6.5). Since odd reflections only change the sign of P(X), by
applying a series of odd and interval reflection to both sides of (6.5), we are re-
duced to checking that F̌W (P(X ′)) = F̌W1(P(X ′)), where X ′ is the arc diagram

X ′ = {
⌢

ǫm−n+iδi| i = 1, . . . n} whose underlying order on B is ǫ1 > · · · > ǫm−d+1 >
δ1 > ǫm−d+2 > δ2 > · · · > ǫm > δn. Let Y

′ be the arc diagram X ′ seen as a diagram
on B′′ = {ǫm−d+i | 1 ≤ i ≤ d} ∪ {δi | i = 1, . . . , d}. Since all simple roots of B′′ are
isotropic, we have (ρX′ , α) = (ρY ′ , α) = 0 for all α ∈ ∆(B′′) so

F̌W (P(X)) = F̌(W (Am−1)/W (Ad−1))Wm−d
(eρX′−ρY ′ F̌W (Ad−1)W (Cd)(P(Y ′))

Since all simple roots of B′′ ∪ {ǫm−d} are all isotropic, we see that (ρX′ , ǫm−d) =
0. Clearly (ρY ′ , ǫm−d) = (γ, ǫm−d) = 0 for all γ ∈ S(Y ′). Thus, setting s =
sǫm−d

sǫm−d+1
, we have

F̌W1(P(X)) = F̌(W (Am−1)/W (Ad−1))Wm−d
(eρX′−ρY ′ F̌sW (Ad−1)W (Cd)(P(Y ′)),
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hence it is enough to check that F̌W (Ad−1)W (Cd)(P(Y ′)) = F̌sW (Ad−1)W (Cd)(P(Y ′)). It
is enough to verify the sǫm−d+1

-invariance. However,

F̌W (Ad−1)W (Cd)(P(Y ′)) = d!ŘY ′eρY ′

and this, up to a sign, does not depend on the choice of simple roots for ∆(Y ′).
Taking a system of simple roots containing δ1 ± ǫm−d+1, we realize sǫm−d+1

as an

automorphism of the corresponding Dynkin diagram so ŘY ′eρY ′ is sǫm−d+1
-invariant.

�

For a ∈ Pd, define

µ(a) = −
d∑

r=1

(ad+1−r)ǫm−d+r, ε(a) =

m∑

r=1

arδr.

If λ ∈ span(ǫi), set

(6.6) chFA(λ) =
∑

w∈W (Am−1)

sgn(w)
ew(λ+ρA)−ρA

Πα∈∆+(Am−1)(1− e−α)
.

Arguing as in the previous section, it follows from (6.4) that

chM∆+

(g1) =
∑

a∈Pd

∑

w∈Wm−d

chFA(w(−ρ1 + µ(a) + ρD)− ρD)∏
α∈∆+(Dm)\∆+(Am−1)

(1− e−α)
chFC(ε(a)),(6.7)

FC(ε(a)) being the finite-dimensional irreducible sp(n)-module with highest weight
ε(a).

Recall from section 4 that we constructed a real symplectic subspace V of g1
and a map Φ : V → (Hn)∗ ⊗H Hm, such that there is a dual pair (G1, G2) in
sp(V, 〈· , ·〉) having the properties described in Proposition 4.8. We look upon Sp(n)
as a subgroup of Sp((Hn)∗ ⊗H Hm) via its action on the first factor. Then G1 =
{Φ−1gΦ | g ∈ Sp(n)}. It follows that, if Φ−1gΦ ∈ G1, then, since Sp(n) is compact,
connected and simple,

detW (Φ−1gΦ) = 1.

Therefore
G̃1 = G1 × {±1}.

Given a representation (π, Vπ) of G1 = Φ−1Sp(n)Φ, we let (π̃, Vπ) be the repre-

sentation of G̃1 on the same representation space such that

(6.8) π̃(g1, z)(v) = z−1π(g1)(v).

If Ω is the set of finite-dimensional irreducible representations of G1, then we know
from (4.2) that the set Σ, occurring in Theorem 4.1, is a subset of Ω̃ = {π̃ | π ∈ Ω}.
Proposition 6.2. With notation as in Theorem 4.1, we have that, if π̃ ∈ Σ, then
there is a ∈ Pd such that

π = FC(ε(a)).

Furthermore, the h-character of the isotypic component of F̃C(ε(a)) in M∆+
(g1) is

(6.9)
∑

w∈Wm−d

chFA(w(ρ
D − ρ1 + µ(a))− ρD)∏

α∈∆+(Dm)\∆+(Am−1)
(1− e−α)

chFC(ε(a)).

Proof. Clear from (6.7). �
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In the case in question the set of roots of sC2 is ∆(Dm). In the identification of h
with h∗, given by ( , ), we see that the element H ∈ h that corresponds to

∑m
i=1 ǫi

has the property that H|V ±
C

= ±I. Thus the parabolic subalgebra p2, defined by H ,

is

p2 = h⊕
∑

α∈∆(Am−1)

(g0)α ⊕ n,

where n =
∑

α∈∆+(Dm)\∆(Am−1)

(g0)α is the nilradical.

We use the notation 5.1. Again we remark that

chV 2(λ) = cλ+ρA
chFA(λ)∏

α∈∆+(Dm)\∆+(Am−1)
(1− e−α)

.

Corollary 6.3 (Theta correspondence). With notation as in Theorem 4.1, we have
that

Σ = {F̃C(ε(a)) | a ∈ Pd}
Moreover, if a ∈ Pd, then

τ(F̃C(ε(a))) = L2(−ρ1 + µ(a)).

Proof. By Proposition 6.2, we need only to check that F̃C(ε(a)) ∈ Σ for all a ∈ Pd.
Clearly 1 ∈ Wm−d and −ρ1 + µ(a) = 1(−ρ1 + µ(a) + ρD) − ρD is dominant for
∆+(Am−1), hence −ρ1 + µ(a) + ρA is regular. By Proposition 6.2, this implies that
the isotypic component of F̃C(ε(a)) has a nonzero character, thus F̃C(ε(a)) occurs
in Σ as wished.

For the second statement, arguing as in the proof of Corollary 5.2, we need only
to show that, for w ∈ Wm−d with w(−ρ1 + µ(a) + ρD) regular for ∆+(Am−1) and
w 6= 1, we have that

(−ρ1 + µ(a))(H) > ({w(−ρ1 + µ(a) + ρD)} − ρD)(H).

Since v(H) = H if v ∈ W (Am−1), it is enough to check that, for w ∈ Wm−d,
w 6= 1,

(−ρ1 + µ(a) + ρD)(H) > w(−ρ1 + µ(a) + ρD)(H).

This is clear because, if w = sǫi1 . . . sǫik , then (λ,H−w−1(H)) = (λ, 2ǫi1+· · ·+2ǫik),
hence

(−ρ1 + µ(a) + ρD)(H − w−1(H)) = 2(m− d− i1) + · · ·+ 2(m− d− ik) > 0.

The proof is now complete. �

As already observed in Section 5, we have also computed the character of τ(F̃C(ε(a)).
In fact, letting Wreg

m−d be the set of w ∈ Wm−d such that w(−ρ1 + µ(a) + ρD) is
regular for ∆(Am−1), then, combining Corollary 6.3 with Proposition 6.2, we find

(6.10) ch(L2(−ρ1 + µ(a)) =
∑

w∈Wreg
m−d

cwsgn(w)chV
2({w(−ρ1 + µ(a) + ρD)} − ρD),

where cw = cw(−ρ1+µ(a)+ρD).
The argument given in Corollary 5.3 works also in the present case thus, with

notation as in Section 5, we obtain
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Corollary 6.4. If a ∈ Pd and λ0 = −ρ1 + µ(a) + ρD, then

ch(L2(−ρ1 + µ(a))) =
∑

w∈WA
λ0

(−1)ℓλ0 (w)V 2({w(λ0)} − ρD).

7. Theta correspondence for the pair (O(2m), Sp(2n,R))

This is the most difficult case. Complications arise from the representation theory
of even orthogonal groups, which we now discuss. Let V be the real symplectic
subspace of g1 and Φ : V → R2m⊗ (R2n)∗ be the map such that there is a dual pair
(G1, G2) in sp(V, 〈· , ·〉) having the properties described in Proposition 4.8. We first

parametrize the representations of G̃1: the same argument given in Section 5 implies

that G̃1 is the group of pairs (Φ−1gΦ, z) with g ∈ O(2m) and z2 = (detR2m(g))n. If
Ω is the set of finite-dimensional irreducible representations of G1, then, by (4.2),
we know that Σ ⊂ {π̃ | π ∈ Ω} where π̃ is as in (6.8).

To describe Ω we need to recall that G1 ≃ O(2m) is isomorphic to the semidirect
product of Z/2Z with SO(2m). The generator x of Z/2Z in G1 can be chosen so
that Ad(x) induces on h ∩ sC1 the reflection sǫm. The finite-dimensional irreducible
representations of G1 are determined by their restriction to the connected compo-
nent of the identity G0

1 ≃ SO(2m) of G1 and by the action of x. First of all, we
parametrize the irreducible finite-dimensional representations of G0

1 as irreducible
finite-dimensional representations of sC1 : having chosen h ∩ sC1 as a Cartan subalge-
bra, we choose ∆+

0 ∩∆(sC1 ) as a set of positive roots for sC1 , where ∆
+
0 is as in (6.1),

and let ρD be the corresponding ρ-vector. Given λ ∈ (h ∩ sC1 )
∗ dominant integral,

we let FD(λ) be the irreducible finite-dimensional sC1 -module with highest weight λ.
If λ =

∑n
i=1 aiǫi with ai ∈ Z and a1 ≥ a2 ≥ · · · ≥ am > 0, then there is a unique

irreducible representation of G1 that restricted to G0
1 contains FD(λ). We denote

this representation by F+(λ); it can be checked that the restriction of F+(λ) to G0
1

is

F+
D (λ) = FD(λ)⊕ FD(sǫm(λ)).

If instead am = 0, then there are two irreducible representations of G1 whose
restriction to G0

1 contains FD(λ). Both restrict to G0
1 as FD(λ), and we let F+(λ)

be the one such that x acts trivially on the highest weight vector, and F−(λ) the
one such that x acts by detR2m(x) = −1. Note that this parametrization depends
on the choice of x.

We also need Kostant’s generalization to nonconnected groups of the Weyl char-
acter formula, given in [16, Theorem 7.5]. In the particular case at hand, we let T be
the torus in G1 such that the Lie algebra of T is contained in h. Set H+ = T ∪ xT .
The group H+ is the normalizer of the torus T and of the Borel subgroup of G0

1

corresponding to our choice of positive roots. Then Kostant’s formula in this case
reads

(7.1) chF+(λ)(x
st) =

1 + (−1)s

2
chF+

D (λ)(t)
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if λ =
∑m

i=1 aiǫi with am > 0, while, if am = 0,

chF±(λ)(x
st) =

1 + (−1)s

2
chFD(λ)(t)(7.2)

± 1− (−1)s

2

∑
w∈W (Cm−1)

sgn(w)ew(λ+ρD)

∑
w∈W (Cm−1)

sgn(w)ew(ρD)
(t),

where W (Cm−1) is the Weyl group of the root system

∆(Cm−1) = {±(ǫi − ǫj) | 1 ≤ i < j ≤ m− 1}
∪ {±(ǫi + ǫj) | 1 ≤ i ≤ j ≤ m− 1}.

Note that, since ρD =
∑m−1

i=1 (m− i)ǫi,
∑

w∈W (Cm−1)

sgn(w)ew(ρD) = eρ
D

∏

α∈∆+(Cm−1)

(1− e−α),

where

∆+(Cm−1) = {(ǫi − ǫj) | 1 ≤ i < j ≤ m− 1}
∪ {(ǫi + ǫj) | 1 ≤ i ≤ j ≤ m− 1}.

Set h2 = h∩ sC2 . We need to compute the H+ × h2-character of M
∆+

(g1). In this
case

∆+
1 = {δk ± ǫi | 1 ≤ i ≤ m, 1 ≤ k ≤ n},

and 2ρ1 = (2m)(δ1 + . . .+ δn).
Let ad be the adjoint action of g0 on g1. Recall from Section 4 that, as G̃1-

module, M∆+
(g1) is given, up to the action of the center, by the action of G1 on a

polynomial algebra P (W ). The differential of this action on W coincides with ad∗|sC1
on (g−1 )

∗. Hence we can identify P (W ) with the symmetric algebra S(g−1 ) with sC1
acting by ad. Let us denote by Ad the action of G1 on S(g−1 ) coming from its action
on P (W ). We normalize the choice of x by assuming that we can choose the root
vectors X−δi±ǫj in g−1 in such a way that

Ad(x)(X−δi±ǫj) = X−δi±ǫj

if j < m, and
Ad(x)(X−δi+ǫm) = X−δi−ǫm.

Clearly, if t ∈ T × h2, then

chH+×h2M
∆+

(g1)(t) =
e−ρ1

∏
α∈∆+

1
(1− e−α)

(t).

In order to compute chH+×h2M
∆+

(g1)(xt) we simply compute the trace of the
matrix of the action of xt in the basis given by monomials

∏

i,j

X
aij
−δi+ǫj

X
bij
−δi−ǫj

.

If λ is the h-weight of this monomial, then

Ad(xt)(
∏

i,j

X
aij
−δi+ǫj

X
bij
−δi−ǫj

) = eλ(t)(
∏

1≤i≤n
1≤j<m

X
aij
−δi+ǫj

X
bij
−δi−ǫj

∏

1≤i≤n

Xbim
−δi+ǫm

Xaim
−δi−ǫm

).



DENOMINATOR IDENTITIES FOR LIE SUPERALGEBRAS 57

Thus the only contribution to the trace is given by the monomials
∏

1≤i≤n
1≤j<m

X
aij
−δi+ǫj

X
bij
−δi−ǫj

∏

1≤i≤n

(X−δi+ǫmX−δi−ǫm)
aim .

It follows that

chH+×h2M
∆+

(g−1 )(xt) =
e−ρ1

∏
1≤i≤n
1≤j<m

(1− e−δi±ǫj)
∏

1≤i≤n(1− e−2δi)
(t).

Putting everything together we find that

chH+×h2M
∆+

(g−1 )(x
st) =

1 + (−1)s

2

e−ρ1

∏
α∈∆+

1
(1− e−α)

(t)(7.3)

+
1− (−1)s

2

e−ρ1

∏
1≤i≤n
1≤j<m

(1− e−δi±ǫj)
∏

1≤i≤n(1− e−2δi)
(t).

We now apply our denominator formulas to the two summands above. We start
with the first one: again the defect of g is d = min(n,m). We set

∆(Dr) = ±{ǫi ± ǫj, | 1 ≤ i 6= j ≤ r},
∆(Cr) = ±{δk ± δl, 2δk | n− r + 1 ≤ k 6= l ≤ n},

∆(Ar−1) = ±{δk − δl | n− r + 1 ≤ k 6= l ≤ n}.
Let W (Ar−1), W (Dr), W (Cr) be the corresponding Weyl groups. In this case
2ρ1 = 2m

∑n
i=1 δi. Set ∆+(Cn) = ∆+

0 ∩ ∆(Cn), ∆+(Bm) = ∆+
0 ∩ ∆(Bm), and

∆+(An−1) = ∆+
0 ∩∆(An−1). We denote by ρC , ρB, ρA the corresponding ρ-vectors.

With notation as in Section 3.1, the total order corresponding to this choice of
∆+ is

δ1 > · · · > δn > ǫ1 > · · · > ǫm.

There is only one arc diagram associated to this total order, namely

X = {
⌢

δnǫ1, . . . ,
⌢

δn−d+1ǫd}.
The corresponding maximal isotropic set of roots is S = {γ1, . . . , γd}, where
(7.4) γ1 = δn − ǫ1, γ2 = δn−1 − ǫ2, . . . , γd = δn−d+1 − ǫd.

Applying formula (1.15) we can write

eρŘ = F̌W ♯

( eρ+
∑d

i=1KγiJ

∏d
i=1(1− e−γi)

)
.(7.5)

Recall from (5.8) that Wr is the subgroup of Wg generated by {s2δi | i = 1, . . . , r}.
Define

W ext
g = reflection group generated by Wg and the reflections sǫi,

W (Bm) = subgroup of W ext
g generated by W (Dm) and sǫi.

Extend sgn′ to W ext
g by setting sgn′(sǫi) = 1. We define

W = W (An−1)Wn−dW (Bm), WD = W (An−1)Wn−dW (Dm)



58 GORELIK, KAC, MÖSENEDER, PAPI

If n < m then W ♯ = W (Dm) hence, summing over W (An−1), we find

(7.6) d!eρŘ = F̌WD

( eρ+
∑d

i=1KγiJ

∏d
i=1(1− e−γi)

)
.

Since sǫm fixes eρ+
∑d

i=1KγiJ

∏d
i=1(1−e−γi )

we can rewrite (7.6) as

d!eρŘ = F̌W

( eρ+
∑d

i=1KγiJ

∏d
i=1(1− e−γi)

)
− F̌WD

( eρ+
∑d

i=1KγiJ

∏d
i=1(1− e−γi)

)
.

The same argument given to prove (5.12) gives

(7.7) eρŘ = F̌W

( eρ
∏d

i=1(1− e−JγiK)

)
− F̌WD

( eρ
∏d

i=1(1− e−JγiK)

)
.

If n ≥ m then W ♯ = W (Cn). By an explicit computation we see that ρ+
∑d

i=1KγiJ=∑n−m
i=1 (n−m− i+ 1)δi.
Set

(7.8) Yd = subgroup of W ext
g generated by {s2δn−i+1

sǫi | 1 ≤ i ≤ d}.

We have that s2δn−i+1
sǫi(ρ+

∑d
i=1KγiJ) = ρ+

∑d
i=1KγiJ hence

sgn′(s2δn−i+1
sǫi)s2δn−i+1

sǫi
eρ+

∑d
i=1KγiJ

∏d
j=1(1− e−γj )

=
eρ+

∑d
i=1KγiJ

∏d
j=1(1− e−γj )

− eρ+
∑d

i=1KγiJ

∏d
j 6=i(1− e−γj )

.

It follows that, if w =
∏k

r=1 s2δn−d+ir
sǫir ∈ Yd, then

sgn′(w)w
eρ+

∑d
i=1KγiJ

∏d
j=1(1− e−γj )

=
∑

J⊂{i1,...,ik}
(−1)|J |

eρ+
∑d

i=1KγiJ

∏
j 6∈J(1− e−γj )

.

Note that if |J | ≥ 2 then there is a reflection in W (Am−1) that fixes the element
eρ+

∑d
i=1KγiJ

∏
j 6∈J(1−e−γj )

, hence

F̌W

(
sgn′(w)w

eρ+
∑d

i=1KγiJ

∏d
j=1(1− e−γj )

)
= F̌W

( eρ+
∑d

i=1KγiJ

∏d
j=1(1− e−γj )

−
k∑

h=0

eρ+
∑d

i=1KγiJ

∏
j 6=jh

(1− e−γj )

)
.

Note that

sδn−jh+1−δn−d+1
sǫjh−ǫd(

eρ+
∑d

i=1KγiJ

∏
j 6=jh

(1− e−γj )
) =

eρ+
∑d

i=1KγiJ

∏
j 6=m(1− e−γj )

,

hence, if w ∈ Yd, we have

F̌W

(
sgn′(w)w

eρ+
∑d

i=1KγiJ

∏d
j=1(1− e−γj )

)

= F̌W

( eρ+
∑d

i=1KγiJ

∏d
j=1(1− e−γj )

− k
eρ+

∑d
i=1KγiJ

∏d−1
j=1(1− e−γj )

)
.
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Using the fact that W ext
g = WYd and that sǫie

ρŘ = eρŘ, it follows that

2dd!eρŘ =

F̌W ext
g

( eρ+
∑d

i=1KγiJ

∏d
j=1(1− e−γj )

)
= F̌WYd

( eρ+
∑d

i=1KγiJ

∏d
j=1(1− e−γj )

)
=

2dF̌W

( eρ+
∑d

i=1KγiJ

∏d
j=1(1− e−γj )

)
− 2d−1dF̌W

( eρ+
∑d

i=1KγiJ

∏d−1
j=1(1− e−γj )

)
.

Hence

d!eρŘ = F̌W

( eρ+
∑d

i=1KγiJ

∏d
j=1(1− e−γj )

)
− 1

2
dF̌W

( eρ+
∑d

i=1KγiJ

∏d−1
j=1(1− e−γj )

)
.(7.9)

Set W ′ = W[δn−d+1,ǫd]. Using the fact that Wn−d and W ′ commute, we can choose

W/W ′ = ((W (An−1)×W (Bm))/W
′)Wn−d.

Let Y be the arc subdiagram corresponding to the interval [δn−d+1, ǫd]. Applying
(1.15), we have

F̌W

( eρ+
∑d

i=1KγiJ

∏d
j=1(1− e−γj )

)
= F̌W/W ′

(
eρX−ρY FW ′

( eρY +
∑d

i=1KγiJ

∏d
i=1(1− e−γi)

))

= F̌W/W ′

(
eρX−ρY d!eρY ŘY

)

Observe that ht(γi) = 2i− 1 so
∏d

i=1
ht(γi)+1

2
= d!. Applying (3.9) to Y we find

F̌W

( eρ+
∑d

i=1KγiJ

∏d
j=1(1− e−γj )

)
= F̌W/W ′

(
eρX−ρY d!FW ′

( eρY
∏d

i=1(1− e−JγiK)

))
.

hence

(7.10) F̌W

( eρ+
∑d

i=1KγiJ

∏d
j=1(1− e−γj )

)
= d!F̌W

( eρ
∏d

j=1(1− e−JγjK)

)
.

Analogously one checks that

(7.11) F̌W

( eρ+
∑d

i=1KγiJ

∏d−1
j=1(1− e−γj )

)
= (d− 1)!F̌W

( eρ+KγdJ

∏d−1
j=1(1− e−JγjK)

)
.

Observe in (7.11) that KγdJ= Jγd−1K, hence

(7.12) F̌W

( eρ+KγdJ

∏d−1
j=1(1− e−Jγj K)

)
= F̌W

( eρ
∏d−1

j=1(1− e−Jγj K)

)
+ F̌W

( eρ+Jγd−1K

∏d−2
j=1(1− e−JγjK)

)

and the second summand in (7.12) is zero since the reflection sǫd−1−ǫd fixes it. Plug-
ging these formulas in (7.9) we find

eρŘ = F̌W

( eρ
∏d

j=1(1− e−JγjK)

)
− 1

2
F̌W

( eρ
∏d−1

j=1(1− e−JγjK)

)
.(7.13)

Finally, observe that W = WD ∪WDsǫm and sem fixes eρ
∏d−1

j=1 (1−e−JγjK)
, so

eρŘ = F̌W

( eρ
∏d

j=1(1− e−Jγj K)

)
− F̌WD

( eρ
∏d−1

j=1(1− e−Jγj K)

)
.(7.14)
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To give a uniform treatment of the cases n < m and n ≥ m, we set d1 = min(n,m−
1) so that (7.14) and (7.7) combine to give

eρŘ = F̌W

( eρ
∏d

j=1(1− e−Jγj K)

)
− F̌WD

( eρ
∏d1

j=1(1− e−Jγj K)

)
.(7.15)

Set P+
d = {a ∈ Pd | am > 0} and P0

d = Pd\P+
d . Clearly, if d < m then P+

d = ∅ and
P0
d = Pd. Dividing (7.15) by D0 = eρ0

∏
α∈∆+

0
(1− e−α), we find that, arguing as for

type B(m,n),

e−ρ1

∏
α∈∆+

1
(1− e−α)

=
1

D0




∑

a∈P+
d

F̌W

(
eρ−

∑d
i=1 aiγi

)
+
∑

a∈P0
d

F̌WD

(
eρ−

∑d
i=1 aiγi

)


 .

Since D0 = eρ
C ∏

α∈∆+(Cn)
(1 − e−α)eρ

D ∏
α∈∆+(Dm)(1 − e−α), we can rewrite the

above formula as

e−ρ1

∏
α∈∆+

1
(1− e−α)

(7.16)

=
∑

a∈P+
d

∑

w∈Wn−d

sgn′(w)
chFA(w(−ρ1 + µ(a) + ρC)− ρC)∏

α∈∆+(Cn)\∆+(An−1)
(1− e−α)

chF+
D (ε(a))

+
∑

a∈P0
d

∑

w∈Wn−d

sgn′(w)
chFA(w(−ρ1 + µ(a) + ρC)− ρC)∏

α∈∆+(Cn)\∆+(An−1)
(1− e−α)

chFD(ε(a)).

Here we recall that, if a ∈ Pd, then µ(a) = −∑d
r=1(ad+1−r)δn−d+r, ε(a) =

∑d
r=1 arεr,

and chFA(λ) is given by (5.16).

We now take care of the second summand in (7.3). Note that

e−ρ1eρ
C ∏

α∈∆+(Cn)
(1− e−α)eρ

D ∏
α∈∆+(Cm−1)

(1− e−α)
∏

1≤i≤n
1≤j<m

(1− e−δi±ǫj)
∏

1≤i≤n(1− e−2δi)

=
e−ρ1eρ

C ∏
α∈∆+(Dn)

(1− e−α)eρ
D ∏

α∈∆+(Cm−1)
(1− e−α)

∏
1≤i≤n
1≤j<m

(1− e−δi±ǫj)
,

and that

ρC + ρD − ρ1 =

n∑

i=1

(n− (m− 1)− i)δi +

m−1∑

i=1

(m− i)ǫi,

so the formula above is precisely the denominator for the distinguished Borel sub-
algebra of type ∆+

D2 for a superalgebra of type D(n,m− 1).
We can therefore apply the results of Section 6 and find that

e−ρ1eρ
C ∏

α∈∆+(Cn)
(1− e−α)eρ

D ∏
α∈∆+(Cm−1)

(1− e−α)
∏

1≤i≤n
1≤j<m

(1− e−δi±ǫj)
∏

1≤i≤n(1− e−2δi)

= F̌W (m−1)

( eρ
∏d1

i=1(1− e−JγiK)

)
,
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where W (m− 1) = W (An−1)Wn−d1W (Cm−1). Recall from (5.9), (5.10), that Wr
+

(resp. Wr
−) is the set of w ∈ Wr such that w = s2δi1 . . . s2δik with k even (resp.

odd).

By dividing off eρ
C ∏

α∈∆+(Cn)
(1 − e−α)eρ

D ∏
α∈∆+(Cm−1

(1 − e−α) and expanding
the denominator, we find

chH+×h2(M
∆+

(g1))(xt) =(7.17)

∑

a∈P0
d

(
∑

w∈W+
n−d1

sgn(w)
chFA(w(−ρ1 + µ(a) + ρC)− ρC)∏

α∈∆+(Cn)\∆+(An−1)
(1− e−α)

×

×
∑

w∈W (Cm−1)
sgn(w)ew(ε(a)+ρD)

∑
w∈W (Cm−1)

sgn(w)ew(ρD)
(t)).

Recall that, if π is a finite-dimensional representation of G1, then π̃ is a repre-
sentation of G̃1 whose definition is given in (6.8). We can now state

Proposition 7.1. With notation as in Theorem 4.1, we have that, if π̃ ∈ Σ, then
there is a ∈ Pd such that

π = F±(ε(a)).

Furthermore, if a ∈ P+
d , then the H+ × h2-character of the isotypic component of

F̃+(ε(a)) in M∆+
(g1) is

(7.18)
∑

w∈Wn−d

sgn(w)
chFA(w(ρ

C − ρ1 + µ(a))− ρC)∏
α∈∆+(Cn)\∆+(An−1)

(1− e−α)
chH+F+(ε(a)),

while, for a ∈ P0
d, the H+ × h2-character of the isotypic component of F̃±(ε(a)) is

(7.19)
∑

w∈W±
n−d

sgn(w)
chFA(w(ρ

C − ρ1 + µ(a))− ρC)∏
α∈∆+(Cn)\∆+(An−1)

(1− e−α)
chH+F±(ε(a)),

Proof. It follows from (7.16) that F̃±(
∑m

i=1 aiǫi) can occur in M∆+
(g1) only if ai = 0

for i > d. This proves the first statement.
It is also clear from (7.16) and Kostant’s formula (7.1) that, if a ∈ P+

d , then the

isotypic component of F̃+(ε(a)) is given by (7.18).
If a ∈ P0

d, letMa be the sum of the isotypic components of F̃+(ε(a)) and F̃−(ε(a)).
By substituting (7.16) and (7.17) in (7.3), we find that

chH+×h2(Ma)(x
st)

=
1 + (−1)s

2

∑

w∈Wn−d

sgn(w)
chFA(w(−ρ1 + µ(a) + ρC)− ρC)∏

α∈∆+(Cn)\∆+(An−1)
(1− e−α)

× chT (FD(ε(a))(t)

+
1− (−1)s

2
(
∑

w∈W+
n−d1

sgn(w)
chFA(w(−ρ1 + µ(a) + ρC)− ρC)∏

α∈∆+(Cn)\∆+(An−1)
(1− e−α)

×
∑

w∈W (Cm−1)
sgn(w)ew(ε(a)+ρD)

∑
w∈W (Cm−1)

sgn(w)ew(ρD)
(t)).

Observe now that, since a ∈ P0
d, then s−2δn−d1

fixes −ρ1 + µ(a) + ρC so, if w =

w′s−2δn−d1
with w′ ∈ W−

n−d then sgn(w) = −sgn(w′) and w(−ρ1 + µ(a) + ρC) =
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w′(−ρ1+µ(a)+ ρC). Combining this observation with Kostant’s character formula
(7.2), we can rewrite the formula above as

chH+×h2(Ma)(x
st)

=
∑

w∈W+
n−d

sgn(w)
chFA(w(−ρ1 + µ(a) + ρC)− ρC)∏

α∈∆+(Cn)\∆+(An−1)
(1− e−α)

chH+(F+(ε(a))(xst)

+
∑

w∈W−
n−d

sgn(w)
chFA(w(−ρ1 + µ(a) + ρC)− ρC)∏

α∈∆+(Cn)\∆+(An−1)
(1− e−α)

chH+(F−(ε(a))(xst),

from which (7.19) follows readily. �

In our case the set of roots of sC2 is ∆(Cn). The element H ∈ h that corresponds
to −∑n

i=1 δi has the property that H|V ±
C

= ±I. Thus the parabolic subalgebra p2
defined by H is

p2 = h⊕
∑

α∈∆(An−1)

(g0)α ⊕ n,

where n =
∑

α∈∆+(Cn)\∆(An−1)

(g0)α is the nilradical.

Recall that, if P is as in (5.22) and a ∈ P, then we can define the weight ν(a) as
in (5.23). Using Notation 5.1, we can now state

Corollary 7.2 (Theta correspondence). With notation as in Theorem 4.1, we have

Σ = {F̃+(ε(a)) | a ∈ Pd} ∪ {F̃−(ε(a)) | a ∈ P}.
Moreover

τ(F̃+(ε(a))) = L2(−ρ1 + µ(a)),

and, if a ∈ P, then
τ(F̃−(ε(a))) = L2(−ρ1 + ν(a)).

Proof. Using Proposition 7.1, the proof follows exactly as in the proof of Corollary
5.2. �

As already observed in previous sections, we have also computed the character
of τ(F̃±(ε(a)). We set, as before, Wreg

n−d to be the set of w ∈ Wn−d such that
w(−ρ1+µ(a)+ρC) is regular for ∆(An−1) and, for w ∈ Wreg

n−d, cw = cw(−ρ1+µ(a)+ρC).

Then, combining Corollary 7.2 with Proposition 7.1, we find that, if a ∈ P+
d , then

(7.20) ch(L2(−ρ1 + µ(a)) =
∑

w∈Wreg
n−d

cwsgn(w)chV
2({w(−ρ1 + µ(a) + ρC)} − ρC),

while, if a ∈ P+
0 , then

(7.21) ch(L2(−ρ1 + µ(a)) =
∑

w∈W+
n−d∩W

reg
n−d

cwchV
2({w(−ρ1 + µ(a) + ρC)} − ρC),

and, if a ∈ P, then

(7.22) ch(L2(−ρ1 + ν(a)) = −
∑

w∈W−
n−d∩W

reg
n−d

cwchV
2({w(−ρ1 + µ(a) + ρC)} − ρC).

The argument given in Corollary 5.3 works also in the present case, thus, we
obtain
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Corollary 7.3. If a ∈ Pd and λ0 = −ρ1 + µ(a) + ρC , then

ch(L2(−ρ1 + µ(a))) =
∑

w∈WA
λ0

(−1)ℓλ0(w)V 2({w(λ0)} − ρC).

If a ∈ P and λ1 = −ρ1 + ν(a) + ρC, then

ch(L2(−ρ1 + ν(a))) =
∑

w∈WA
λ1

(−1)ℓλ1 (w)V 2({w(λ1)} − ρC).

8. Theta correspondence for the pair (U(n), U(p, q))

In this section we use the combinatorial machinery developed in the previous sec-
tions to derive the Theta correspondence for the compact dual pair (U(n), U(p, q)).
This dual pair, according to Proposition 4.8, corresponds to the distinguished sets

of positive roots ∆
(p,q)
gl in a superalgebra of type gl(m,n), p+ q = m.

Let g = gl(m,n). Its Weyl group is

Wg = group generated by sǫ1−ǫ2, . . . , sǫm−1−ǫm, sδ1−δ2 , . . . , sδn−1−δn ,

which we identify with Sm × Sn. Recall that the defect of g is d = min(n,m). Set

∆(Am−1) = {ǫi − ǫj | 1 ≤ i 6= j ≤ m},
∆(An−1) = {δk − δl | 1 ≤ k 6= l ≤ n},

∆(Ap−1 × Aq−1) = {ǫk − ǫl | 1 ≤ k 6= l ≤ p or p+ 1 ≤ k 6= l ≤ m},
∆c = ∆(Ap−1 ×Aq−1) ∪∆(An−1).

Let W (An−1) be the Weyl group of ∆(An−1) and W (Am−1) the Weyl group of
∆(Am−1). Let Wc be the Weyl group of ∆c (the subscript “c” stands for compact).
Set ∆+(An−1) = ∆+

0 ∩ ∆(An−1), ∆
+(Am−1) = ∆+

0 ∩ ∆(Am−1), and ∆+(Ap−1 ×
Aq−1) = ∆+

0 ∩∆(Ap−1 ×Aq−1). We denote by ρAn−1 , ρAm−1 , ρp,q the corresponding
ρ-vectors.

Set

L = {i ∈ {0, . . . , p}|0 ≤ d− i ≤ q}.
Set imax = min(n, p) and jmin = d− imax. For σ ∈ Sm set

n1(σ) = |{σ(i) | p− imax + 1 ≤ i ≤ p+ jmin} ∩ {1, . . . , p}|,
Ui = {w ∈ Sm| n1(σ) = i}.

Then Sm =
∐

i∈L Ui.

With notation as in Section 3, the order corresponding to ∆
(p,q)
gl is

ǫ1 > · · · > ǫp > δ1 > · · · > δn > ǫp+1 > · · · > ǫm.

Define, for i ∈ L, βi
t = ǫp−t+1 − δt for 1 ≤ t ≤ i and γi

t = δn−t+1 − ǫt+p for
1 ≤ t ≤ d− i. For i ∈ L, let Xi be the arc diagram

Xi = {
⌢

ǫp−t+1δt| 1 ≤ t ≤ i} ∪ {
⌢

δn−t+1ǫp+t| 1 ≤ t ≤ j}.
Then

(8.1) S(Xi) = {βi
t | 1 ≤ t ≤ i} ∪ {γi

t | 1 ≤ t ≤ d− i}.
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We start by writing formula (1.15) corresponding to S(Ximax), which, for sim-
plicity, we denote from now on by S. Let W i

1 (resp. W i
2) be the subgroup of Sm

that fixes 1, . . . , p− i and p+ d − i+ 1, . . . , m (resp. p− i+ 1, . . . , p + d − i). Set
W1 = W imax

1 and W2 = W imax
2 . Then Ui is stable under the right action of W1, W2,

and under the left action of Sp × Sq. Choose Vi ⊂ Ui such that Ui = ViW1. Let W
′
i

be the subgroup of W1 stabilizing Vi and set V ′
i = Vi/W

′
i .

Assume that n < m. By the above, using notation of Section 1.2,

Řeρ = F̌Sm

(
Q(Ximax)

)
=
∑

i∈L
F̌Ui

(
Q(Ximax)

)
=
∑

i∈L
F̌V ′

i

(
F̌W1

(
Q(Ximax)

)
.

Set v = ǫp−imax+1, w = ǫp−imax+d; let Y be the subdiagram in Ximax which corre-
sponds to the interval [v, w]; note that S(Y ) = S(Ximax) and each vertex of Y is an
end of some arc. Moreover, W[v,w] = Sn ×W1 and we may choose W ♯ for Y to be
either Sn or W1. One has

F̌W1

(
Q(Ximax)

)
= eρ−ρY F̌W1

(
Q(Y )

)
= eρ−ρY F̌Sn

(
Q(Y )

)
,

hence

Řeρ =
∑

i∈L
F̌V ′

i

(
eρ−ρY F̌Sn

(
Q(Y )

))
=

1

|W ′
i |
(
F̌V ′

i

(
F̌W ′

iSn

(
eρ−ρY F̌Sn

(
Q(Y )

))

=
1

|W ′
i |
(
F̌Vi

(
F̌Sn

(
Q(Ximax)

))
.

Since the elements of Vi ⊂ Sm commute with the elements of Sn we conclude that

(8.2) Řeρ =
1

|W ′
i |
(
F̌Sn

(
F̌Vi

(
Q(Ximax)

))
.

Note that, if m ≤ n, then L = {p}, Up = Sm = W1. Thus (8.2) holds as well with
Vp any subset of Sm, being just (1.15) for this case.

We now make a careful choice of Vi by exploiting the action of W1 ×W2 on Ui.
Set σi =

∏imax−i
t=1 sǫp−imax+t−ǫp+jmin+t

. Note that σi is an element of Ui. Let O be
the orbit of (Sp × Sq)σi under the right action of W2 in (Sp × Sq)\Ui. First we
observe that, if x, y are distinct elements of O, then xW1 ∩ yW1 = ∅. Indeed, if for
σ ∈ W2 we have (Sp × Sq)σiσ 6= (Sp × Sq)σi, then (Sp × Sq)σiησ 6= (Sp × Sq)σi for
any η ∈ W1. This can be checked as follows: assume σiσσi 6∈ Sp × Sq, hence there
is i0 ∈ {1, . . . , p} such that σiσσi(i0) > p. If i0 ≤ p − imax then, since σi(i0) = i0,
we have σ(i0) > p+ d− i, so σiησσi(i0) > p for any η ∈ W1. If p− i < i0 ≤ p then
σiσσi(i0) = i0 so we can assume i0 = p − imax + t with t ≤ i − imax. In this case
σi(i0) = p+ jmin + t and we must have that σ(p+ jmin + t) > p+ d− i for otherwise
we would have σiσσi(i0) ≤ p. But in this case ησσi(i0) > p+ d− i for η ∈ W1 and
we are done.

Next we show that the action of W1×W2 on (Sp×Sq)\Ui by right multiplication
is transitive. For this it is enough to show that for any w ∈ Sm∩Ui, there is σ ∈ W1

and τ ∈ W2, η ∈ (Sp × Sq) such that σi = ηwστ . Since |{w(t) | p − imax < t ≤
p+ jmin}∩{1, . . . , p}| = i, we can find σ ∈ W1 such that wσ(t) ≤ p for p− i < t ≤ p
and wσ(t) > p for p − imax < t ≤ p − imax + i or p < t ≤ p + jmin. We can
find η ∈ (Sp × Sq) so that ηwσ(t) = t for p − i < t ≤ p + jmin. Moreover we can
also assume that ηwσ(p − imax + t) = p + jmin + t for 1 ≤ t ≤ imax − i. Finally,
we can find τ ∈ W2 such that ηwστ(t) = ηwσ(t) for p − imax < t ≤ p + jmin ,
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ηwστ(p + jmin + t) = p − imax + t for p + jmin < t ≤ p + d − i and ηwστ(t) = t
otherwise. This means that ηwστ = σi as wished.

We set Y i
m−d to be a set of coset representatives for Stabi\W2 where Stabi is the

stabilizer of the coset (Sp × Sq)σi under the right action of W2 on (Sp × Sq)\Ui.
From our discussion it follows that we can choose Vi = (Sp × Sq)σiY i

m−d. Since
Y i

m−d ⊂ W2, we see that W ′
i is the subgroup of W1 stabilizing (Sp × Sq)σi, thus

σiW
′
iσi is the subgroup of W i

1 stabilizing Sp × Sq. It follows that σiW
′
iσi = W i

1 ∩
(Sp × Sq) ≃ Si × Sd−i. In particular |W ′

i | = i!(d− i)!.
We can rewrite (8.2) as

eρŘ =
∑

i∈L

1

i!(d− i)!
F̌WcσiYi

m−d

(
Q(Ximax)

)
.(8.3)

Set W i
m−d = σiY i

m−dσi. Since Y i
m−d ⊂ W2, it is clear that W i

m−d ⊂ W i
2. We can

therefore rewrite (8.3) as

eρŘ =
∑

i∈L
F̌WcWi

m−d

(
sgn(σi)σiQ(Ximax)

)
,(8.4)

Lemma 8.1. Given i ∈ L, set ri = imax − i. Then

sgn(σi)σi

(
Q(Ximax)

)
= eri(Jβ

i
iK−Jγi

d−iK)Q(Xi)(8.5)

Proof. By an explicit computation, we see that

ρ+
∑

γ∈S(Xi)

KγJ =

p−i∑

r=1

m− n− 2r + 1

2
ǫr +

p∑

r=p−i+1

q − p+ i− j − 1

2
ǫr

+

p+j∑

r=p+1

q − p+ i− j + 1

2
ǫr +

m∑

r=p+j+1

m+ n− 2r + 1

2
ǫr

+
i∑

r=1

q − p+ j − i+ 1

2
δr +

n∑

r=i+1

q − p+ j − i− 1

2
δr.

Observe that sǫp−i+1−ǫp+d−i+1
fixes ρ+

∑
γ∈S(Xi)

KγJ, hence we have

sǫp−i+1−ǫp+d−i+1

eρ+
∑

γ∈S(Xi)
KγJ

∏i
r=1(1− e−ǫp−r+1+δr)

∏d−i
r=1(1− eǫp+r−δn−r+1)

=

eρ+
∑

γ∈S(Xi)
KγJ

(1− e−ǫp+d−i+1+δi)
∏i−1

r=1(1− e−ǫp−r+1+δr)
∏d−i

r=1(1− eǫp+r−δn−r+1)
=

− e
ρ+

∑
γ∈S(Xi−1)

KγJ+Kβi
iJ−Kγi−1

d−i+1J+ǫp+d−i+1−δi

∏i−1
r=1(1− e−ǫp−r+1+δr)

∏d−i+1
r=1 (1− eǫp+r−δn−r+1)

Since Kβi
iJ= Jβi−1,

i−1 K and Kγi−1
d−i+1J+ǫp+d−i+1 − δi = Jγi−1

d−i+1K, we obtain that

sǫp−i+1−ǫp+d−i+1

eρ+
∑

γ∈S(Xi)
KγJ

∏
γ∈S(Xi)

(1− e−γ)
= − e

ρ+
∑

γ∈S(Xi−1)
KγJ

∏
γ∈S(Xi−1)

(1− e−γ)
eJβi−1

i−1K−Jγi−1
d−i+1K.(8.6)

Since
sǫp−i+1−ǫp+d−i+1

(Jβi
iK − Jγi

d−iK) = Jβi−1
i−1K − Jγi−1

d−i+1K

the lemma is proven by an obvious induction. �
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Combining (8.4) and (8.5), we get

eρŘ =
∑

i∈L

1

i!(d− i)!
F̌WcWi

m−d

(
eri(Jβ

i
iK−Jγi

d−iK)Q(Xi)
)
.(8.7)

One last computation is needed:

Lemma 8.2.

1

i!(d− i)!
F̌WcWi

m−d

(
eri(Jβ

i
i K−Jγi

d−iK)Q(Xi)
)
= F̌WcWi

m−d

( eρ+ri(Jβ
i
iK−Jγi

d−iK)

∏
γ∈S(Xi)

(1− e−JγK)

)
.(8.8)

Proof. Set Y 1
i the subdiagram of Xi whose support is [ǫp−i+1, δi] and Y 2

i the subdia-
gram having support [δn−d+i+1, ǫp+d−i]. LetG1 = W[ǫp−i+1,δi] andG2 = W[δn−d+i+1,ǫp+d−i].
An easy calculation shows that

Jβi
iK − Jγi

d−iK =

p+d−i∑

h=p−i+1

ǫh −
i∑

h=1

δh −
n∑

h=n−d+i+1

δh.

In particular Jβi
iK− Jγi

d−iK is G1×G2-invariant. Since G1×G2 ⊂ Wc and commutes
with W i

m−d, we can write

F̌WcWi
m−d

(
Q(Xi)e

ri(Jβi
iK−Jγi

d−iK)
)

= F̌Wc/(G1×G2)Wi
m−d

(
e
ρ−ρ

Y 1
i
−ρ

Y 2
i eri(Jβ

i
iK−Jγi

d−iK)F̌G1

(
Q(Y 1

i )
)
F̌G2

(
Q(Y 2

i )
))
.

Combining (3.9) with (1.15), we have that, for any g, F̌Wg

(
Q(X)

)
= F̌Wg

(
P(X)

)
,

thus

F̌WcWi
m−d

(
Q(Xi)e

ri(Jβ
i
iK−Jγi

d−iK)
)

= F̌Wc/(G1×G2)Wi
m−d

(
e
ρ−ρ

Y 1
i
−ρ

Y 2
i eri(Jβ

i
i K−Jγi

d−iK)F̌G1

(
P(Y 1

i )
)
F̌G2

(
P(Y 2

i )
))

= F̌WcWi
m−d

(
P(Xi)e

ri(Jβi
i K−Jγi

d−iK)
)
.

The lemma follows from the observation that P(Xi) = i!(d− i)! eρ∏
γ∈S(Xi)

(1−e−JγK)
. �

Using (8.8), we see that (8.7) becomes

eρŘ =
∑

i∈L
F̌WcWi

m−d

( eρ∏
γ∈S(Xi)

(1− e−JγK)
eri(Jβ

i
iK−Jγi

d−iK)
)
.(8.9)

Using (8.9), and expanding in geometric series in the domain h+ = {h ∈ h |
α(h) > 0, α ∈ ∆+

1 }, formula (8.9) becomes

(8.10) eρŘ =
∑

i∈L
FWcWi

m−d

( ∑

a∈Pi,b∈Pd−i

eV (a−ri
i,b+ri

d−i)
)
,

where

V (a,b) =ρ−
i∑

t=1

ai−t+1ǫp−i+t +
d−i∑

t=1

btǫp+t +
i∑

t=1

atδt −
d−i∑

t=1

bd−i−t+1δn−d+i+t
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and we denote by rk the partition (r, r, . . . , r) ∈ Pk. Note that (8.10) can be written
as

(8.11) eρŘ =
∑

i∈L
FWcWi

m−d

( ∑

a∈Pi, rid−i⊂b∈Pd−i

eV (a−rii,b)
)
.

From the formula above we can already derive an explicit form of the Theta
correspondence, but, in order to have the same parametrization of [15], some extra
work is needed. For a ∈ Pi and k ≤ i define

fk(a) = (a1, . . . , ak),

lk(a) = (ai−k+1, . . . , ai).

If a ⊂ ri, we set ri\a = (r − ai, . . . , r − a1). If a ∈ Pi then, given b ∈ Pd−i with
ad−i
1 ⊂ b, we let b ∪ a = (b1, . . . , bd−i, a1, . . . , ai).
Given r ∈ N and a ∈ Pi, let k ∈ {0, . . . , i} be such that rk ⊂ a. If (r−ai)

d−i ⊂ b,
then we set

sk(a,b) = (fk(a)− rk,b ∪ (ri−k\li−k(a))).

We let W i
m−d(a,b) be the set of v ∈ W i

m−d such that v(V (a,b)) is regular for
∆(Ap−1 × Aq−1). Given r ∈ N and a ∈ Pi, let kr(a) be maximal in the set of
k ∈ {0, . . . , i} such that rk ⊂ a.

Lemma 8.3. Assume that m < n and fix i ∈ L. Let (a,b) ∈ Pi×Pd−i be such that
(ri − ai)

d−i ⊂ b and set k = kri(a).

(1) If k 6∈ L, then v(V (a− ri
i,b)) is ∆c-singular for any v ∈ W i

m−d.
(2) If k ∈ L then there is a bijection v 7→ z between W i

m−d(a − ri
i,b) and

Wk
n−d(sk(a,b)) such that

FWc

(
sgn(v)evV (a−ri

i,b)
)
= FWc

(
sgn(z)ezV (sk(a,b))

)
.

Proof. We will prove both statements by induction on i − k. The case i = k is
obvious.

If k < i, set t0 = p− i+ 1− (ri − ai). Note that p− imax + 1 ≤ t0 ≤ p− i.
If p+ d − i = m then, since k < i, k 6∈ L. Moreover we have that we can choose

W i
m−d = {1}. An easy calculation shows that

ρ =

p∑

t=1

(
m− n+ 1

2
− t)ǫt +

m∑

t=p+1

(
n+m+ 1

2
− t)ǫt +

n∑

t=1

(
q − p+ n + 1

2
− t)δt,

so (V (a,b), ǫt0 − ǫp−i+1) = 0. It follows that v(V (a− ri
i,b)) is ∆c-singular for any

v ∈ W i
m−d.

If p + d − i < m, let s ∈ Sm be defined by setting s(t0) = p + d − i + 1,
s(p+d−i+1) = p−i+1, s(p−i+1) = t0, and s(t) = t for t 6= t0, p−i+1, p+d−i+1.
Then s(V (a,b)) = V (a′ − (ri + 1)i−1,b′) where a′ = li−1(a) + 1i−1 and b′ =
b ∪ (ri − ai)

1. Suppose that v ∈ W i
m−d and assume that v(V (a − ri

i,b)) is ∆c-
regular. Then v(t0) > p + d − i, so vs−1(p − d + i + 1) = s0 > p + d − i. Hence
w′ = sǫp−d+i+1−ǫs0

vs−1 ∈ W i−1
2 and

FWc

(
sgn(v)evV (a−rii,b)

)
= FWc

(
sgn(w′)ew

′V (a′−(ri+1)i−1,b′)
)
.

This implies that there is a unique w ∈ W i−1
m−d(a

′ − (ri + 1)i−1,b′) such that

FWc

(
sgn(v)evV (a−rii,b)

)
= FWc

(
sgn(w)ewV (a′−(ri+1)i−1,b′)

)
.
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Clearly the argument above can be reversed to prove that the map v 7→ w is
a bijection. Since ri + 1 = ri−1, (ri−1 − a′i−1)

d−i+1 ⊂ (ri − ai)
d−i+1 ⊂ b′, and

kri−1
(a′) = kri(a), we see that we can apply the induction hypothesis. Thus, since

w(V (a′− (ri+1)i−1,b′)) is ∆c-regular, we have k ∈ L. Moreover there is a bijection
w 7→ z from Wm−d

i−1(a′ − (ri + 1)i−1,b′) to Wk
m−d(sk(a

′,b′)) such that

FWc

(
sgn(w)ewV (a′−ri−1

i−1,b′)
)
= FWc

(
sgn(z)ezV (sk(a

′,b′))
)
.

Since it is clear that sk(a
′,b′) = sk(a,b) we are done by composing the two bijec-

tions. �

Proposition 8.4.

eρŘ = FWcWimax
m−d

( ∑

a∈Pimax ,b∈Pjmin

eV (a,b)
)
+

∑

i∈L,i<imax

FWcWi
m−d

( ∑

a∈Pi,b∈P∗
d−i

eV (a,b)
)
.

Proof. The expression (8.11) for eρŘ can be written as

FWcWimax
m−d

( ∑

a∈Pimax ,b∈Pjmin

eV (a,b)
)
+

∑

i∈L,i<imax

FWcWi
m−d

( ∑

a∈Pi, rid−i⊂b∈Pd−i

eV (a,b)
)

+
∑

i∈L
FWcWi

m−d

( ∑

rii 6⊂a∈Pi, rid−i⊂b∈Pd−i

eV (a−ri
i,b)
)
.

Let III denote the third summand. By Lemma 8.3 we have

III =
∑

i∈L

∑

k∈L, k<i

FWcWk
m−d

( ∑

rik⊂a∈Pi,rik+1 6⊂a

b∈Pj ri
d−i⊂b

eV (sk(a,b))
)
,

which is
∑

k∈L,k<imax

∑

i∈L,i>k

Fk
WcWm−d

( ∑

rik⊂a∈Pi,rik+1 6⊂a

b∈Pd−i ri
d−i⊂b

eV (sk(a,b))
)
.

We observe that the map sk is a bijection between the set

⋃

i∈L,i>k

{(a,b) ∈ Pi × Pd−i | kri(a) = k, ri
d−i ⊂ b}

and the set

{(a,b) ∈ Pk × P∗
h | (imax − k)h 6⊂ b},

hence we can rewrite III as
∑

k∈L,k<imax

Fk
WcWm−d

( ∑

a∈Pk

b∈P∗
d−k, (imax−k)d−k 6⊂b

eV ((a,b))
)
.

Upon substituting we get the desired statement. �
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Arguing as in the previous sections, it follows from Proposition 8.4 that

chM∆+

(g1) =
∑

a∈Pimax ,b∈Pjmin

∑

v∈Wimax
m−d

sgn(v)

ch(Fp,q(v(−ρ1 + µ(a,b) + ρAm−1)− ρAm−1))∏
α∈∆+(Am−1)\∆+(Ap−1×Aq−1)

(1− e−α)
ch Fn(ε(a,b))

+
∑

i∈L,i<imax

∑

a∈Pi,b∈P∗
j

∑

v∈Wi
m−d

sgn(v)

ch(Fp,q(v(−ρ1 + µ(a,b) + ρAm−1)− ρAm−1))∏
α∈∆+(Am−1)\∆+(Ap−1×Aq−1)

(1− e−α)
ch Fn(ε(a,b).

Notation is as follows: ∆+ = ∆
(p,q)
gl ; if a ∈ Pi, b ∈ Pd−i, we set

µ(a,b) = −
i∑

t=1

ai−t+1ǫp−i+t +

d−i∑

t=1

btǫp+t,

ε(a,b) =
i∑

t=1

atδt −
d−i∑

t=1

bd−i−t+1δn−d+i+t.

Here Fn(ε(a,b)) is the finite-dimensional irreducible u(n)-module with highest
weight ε(a,b). Finally, if λ ∈ span(ǫi), set

chFp,q(λ) =
∑

w∈Sp×Sq

sgn(w)
ew(λ+ρp,q)−ρp,q

Πα∈∆+(Ap−1×Aq−1)(1− e−α)
.

Note that
V (a,b) = ρ+ ε(a,b) + µ(a,b).

By [1], the inverse image G̃1 of G1 = U(n) in K̃ is isomorphic to the cover defined
by the character det

m
2 . In particular, G̃1 is connected, hence the set Σ, occurring in

Theorem 4.1, is a subset of the set of finite-dimensional irreducible representations
of its Lie algebra u(n).

Set h1 = h ∩ u(n), h2 = h ∩ u(p, q).

Corollary 8.5 (Theta correspondence). With notation as in Theorem 4.1, we have

Σ =
⋃

i∈L
a∈Pi,b∈Pd−i

Fn(−(ρ1)|h1 + ε(a,b)).

Moreover
τ(Fn(ε(a,b))) = L2(−(ρ1)|h2 + µ(a,b)).

Proof. Similar to the proof of Corollary 6.3. �

Let us finally display the character formula. We let W i

m−d be the set of v ∈ W i
m−d

such that v(−(ρ1)|h2+µ(a,b)+ρAm−1) is regular for ∆(Ap−1×Aq−1). For v ∈ W i

m−d,
let

cv = cv(−(ρ1)|h2+µ(a,b)+ρAn−1 ).
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From Proposition 8.4 we get that, if a ∈ Pimax , b ∈ Pjmin
then

ch(L2(−(ρ1)|h2 + µ(a,b))) =
∑

v∈Wimax
m−d

cvsgn(v)chV
2({v(−ρ1 + µ(a,b) + ρAm−1)} − ρAm−1),

while, if i ∈ L with i < imax and a ∈ Pi, b ∈ P∗
j , then

ch(L2(−(ρ1)|h2 + µ(a,b))) =
∑

v∈Wi
m−d

cvsgn(v)chV
2({v(−ρ1 + µ(a,b) + ρAm−1)} − ρAm−1).

However we can check that if a ∈ P∗
k, b ∈ P∗

d−i with k ≤ i, then, v ∈ W i

m−d

implies that Wcv = Wcw with w ∈ W
(i,d−k)
2 , where W

(i,d−k)
2 = {σ ∈ Sm | σ(ǫa) =

ǫa, p − i + 1 ≤ a ≤ p + d − k}. It follows that the character formula can be
written in a more uniform and symmetric way as follows: fix a ∈ P∗

k, b ∈ P∗
h with

k ≤ p, h ≤ q, and h + k ≤ d. Choose a set W(d−h,d−k)
m−d of coset representatives for

Wc\WcW
(d−h,d−k)
2 . Then

ch(L2(−(ρ1)|h2 + µ(a,b))) =
∑

v∈W(d−h,d−k)
m−d

cvsgn(v)chV
2({v(−(ρ1)|h2 + µ(a,b) + ρAm−1)} − ρAm−1).

Once the character formula is written in this form, we can apply to it the argument
given in Corollary 5.3, thus, with notation as in Section 5, we obtain

Corollary 8.6. If k ≤ p, h ≤ q, k + h ≤ d, a ∈ P∗
k, b ∈ P∗

h, and λ0 = −(ρ1)|h2 +
µ(a,b) + ρAm−1 , then

ch(L2(λ0)) =
∑

w∈WA
λ0

(−1)ℓλ0(w)V 2({w(λ0)} − ρAm−1).

9. On the Kac-Wakimoto conjecture

As a final application of our denominator formulas we verify Kac-Wakimoto con-
jecture in a remarkable special case. Let us recall briefly this conjecture. Let V
be a finite dimensional irreducible highest weight module with highest weight Λ.
Recall that the atypicality of Λ, denoted by atp(Λ) is the maximal number of lin-
early independent mutually orthogonal isotropic roots which are orthogonal to Λ.
The atypicality atp(V ) is defined as the atypicality of Λ + ρ. The ρ-shift makes
this definition independent of the chosen set of positive roots. Also recall that the
supercharacter of V is defined as schV =

∑
λ∈h∗ sdim(Vλ)e

λ. In [14] the following
conjecture is stated.

Conjecture. There exists b ∈ Q such that

(9.1) ŘeρschV = bF̌W

( eρ+Λ

∏atp(V )
i=1 (1− e−βi)

)
,

where Λ is the highest weight of V and the set of simple roots contains mutually
orthogonal isotropic roots β1, . . . , βatp(V ) satisfying (ρ+ Λ, βi) = 0.
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We will refer to the latter condition as the KW condition. We prove this con-
jecture when V is the natural representation of Lie superalgebras of type gl(m,n),
D(m,n), D(n,m) with m ≥ n and B(m,n), B(n,m) with m > n. Recall that,
in these cases, we have atp(V ) = min(m − 1, n). Also note that atp(V ) = m for
B(m,m), and in this case KW condition does not hold for any choice of the set of
simple roots, hence we exclude B(m,m) from our consideration.

We fix the standard triangular decomposition of g0 and consider the sets of sim-
ple roots compatible with this triangular decomposition. We embed our root sys-
tem into the lattice spanned by {ǫi}mi=1 ∪ {δ}ni=1 (with m ≥ n); for example, for
D(n,m), m > n, 2ǫi is an even root. We choose the inner product (ǫi, ǫj) = δij =
−(δi, δj).

9.1. Formula for a special root system. Consider a set of simple roots Π which
contains the set

{ǫ1 − ǫ2, . . . , ǫm−1 − ǫm, ǫm − δ1, δ1 − δ2, . . . , δn−1 − δn}.
Then the corresponding total order on {ǫi}mi=1 ∪ {δ}ni=1 is given by ǫ1 > ǫ2 > . . . >
ǫm > δ1 . . . > δn. For i = 1, . . . , n set

γi := ǫm+1−i − δi.

Consider the natural representation V = V (ǫ1).
Set

Γ :=

{
{γi}i=1,...,n−1 if m = n,
{γi}i=1,...,n if m > n.

Note that Γ is a maximal set of isotropic pairwise orthogonal roots which are
orthogonal to ρ+ ǫ1. We have excluded B(m,m) since in this case the maximal set
is {γi}m−1

i=1 ∪ {ǫ1 + δm} and ǫ1 + δm is “bad” in the sense that this root does not lie
in a set of simple roots obtained from Π by a series of odd reflections. Recall that
JγjK =

∑j
i=1 γi.

We are going to show that there is a constant jV such that

(9.2) ŘeρschV = jV F̌W

( eρ+ǫ1

∏
γ∈Γ(1− e−JγK)

)
.

Write Ř = R0/R1, Ri =
∏

α∈∆+
i
(1− e−α).

9.1.1. As g0-module, V is the sum of two simple modules with highest weights δ1
and ǫ1 respectively. By the Weyl character formula one has

(9.3) R0e
ρ0schV = FW (eρ0+ǫ1 − eρ0+δ1).

9.1.2. Let g′ be the simple subalgebra of g whose set of roots ∆′ is the set of roots
in ∆ that are orthogonal to ǫ1. We have that g′ is of type gl(m − 1, n), B(m −
1, n), D(m − 1, n), B(n,m − 1), D(n,m − 1) respectively for g of type gl(m,n),
B(m,n), D(m,n), B(n,m), D(n,m). Observe that, if Σ is a set of simple roots for
g such that (ǫ1, α) ≥ 0 for any α ∈ Σ, then a set of simple roots for g′ is given by
Σ′ = Σ\{α ∈ Σ | (α, ǫ1) > 0}. In particular the set Π′ := Π \ {ǫ1 − ǫ2} is a set of
simple roots for g′. We introduce ρ′, ρ′0, R

′
0, R

′
1, Ř

′,W ′ for this root system in the
standard way. Recall the denominator identity for g′ in the form

Ř′eρ
′

= cF̌W ′

( eρ
′

∏
γ∈Γ(1− e−JγK)

)
,
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with c = atp(V )!
Cg′

, which can be rewritten as

R′
0e

ρ′0 = cFW ′

( eρ
′
0R′

1∏
γ∈Γ(1− e−JγK)

)
,

or

FW ′(eρ
′
0) = cFW ′

( eρ
′
0R′

1∏
γ∈Γ(1− e−JγK)

)
.

9.1.3. We now prove

(9.4) FW (eρ0+ǫ1 − eρ0+δ1) = jVFW

( eρ0+ǫ1R1∏
γ∈Γ(1− e−JγK)

)
,

where jV = 1
c
except for the case D(m,m) with δi ∈ ∆ and in the latter case

jV = 1
2c
. Note that, by (9.3), formula (9.2) is equivalent to formula (9.4).

Set

A = FW

( eρ0+ǫ1R1∏
γ∈Γ(1− e−JγK)

)
.

Since R1

R′
1
and eρ0−ρ′0 are W ′-invariant, one has

A = FW/W ′

(R1

R′
1

eǫ1+ρ0−ρ′0 · FW ′

( R′
1e

ρ′0
∏

γ∈Γ(1− e−JγK)

))

= FW/W ′

(R1

R′
1

eǫ1+ρ0−ρ′0 · 1
c
FW ′(eρ

′
0)
)

=
1

c
FW

(
eρ0+ǫ1

∏

β∈∆+
1 \∆′

(1− e−β)
)

so

A =
1

c

∑

J⊂∆+
1 \∆′

(−1)|J |FW (eλJ ), where λJ = ρ0 + ǫ1 −
∑

β∈J
β.

Now formula (9.4) is equivalent to the formula

(9.5) A = aFW (eλ∅ − eλ{ǫ1−δ1}),

where a = 1 except for the case D(m,m) with δi ∈ ∆ and a = 2 in the latter case.
Recall that FW (eλ) = 0 if λ is not regular. Let us find J such that λJ is regular.

Write ∆0 = ∆ǫ

∐
∆δ with ∆ǫ in the span of {ǫi}mi=1 and ρ0 = ρǫ + ρδ, where ρǫ

(resp., ρδ) is the standard “ρ” for ∆ǫ (resp., for ∆δ). For any β ∈ ∆+
1 \ ∆′ one

has (β, ǫ1) = 1, (β, ǫi) = 0 for i > 1. Thus λJ = ρǫ + (1 − |J |)ǫ1 + νJ , where νJ
lies in the span of {δj}nj=1. The regularity of λJ is equivalent to the regularity of
ρǫ + (1− |J |)ǫ1 and of νJ .

For glm the element ρǫ+ (1− |J |)ǫ1 is regular if and only if |J | = 0, 1 or |J | > m,
which is impossible since |∆+

1 \ ∆′| = n ≤ m. For |J | = 1 one has νJ = ρδ + δi,
which is regular only for i = 1. This gives (9.5).

For B(m,n), m > n the root system ∆ǫ (resp., ∆δ) is of type Bm (resp., Cn).
The element ρǫ + (1 − |J |)ǫ1 is regular if and only if |J | = 0, 1 or |J | ≥ 2m, which
is impossible since |∆+

1 \∆′| = 2n < 2m. For |J | = 1 one has νJ = ρδ ± δi, which
is regular only for νJ = ρδ + δ1; this gives (9.5).
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For B(n,m), m > n the root system ∆ǫ (resp., ∆δ) is of type Cm (resp., Bn).
The element ρǫ + (1 − |J |)ǫ1 is regular if and only if |J | = 0, 1 or |J | ≥ 2m + 1,
which is impossible because |∆+

1 \ ∆′| = 2n + 1 < 2m + 1. Consider the case
|J | = 1. Then νJ = ρδ if J = {ǫ1} or νJ = ρδ ± δi for J = {ǫ1 ∓ δi}. Therefore
λJ is regular for J = {ǫ1}, {ǫ1 − δ1}, {ǫ1 + δn}. One has λ{ǫ1} = sδn(λ{ǫ1+δn}) so

FW (eλ{ǫ1} + eλ{ǫ1+δn}) = 0. This establishes (9.5).
For D(n,m) the root system ∆ǫ (resp., ∆δ) is of type Cm (resp., Dn). The

element ρǫ + (1− |J |)ǫ1 is regular if and only if |J | = 0, 1 or |J | ≥ 2m+ 1, which is
impossible since |∆+

1 \ ∆′| = 2n < 2m + 1. For |J | = 1 one has νJ = ρδ ± δi and
this element is regular only if νJ = ρδ + δ1; this gives (9.5).

For D(m,n), m > n the root system ∆ǫ (resp., ∆δ) is of type Dm (resp., Cn).
The element ρǫ + (1 − |J |)ǫ1 is regular if and only if |J | = 0, 1 or |J | ≥ 2m − 1,
which is impossible since |∆+

1 \∆′| = 2n < 2m−1. For |J | = 1 one has νJ = ρδ±δi,
which is regular only for νJ = ρδ + δ1; this gives (9.5).

Consider the case D(m,m) with ∆ǫ (resp., ∆δ) of type Dm (resp., Cn). The
element ρǫ + (1 − |J |)ǫ1 is regular if and only if |J | = 0, 1 or |J | ≥ 2m − 1. As
above, for |J | = 1 the element νJ is regular only if J = {ǫ1 − δ1}, νJ = ρδ + δ1. If
|J | = 2m, then J = ∆+

1 \∆′ = {ǫ1±δi}mi=1 so λJ = ρ0+(1−2m)ǫ1 = sǫ1sǫm(ρ0+ǫ1).
If |J | = 2m − 1, then J = (∆+

1 \∆′) \ {β}, where β = ǫ1 ± δi and so νJ = ρδ ∓ δi
which is regular only if νJ = ρδ + δ1 and λJ = ρ0+(2−2m)ǫ1+ δ1 = sǫ1sǫm(ρ0+ δ1).
Since sǫ1sǫm ∈ W we obtain

A = 2FW (eρ0+ǫ1 − eρ0+δ1).

This establishes (9.5) for this case. Having established (9.5) in all cases, we have
proven (9.2).

9.1.4. Let us deduce from (9.2) Kac-Wakimoto formula (9.1) for the natural rep-
resentation. If Π̃ is a set of simple roots for g and V (Λ) is an irreducible finite di-

mensional g-module of highest weight Λ, recall that we say that the pair (Π̃, V (Λ))
satisfies the KW condition if there are {β1, . . . , βatp(V )} ⊆ Π̃ with (βi, βj) = 0 for
all i, j and (Λ + ρΠ̃, βi) = 0 for all i.

Assume that (Π̃, V ) satisfies the KW condition, where, as above, V is the natural
representation of g. Since KW condition is obviously invariant under the action of
the Weyl group we can consider the total order on {ǫi}mi=1 ∪ {δi}ni=1 corresponding
to Π̃. We can also assume that ǫ1 > ǫ2 > . . . > ǫm and δ1 > δ2 > . . . > δn with
ǫm, δn ≥ 0 for g 6= gl(m,n) (this means that Π̃ induces the standard triangular
decomposition on g0).

Let Λ be the highest weight of the standard representation. Clearly, Λ is the
maximal element in {ǫi}mi=1∪{δi}ni=1 so Λ ∈ {ǫ1, δ1}. For gl(m,m), D(m,m) we may
(and will) assume that ǫ1 > δ1 (since we can switch {ǫi} and {δi} in subsection 9.1).
Let us show that Λ = ǫ1 for m > n. Indeed, for m > n one has atp(V ) = n and so
(βi, δ1) 6= 0 for some i. If Λ = δ1, then (Λ + ρ, βi) = (δ1, βi) 6= 0 which contradicts
to the definition of βi. Hence Λ = ǫ1 > δ1.

Let α ∈ Π̃ be a root satisfying (α, ǫ1) = 1. Notice that (ρ, α) ≥ 0 so (ρ+ǫ1, α) 6= 0

and thus α 6∈ {βi}atp(V )
i=1 . The set Π̃′ = Π̃ \ {α} is a set of simple roots for g′. Since

def g′ = atp(V ), the set {
⌢

eidi| βi = ei − di} is an arc diagram X̃ for Π̃′. Similarly,
let X be the arc diagram for Π′ having the elements of Γ as arcs. Denominator
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identity for g′ gives, letting ρ̃ = ρΠ̃ and ρ̃′ = ρΠ̃′ ,

(9.6) atp(V )! · F̌W ′

( eρ
′

∏
γ∈Γ(1− e−JγK)

)
= F̌W ′

( eρ̃
′

∏atp(V )
i=1 (1− e−βi)

)
.

Let us show that ρ− ρ′ = ρ̃− ρ̃′. Indeed, observe that ρ− ρ′, ρ̃− ρ̃′ are orthogonal
to ∆′. Since ǫ1 is maximal the inequality (α, ǫ1) > 0 for α ∈ ∆ forces α ∈ ∆+∩ ∆̃+.
Therefore

2(ρ− ρ′, ǫ1) =
∑

α∈∆+
0 \∆′

(α, ǫ1)−
∑

α∈∆+
1 \∆′

(α, ǫ1) =
∑

α∈∆̃+
0 \∆′

(α, ǫ1)−
∑

α∈∆̃+
1 \∆′

(α, ǫ1)

= 2(ρ̃− ρ̃′, ǫ1).

Set ξ = (ρ − ρ′) − (ρ̃ − ρ̃′). We conclude that ξ is orthogonal to ∆′ and ǫ1. For
g 6= gl(m,n) this means that ρ− ρ′ = ρ̃− ρ̃′.

For gl(m,n) we obtain that ξ is proportional to
∑m

i=2 ǫi −
∑n

j=1 δj . The roots

±(ǫ1 − ǫ2) are the only roots in ∆ \ ∆′ which are not orthogonal to ǫ2. Since
∆+

0 = ∆̃+
0 , one has

2(ρ̃− ρ̃′, ǫ2) = (ǫ1 − ǫ2, ǫ2) = 2(ρ− ρ′, ǫ2).

Hence (ξ, ǫ2) = 0 so ξ = 0 as required.
Substituting (9.6) in (9.2), we obtain,

ŘeρschV = jV F̌W

( eρ+ǫ1

∏
γ∈Γ(1− e−JγK)

)
= jVFW/W ′

(
eρ−ρ′+ǫ1FW ′

( eρ
′

∏
γ∈Γ(1− e−JγK)

))

=
jV

atp(V )!
FW/W ′

(
eρ−ρ′+ǫ1FW ′

( eρ̃
′

∏atp(V )
i=1 (1− e−βi)

))
=

=
jV

atp(V )!
FW

( eρ̃+ǫ1

∏atp(V )
i=1 (1− e−βi)

)
.

This proves (9.1) with b = jV
atp(V )!

. Using (1.13), one can check that b has an

expression depending only on atp(V ).
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