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THE PRIME SPECTRUM OF A QUANTUM BRUHAT CELL

TRANSLATE

MARIA GORELIK

Abstract. The prime spectra of two families of algebras, Sw and Šw, w ∈W, indexed
by the Weyl group W of a semisimple finitely dimensional Lie algebra g, are studied in
the spirit of [J3]. The algebras Sw have been introduced by A. Joseph (see [J4], Sect. 3).
They are q-analogues of the algebras of regular functions on w-translates of the open
Bruhat cell of a semisimple Lie group G corresponding to the Lie algebra g.

We define a stratification of the spectra into components indexed by pairs (y1, y2) of
elements of the Weyl group satisfying y1 ≤ w ≤ y2. Each component admits a unique
minimal ideal which is explicitly described. We show the inclusion relation of closures
to be that induced by Bruhat order.

The work was partially supported by the Hirsch and Braine Raskin Foundation.
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1. Introduction

In this work we study the prime spectra of two families of algebras, Sw and Šw, w ∈W,
indexed by the Weyl group W of a semisimple finitely dimensional Lie algebra g. The
algebras Sw have been introduced by A. Joseph (see [J4], Sect. 3). They are q-analogues
of the algebras of regular functions on w-translates of the open Bruhat cell of a semisimple
Lie group G corresponding to the Lie algebra g.

The corresponding classical objects, the algebras of regular functions on different w-
translates of the open Bruhat cell, are isomorphic to each other polynomial algebras of
rank dim n+.

The q-analogues Sw are much more interesting. For instance, their centres have different
Gelfand-Kirillov dimension for different w ∈ W — see Remark 8.2.2. In particular, Sw

are not in general isomorphic for different w ∈ W .

The algebras Sw admit a structure of right Uq(g) module which comes from the right
action of Uq(g) on the quantum function ring Rq[G]. The action of the root torus T ⊆
Uq(g) on Sw can be naturally extended to an action of the weight torus Ť ⊇ T . The
second family of algebras, Šw, are obtained as the skew-products Šw = Sw#Ť .

The starting point of the construction of the rings Sw is the ring R+ which is a quan-
tization of the ring of global regular functions on the “base affine space” G/N , see [J4],
1.2. The algebra Sw is obtained as a zero weight space of a localization of R+. This is
why the rings Sw, Šw are denoted almost everywhere as Rw

0 , Řw
0 respectively.

In the case w = e the algebra Se is isomorphic to the quantized enveloping algebra
Uq(n

−) of the maximal nilpotent subalgebra n− ⊆ g — see [J4], 3.4. The corresponding
skew-product algebra Še is isomorphic to Ǔq(b

−).

The prime spectrum of the algebra Še ∼= Ǔq(b
−) was described by A. Joseph [J3], Sect.9.

It is presented as a disjoint union of locally closed strata X(w) indexed by the elements
of the Weyl group. Moreover, the strata X(w) admit an action of a group Z

l
2 ⊆ Aut(Še)

and the quotient X(w)/Zl
2 is isomorphic (as a partially ordered set) to the spectrum of a

Laurent polynomial ring.

In this paper we present a similar description (Proposition 5.3.3) of the spectrum of Šw

for arbitrary w ∈ W. In our case the strata Xw(y, z) are indexed by a more complex set:
this is the collection

W
w
⋄W := {(y, z) ∈W ×W | y ≤ w ≤ z}

where ≤ is the Bruhat order. Note that W
w
⋄ W inherits an order relation through

(y, z) � (y′, z′) iff y ≤ y′, z ≥ z′. In Corollary 6.13 we prove that the closure of Xw(y, z)
coincides with the union of Xw(y′, z′) : (y, z) � (y′, z′).

The spectrum of Sw is a union of strata Yw(y, z) indexed by the same set W
w
⋄ W

(Proposition 5.3.3). One has also a similar decomposition of a “generic part” Spec+R
+
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of the spectrum of R+ (see 5.2,Corollary 5.2.4). Here the strata X(y, z) are indexed by
the set

W⋄W := {(y, z) ∈ W ×W | y ≤ z}.

The strata Xw(y, z) (resp., Yw(y, z)) are isomorphic for different w : y ≤ w ≤ z (Proposi-
tion 7.2.2). Moreover, Xw(y, z) are all isomorphic to the component X(y, z) of Spec+R

+

(Proposition 7.3). It turns out that the component X(y, z) is isomorphic (up to an action
of a group Z

l
2) to the spectrum of a Laurent polynomial ring — see Theorem 7.4.4.

The stratumX(y, z) admits a unique minimal element Q(y, z) which we calculate explic-
itly in Proposition 6.8. We deduce from this that the stratum Yw(y, z) also admits a unique
minimal element Q(y, z)w which can be expressed through a localization of Q(y, z) (Corol-
lary 6.10.1). Then the unique minimal element of the stratum Xw(y, z) can be written as
Q(y, z)w#Ť — see Corollary 6.10.1. The prime ideals Q(y, z), Q(y, z)w, Q(y, z)w#Ť are
completely prime.

In the last Section 8 we calculate the centres of the rings Sw (note that the centres of
Šw are trivial). These are polynomial rings whose dimension depends on w ∈W .

In the special case g = sl4 the prime and the primitive spectra of Sw were calculated
in [G1]. The results of the first draft of this paper have been announced in [G2].

Acknowledgement. I am greatly indebted to Prof. A. Joseph who posed the problem.
His book ”Quantum groups and their primitive ideals” was the main inspiration of the
present work. I am also grateful to him for reading of the first draft of the manuscript and
for numerous suggestions. I am grateful to V. Hinich for helpful discussions and support.

2. The rings Sw, Šw

2.1. The base field k is assumed to be of characteristic zero and K is an extension of
k(q).

Let g be a semisimple Lie algebra and Uq(g) be the Drinfeld-Jimbo quantization of
U(g) defined for example in [J1], 3.2.9 whose notation we retain. In this Uq(g) is a
K-algebra generated by xi, yi, ti, t

−1
i i = 1, . . . , l where l is the rank of g. Denote

the extension of Uq(g) by the torus Ť of weights ([J1], 3.2.10) by Ǔq(g) . Consider the
subalgebra Uq(n

−) generated by the yi, i = 1, . . . , l ([J1], 3.2.10). By [J1], 10.4.9 Uq(n
−)

admits a structure of a right Uq(g)-module such that:

(1) This module structure is compatible with the algebra structure of Uq(n
−) and the

coproduct on Uq(g) .

(2) Endowed with this Uq(g)-module structure Uq(n
−) is isomorphic to the dual δM(0)

of the Uq(g)-module Verma ( [J1], 5.3) of highest weight zero.

After Lusztig-Soibelman the braid group of g acts on Uq(g) by automorphisms rw
such that if τ(λ) is an element of the torus T and w is the image of w in the Weyl
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group W of g then:

rwτ(λ) = τ(wλ).

Fix an element w of the Weyl group and let w be a representative of w in the braid
group. The automorphism rw acts on the category of Uq(g)-modules by transport of
structure. Denote (δM(0))rw by Sw. As noted in [J1], 10.4.9 the Ť -character of Sw is
given by the formula

chSw = w





∏

β∈∆−

(1− eβ)−1



 =
∏

β∈w∆−

(1− eβ)−1.

Suppose ψ is an automorphism of Uq(g) such that the module (δM(0))ψ has the same

character as Sw. Then the module N = (δM(0))r
−1
w ψ has the same character as δM(0).

Since N is obtained from δM(0) by transport of structure the following property of δM(0)
holds also for N : if v0 is a vector of weight zero and v is a vector of N then v0 belongs
to the submodule generated by v. Hence the dual module δN is generated by a highest
weight vector. Yet it is also has the same character as the Verma module M(0), so δN is

isomorphic to M(0), N is isomorphic to δM(0) and (δM(0))ψ is isomorphic to (δM(0))rw .
Hence the Uq(g)-module Sw depends only on the class w of w in the Weyl group W of
g.

According to [J1], 10.2.9, Sw admits the structure of a Uq(g)-algebra and this further
extends to a Ǔq(g) -algebra structure. Moreover one checks that the Ǔq(g) -algebra struc-
ture on the module Sw is uniquely determined up to a scalar by its module structure
and the requirement that a non-zero vector of weight zero is the identity of the ring (see
also [K], prop. 3.2). The automorphism rw is an algebra automorphism but it does not
preserve the coalgebra structure of Uq(g). Thus one should not expect that the algebras
Sw are isomorphic for different elements w ∈ W . Rather we obtain a collection of
Uq(g)-algebras parametrized by W which are generally distinct. Trying to understand the
possible isomorphisms between them was a main motivation for our present work. Our

results suggest that Sw is isomorphic to Sw
′

iff W
w
⋄W and W

w′

⋄ W are isomorphic as
ordered sets.

2.2. Let w0 be the longest element of the Weyl group. Consider the involution ψ of the
algebra Uq(g) defined by

ψ(xi) = −yi ψ(ti) = t−1
i .

Then by the character formula of 2.1 one has

ch (Sw)ψ = chSww0.

By the reasoning of 2.1 the modules (Sw)ψ and Sww0 are isomorphic and hence are iso-
morphic as algebras. The map ψ is an algebra automorphism and coalgebra antiauto-
morphism. The last implies that the Uq(g)-algebras Sw and (Sw)ψ have opposite algebra
structures. Hence the algebras Sw and Sww0 are opposites.
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2.3. Fix a triangular decomposition g = n−⊕h⊕n+ and let π = {α1, α2, . . . , αl} be the
corresponding set of simple roots. Let Q(π) = Zπ , Q±(π) = ±Nπ , P (π) (resp., P+(π))
be the set of weights (resp., dominant weights) and {ωi}

l
i=1 be the set of fundamental

weights. Define an order relation on P (π) by µ ≥ ν if µ − ν ∈ Q+(π). Let τ be
the isomorphism of the additive group Q(π) to themultiplicative group T defined by
τ(αi) = ti, i = 1, . . . , l. We can extend τ to the isomorphism of P (π) onto Ť .

For each λ ∈ P+(π) let V (λ) be the Uq(g) module with highest weight λ and cλξ,v :
ξ ∈ V (λ)∗, v ∈ V (λ) be the element a 7→ ξ(av) of Uq(g)∗ . Let Rq[G] be the Hopf
subalgebra of Uq(g)∗ generated as a vector space by these elements. By [J1], 9.1.1 Rq[G]
admits a structure of a Uq(g)-bialgebra.

Let uλ be a highest weight vector of V (λ) and V +(λ) denote the subspace of Rq[G]
generated by the cλξ,uλ

: ξ ∈ V (λ)∗ . Then R+ := ⊕λ∈P+(π)V
+(λ) is a subalgebra of

Rq[G] . Moreover R+ is a right Uq(g)-submodule and left T -submodule of Rq[G] . The
left T -action defines a P+(π)-grading on R+. Indeed the weight subspace of weight λ is
just V +(λ) . Hence V +(λ) is invariant with respect to the right action of Uq(g) and the
multiplication satisfies the Cartan multiplication rule:

V +(µ)V +(λ) = V +(λ+ µ).

Let Ω(V +(λ)) denote the set of weights of V +(λ) for the right T -action counted with
their multiplicites. (This is just the set of weights of V (λ)).

For each w ∈W let ξwλ be a vector of the weight wλ in V (λ)∗ viewed as a right Uq(g)
module and write cλξwλ,uλ

(resp., cλξ,uλ
) simply as cλw (resp., cλξ ). The elements cλw are

defined up to scalars. By [J1], 9.1.10 these scalars can be chosen so that cµwc
ν
w = cµ+ν

w for
any µ, ν ∈ P+(π) and cw = {cλw : λ ∈ P+(π)} becomes an Ore set in R+ . Extend cµw to
µ ∈ P (π) through cµ−νw = cµw(cνw)−1 ∀µ, ν ∈ P+(π).

Consider the localized algebra Rw := R+[c−1
w ]; by [J1], 4.3.12 the right action of Uq(g)

extends to Rw. Since each of cλw is homogeneous it follows that the P+(π)-grading on
R+ extends to a P (π)-grading on Rw; again the homogeneous components are invariant
with respect to the right action of Uq(g). It implies that the zero weight subspace Rw

0

of Rw with repsect to the left action of T is a Uq(g)-subalgebra of Rw and as suggested
in [J4], 3.1, it may be viewed as a q-analogue of the algebra of regular functions on the
w-translate of the open Bruhat cell. Since R+ is a domain of finite Gelfand-Kirillov
dimension it admits a skew-field of fractions and this contains the Rw : w ∈ W. Again
c−λw V +(λ) →֒ c−(λ+ν)

w V +(λ+ ν) ∀λ, ν ∈ P+(π). Thus one may write

Rw
0 =

∑

λ∈P+(π)

c−λw V +(λ) ∼= lim
→

λ∈P+(π)

c−λw V +(λ). (1)

This implies that the rings of fractions of Rw
0 coincide for different w.

By [J1], 10.4.8 Sw and Rw
0 are isomorphic as a Uq(g)-algebras.
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Denote by Řw
0 the skew-product of Rw

0 and the fundamental torus Ť through the action
of Ť on Ǔq(g)-module Rw

0 — see 3.2.

2.4. By [J4], 6.4, 6.6, R+ and Sw are left and right noetherian. By [MCR], 2.9 it follows
that Řw

0 is also noetherian.

2.5. Set w = e. Then Se is isomorphic to Uq(n
−) as a Ǔq(g)-algebra. Consider the

subalgebra Ǔq(b
−) of Ǔq(g) which is the skew-product of Uq(n

−) and the fundamental
torus Ť . The algebra Ǔq(b

−) can be also considered as the skew-product of Se and
Ť through the action of Ť on Ǔq(g)-module Se. By [J1], 10.1.11 it follows that the
isomorphism 2.3 of Se ≃ Uq(n

−) with Re
0 extends to an isomorphism of Ǔq(b

−) with Re.

By [J3], Sect.10 the prime and primitive spectra of Ǔq(b
−) take the following form

Spec Ǔq(b
−) =

∐

w∈W

X(w) ,

Prim Ǔq(b
−) =

∐

w∈W

Xmax(w) ,

where each X(w) is the spectrum of some Laurent polynomial ring up to an action of Z
l
2

and all prime ideals are completely prime.

Each X(w) has a unique minimal element Q(w) which has the following nice description
in the notation of 2.3. Fix w ∈ W . For each λ ∈ P+(π) let uwλ ∈ V (λ) be a vector of
the weight wλ . Denote by V +

w (λ)⊥ the orthogonal of the Demazure module V +
w (λ) :=

Uq(b
+)uwλ in V (λ)∗ , the latter identified with V +(λ) . Then [J1], 10.1.8

Q(w) =
∑

λ∈P+(π)

V +
w (λ)⊥.

2.6. An element x of a ring A is called normal if xA = Ax. If A is prime a non-zero
normal element is regular. Each regular normal element determines an automorphism of
the ring sending a ∈ A to the unique element b ∈ A such that xa = bx.

Let A be a ring, x be an element of A and c be a subset of A. Suppose that the multi-
plicative closures of c and {x} are Ore sets in A. In this case we denote the localizations
of the ring A at the corresponding multiplicative closures respectively by A[c−1], A[x−1].

3. two lemmas

3.1. Let S be an algebra graded by a free abelian group H . Then

Lemma. (i) A graded ideal P is prime iff for any homogeneous a, b ∈ S\P there
exists c such that acb 6∈ P .

(ii) Take a prime ideal I of S and let J be a maximal homogeneous ideal contained in
I. Then J is prime.
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Proof. (i) Assume that for any homogeneous a, b ∈ S\P there exists c such that acb 6∈ P .
Take any a′, b′ ∈ S\P . We can assume that none of the homogeneous components of a′

and of b′ belong to I. Fix a lexicographic order on H . Denote by a (resp., b) the minimal
homogeneous component of a′ (resp., b′) with respect to the order. Take c such that
acb 6∈ P . Then ac′b 6∈ P for some homogeneous component c′ of c. Since the minimal
homogeneous component of a′c′b′ is just ac′b, it follows that a′c′b′ 6∈ P so P is prime as
required.

(ii) Observe that J is a linear span of the set of homogeneous elements of I. Take
homogeneous a, b 6∈ J . Then a, b 6∈ I so there exists c such that acb 6∈ I. Hence acb 6∈ J
that, by (i), gives the required assertion.

3.2. Let S be a K-algebra, Ť ∼= Z
l be a torus acting on S by right automorphisms.

Denote the action of t ∈ Ť on s ∈ S by s.t. Define an algebra structure on S ⊗ K[Ť ]
through

(s1 ⊗ t1)(s2 ⊗ t2) = (s1(s2.t
−1
1 )⊗ t1t2).

The vector space S ⊗K[Ť ] endowed with the above algebra structure is called the skew-

product S#Ť . It will be denoted also by Š. Denote by (SpecS)Ť the set of Ť -invariant
prime ideals of S.

Lemma. (i) If I ∈ (SpecS)Ť then J := (I#Ť ) is prime in Š and J ∩ S = I.

(ii) Assume that Ť acts on S by semisimple automorphisms and the set of weights H is
a subset of a free abelian group. If J ∈ Spec Š then I := (J ∩ S) is a prime Ť invariant
ideal of S.

Proof. (i) The algebra Š admits a natural grading by Ť through Št := S ⊗ t. Since J is
graded one can use Lemma 3.1 (i). Take homogeneous a1, a2 ∈ Š\J . Write ai = siti :
si ∈ S, ti ∈ T, i = 1, 2. Then s1, s2 ∈ S\I so s2.t

−1
1 ∈ S\I. Take g ∈ S such that

s1g(s2.t
−1
1 ) 6∈ I. Then a1(g.t1)a2 = s1g(s2.t

−1
1 )t1t2 6∈ J as required. The last part is clear.

(ii) The adjoint action of Ť defines a H grading on Š and on S. Since Ť ⊂ Š each
two-sided ideal of Š is graded so I is also graded. Assume that I is not prime. Then,
by Lemma 3.1, there exist homogeneous a, b ∈ S \ I such that aSb ⊆ I. Then aŠb =
aSŤ b = aSbŤ ⊆ IŤ ⊆ J that contradicts J being prime and completes the proof.

4. some commutation relations in Rw
0

Fix w ∈ W . For a weight vector a ∈ Rw denote by lwt a (resp., rwt a) the weight of a
wrt the left (resp., right) action of T . If L is a subspace of Rw set L|λ = {a ∈ L : lwt a =
λ} , L|µ = {a ∈ L : rwt a = µ}. Given weight vector ξ ∈ V +(λ)|µ it is convenient to write
cλξ,uλ

as cλµ.
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4.1. Let J+
λ (η) (resp., J−

λ (η) ) denote the left ideal of R+ generated by cλη′ with η′ < η

(resp., η′ > η ). In the notation of [J1], 9.1.5 one has J±
λ (η) = J±

λ (η, λ) ∩ R+. By [J1],
9.1.5 J±

λ (η) are two-sided ideals of R+.

The commutative relations [J1], 9.1.5 imply that the following relations hold in R+ :

(i) cνµc
λ
η = q(λ,ν)−(η,µ)cληc

ν
µ mod J+

λ (η)|λ+ν ,

(ii) cληc
ν
µ = q(λ,ν)−(η,µ)cνµc

λ
η mod J−

λ (η)|λ+ν.

4.2. Let J+
λ (η)w (resp., J+

λ (η)w ) denote the left ideal of Rw
0 generated by c−λw cλη′ with

η′ < η (resp., η′ > η ).

Lemma. For any λ, ν ∈ P+(π); µ ∈ Ω(V +(ν)), η ∈ Ω(V +(λ)) one has

(i) c−λ−νw cνµc
λ
η = q(λ,ν)−(η,µ)c−λ−νw cληc

ν
µ mod J+

λ (η)w ,

(ii) c−λ−νw cληc
ν
µ = q(λ,ν)−(η,µ)c−λ−νw cνµc

λ
η mod J−

λ (η)w.

Proof. Consider a ∈ J+
λ (η)|λ+ν . By definition of J+

λ (η) one can write a =
∑

i c
νi

ξi
cλη′

i
, η′i < η

for all i. Since lwt a = λ+ ν one can assume that νi = ν for all i. Therefore

c−λ−νw a =
∑

i

c−λ−νw cνξic
λ
η′

i
=

∑

i

bi(c
−λ
w cλη′

i
), where bi ∈ R

w.

Since lwt (c−λ−νw a) = lwt (c−λw cλη′
i
) = 0 it follows that lwt bi = 0 for all i so bi ∈ R

w
0 .

Consequently c−λ−νw J+
λ (η)|λ+ν ⊆ J+

λ (η)w and similarly c−λ−νw J−
λ (η)|λ+ν ⊆ J−

λ (η)w.
Multiply relations (i), (ii) of 4.1 on c−λ−νw . Then the inclusions above give the relations
(i), (ii).

4.3. For ν ∈ P (π) consider the inner automorphism φνw of Rw: a 7→ c−νw acνw. Since φνw
preserves both left and right weight subspaces its restriction on Rw

0 gives an automorphism
φνw of Rw

0 which preserves the right weight subspaces. Set Φw = {φνw | ν ∈ P (π)}.

From [J1], 9.1.4(i), 10.1.11(ii) it follows that for weight vector a ∈ Rw
0 one has acνe =

q(ν,rwt a)cνea, ac
ν
w0

= q(−w0ν,rwt a)cνw0
a. This implies that c−νw cνe , c

−ν
w cνw0

are normal elements
of Rw

0 for all ν ∈ P+(π).

Take µ = wν. Then Lemma 4.2 gives

(i) φνw
(

c−λw cλη
)

= q(wν,η−wλ)c−λw cλη mod J+
λ (η)w,

Moreover J+
ν (µ)w is Φw-invariant.

(ii) φνw
(

c−λw cλη
)

= q−(wν,η−wλ)c−λw cλη mod J−
λ (η)w.

Moreover J−
ν (µ)w is Φw-invariant.
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Let us show that the J±
λ (η)w are two-sided ideals. Take (c−λw cλη′) with η′ < η. As

noted in the proof of Lemma 4.2 one has c−λ−νw J+
λ (η)|λ+ν ⊆ J+

λ (η)w for any ν ∈ P+(π).

Then c−λ−µw cλη′c
ν
µ ∈ J

+
λ (η)w. Therefore c−λw cλη′c

ν
µc

−ν
w = φ−ν

w

(

c−λ−µw cλη′c
ν
µ

)

∈ J+
λ (η)w. Since

the elements cνµc
−ν
w generate Rw

0 it follows that J+
λ (η)w is a two-sided ideal of Rw

0 . The

same reasoning applies to J−
λ (η)w .

Since the J±
λ (η)w are two-sided Φw-invariant ideals and the cλw : λ ∈ P (π) generate

Rw over Rw
0 it follows that RwJ±

λ (η)w = J±
λ (η)wR

w and RwJ±
λ (η)wR

w ∩Rw
0 = J±

λ (η)w.

4.4. Lemma. For any λ, ν ∈ P+(π); µ ∈ Ω(V +(ν)), η ∈ Ω(V +(λ)) one has

(i) (c−νw cνµ)(c
−λ
w cλη) = q(λ,ν)−(µ,wλ)c−λ−νw cνµc

λ
η mod J+

ν (µ)w,

(ii) (c−νw cνµ)(c
−λ
w cλη) = q(µ,η−wλ)φνw

(

c−λw cλη
)

(c−νw cνµ) mod J+
ν (µ)w,

(iii) (c−νw cνµ)(c
−λ
w cλη) = q−(λ,ν)+(µ,wλ)c−λ−νw cνµc

λ
η mod J−

ν (µ)w,

(iv) (c−νw cνµ)(c
−λ
w cλη) = q−(µ,η−wλ)φνw

(

c−λw cλη
)

(c−νw cνµ) mod J−
ν (µ)w.

Proof. (i) By 4.3 c−λw J+
ν (µ)wc

λ
η ⊆ J+

ν (µ)w . Therefore, by 4.3(i), one has

(c−νw cνµ)c
−λ
w cλη = c−λw φ−λ

w (c−νw cνµ)c
λ
η = q(λ,ν)−(µ,wλ)c−λ−νw cνµc

λ
η mod J+

ν (µ)w.

The proof of (iii) is similar.

By Lemma 4.2(i) one has c−λ−νw cνµc
λ
η = q−(ν,λ)+(µ,η)c−λ−νw cληc

ν
µ mod J+

ν (µ)w .

Taking into account the relation above the formula (i) takes the form

(c−νw cνµ)(c
−λ
w cλη) = q(λ,ν)−(µ,wλ)c−λ−νw cνµc

λ
η = q(µ,η)−(wλ,µ)c−λ−νw cληc

ν
µ =

q(µ,η−wλ)φνw
(

c−λw cλη
)

(c−νw cνµ) mod J+
ν (µ)w.

The proof of (ii) is similar.

5. spectral decomposition of R+, Řw
0 , R

w
0 .

5.1. The following construction is similar to [J1], 9.3.8.

Fix P ∈ SpecRw
0 or P ∈ Spec Řw

0 . For each ν ∈ P+(π) set

CP (ν) := {µ ∈ Ω(V (ν)) | ∃ξ ∈ V (ν)∗|µ : (c−νw cνξ ) 6∈ P}.

Obviously wν ∈ CP (ν). Denote by D+
P (ν) (resp., D−

P (ν)) the set of minimal (resp., maxi-
mal) elements of CP (ν).

Fix µ ∈ D+
P (ν), a = (c−νw cνµ) 6∈ P. Then J+

ν (µ)w ⊆ P so, by 4.4(ii), one has

a(c−λw cλη) = q(µ,η−wλ)φνw(c−λw cλη)a mod P.
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Thus for homogeneous b ∈ Rw
0 one has

ab = q(µ,rwt b)φνw(b)a mod P.

Thus a is a normal element modulo P and hence a non-zero divisor. It follows that if
b is homogeneous and b ∈ P then φνw(b) ∈ P. Thus we have proved the

Lemma. Any Ť invariant prime ideal of Rw
0 is Φw invariant.

5.2. Let P++ be a set of regular dominant weights. Set

R++ :=
∑

ν∈P++

V +(ν),

Spec+R
+ := {P ∈ SpecR+ : R++ 6⊆ P}.

In this subsection we will define a decomposition of Spec+R
+.

5.2.1. Fix P ∈ Spec+R
+. Similar to 5.1 for each ν ∈ P+(π) set

CP (ν) := {µ ∈ Ω(V (ν))| ∃ξ ∈ V (ν)∗|µ : cνξ 6∈ P}.

Since R++ 6⊆ P it follows that CP (ν) 6= ∅ for all ν ∈ P+(π). Denote by D+
P (ν) (resp.,

D−
P (ν)) the set of minimal (resp., maximal) elements of CP (ν). The reasoning in [J1],

9.3.8 shows that there exists y± ∈ W such that D±
P (ν) = {y±ν}. Denote by X(y−, y+)

the set of all P ∈ Spec+R
+ such that D−

P (ν) = {y−ν}, D+
P (ν) = {y+ν}. Since any

P ∈ X(y−, y+) contains J±
ν (y±ν) for all ν ∈ P+(π), the relations 4.1 imply that cνy−, c

ν
y+

are normal modulo P .

5.2.2. Lemma. Take P ∈ Spec+R
+. Then for all µ ∈ P (π) a subspace P ∩ R+|µ

(resp., P ∩R+|µ) is graded wrt the right (resp., left) action of T .

Proof. It is sufficient to check that for all a ∈ (P ∩ R+|µ) (resp., a ∈ (P ∩ R+|µ)) one
has a.T ⊂ P (resp., T.a ⊂ P ). Take y ∈ W such that D+

P (ν) = {yν}. Since cνy is normal

modulo P we conclude from 4.1(i) that for any weight vector cλη and any ν ∈ P (π) one
has

cλη = q(λ,ν)−(η,yν)cλη = τ(ν).cλη .τ(yν) mod P.

Hence a = τ(ν).a.τ(yν) modulo P for all a ∈ R+, ν ∈ P (π). If a ∈ (P ∩ R+|µ) then
τ(ν).a = q(µ,ν)a so a.τ(yν) ∈ P . Similarly if a ∈ (P ∩R+|µ) then τ(ν).a ∈ P . This implies
the required assertion.

Remark. The Lemma implies that the set of prime ideals of R+ which are invariant
wrt the left action of T coincides with the set of primes which are invariant wrt the right
action of T . Therefore the same assertion holds for the ring Rw. We will denote the
corresponding sets of invariant ideals by (Spec+R

+)T , (SpecRw)T .
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5.2.3. Fix y ∈ W. Denote by V ±
y (λ)⊥ the orthogonal of the Demazure module V ±

y (λ) :=
Uq(b

±)uyλ in V (λ)∗ , the latter identified with V +(λ) . Set

Q(y)± :=
∑

λ∈P+(π)

V ±
y (λ)⊥.

Observe that Q(y)± ⊇ J±
ν (y±ν) for all ν ∈ P+(π) so cνy is normal modulo Q(y)±. Observe

also that cw ∩Q(y)+ = ∅ (resp., cw ∩Q(y)− = ∅) if w ≤ y (resp., w ≥ y).

By [J1], 10.1.8 Q(y)+ is a completely prime ideal of R+ (but note a slight difference of
notation). A similar assertion holds for Q(y)−. The reasoning in [J1], 10.1.13 shows that

Proposition. Every P ∈ X(y1, y2) contains Q(y1)
−, Q(y2)

+.

In particular, Q(y2)
+ (resp., Q(y1)

− ) is a unique minimal element of X(e, y2) (resp.,
X(y1, w0) ).

5.2.4. The following lemma is a particular case of [J2], 5

Lemma. Let P ∈ X(y1, y2), c
λ
y 6∈ P for some λ ∈ P++ , y ∈W. Then y1 ≤ y ≤ y2.

Proof. By Proposition 5.2.3 Q(y2)
+ ⊆ P so cλy 6∈ Q(y2)

+. The definition of Q(y2)
+

implies that uyλ ∈ V +
y2

(λ) so V +
y (λ) ⊆ V +

y2
(λ). By [J1], 4.4.5 it follows that y ≤ y2.

Similarly y1 ≤ y.

In particular, by the definition of X(y1, y2) , if P ∈ X(y1, y2) then cλy1 6∈ P . Therefore
y1 ≤ y2. Set

W ⋄W := {(y1, y2) ∈W ×W | y1 ≤ y2}.

Corollary.

Spec+R
+ =

∐

(y1,y2)∈W⋄W

X(y1, y2).

Remark. It will be shown that each X(y1, y2) is non-empty.

5.3. In this subsection we will define decompositions of Spec Řw
0 , SpecRw

0 which are
similar to the above decomposition of Spec+R

+.

5.3.1. In order to relate Spec+R
+ and (SpecRw

0 )Ť recall that we have embeddings

R+ lw
→֒ Rw ρ0

←֓ Rw
0 (2)

where ρ0 is the obvious embedding and lw is the localization map. For a two-sided ideal
I of R+ (resp., of Rw

0 ) denote the ideal Rwlw(I)Rw (resp., Rwρ0(I)R
w ) of the ring Rw

by I l (resp., by Iρ).

Let us show that the correspondence I 7→ Iρ defines an order preserving injective map

ρ : (SpecRw
0 )Ť → (SpecRw)T .
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In fact, the torus {cνw}ν∈P (π) acts on Rw
0 by automorphisms {φνw} and Rw = Rw

0 #{cw}.

Let P be a Ť invariant prime ideal of Rw
0 . Then, by Lemma 5.1, P is Φw invariant.

Then P ρ = (P#{cw}) is prime by Lemma 3.2(i) and is obviously T invariant. Moreover,

P ρ ∩Rw
0 = P. This gives an order preserving injection of (SpecRw

0 )Ť into (SpecRw)T .

Furthermore, by [J1], A.2.8 and the noetherianity of R+ (2.4), lw induces an order
preserving bijection P 7→ P l (with inverse Q 7→ Q ∩ R+ ) of Specw R

+ := {P ∈
SpecR+| P ∩ cw = ∅} onto SpecRw. Since this bijection maps T invariant prime ideals

to T invariant prime ideals, it induces an order preserving injection of (SpecRw
0 )Ť into

(Specw R
+)T . We may summarize the above by the following diagram:

(Specw R
+)T

∼
→ (SpecRw)T

ρ
←֓ (SpecRw

0 ) (3)

Remark. Let Q ∈ Specw R
+ be a T invariant completely prime ideal. Then

Qw := Ql ∩ Rw
0 =

∑

λ∈P+(π)

c−λw (Q ∩ V +(λ)).

is a Ť invariant completely prime ideal of Rw
0 so, by Lemma 3.2(i), Q̌w := (Qw#Ť ) is a

completely prime ideal of Řw
0 .

5.3.2. Fix P ∈ (SpecRw
0 )Ť and set P ′ = (P ρ ∩ R+).

Since P ρ ∩Rw
0 = P it follows that (c−νw cνξ ) ∈ P iff cνξ ∈ P

′. Therefore J±
ν (µ)w ⊆ P iff

J±
ν (µ) ⊆ P ′. Hence D±

P (ν) = D±
P ′(ν) for all ν ∈ P+(π).

Since P ′ ∈ Specw R
+ ⊂ Spec+R

+ there exist y± ∈ W such that D±
P (ν) = D±

P ′(ν) =
{y±ν}. Since P ′ ∩ cw = ∅, we conclude from Lemma 5.2.4 that y− ≤ w ≤ y+.

5.3.3. Fix P ∈ SpecRw
0 (resp., P ∈ Spec Řw

0 ) and let P ′ be a maximal Ť invariant
ideal contained in P (resp., P ′ = P ∩ Rw

0 ). Then D±
P (ν) = D±

P ′(ν) for all ν ∈ P+(π).

By Lemma 3.2 P ′ ∈ (SpecRw
0 )Ť . Hence D±

P (ν) = {y±ν} for some y± such that y− ≤ w ≤
y+. Set

W
w
⋄W := {(y1, y2)| y1 ≤ w ≤ y2}.

Fix (y1, y2) ∈ W
w
⋄ W and let Xw(y1, y2) (resp., Yw(y1, y2)) denote the set of all

P ∈ Spec Řw
0 (resp., P ∈ SpecRw

0 ) such that D−
P (ν) = {y1ν}, D

+
P (ν) = {y2ν} for all

ν ∈ P+(π). We summarize the results above by the

Proposition.

(i) Spec Řw
0 =

∐

(y1,y2)∈W
w
⋄W

Xw(y1, y2).

(ii) SpecRw
0 =

∐

(y1,y2)∈W
w
⋄W

Yw(y1, y2).
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6. the study of the strata

The goal of this section is to show that for each (y1, y2) ∈ W ⋄ W the component
X(y1, y2) of SpecR+ has a unique minimal element Q(y1, y2). Moreover for y1 ≤ w ≤ y2

the ideals Q(y1, y2)w, Q̌(y1, y2)w (notations of Remark 5.3.1) are unique minimals of
Yw(y1, y2), Xw(y1, y2) respectively.

6.1. Notations.

6.1.1. Set U := Uq(g). For i = 1, . . . , l set ϕi(a) := max{n : a.yni 6= 0} (resp.,
εi(a) := max{n : a.xni 6= 0}) for all a ∈ R+ non-zero; also set ϕi(0) := 0, εi(0) := 0. Note
that

ϕi(ab) = ϕi(a) + ϕi(b) for non-zero a,b,

(αi, rwt a) = ϕi(a)− εi(a) for any weight vector a.

Let a ∈ R+ be a non-zero weight vector. Define a.y∗i := a.y
ϕi(a)
i (resp., a.x∗i :=

a.x
εi(a)
i ). Furthermore for a fixed reduced decomposition w = si1 . . . sir (resp., ww0 =

sj1 . . . sjp ) set a.y∗w := a.y∗i1 . . . y
∗
ir

(resp., a.x∗w := a.x∗j1 . . . x
∗
jp

).

Recall that V +(ν) ∼= V (ν)∗ as right U modules for all ν ∈ P+(π). In particular V +(ν)
has highest weight ν and the corresponding highest weight vector is annihilated by the
yi : i = 1, . . . , l rather than by the xi. Moreover εi(c

ν
w) = 0 (resp., ϕi(c

ν
w) = 0) if

siw < w (resp., if siw > w). It implies that cνw.y
∗
w = cνe , cνw.x

∗
w = cνw0

up to non-zero
scalars.

Fix i ∈ {1, . . . , l}. Suppose a, b are weight vectors and set ϕi(a) = n, εi(a) =
n′, ϕi(b) = m, εi(b) = m′. Since

△(yi) = yi ⊗ 1 + ti ⊗ yi, △(xi) = xi ⊗ t
−1
i + 1⊗ xi

it follows that there exist P n
m+n ∈ K

∗ such that P n
m+n = Pm

m+n and

(ab).y∗i = P n
m+nq

(mαi,rwta)(a.y∗i )(b.y
∗
i ) , (ab).x∗i = P n′

m′+n′q−(n′αi,rwt b)(a.x∗i )(b.x
∗
i ).

6.1.2. Fix w ∈W . Using notations of 5.2.3 set

Q(y)±w :=
∑

ν∈P+(π)

c−νw V ±
y (ν)⊥.

The ideal Q(y)+
w (resp., Q(y)−w) does not coincide with whole Rw

0 iff y ≥ w (resp., y ≤ w);
in this case, by Remark 5.3.1, it is a Ť invariant completely prime ideal of Rw

0 .

Recall that φνw : a 7→ c−νw acνw is an automorphism of Rw and of Rw
0 . By Lemma 5.1

Q(y)±w are Φw invariant.

6.1.3. Definition. Fix w ∈W . For η ∈ wQ−(π) call λ ∈ P+(π) sufficiently large for
η if the natural embedding c−λw V (λ)+|wλ+η →֒ Rw

0 |η is bijective. Since dimRw
0 |η < ∞

the existence of such λ follows from (1).
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6.2. Lemma. Take η ∈ wQ−(π) and choose λ sufficiently large for η. Then
V +(λ)|wλ+η is Φw invariant.

Proof. Identify the vector spaces Rw
0 |η and V +(λ)|wλ+η through the map a 7→ cλwa.

An automorphism φνw leaves Rw
0 |η invariant. Then for any a ∈ Rw

0 |η one has

φνw(cλwa) = c−νw (cλwa)c
ν
w = cλwφ

ν
w(a) ∈ cλwR

w
0 |η = V +(λ)|wλ+η.

Remark. Actually we showed that the bijection between Rw
0 |η and V +(λ)|wλ+η com-

mutes with the action of Φw.

6.3. Fix η ∈ wQ−(π) and choose λ sufficiently large for η. Let us show that the
eigenvalues of φνw on Rw

0 |η are some integer powers of q. For this we will identify Rw
0 |η

with V +(λ)|wλ+η and will study the change of the eigenvalues when we pass from φνw to
φνsiw

.

Let K be the algebraic closure of K. Set V
+
(λ) = V +(λ)⊗K K.

6.3.1. Lemma. Fix ν, λ ∈ P+(π). Suppose cλξ ∈ V
+
(λ) is a weight vector such that

(a) (φνw)m(cλξ ) ∈ V
+
(λ) for all m ∈ N,

(b) (φνw − s · id)r(cλξ ) = 0 for some s ∈ K, r ∈ N.

Then

(i) If i ∈ {1, . . . , l} is such that siw < w then

(φνsiw
)m(cλξ .y

∗
i ) ∈ V

+
(λ) for all m ∈ N and

(φνsiw
− s′ · id)r(cλξ .y

∗
i ) = 0 where s′ = s · q(rwt ξ,wν)−(rwt (ξ.y∗

i
),siwν).

(ii) If i ∈ {1, . . . , l} is such that siw > w then

(φνsiw
)m(cλξ .x

∗
i ) ∈ V

+
(λ) for all m ∈ N and

(φνsiw
− s′ · id)r(cλξ .x

∗
i ) = 0 where s′ = s · q−(rwt ξ,wν)+(rwt (ξ.x∗

i
),siwν).

Proof. We prove (i) by induction on the nilpotence degree r. Fix i and set ϕ := ϕi, y :=
yi, m := ϕ(cνw). Since siw < w it follows from 6.1.1 that cνw.y

m = cνsiw
up to a non-zero

scalar.
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Set cλξ1 := (φνw − s · id)(cλξ ). Then (φνw − s · id)r−1(cλξ1) = 0 and also (φνw)m(cλξ ) ∈

V
+
(λ) for all

m ∈ N. One has φνw(cλξ ) = scλξ + cλξ1 or, in other words,

cλξ c
ν
w = scνwc

λ
ξ + cνwc

λ
ξ1
. (4)

If r = 1 then ξ1 = 0 otherwise rwt ξ = rwt ξ1.

Set n := ϕ(cλξ ), n1 := ϕ(cλξ1). Then ϕ(cλξ c
ν
w) = m + n, ϕ(cλξ1c

ν
w) = m + n1. From the

formula (4) it follows that m+ n1 ≤ m+ n. Therefore n1 ≤ n.

Act by ym+n on the both sides of (4). Applying 6.1.1 we get

q(mα,rwt ξ)(cλξ .y
∗)cνsiw

= q(nα,wν)(scνsiw
(cλξ .y

∗) + cνsiw
(cλξ1 .y

n)). (5)

Note that

(rwt ξ, wν)− (rwt (ξ.y∗i ), siwν) = (rwt ξ, wν)− (rwt ξ + nα,wν +mα) =

−(nα, siwν)− (mα, rwt ξ) = (nα,wν)− (mα, rwt ξ).

Therefore from the formula (5) it follows that

(φνsiw
− s′ · id)(cλξ .y

∗) = (s′/s)cλξ1.y
n. (6)

Since ξ1 = 0 for r = 1, the assertion for this case immediately follows from (6).

Suppose n1 < n. Then cλξ1 .y
n = 0 so the assertion holds. Finally, if n1 = n then

cλξ1 .y
n = cλξ1.y

∗ and rwt (ξ1.y
∗) = rwt (ξ.y∗). The induction hypothesis implies that

(φνsiw
− s′ · id)r−1(cλξ1.y

∗) = 0, (φνsiw
)m(cλξ1 .y

∗) ∈ V
+
(λ) for all m ∈ N.

taking into account (6) we get the required assertion. The proof of (ii) is completely
similar.

6.3.2. By [J1], 9.1.4(i), 10.1.11(ii) one has

c−νe cλµc
ν
e = q(ν,µ−λ)cλµ, c−νw0

cλµc
ν
w0

= q−(w0ν,µ−w0λ))cλµ.

So all eigenvalues of the automorphisms φνe , φ
ν
w0

are integer powers of q.Then from Lemma 6.3.1
it follows, by induction, that for any w ∈ W all eigenvalues of the automorphisms φνw
are integer powers of q.

6.4. Since all eigenvalues of the system of automorphisms Φw are integer powers of q
it follows that for each common eigenvector a ∈ Rw there exists µ ∈ Q(π) such that
φνw(a) = q(µ,ν)a. This element µ ∈ Q(π) will be called eigenvalue of Φw. From this we
make the

Definition. For a ∈ Rw set wtw a := µ ∈ Q(π) if ∀ ν ∃ r ∈ N : (φνw−q
(µ,ν) id)ra =

0.
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6.4.1. Suppose a ∈ R+ is homogeneous and wtw a is defined. Then by Lemma 6.3.1
wtsiw(a.y∗i ) (resp., wtsiw(a.x∗i )) is defined for siw < w (resp., siw > w) and satisfies to
the following relations:

{

wtw a + w−1 rwt a = wtsiw(a.y∗i ) + (siw)−1 rwt(a.y∗i ) if siw < w
wtw a− w

−1 rwt a = wtsiw(a.x∗i )− (siw)−1 rwt(a.x∗i ) if siw > w

By induction for any reduced decomposition of w (resp., ww0)

wtw a+w
−1 rwt a = wte(a.y

∗
w)+rwt(a.y∗w), wtw a−w

−1 rwt a = wtw0
(a.x∗w)−w0 rwt(a.x∗w).

The relations 6.3.2 imply that

wte c
λ
ξ = rwt (c−λe cλξ ), wtw0

cλξ = −w0 rwt (c−λw0
cλξ ).

Hence one has the

Proposition. Take a weight vector cλξ such that wtw c
λ
ξ is defined. Then

wtw c
λ
ξ+w

−1 rwt (c−λw cλξ ) = 2 rwt (c−λe cλξ.y∗w), wtw c
λ
ξ−w

−1 rwt (c−λw cλξ ) = −2w0 rwt (c−λw0
cλξ.x∗w).

Consider a ∈ Rw
0 |η such that wtw a is defined. Note that wtw a = wtw(cλwa) for all

λ ∈ P (π). Choose λ sufficiently large for η (Definition 6.1.3) and set cλξ := cλwa. Then
from the proposition above we get that

(wtw a + w−1η) = 2 rwt (c−λe cλξ.y∗w) ∈ 2Q−(π)
(wtw a− w

−1η) = −2w0 rwt (c−λw0
cλξ.x∗w) ∈ 2Q+(π)

}

=⇒ w−1η ≤ wtw a ≤ −w
−1η.

(7)

Note that w−1η ∈ Q−(π).

6.5. Fix w ∈ W . Consider a twisted system of automorphisms Φ̃w := {φ̃νw} of Rw
0 given

by

a 7→ q(w−1 rwt a,ν)φνw(a), on any weight vector a.

Since J+
ν (wν)w ⊂ Q(w)+

w for any ν ∈ P+(π), we conclude from Lemma 4.2(i) that for
any weight vector a ∈ Rw

0 one has φνw(a) = q(ν,−w−1 rwt a)a mod Q(w)+
w . Therefore

φ̃νw(a) = a mod Q(w)+
w for all a ∈ Rw

0 . (8)

For each µ ∈ Q(π) denote by L(w, µ)|η the maximal subspace of Rw
0 |η on which all the

endomorphisms (φ̃νw − q(ν,µ) id) , ν ∈ P (π) act nilpotently. Set L(w, µ) := ⊕
η
L(w, µ)|η.

One has

L(w, µ) =
∑

{a ∈ Rw
0 | wtw a = µ− w−1 rwt a}. (9)

Then (7) implies that
Rw

0 = ⊕
µ∈2Q−

L(w, µ).
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Observe that L(w, µ)L(w, ν) ⊆ L(w, µ+ν) so L(w, 0) is a subalgebra of Rw
0 . Set L′(w) :=

⊕
µ6=0

L(w, µ).

6.5.1. Lemma. (i) One has Q(w)+
w = L′(w). In particular Rw

0 = L(w, 0)⊕Q(w)+
w.

(ii) Take a weight vector cλξ such that wtw c
λ
ξ is defined. Then

cλξ ∈ Q(w)+ ⇐⇒ wtw c
λ
ξ + w−1ξ − λ 6= 0.

Proof. (i) Fix µ 6= 0 and ν ∈ P+(π) such that (ν, µ) 6= 0. Take a ∈ L(w, µ). Since

(φ̃νw− q
(ν,µ) id)r(a) = 0 for some r ∈ N, we conclude from the formula (8) that a ∈ Q(w)+

w.
Hence L′(w) ⊆ Q(w)+

w.

Now suppose that Q(w)+
w 6⊆ L′(w). The formula (8) implies that Q(w)+

w is Φ̃w invariant.
Then there exists a weight vector a ∈ Q(w)+

w such that a ∈ L(w, 0). Since each automor-

phism φ̃ωi
w acts on L(w, 0) nilpotently one can assume that a is an eigenvector that is

φ̃νw(a) = a for all ν ∈ P (π). Choose λ sufficiently large for rwt a and write a = c−λw cλξ .

From Proposition 6.4.1 and the definition of φ̃νw we conclude that rwt(c−λe cλξ.y∗w) = 0

and so cλξ.y∗w = cλλ up to a non-zero scalar. Therefore

0 6= ξ.y∗w(vλ) = ξ.(yn1

i1
. . . ynr

ir
)(vλ) = ξ(yn1

i1
. . . ynr

ir
vλ).

By [J1], 4.4.6 (yn1

i1
. . . ynr

ir vλ) ∈ V
+
w (λ) so ξ(Vw(λ)+) 6= 0.

However a = c−λw cλξ ∈ Q(w)+
w that is cλξ ∈ Q(w)+. Hence ξ(Vw(λ)+) = 0 giving the

required contradiction.

(ii) Recall that cλξ ∈ Q(w)+ iff c−λw cλξ ∈ Q(w)+
w. Then (i) and (9) imply the required

assertion.

Remark. The lemma above and the formula (8) imply that φ̃νw(a) = a for all ν ∈ P+(π)
iff a ∈ L(w, 0).

6.6. Lemma. Q(y, w)w := Q(w)+
w +Q(y)−w is a completely prime ideal of Rw

0 for all
y ≤ w.

Proof. By Lemma 5.1 Q(y)−w is Φw invariant so Φ̃w invariant. By Lemma 6.5.1(i) L′(w) =
Q(w)+

w therefore

Q(y, w)w = L′(w)⊕ (L(w, 0) ∩Q(y)−w).

Consequently,

Rw
0 /Q(y, w)w = (L(w, 0)⊕ L′)/

(

(L(w, 0) ∩Q(y)−w)⊕ L′
)

∼= L(w, 0)/(L(w, 0) ∩Q(y)−w).
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To show that L(w, 0)/(L(w, 0) ∩ Q(y)−w) is a domain, observe that, by 6.1.2, Q(y)−w
is a completely prime ideal of Rw

0 . Since L(w, 0) is a subalgebra of Rw
0 it follows that

(L(w, 0) ∩Q(y)−w) is a completely prime ideal of L(w, 0).

6.6.1. Similar to 6.5 one can consider a twisted system of automorphisms {φ̃νw} of

Rw
0 given by a 7→ q−(w−1 rwta,ν)φνw(a), on any weight vector a. Then reasoning similar

to 6.5.1— 6.6 shows that Q(w, y)w is a completely prime ideal of the ring Rw
0 for all

y ≥ w.

6.7. Fix (y, w) ∈ W ⋄W . By 5.2.3 every P ∈ X(y, w) contains Q̃(y, w) := (Q(y)− +
Q(w)+). The ideal Q̃(y, w) is not in general prime. We describe now an operation which,

being applied to Q̃(y, w), gives a prime ideal.

Recall that for all z ∈ W the set cz is an Ore set in R+. Let I be a two-sided ideal in
R+ such that I ∩ cz = ∅. We define the saturation of I along cz by the formula

I : cz = Ker
(

R+ → (R+/I)[c−1
z ]

)

.

For all ν ∈ P+(π) the cνw is normal modulo Q̃(y, w) and modulo any P ∈ X(y, w).
Therefore P : cw = P . Since the saturation along cw preserves the inclusion relation of
ideals, it follows that P ⊇ Q̃(y, w) : cw for all P ∈ X(y, w). Set

Q(y, w) := Q̃(y, w) : cw = {a ∈ R+| ∃λ ∈ P+(π) s.t. cλwa ∈ Q(y)− +Q(w)+}.

Therefore Q(y, w) = RwQ(y, w)w ∩ R
+. By Lemma 6.6 Q(y, w)w is a Ť invariant com-

pletely prime ideal of Rw
0 . By 5.3.1 this implies that Q(y, w) is a T invariant completely

prime ideal of R+.

6.8. Proposition. The T invariant completely prime ideal Q(y, w) of R+ is the
unique minimal element of X(y, w) for all (y, w) ∈W ⋄W.

Proof. By 6.7 any P ∈ X(y, w) contains Q(y, w), which is a T invariant completely prime
ideal of R+. Therefore it is sufficient to show that Q(y, w) ∈ X(y, w).

Recall that

Q(y, w) = {a ∈ R+| ∃λ ∈ P+(π) s.t. cλwa ∈ Q(y)− +Q(w)+}.

Since cw ∩ Q(y, w) = ∅ , it suffices to check that cνy 6∈ Q(y, w) for all ν ∈ P+(π). We
prove this by induction. Namely, from the pair (y, w) ∈W ⋄W such that cνy ∈ Q(y, w)
we will construct a pair (siy, w

′) ∈ W ⋄W such that siy > y and cνsiy
∈ Q(siy, w

′).
Note that (w0, z) ∈ W ⋄W forces z = w0. Since cνw0

6∈ Q(w0, w0) we will thus obtain a
contradiction. The required assertion is proved in 6.8.1— 6.8.5 below.
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6.8.1. Suppose that there exists ν ∈ P+(π) such that cνy ∈ Q(y, w). Then c−νw cνy ∈
Q(y, w)w. Set η := (yν − wν). By 6.5 and the proof of Lemma 6.6 one can write

c−νw cνy =
m

∑

j=0

bj , (10)

where the bj are weight vectors of the weight η, the values wtw bj are defined and pairwise
distinct, b0 ∈ L(w, 0) ∩Q(y)−w and bj ∈ Q(w)+

w for j = 1, . . . , m.

Choose µ sufficiently large for η (see Definition 6.1.3) such that µ > ν and set λ := µ−ν.
For i = 0, . . . , m set fi := cµwbi. Then multiplying the relation (10) by cµw we get

cλwc
ν
y =

m
∑

j=0

fj, (11)

where the fj are weight vectors of the weight wλ+yν, f0 ∈ Q(y)− and fj ∈ Q(w)+ for j =
1, . . . , m. Note that wtw fi = wtw bi.

6.8.2. Fix i such that siy > y. Then k[xi]V
−
siy

(µ) = V −
y (µ), so f0 ∈ Q(y)− implies

f0.x
r
i ∈ Q(siy)

− for any r ∈ N. Set x = xi, εi = ε.

6.8.3. Assume that siw < w.

Since Q(w)+ is Uq(n
+) invariant the relation (11) implies that (cλwc

ν
y).x

∗ ∈ Q(siy)
− +

Q(w)+ . Since cλwc
ν
siy

= (cλwc
ν
y).x

∗ up to a non-zero scalar it follows that cλwc
ν
siy
∈

Q(siy)
− +Q(w)+ .

6.8.4. Assume that siw > w. Then up to a non-zero scalar one has

cλsiw
cνsiy

= (cλwc
ν
y).x

∗ =
m

∑

j=0

fj .x
n, for some n ∈ N. (12)

Let us check, using Lemma 6.5.1(ii), that fj .x
n ∈ Q(siw)+ for j = 1, . . . , m. Then,

by 6.8.2, it implies that
cλsiw

cνsiy
∈ Q(siy)

− +Q(siw)+.

For a ∈ R+, z = w or z = siw we set qz(a) := wtz a + z−1 rwt a − lwt a provided the
right-hand side is defined. If q(a) is defined then, by Lemma 6.5.1(ii), a ∈ Q(z)+ iff
qz(a) 6= 0. By 6.4.1 wtsiw(fj .x

∗) is defined and

wtw fj − w
−1 rwt fj = wtsiw(fj .x

∗)− (siw)−1 rwt(fj .x
∗). (13)

Since lwt(fj .x
∗) = lwt fj this implies that

qsiw(fj .x
∗)− qw(fj) = 2((siw)−1 rwt(fj .x

∗)− w−1 rwt fj).

Assume that fj.x
n = fj .x

∗ for some j 6= 0. Then

(siw)−1 rwt(fj .x
∗)− w−1 rwt fj = (siw)−1 rwt(cλsiw

cνsiy
)− w−1 rwt(cλwc

ν
y) = 0

so qsiw(fj.x
∗) = qw(fj). Since fj ∈ Q(w)+ it follows that fj .x

∗ ∈ Q(siw)+.
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Now let us show that fj .x
n 6= 0 iff fj.x

n = fj .x
∗. Observe that, by 6.8.1, the values

wtw fj are pairwise distinct for j = 0, . . .m so the left-hand sides of the equality (13) are
also pairwise distinct for j = 0, . . .m. This implies that the elements {fj.x

∗}mj=0 are
linearly independent. Set n′ := max0≤j≤m ε(fj). Then

(cλwc
ν
y).x

n′

=
m

∑

j=0

fj.x
n′

=
∑

j:ε(fj)=n′

fj .x
∗ 6= 0.

Compairing with the relation (12) we get n′ = n and fj .x
n 6= 0 iff fj .x

n = fj.x
∗ as

required.

6.8.5. Set si ⋆ w = max(siw,w). Since y ≤ w it follows ([J1], A.1.7) that siy ≤ si ⋆ w.

Recall our assumption that cλwc
ν
y ∈ Q(y)− + Q(w)+ for some pair (y, w) : y ≤ w.

Suppose y 6= w0 so there exists i such that siy > y. Then we conclude by 6.8.3, 6.8.4
that

cλsi⋆w
cνsiy
∈ Q(siy)

− +Q(si ⋆ w)+ ,

so the assumption holds for the pair (siy, si ⋆ w), where y < siy ≤ si ⋆ w. By induction
the assumption holds for the pair (w0, w0) : cλw0

cνw0
∈ (Q(w0)

− +Q(w0)
+).

However Q(w0)
+ = (0), cw0

∩Q(w0)
− = ∅. Hence cλw0

cνw0
6∈ (Q(w0)

− +Q(w0)
+) which

gives a contradiction.

Remark. Using 6.6.1 we could prove equally that the ideal Q(y, w)′ := Q̃(y, w) : cy is
the unique minimal element of the component X(y, w). Therefore Q(y, w) = Q(y, w)′.

6.9. Example. The present example illustrates that in general

Q(sα, sαsβ) 6= Q(sα)
− +Q(sαsβ)

+.

Put g = sl3.The diagrams below show the intersection of prime idealsQ = Q(sα)
−, Q(sαsβ)

+

of the ring R+ with the right modules V = V +(ωα), V
+(ωβ), V

+(ωα+ωβ) = V +(α+β).

Observe that V +(α+ β)|0 is two dimensional. It is spanned by a vector c1 orthogonal
to the zero weight vector in Uq(b

−)usα(α+β) and a vector c2 orthogonal to the zero weight
vector in Uq(b

+)usαsβ(α+β) , where usα(α+β) , usαsβ(α+β) are the extreme weight vectors of
V +(α+ β) of the corresponding weights.

In the diagram describing the pair Q, V we mark with black colour the weight vectors
of V belonging to Q ∩ V .

The ideal Q(sα)
−.
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V +(ωα)

❞

❞

t

c
ωα
w0

c
ωα
sα

c
ωα
e

V +(ωβ)

❞

❞

❞

c
ωβ
w0

c
ωβ
sβ

c
ωβ
e

V +(α + β)

❞

❞

❞

t❞

❞

t

t

c
α+β
w0

c
α+β
sβsα

c
α+β
sαsβ

c1c2

c
α+β
sα

c
α+β
sβ

c
α+β
e

�
�

��

◗
◗
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✡
✡

❅
❅
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❏
❏

❏
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✑

✑✑

❅
❅

❅❅

The ideal Q(sαsβ)
+.

V +(ωα)

t

❞

❞

c
ωα
w0

c
ωα
sα

c
ωα
e

V +(ωβ)

❞

❞

❞

c
ωβ
w0

c
ωβ
sβ

c
ωβ
e

V +(α + β)

t

t

❞

❞t

❞

❞

❞

c
α+β
w0

c
α+β
sβsα

c
α+β
sαsβ

c1c2

c
α+β
sα

c
α+β
sβ

c
α+β
e

�
�

��

◗
◗

◗◗
✡
✡
✡

❅
❅

�
�

❏
❏

❏

✑
✑

✑✑

❅
❅

❅❅

Note that

cωα

sα
cωβ
sβ
∈ Kc1 +Kc2 ⊂ Q̃(sα, sαsβ) = Q(sα)

− +Q(sαsβ)
+.

By Remark 6.8 Q(sα, sαsβ) = Q̃(sα, sαsβ) : csα
so c

ωβ
sβ ∈ Q(sα, sαsβ). Yet this weight

vector does not belong to either Q(sα)
− nor Q(sαsβ)

+ and hence not to their sum. Hence
Q(sα, sαsβ) 6= Q(sα)

− +Q(sαsβ)
+.

6.10. Lemma. For all (y1, y2) ∈W
w
⋄W one has Q(y1, y2) ∩ cw = ∅.

Proof. Suppose that cνw ∈ Q(y1, y2) for some ν ∈ P+(π). This means that cλy2c
ν
w ∈

(Q(y1)
− +Q(y2)

+) for some λ ∈ P+(π). Since y1 ≤ w then Q(y1)
− ⊆ Q(w)−. Therefore

cλy2c
ν
w ∈ (Q(w)− +Q(y2)

+) in contradiction to Proposition 6.8.
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The ideal Q(y1, y2) is T invariant. Therefore, by Remark 5.3.1,

Q(y1, y2)w :=
∑

λ∈P+(π)

c−λw (Q(y1, y2) ∩ V
+(λ))

is a Ť invariant completely prime ideal of Rw
0 and

Q̌(y1, y2)w := Q(y1, y2)w#Ť

is a completely prime ideal of Řw
0 .

6.10.1. Corollary. (i) For each (y1, y2) ∈ W
w
⋄ W the component Yw(y1, y2) of

SpecRw
0 has a unique minimal element Q(y1, y2)w which is a completely prime Ť invariant

ideal.

(ii) For each (y1, y2) ∈ W
w
⋄W the component Xw(y1, y2) of Spec Řw

0 has a unique
minimal element Q̌(y1, y2)w which is completely prime.

Proof. Since Q(y1, y2) is a unique minimal element of X(y1, y2), it follows, by 5.3.2,
that Q(y1, y2)w ∈ Yw(y1, y2) and, moreover, it lies in all Ť invariant ideals of Yw(y1, y2).
By 5.3.3 every P ∈ Yw(y1, y2) (resp., P ∈ Xw(y1, y2)) contains some Ť invariant ideal
P ′ ∈ Yw(y1, y2). Hence Q(y1, y2)w ⊂ P (resp., Q̌(y1, y2)w ⊂ P ) as required.

6.11. Define an order relation on W ⋄W by the formula

(y, z) � (y′, z′) iff y ≤ y′, z ≥ z′.

The definition of Q(y)± implies that for y ≤ y′ one has Q(y)− ⊆ Q(y′)− (resp., Q(y)+ ⊇
Q(y′)+ ). Similarly one has

Proposition. (i) Q(y, z) ⊆ Q(y′, z′) iff (y, z) � (y′, z′).

(ii) Q(y, z)w ⊆ Q(y′, z′)w iff (y, z) � (y′, z′).

Proof. (i) Take Q(y, z) ⊆ Q(y′, z′). Then cλy′ , c
λ
z′ 6∈ Q(y, z) for all λ ∈ P+(π). Lemma 5.2.4

implies that y ≤ y′, z′ ≤ z.

Conversly, take y ≤ y′. Then

Q(y)− +Q(z)+ ⊆ Q(y′)− +Q(z)+ ⇒ Q(y, z) = Q̃(y, z) : cz ⊆ Q̃(y′, z) : cz = Q(y′, z).

Similarly, by Remark 6.8, one has

Q(y′, z) = Q̃(y′, z) : cy′ ⊆ Q(y′, z′) : cy′ = Q(y′, z′).

Hence (i). The assertion (ii) follows from (i) and 5.3.1.
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6.12. By Propositions 5.3.3, 6.8 and Corollaries 5.2.4, 6.10.1 we have the following de-
compositions

Spec+R
+ =

∐

(y1,y2)∈W⋄W

X(y1, y2), X(y1, y2)
min = {Q(y1, y2)},

Spec Řw
0 =

∐

(y1,y2)∈W
w
⋄W

Xw(y1, y2), Xw(y1, y2)
min = {Q̌(y1, y2)w},

SpecRw
0 =

∐

(y1,y2)∈W
w
⋄W

Yw(y1, y2), Yw(y1, y2)
min = {Q(y1, y2)w}.

Let us show that the decompositions above are stratifications i.e. that each component
X(y1, y2) (resp., Yw(y1, y2), Xw(y1, y2)) is locally closed and its closure X(y1, y2) (resp.,
Yw(y1, y2), Xw(y1, y2)) with respect to Jacobson topology is a union of components.

One has

X(y1, y2) =
{

P ∈ Spec+R
+| Q(y1, y2) ⊆ P, cy1 ∩ P = ∅, cy2 ∩ P = ∅

}

.

Hence X(y1, y2) = {P ∈ Spec+R
+| Q(y1, y2) ⊆ P} and X(y1, y2) is locally closed.

Proposition 6.11 implies that X(z1, z2) ⊆ X(y1, y2) provided (y1, y2) � (z1, z2). The
inverse is also true. In fact, take P ′ ∈ X(y1, y2). Fix (z1, z2) ∈ W ⋄ W such that
P ′ ∈ X(z1, z2). Then czi

∩ Q(y1, y2) = ∅ for i = 1, 2. By Lemma 5.2.4 this implies
that y1 ≤ z1 ≤ z2 ≤ y2 that is (y1, y2) � (z1, z2). The same reasoning is suitable for
Xw(y1, y2), Yw(y1, y2).

6.13. Corollary.

X(y1, y2) =
∐

(z1,z2)∈W⋄W

(y1,y2)�(z1,z2)

X(z1, z2),

Xw(y1, y2) =
∐

(z1,z2)∈W
w
⋄W

(y1,y2)�(z1,z2)

Xw(z1, z2),

Yw(y1, y2) =
∐

(z1,z2)∈W
w
⋄W

(y1,y2)�(z1,z2)

Yw(z1, z2).

7. more about the strata

All rings in this Section are noetherian. Using this and [J1], A.2.8, we will often identify
the prime spectrum of the localization R[c−1], c being an Ore subset of R, with the subset

{P ∈ SpecR| P ∩ c = ∅}.
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7.1. In this Section we will show that the components Yw(y1, y2) of SpecRw
0 are isomor-

phic for different w ∈ W such that y1 ≤ w ≤ y2. Moreover the components Xw(y1, y2) of
Spec Řw

0 are isomorphic to the component X(y1, y2) of Spec+R
+ for all w ∈W such that

y1 ≤ w ≤ y2. Following [J3] we identify the component X(y1, y2) (modulo an action of a
group Z

l
2) with the spectrum of a Laurent polynomial ring— see 7.4.2— 7.4.4.

All localizations considered are localizations of domains so the localization maps are
injective. We will sometimes denote by the same letter an element of a ring R and its
image in a localization (or in a quotient) of R.

7.1.1. Lemma. Take P ∈ X(y, w). Then P ∩ V +(ν) = Q(y, w) ∩ V +(ν) for all
ν ∈ P+(π).

Proof. Assume that P ∩ V +(ν) 6= Q(y, w) ∩ V +(ν). By Lemma 5.2.2 this implies that
there exists a weight vector cνζ ∈ P \ Q(y, w). Choose λ sufficiently large for (ζ − wν)
(Definition 6.1.3) such that λ > ν. Then Lemma 6.5.1 implies that

c−νw cνζ = c−λw cλξ + c−λw cλη , where c−λw cλξ ∈ L(w, 0), c−λw cλη ∈ Q(w)+
w .

Then cλη ∈ Q(w)+ so cλξ = (cλ−νw cνζ − c
λ
η) ∈ P \Q(y, w). By Remark 6.5.1 for all ν ∈ P (π)

one has φ̃νw(c−λw cλξ ) = c−λw cλξ , that is

cλξ c
ν
w = q(λ−w−1ξ,ν)cνwc

λ
ξ . (14)

Let us show that cλξ .y−µ ∈ P for all µ ∈ Q+(π) and all elements y−µ ∈ Uq(b
−) of a weight

(−µ). We prove this by induction on µ ∈ (Q+(π),≤). One has

△(y−µ) = y−µ ⊗ 1 + τ(µ)⊗ y−µ +
∑

0<η<µ

kητ(η)y−µ+η ⊗ y−η, kη ∈ K. (15)

Act by y−µ on the both sides of (14). Applying (15) and induction one obtains

(cλξ .y−µ)c
ν
w = q(λ−w−1ξ,ν)+(µ,wν)cνw(cλξ .y−µ) mod P.

Using formula (8) we get

(cλξ .y−µ)c
ν
w = q(λ−w−1(ξ+µ),ν)cνw(cλξ .y−µ) mod Q

+(w) ⊆ P.

Therefore (1− q2(wν,µ))cνw(cλξ .y−µ) ∈ P for all ν ∈ P+(π). Hence cλξ .y−µ ∈ P .

Since cλξ 6∈ Q(y, w) there exists v ∈ V −
y (λ) = Uq(b

−)uyλ such that ξ(v) = 1. This

implies that cλy = cλξ .Uq(b
−) so cλy ∈ P . This contradicts P ∈ X(y, w).

7.1.2. Corollary.

(i) (Spec+R
+)T = {Q(y, z)}(y,z)∈W⋄W .

(ii) (SpecRw
0 )Ť = {Q(y, z)w}(y,z)∈Ww

⋄W
.

(iii) Xw(y, z) = {P ∈ Spec Řw
0 | P ∩R

w
0 = Q(y, z)w }.

(iv) Take P ∈ Yw(y, z). Then a weight vector c−λw cλξ belongs to P iff cλξ ∈ Q(y, z).



26

Proof. The previous lemma implies (i); (ii) obtains from (i), Lemma 3.2 and the dia-
gram (3). (iii), (iv) obtain from (ii) and 5.3.2.

7.2. For any y, w, z ∈ W let Ry,w,z be the minimal subalgebra of FractR+ containing
c−1
y , c−1

w , c−1
z . Both right and left action of T on R+ extend to Ry,w,z. Denote the zero

component of Ry,w,z with respect to the left T -action by Ry,w,z
0 . Then the right action of

T on Ry,w,z
0 extends to the action of Ť . Denote the corresponding skew-product Ry,w,z

0 #Ť
by Řy,w,z

0 . It is clear that Řw
0 ⊂ Řy,w,z

0 .

Now take y ≤ w ≤ z. Recall that

Q(y, z)w = Q(y, z)[c−1
w ] ∩ Rw

0 , Q(y, z)z = Q(y, z)[c−1
z ] ∩ Rz

0.

Therefore

Ry,w,z
0 Q(y, z)w ⊃ Q(y, z)z, Ry,w,z

0 Q(y, z)z ⊃ Q(y, z)w.

This implies that

Ry,w,z
0 Q(y, z)w = Ry,w,z

0 Q(y, z)z, Řy,w,z
0 Q̌(y, z)w = Řy,w,z

0 Q̌(y, z)z.

For any pair (w1, w2) ∈W ×W set cw1,w2
:= {c−λw1

cλw2
}λ∈P+(π).

7.2.1. Lemma. Take y ≤ w ≤ z. There are canonical isomorphisms of the Ore
localizations

(Rw
0 /Q(y, z)w)[c−1

w,z, c
−1
w,y]

∼
−→ Ry,w,z

0 /(Ry,w,z
0 Q(y, z)w)

∼
−→ (Rz

0/Q(y, z)z)[c
−1
z,w, c

−1
z,y],

(16)

(Řw
0 /Q̌(y, z)w)[c−1

w,z, c
−1
w,y]

∼
−→ Řy,w,z

0 /(Řy,w,z
0 Q̌(y, z)w)

∼
−→ (Řz

0/Q̌(y, z)z)[c
−1
z,w, c

−1
z,y].

(17)

Proof. It is sufficient to check that all the localizations are well-defined. Observe that the
image of the set cw,z ∪ cw,y in the quotient ring Rw

0 /Q(y, z)w consists of normal elements
so (Rw

0 /Q(y, z)w)[c−1
w,z, c

−1
w,y] is well-defined.

Let us check that the image of the set cz,y ∪ cz,w in the quotient ring Rz
0/Q(y, z)z is

Ore. Since cw is Ore in R+ it follows that for any cλξ ∈ R+, ν ∈ P+(π) there exist

cµη ∈ R
+, ν ′ ∈ P+(π) such that cλξ c

ν′

w = cνwc
µ
η . By 4.3(i) c−λz cλξ and cλξ c

−λ
z coincide up to a

power of q modulo Q(y, z)z. Therefore up to a power of q one has

(c−λz cλξ )(c
−ν′

z cν
′

w ) = c−λz cλξ c
ν′

w c
−ν′

z = c−λz cνwc
µ
ηc

−ν′

z = (c−νz cνw)(c−µz cµη ) mod Q(y, z)z.

Hence the image of cz,w is left Ore in Rz
0/Q(y, z)z. Similarly it is right Ore. Since the

image of the set cz,y in the quotient ring Rz
0/Q(y, z)z consists of normal elements and

they commute up to powers of q with the elements of the image of cz,w, it follows that the
image of cz,y ∪ cz,w in the quotient ring Rz

0/Q(y, z)z is Ore. Hence (Rz
0/Q(y, z)z)[c

−1
z,w, c

−1
z,y]

is also well-defined.
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7.2.2. Proposition. Take y ≤ w ≤ z.

(i) The isomorphisms (16) give rise to an order preserving bijection of Yw(y, z) onto
Yz(y, z).

(ii) The isomorphisms (17) give rise to an order preserving bijection of Xw(y, z) onto
Xz(y, z).

Proof. The definition of Yw(y, z) and Corollary 6.10.1 imply that

Yw(y, z) ∼= Spec(Rw
0 /Q(y, z)w)[c−1

w,z, c
−1
w,y] = SpecRy,w,z

0 /(Ry,w,z
0 Q(y, z)w).

Taking into account Lemma 7.2.1 and Corollary 7.1.2(iv), we conclude that

Yw(y, z) ∼= Spec(Rz
0/Q(y, z)z)[c

−1
z,w, c

−1
z,y]
∼=

{P ∈ SpecRz
0| Q(y, z)z ⊂ P, P ∩ (cz,w ∪ cz,y) = ∅} =

{P ∈ SpecRz
0| Q(y, z)z ⊂ P, P ∩ cz,w = ∅} = Yz(y, z)

This gives (i); the proof of (ii) is similar.

7.3. Proposition. For every triple (y, w, z) such that y ≤ w ≤ z there is an order
preserving bijection of Xw(y, z) onto X(y, z).

Proof. From the previous proposition we conclude that it is sufficient to check the assertion
for the triples (y, z, z). Fix z ∈W . Using notations of 6.5, denote a subalgebra L(z, 0)#Ť
of Řz

0 by Ľ(z, 0) and a subalgebra L(z, 0)#{cνw}ν∈P (π) of Rz by L(z). Define a map ψ :

Ľ(z, 0)→ L(z) setting ψ(a) = a, for a ∈ L(z, 0), ψ(τ(ν)) = c−z
−1ν

z for all ν ∈ P (π). We
conclude from 6.5 that ψ is an isomorphism of algebras. Denote by Ψ the corresponding
map of Spec Ľ(z, 0) onto SpecL(z).

Taking into account that RzQ(z)+
z = RzQ(z)+ we conclude from Lemmas 6.5.1, 6.6

that
Řz

0 = Q̌(z)+
z ⊕ Ľ(z, 0), Rz = RzQ(z)+ ⊕ L(z).

Therefore there are the following bijections

Ψ1 : H1 := {P ∈ Spec Řz
0| Q̌(z)+

z ⊂ P} → Spec Ľ(z, 0), P 7→ P ∩ Ľ(z, 0),

with inverse I 7→ I ⊕ Q̌(z)+
z ;

Ψ2 : H2 := {P ∈ SpecRz| RzQ(z)+ ⊂ P} → SpecL(z), P 7→ P ∩ L(z),

with inverse I 7→ I⊕RzQ(z)+. Hence (Ψ−1
2 ◦Ψ◦Ψ1) is a bijection of H1 onto H2. Identify

X(y, z) and its image in SpecRz given by the localization map R+ → Rz. Then

H1 =
∐

y≤z

Xz(y, z), H2 =
∐

y≤z

X(y, z).

Let us show that (Ψ−1
2 ◦Ψ ◦Ψ1)(Xz(y, z)) = X(y, z) for all y ≤ z. By Corollary 7.1.2(iii)

one has
Xz(y, z) = {P ∈ Spec Řz

0| P ∩ R
z
0 = Q(y, z)z}.
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Since Q(y, z)z = (Q(y, z)z ∩ L(z, 0))⊕Q(z)+ it follows that

Ψ1(Xz(y, z)) = {P ∈ Spec Ľ(z, 0)| P ∩ L(z, 0) = Q(y, z)z ∩ L(z, 0)}.

Observe that P ∩ L(z, 0) = Ψ(P ) ∩ L(z, 0). Therefore

(Ψ ◦Ψ1)(Xz(y, z)) = {P ∈ SpecL(z)| P ∩ L(z, 0) = Q(y, z)z ∩ L(z, 0)}.

Take J ∈ X(y, z). We conclude from Lemma 7.1.1, Lemma 6.6 that

Ψ2(J) ∩ L(z, 0) =
∑

ν∈P+(π)

c−νz (V +(ν) ∩ J) = Q(y, z)z ∩ L(z, 0).

Hence Ψ2(X(y, z)) ⊆ Im(Ψ ◦ Ψ1)(Xz(y, z)). Since this holds for all y ≤ z we conclude
that Ψ2(X(y, z)) = Im(Ψ ◦Ψ1)(Xz(y, z)) as required.

7.4. Fix y ≤ w. Using notations of 7.2, denote (Rw
0 /Q(y, w)w)[c−1

w,y] by S and set Š =

S#Ť . Then the canonical map Řw
0 → Š defines a bijection of Xw(y, w) onto Spec Š. We

calculate Spec Š in 7.4.1— 7.4.3 below.

7.4.1. For each ν ∈ P (π), set zν := c−νw cνyτ(yν + wν) ∈ Š. The relations 4.4 imply that

zνs = szν for all s ∈ S. Since zντ(µ) = q(yν−wν,µ)τ(µ)zν it follows that zν ∈ Z(Š) iff
yν = wν. Set

P0(π) := {ν ∈ P (π)| y−1ν − w−1ν = 0}

which is a subgroup of P (π) so that P (π)/P0(π) is torsion-free. Choose a subgroup P1(π)
such that P (π) = P0(π) ⊕ P1(π). Set T0 := τ(P0(π)), T1 := τ(P1(π)). Denote the
subalgebra S#T0 of Š by D. Then Š = D#T1.

Observe that S is noetherian, so by [MCR], 2.9 D is also noetherian.

Lemma. The map ψ : J 7→ J ∩ D is an order preserving bijection of Spec Š onto
(SpecD)Ť .

Proof. Since P (π) = P0(π) ⊕ P1(π) it follows that Ť = T0T1. Therefore (SpecD)Ť =
(SpecD)T1 . By Lemma 3.2 ψ maps Spec Š onto (SpecD)T1 and the map I 7→ (I#T1) is a
right inverse of ψ. Let us show that this is also a left inverse of ψ, that is J = (J ∩D)#T1

for all J ∈ Spec Š. Fix J ∈ Spec Š, a ∈ J . Write a =
∑

µ aµτ(µ) : µ ∈ P1(π), aµ ∈ D.
Recall that the elements zν commute with all elements of S and

zντ(µ) = q(yν−wν,µ)τ(µ)zν = q(ν,y−1µ−w−1µ)τ(µ)zν .

Therefore zνs = szν for all s ∈ D. Since zν is invertible in Š one has

zνaz
−1
ν =

∑

µ

aµzντ(µ)z−1
ν =

∑

µ

q(ν,y−1µ−w−1µ)aµτ(µ) ∈ J.

The values (y−1µ−w−1µ) are pairwise distinct for different µ ∈ P1(π), so aµτ(µ) ∈ J for
all µ ∈ P1(π). Then aµ ∈ J ∩D and J = (J ∩D)#T1 as required.
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7.4.2. Let r be the rank of P0(π). Identify P0(π)/2P0(π) with Z
r
2. For each τ(ν) ∈ T0 let

d(τ(ν)) denote the image of ν in Z
r
2. For s ∈ S set d(s) := 0. This defines Z

r
2 grading on

D. For g ∈ Z
r
2 denote the subspace {a ∈ D| d(a) = g} by Dg. Denote by Γ the character

group of Z
r
2. For each γ ∈ Γ define θγ ∈ AutD setting θγ|Dg

:= γ(g) · id. View Γ as acting
on ideals of D via the θγ : γ ∈ Γ and hence on SpecD. Since the θγ commute with the

action of Ť it follows that Γ acts also on (SpecD)Ť .

Lemma. The map taking I ∈ (SpecD0)
Ť to the minimal primes over DI (with

inverse P 7→ P ∩D0) is a bijection of (SpecD0)
Ť onto the Γ orbits of (SpecD)Ť .

Proof. Since D = S#T0 it follows that D = D0T0 = T0D0. This implies that DI is a
two-sided graded ideal of D for any T invariant ideal I of D0. The reasoning of [J1], 1.3.9

implies that for any I ∈ (SpecD0)
Ť the minimal primes Qi over DI form a single Γ orbit

and satisfy I = Qi ∩D0 for all i.

Let us show that the inverse map is well-defined. Fix P ∈ (SpecD)Ť and set I := P∩D0.
Assume that I is not prime. Then, by Lemma 3.1, there exist homogeneous a, b ∈ D0 \ I
such that aD0b ⊆ I. Then aDb = aD0T0b = aD0bT0 ⊆ IT0 ⊆ P that contradicts P
being prime and completes the proof.

Remark. For i = 1, . . . , l define the element σi ∈ Aut Řw
0 by the formulas

σi|Rw
0

= id; σi(τ(ωi)) = −τ(ωi); σi(τ(ωj)) = τ(ωj) for j 6= i.

Consider the group Z
l
2 ⊆ Aut Řw

0 generated by the automorphisms σi. This group acts
naturally on D and the image of Z

l
2 in AutD identifies with Γ.

7.4.3. Denote the subalgebra of Š generated by the central elements zν : yν = wν by Z.
Take µ ∈ P (π); then µ = yν+wν for some ν such that yν = wν iff µ ∈ 2P0(π). It follows
that Z ⊂ D0 and Z is a Laurent polynomial ring of the rank r. Since D0 = S#τ(2P0(π))
it follows that D0

∼= S ⊗ Z as Ť algebras (the action of Ť on Z is trivial). Since S is
noetherian, D0 is also noetherian.

Lemma. (i) The map P 7→ P ∩ Z is an isomorphism of (SpecD0)
Ť onto SpecZ.

(ii) For each P ∈ (SpecD0)
Ť , the quotient D0/P is a domain.

Proof. Take P ∈ (SpecD0)
Ť . Since P is prime and Z is contained in the centre of D0 one

has (P ∩ Z) ∈ SpecZ.

Take any I ∈ SpecZ. Since Z is Ť invariant then Q := SI a two-sided Ť invariant ideal
ofD0 contained in P . Identify D0 with S⊗Z. Then Q = S⊗I andD0/Q ∼= S⊗(Z/I) as Ť
algebras, where the action of Ť on Z/I is trivial. Since Z/I is a domain, G := (Z/I)\{0}
is an Ore subset of S⊗(Z/I). Set F := Fract(Z/I) and identify S⊗(Z/I)[G−1] with S⊗F .
The action of Ť on S ⊗ (Z/I) extends to S ⊗ F . By definition S = (Rw

0 /Q(y, w)w)[c−1
w,y].

This is a domain for any choice of the base field K ⊇ k(q). Set (for a moment) K := F .
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Then we get that S⊗F is a domain so S⊗(Z/I) is also a domain. Hence Q is a completely
prime ideal of D0. Since Q ∩ Z = I this establishes the surjectivity in (i).

Take P ∈ (SpecD0)
Ť and set I := (P ∩ Z). Again set Q = SI and define G,F as

above. Denote by P the image of P/Q in S ⊗ (Z/I) which is a prime Ť invariant ideal.
Recall that P ∩ Z = I so P ∩ G = ∅. Hence P [G−1] is a prime Ť invariant ideal of
S ⊗ (Z/I)[G−1] = S ⊗ F . Corollary 7.1.2(ii) implies that the zero ideal is the only Ť
invariant prime ideal of the ring S ⊗K ′ for any field K ′ containing k(q). Hence P = (0)
that is P = Q. This establishes (ii) and injectivity in (i).

7.4.4. Recall that Z is a subalgebra of (Řw
0 /Q(y, w)w)[c−1

w,y] generated by the central
elements zν := c−νw cνyτ(2wν) where ν ∈ P (π) such that yν = wν. For each z ∈ W denote
by r(z) the rank of the free group Pz(π) := {µ ∈ P (π)| zµ = µ} (one has r(z) = l− s(z),
where s(z) denotes the minimal length of an expression for z as a product of reflections).
Then rkZ = r(w−1y). Combining 7.4— 7.4.3 one obtains the

Proposition. The map P 7→ (P/Q(y, w)w)[c−1
w,y] ∩ Z is an isomorphism of the space

of Z
l
2 orbits in Xw(y, w) onto SpecZ.

Now Propositions 7.2.2, 7.3, 7.4.4 give the

Theorem.

(i) Spec+R
+ =

∐

(y,z)∈W⋄W

X(y, z),

where each X(y, z) is isomorphic up to an action of Z
l
2 to the spectrum of the Laurent

polynomail ring of rank r(y−1z).

(ii) Spec Řw
0 =

∐

(y,z)∈W
w
⋄W

Xw(y, z),

where each Xw(y, z) is isomorphic to the component X(y, z) of Spec+R
+.

8. The Centre of Rw
0

Denote the element (cλξ )
−1 of FractR+ by c−λξ . Set

A := {a ∈ FractR+| cλξa ∈ R
+ for some λ ∈ P+(π), ξ ∈ Ω(V (λ)∗)}.

The right action of Uq on R+ extends to A and a = c−λξ b is a weight vector iff b ∈ R+ is
a weight vector.

8.1. Lemma. Let a be a weight vector of A. Then a ∈ Z(FractRe
0) iff a ∈ Kc−νe cνw0

for some ν ∈ P (π) satisfying w0ν = −ν.

Proof. By [J1], 9.1.4(i), 10.1.11(ii) for any ν, λ,∈ P+(π), µ ∈ Ω(V +(λ)) one has

cλµc
ν
e = q(ν,µ−λ)cνec

λ
µ, cλµc

ν
w0

= q−(w0ν,µ−w0λ)cνw0
cλµ. (18)
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This implies that cw0ν
w0

cνeb = bcw0ν
w0

cνe for any ν ∈ P (π), b ∈ Re
0. Hence c−νe cνw0

∈
Z(FractRe

0) if w0ν = −ν.

Let us prove the converse. For each b ∈ A consider the set of pairs {(λ, ξ) ∈ P+(π)×
Ω(V +(λ))| cλξ b ∈ R

+}. This set admits a lexicographic preorder (λ, ξ) ≤ (λ′, ξ′) iff λ ≤ λ′

or λ = λ′ and ξ ≤ ξ′. The expression b = c−λξ d (d ∈ R+) will be called a reduced
decomposition if the pair (λ, ξ) is a minimal with respect to the preorder above.

Set

B := {b ∈ R+| b 6∈ cωi
w0
R+, b 6∈ cωi

e R
+ for all i = 1, . . . , l}.

Given b ∈ R+ write b = cν1w0
cν2e b

′ : ν1, ν2 ∈ P
+(π), b′ ∈ B. Theorem 3 of [J2] implies that

Q(w0si)
+ = cωi

w0
R+ (similarly Q(si)

− = cωi
e R

+ ). Since Q(w0si)
+, Q(si)

− are completely
prime ideals of R+ it follows that ν1, ν2, b

′ are uniquely determined. The element b′ will
be called the abnormal part of b.

Let a be a non-zero weight vector of A and let a ∈ Z(FractRe
0). Fix a reduced de-

composition a = c−λξ d. Let cλ1

µ1
, cλ2

µ2
be the abnormal parts of cλξ , d respectively. One

has

a = c−λξ d = qrcν1w0
cν2e c

−λ1

µ1
cλ2

µ2
for some ν1, ν2 ∈ P (π), r ∈ Z.

Set b := c−λ1

µ1
cλ2

µ2
. Observe that b = c−λ1

µ1
cλ2

µ2
is a reduced decomposition.

Let cνη be a weight vector of R+. One has c−νe cνηa = ac−νe cνη.

The relations (18) imply that

cνηb = qrbcνη for some r ∈ Z. (19)

Moreover one has

bcωi
e = q(wte b,ωi)cωi

e b, where wte b = µ2 − µ1 − λ2 + λ1.

Act by xi on the both sides of the relation above. Taking into account that wte(b.xi) =
wte b− αi we obtain

q(wte b,ωi)(1− q−2)cωi
e (b.xi) = bcωi

si
− q(wte b,ωi)−(αi,rwt b)cωi

si
b.

Using (19) we conclude that cωi
e (b.xi) ∈ Kbc

ωi
si

. One has

b.xi = (c−λ1

µ1
cλ2

µ2
).xi = c−λ1

µ1
(cλ2

µ2
.xi)−q

(αi,µ1−µ2)c−λ1

µ1
(cλ1

µ1
.xi)(c

−λ1

µ1
cλ2

µ2
) = (cλ1

µ1
)−2d for some d ∈ R+.

Therefore

cωi
e (cλ1

µ1
)−2d ∈ Kbcωi

si
⇒ cωi

e d ∈ K(cλ1

µ1
)2bcωi

si
= Kcλ1

µ1
cλ2

µ2
cωi
si
.

Recall that cλ1

µ1
, cλ2

µ2
∈ B so cλ1

µ1
cλ2

µ2
cωi
si
6∈ Q(si)

−. Since cωi
e ∈ Q(si)

− it follows that d = 0
so b.xi = 0. Replacing cωi

e by c−w0ωi
w0

and Q(si)
− by Q(siw0)

+ we get b.yi = 0. Since
b.xi = b.yi = 0 it follows that b.ti = b.

Let us check that λ1 = 0.Assume the converse. Then cλ1

µ1
6= cλ1

w0
since cλ1

µ1
∈ B. Therefore

there exists i such that cλ1

µ1
.xi 6= 0.
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Since b.xi = 0, b.ti = b one has

cλ2

µ2
.xi = (cλ1

µ1
b).xi = (cλ1

µ1
.xi)b ⇒ b = (cλ1

µ1
.xi)

−1(cλ2

µ2
.xi).

Yet rwt(cλ1

µ1
.xi) < rwt cλ1

µ1
this contradicts b = c−λ1

µ1
cλ2

µ2
being a reduced decomposition.

Now, λ1 = 0 and therefore cλ2

µ2
.xi = cλ2

µ2
.yi = 0 for all i = 1, . . . , l. Then λ2 = 0

so b ∈ K∗. Hence a ∈ K∗cν1w0
cν2e . Since a ∈ Z(FractRe

0) it follows that ν1 + ν2 = 0.
Moreover the relations (18) imply that (ν2, µ)− (w0ν1, µ) = 0 for any µ ∈ Q−(π). Hence
a ∈ K∗cν1w0

c−ν1e and ν1 + w0ν1 = 0 as required.

8.2. Let θ be the automorphism of the Dynkin diagram defined by the property w0ωi =
−ωθ(i). One has θ2 = 1. Set

I := {i ∈ {1, . . . , l} |θ(i) = i} , I := {i ∈ {1, . . . , l} |θ(i) > i} .

Set zi := c−ωi
e cωi

w0
; for i ∈ I set z̃i := zizθ(i).

One has zi ∈ R
e
0, z

−1
i ∈ R

w0

0 . For w = e the centre Z(Re
0) is the polynomial algebra

generated by the set M :=
{

zi : i ∈ I, z̃i : i ∈ I
}

— see [J1], 7.1.20. Similarly Z(Rw0

0 )

is the polynomial algebra generated by the set M−1 = {m−1 : m ∈M}. We will show
that Z(Rw

0 ) is the polynomial algebra generated by the set (M ∪M−1) ∩Rw
0 .

For a more precise description of the set of generators of Z(Rw
0 ) set

I−
w := {i ∈ I| wωi = ωi} , I

−

w :=
{

i ∈ I| wωi = ωi, wωθ(i) = ωθ(i)
}

,

I+
w := {i ∈ I| wωi = w0ωi} , I

+

w :=
{

i ∈ I| wωi = w0ωi, wωθ(i) = w0ωθ(i)
}

.

ThenM∩Rw
0 =

{

zi : i ∈ I−
w , z̃i : i ∈ I

−

w

}

andM−1∩Rw
0 =

{

z−1
i : i ∈ I+

w , z̃
−1
i : i ∈ I

+

w

}

.

8.2.1. Proposition. The centre Z(Rw
0 ) is the polynomial algebra generated by the set

C := (M ∪M−1) ∩Rw
0 .

Proof. Set zν := c−νe cνw0
for all ν ∈ P (π) satisfying w0ν = −ν. Observe that Rw

0 ⊂ A.
Then, in view of Lemma 8.1, it suffices to show that any element zν ∈ R

w
0 can be expressed

as a product of elements of C.

Write ν =
∑

kiωi and set A− := {i : ki < 0}, A+ := {i : ki > 0}. Set

ν1 := −
∑

i∈A−

kiωi, ν2 :=
∑

i∈A+

kiωi.

Then ν = ν2−ν1, ν1, ν2 ∈ P
+(π). Since w0ν = −ν it follows that kθ(i) = ki so θ(A

±) = A±

and w0ν1 = −ν1, w0ν2 = −ν2. Hence

zν = z−1
ν1
zν2 ; zν1 =

∏

i∈I∩A−

zki

i

∏

i∈I∩A−

z̃ki

i , zν2 =
∏

i∈I∩A+

zki

i

∏

i∈I∩A+

z̃ki

i .
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Let us show that zi ∈ R
w
0 for all i ∈ A+(then also z̃i ∈ R

w
0 for i ∈ I ∩ A+) and z−1

i ∈ R
w
0

for all i ∈ A−.

Observe that zi ∈ R
w
0 if wωi = ωi and z−1

i ∈ R
w
0 if wωi = w0ωi. Hence it suffices to

check that wωi = ωi (resp. wωi = w0ωi) for all i ∈ A+ (resp. i ∈ A−).

Since zν ∈ R
w
0 there exists λ ∈ P+(π) such that

c−λw cλξ = zν = c−ν1w0
cν2w0

cν1e c
−ν2
e ⇒ cλξ c

ν1
w0
cν2e ∈ K

∗cλwc
ν2
w0
cν1e .

Take i ∈ A+. Then cν2e ∈ Q(si)
−, whereas cν2w0

cν1e 6∈ Q(si)
−. From the formula above we

conclude that cλw ∈ Q(si)
− so wωi = ωi. Similarly i ∈ A− implies that wωi = w0ωi.

8.2.2. Remark. Proposition 8.2.1 implies that the rings Rw
0 are in general non-

isomorphic: they have centres of different Gelfand-Kirillov dimension. Observe that
this dimension is maximal if w = e, w0. If g is simple then for all w 6= e, w0 one has
dimZ(Rw

0 ) < dimZ(Re
0).

In fact, fix w is such that dimZ(Rw
0 ) = dimZ(Re

0). This implies that I = I
−

w ∪ I
+
w

and I = I−
w ∪ I+

w . Set J1 := {i| wωi = ωi}, J2 := {i| wωi = w0ωi}. Then J1 ∪ J2 =
{1, . . . , l}, J1 ∩ J2 = ∅. Observe that w ∈ W2 where W2 is a subgroup of W which is
generated by {si : i| wωi 6= ωi} = {si : i ∈ J2}. Similarly, w0w ∈ W1 where W1 is a
subgroup of W which is generated by {si : i| (w0w)ωi 6= ωi} = {si : i ∈ J1}. Since
w0 = (w0w)w−1 it follows that w0 ∈ W1W2 so W = W1W2. Since g is simple, one has
either W = W1 or W = W2. This means that w = e or w = w0.

9. appendix: index of notations

Symbols used frequently are given below under the section number where they are first
defined.

2.1 k,K, Uq(g), Ť , Ǔq(g), Uq(n
−), xi, yi, t

±1
i , l,W, Sw

2.2 w0

2.3 π,Q(π), Q±(π), ωi, P (π),≥, P+(π), τ, V (λ), cλξ,v,

Rq[G], V +(λ), R+,Ω(V +(λ)), cλw, c
λ
ξ , cw, R

w, Rw
0 , Ř

w
0

2.6 A[c−1]

3.2 #

4 lwt, rwt, ·|λ, ·|
λ, cλµ

4.1 J±
λ (η)

4.2 J±
λ (η)w

4.3 φνw,Φw
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5.1 D±
P (ν)

5.2 P++, Spec+R
+

5.2.1 X(y−, y+)

5.2.2 (Spec+R
+)T , (SpecRw)T

5.2.3 V ±
y (λ), V ±

y (λ)⊥, Q(y)±

5.2.4 W ⋄W

5.3.1 Specw R
+

5.3.3 W
w
⋄W,Xw(y1, y2), Yw(y1, y2)

6.1.1 U, ϕi, εi, y
∗
i , x

∗
i , y

∗
w, x

∗
w

6.1.2 Q(y)±w

6.4 wtw

6.6 Q(y, w)w

6.7 Q(y, w)

6.10 Q(y1, y2)w, Q̌(y1, y2)w

6.11 �

7.2 cw1,w2

7.4 S, Š

7.4.1 zν , P0(π), P1(π), T0, T1, D

7.4.2 D0,Γ

7.4.3 Z
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