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Abstract. A well known theorem of Duflo, the “annihilation theorem”, claims that
the annihilator of a Verma module in the enveloping algebra of a complex semisimple
Lie algebra is centrally generated. For the Lie superalgebra osp(1, 2l), this result does
not hold. In this article, we introduce a “correct” analogue of the centre for which the
annihilation theorem does hold in the case osp(1, 2l). This substitute of the centre is
the centralizer of the even part of the enveloping algebra. This algebra shares some
nice properties with the centre. As a consequence of the annihilation theorem we obtain
the description of the minimal primitive spectrum of the enveloping algebra of the Lie
superalgebra osp(1, 2l). We also deduce a criterium for a osp(1, 2l)-Verma module to be
a direct sum of sp(2l)-Verma modules.

1. Introduction

1.1. The goal of this paper is to give a description of the minimal primitive spectrum
of the enveloping algebra of the Lie superalgebra osp(1, 2l). Recall that for a complex
semisimple Lie algebra k, the minimal primitive spectrum of the enveloping algebra U(k)
is equal to the set of ideals of the form U(k)m where m runs through the set of maximal
ideals of the centre Z(k). This result follows from two theorems of Duflo: the first one
claiming that any primitive ideal is the annihilator of a simple highest weight module and
the second one, called annihilation theorem in what follows, claiming that the annihilator
of any Verma module is generated by its intersection with the centre of the enveloping
algebra.

In [Mu2], Musson generalized the first theorem to the classical simple Lie superalgebras
g ̸= Q(n). However, the annihilation theorem seemed to fail to be true for the Lie super-
algebras. Thus in [GL], we gave a necessary and sufficient condition on a Verma module
over the Lie superalgebra g := osp(1, 2l) for its annihilator to be centrally generated.

In this paper we show that the annihilation theorem remains actually true — at least
for the case osp(1, 2l) — if we use a “correct” analogue of the centre Z(k).

The role of Z(g) for the superalgebra g = osp(1, 2l) is played by the centralizer A
of the even part U(g)0 of the enveloping algebra U(g) (we believe that this is a general

The first author was partially supported by Chateaubriand fellowship.
The second author was partially supported by TMR Grant No. FMRX-CT97-0100 and Minerva grant

8337.
1



2

phenomenon). The algebra A comes along with a canonical involution σ so that Aσ is the
supercentre of U(g). This reflects the fact that the category of the (super) representations
of a Lie superalgebra admits a canonical parity change involution Π.

Now, in terms of the pair (A, σ) the main results of the paper look as follows:

1. The annihilator of any Verma module over g is generated by its intersection with
A— see Theorem 6.2.

2. The set of Verma module annihilators in A coincides with the set of maximal σ-
invariant ideals of A— see Proposition 6.1.1 (i).

Note that A is a polynomial algebra and σ is a reflection; thus the maximal σ-invariant
ideals of A are explicitly known.

For any simple highest weight module Ṽ there exists (see Proposition 6.1.1 (ii)) a simple

Verma module M̃ such that AnnA Ṽ ⊇ AnnA M̃ . This implies that the minimal primitive
spectrum of U(g) coincides with the set of Verma module annihilators. Therefore any
minimal primitive ideal is generated by its intersection with A (see Corollary 6.3).

Using Theorem 6.2 we give in Section 7 a necessary and sufficient condition on a Verma
module to be a direct sum of g0-Verma modules (where g0 is the even part of g).

1.2. Let us point out the main steps of the proof of the main Theorem 6.2. As for
the proof of the main result of [GL], the Parthasarathy–Ranga-Rao–Varadarajan (PRV)
matrices play a crucial role.

1.2.1. In Section 4.1 we study the centralizer A of U(g)0 in U(g). We show that A =
Z(g) ⊕ Z(g)T for some element T satisfying T 2 ∈ Z(g) (this element appears in [ABF]
and [Mu1]). Let t ∈ S(h) be the Harish-Chandra projection of T .

In [GL] we proved that the annihilator of a Verma module M̃(µ) of the highest weight
µ is a centrally generated ideal iff t(µ) ̸= 0. In particular Theorem 6.2 obviously holds

for M̃(µ) such that t(µ) ̸= 0. Note that t is a product of different linear factors so the
“degenerate” values of µ form a union of hyperplanes in h∗.

1.2.2. The next important ingredient is the following variant of separation theorem The-
orem 5.2.

There exists an ad g0-submodule K of U(g) such that the multiplication map induces an
isomorphism of g0-modules K ⊗A → U(g).

1.2.3. Since A is a free rank two Z(g)-module the multiplicity of any simple g0-module
in the standard harmonics is twice as its multiplicity in K. This fact, together with some
results of [GL] about PRV matrices, proves the main theorem for M̃(µ) such that t has
at the point µ a simple zero.
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1.2.4. The above considerations allow us to reformulate the main theorem as the following
claim (see Claim 6.6.6) about the ranks of PRV matrices.

The corank of any PRV matrix is constant on the set

h∗sd := {µ| M̃(µ) is simple and t(µ) = 0}.

1.2.5. To check the above claim we use our notion of generalized PRV matrices described
in 3.2. The classical PRV matrices are constructed using the subspace of harmonics in
the enveloping algebra. In generalized PRV matrices, we are allowed to substitute the
harmonics by another linear subspace (see details in 3.2). The subspace we choose allows
one to calculate the rank of the PRV matrices in the set h∗sd.

Acknowledgement. We are greatly indebted to our teacher A. Joseph who acquainted
us with PRV matrices and drew our attention to the problem. We would like to thank
M. Duflo, V. Hinich, T. Levasseur and R. Rouquier for numerous suggestions and helpful
discussions.

2. Background

In this Section we fix the main notations we use throughout this paper. The notation
N+ will stand for the set of positive integers. The base field we are going to work with is
C.

2.1. For Z2-graded vector space M we denote by M0 its even part and by M1 its odd
part.

Let g be the Lie superalgebra osp(1, 2l), l ≥ 1 (see Kac [K2] for a presentation of this
Lie superalgebra by generators and relations). Denote by g0 the even part and by g1 the
odd part of g. We recall that g0 ≃ sp(2l). Fix a Cartan subalgebra h in g0. Denote by
∆0 (resp., ∆1) the set of even (resp., odd) roots of g. Set ∆ = ∆0 ∪∆1. Let ∆irr be the
set of irreducible roots of ∆. Then ∆irr = ∆0 ∪∆1, where ∆0:=∆0\2∆1.

Fix a basis of simple roots π of ∆, and define correspondingly the sets ∆±,∆±
0 ,∆

±
1 ,∆

±
0 ,∆

±
irr.

Denote by W the Weyl group of ∆. Set

ρ0 :=
1
2

∑
α∈∆+

0

α, ρ1 :=
1
2

∑
α∈∆+

1

α, ρ := ρ0 − ρ1 =
1
2

∑
α∈∆+

irr

α.

Introduce the standard partial order relation on h∗: λ ≤ µ ⇐⇒ µ − λ ∈ Nπ. Denote by
(−,−) the non-degenerate bilinear form on h∗ coming from the restriction of the Killing
form of g0 to h. Let φ : h∗ −→ h be the isomorphism given by φ(λ)(µ) := (λ, µ). For any
λ, µ ∈ h∗, (µ, µ) ̸= 0 one defines

⟨λ, µ⟩ := 2
(λ, µ)

(µ, µ)
.
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2.2. One has the following useful realization of ∆. Identify h∗ with Cl and consider (−,−)
as a scalar product on Cl. Then there exists an orthonormal basis {β1, . . . , βl} such that

π = {β1 − β2, . . . , βl−1 − βl, βl} π0 = {β1 − β2, . . . , βl−1 − βl, 2βl}
∆+

0 = {βi ± βj, 1 ≤ i < j ≤ l, 2βi, 1 ≤ i ≤ l}, ∆+
1 = {βi, 1 ≤ i ≤ l}

∆+
irr = {βi ± βj, βi, 1 ≤ i < j ≤ l}, ∆

+
0 = {βi ± βj, 1 ≤ i < j ≤ l}

ρ =
l∑

i=1

(l − i+
1

2
)βi, ρ0 =

l∑
i=1

(l − i+ 1)βi

and the Weyl group W is just the group of the signed permutations of the βi.

2.3. Weyl group. Define the translated action of W on h∗ by the formula:

w.λ = w(λ+ ρ)− ρ ∀λ ∈ h∗, w ∈ W.

Define the left translated action of W on S(h) by setting w.f(λ) = f(w−1.λ) for any
λ ∈ h∗.

For α ∈ ∆+
irr we denote by sα the reflection with respect to α. Let D be the subgroup

of W generated by the reflections with respect to the roots α ∈ ∆
+
0 . Note that D is

isomorphic to the Weyl group of the root system Dl := {±βi ± βj, 1 ≤ i < j ≤ l}.
Moreover D is a subgroup of index 2 in W so it is normal.

Denote by S the subgroup of W generated by the reflections with respect to the simple
even roots. Clearly S is isomorphic to the symmetric group Sl.

2.4. Enveloping algebra. As usual, if k is a Lie superalgebra, U(k) denotes its envelop-
ing algebra. If V is a vector superspace, we denote by S(V ) its symmetric superalgebra
endowed with the natural Z× Z2-grading.

Set F the canonical filtration of U(g) defined by F (n)(U(g)) = (gn)n∈N. The graded
algebra of U(g) associated to F is the symmetric superalgebra S(g) ≃ S(g0)⊗

∧
g1 which

is not a domain. Nevertheless, Aubry and Lemaire proved in [AL] that U(g) is a domain.

We define the supercentre to be the vector subspace of U(g) generated by the homoge-

neous elements a such that ax = (−1)|a||x|xa for all homogeneous elements x in U(g). For
g = osp(1, 2l), the supercentre coincides with the genuine centre.

The Lie superalgebra g acts on U(g) and S(g) by superderivation via the adjoint action.
We denote these actions by ad. Throughout this paper, an action of any element of g on
U(g) means always the adjoint action.

We identify U(h) with S(h).

2.5. Let M be a g-module. For any λ ∈ h∗, set

Mλ = {m ∈M | hm = λ(h)m, ∀h ∈ h} .
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For λ = 0, we use notation M |0 in order to prevent confusion with the corresponding
homogeneous component.

A non-zero vector v ∈M has weight λ if v ∈Mλ. For any subspace N of M we denote
by Ω(N) the set of weights λ ∈ h∗ such that N ∩Mλ ̸= {0}. The module M is said to be
diagonalizable if M =

⊕
λ∈h∗

Mλ. If M is a diagonalizable module and dimMλ < ∞ for all

λ ∈ h∗, we set chM =
∑
λ∈h∗

dimMλe
λ.

If M is a completely reducible g (resp., g0) module and V is a simple g (resp., g0)
module, we shall denote by [M : V ] the multiplicity of V in M .

We say that element a ∈ U(g) acts by a scalar on the subspace N of a U(g)-module if
there exists c ∈ C such that av = cv for any v ∈ N .

2.6. Harish-Chandra projection. For any α ∈ ∆, let gα be the subspace of weight α
of g (which is always one-dimensional). Set n± =

⊕
α∈∆±

gα, b
± = h⊕ n±.

The Harish-Chandra projection Υ : U(g) → U(h) is the projection with respect to the
following triangular decomposition U(g) = U(h)⊕ (U(g)n+ + n−U(g)).

Clearly Υ(U(g)µ) = 0 for any µ ̸= 0. An element a of U(g)|0 acts on a primitive vector
of weight µ (µ ∈ h∗) by multiplication by the scalar Υ(a)(µ). Thus the restriction of Υ
on U(g)|0 = U(g)h is an algebra homomorphism from U(g)|0 to U(h).

The restriction of Υ on Z(g) = U(g)g is an algebra isomorphism from Z(g) onto U(h)W .
Moreover, Musson proved in [Mu1], 5.3 that the restriction of Υ on U(g)g0 is an algebra

isomorphism from U(g)g0 onto S(h)S.

2.7. Graded Verma modules. For a fixed λ ∈ h∗, let C̃λ(i) (i ∈ Z2) be the one
dimensional space of degree i endowed with the structure of b+-module through n+v = 0
and hv = λ(h)v for all h ∈ h and v ∈ C̃λ(i).

Set

M̃(λ, i) = U(g)⊗U(b+)C̃λ(i).

The Verma module M̃(λ, i) has a unique simple quotient denoted by Ṽ (λ, i).

Denote by Π the parity change functor. Then Π(M̃(λ, i)) = M̃(λ, i+ 1).

2.7.1. Clearly as g-modules M̃(λ, i) are canonically isomorphic for i ∈ Z2. We denote

this g-module by M̃(λ) and by Ṽ (λ) its unique simple quotient. Set

h∗s := {µ ∈ h∗| M̃(µ) = Ṽ (µ)}.
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2.7.2. By [Mu3] 2.4, µ ∈h∗\h∗s iff there exists an irreducible positive root α such that

n := ⟨µ + ρ, α⟩ ∈ N+ and n is odd if α is odd. Moreover for α ∈ ∆+
irr one has M̃(µ) ⊃

M̃(sα.µ) iff ⟨µ+ ρ, α⟩ = n ∈ N+ and n is odd if α is odd.

Therefore for the graded Verma modules we have

M̃(µ, i) ⊃ M̃(sα.µ, i) ⇐⇒ ⟨µ+ ρ, α⟩ ∈ N+, α ∈ ∆+
0

M̃(µ, i) ⊃ Π
(
M̃(sα.µ, i)

)
⇐⇒ ⟨µ+ ρ, α⟩ ∈ (2N+ 1), α ∈ ∆+

1 .
(1)

As in the classical case, any (graded) Verma module contains a simple (graded) Verma
submodule.

2.8. Finite dimensional representations. Define for r ∈ {1, . . . , l} the fundamental

weight ωr =
r∑

i=1

βi, and introduce the set

P+(π) :=
l∑

r=1

Nωr = {λ ∈ h∗| ⟨λ, βl⟩ ∈ 2N, ⟨λ, βi − βi+1⟩ ∈ N, ∀i = 1, . . . , l − 1}.

Kac (see [K1]) showed that Ṽ (λ) is finite dimensional iff λ ∈ P+(π). For any λ ∈ h∗, let
V (λ) be the simple g0-module of highest weight λ. Remark that {β1−β2, . . . , βl−1−βl, 2βl}
is a basis of simple roots of ∆0 and that ⟨µ, 2βl⟩ = 1

2
⟨µ, βl⟩ for all µ ∈ h∗. Thus V (λ) is

finite dimensional iff λ ∈ P+(π).

2.9. The separation theorem. Recall the separation theorem established by Musson
in [Mu1],1.4:

Theorem. There exists an ad-invariant subspace H in U(g) such that the multipli-
cation map induces an ad g-isomorphism U(g) ≃ Z(g) ⊗ H. Moreover, for every simple

finite dimensional module Ṽ , [H : Ṽ ] = dim Ṽ |0.

2.10. We use the following fact: if B is a Zariski dense subset of h∗ then∩
µ∈B

Ann M̃(µ) = 0

see [J1], 7.1

3. PRV matrices

In the first part of this Section we recall the standard definition of PRV matrices and
the main results of [GL]. In the second part of the Section we define generalized PRV
matrices. They provide a powerful tool for the calculation of the rank of the standard
PRV matrices which we use in the proof of our main Theorem 6.2.
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3.1. The separation theorem 2.9 leads to the following construction. Fix ν ∈ P+(π) and

set n := dim Ṽ (ν)|0.

Let {θ1, . . . , θn} be a basis of Homg

(
Ṽ (ν),H

)
and {v1, . . . , vn} be a basis of Ṽ (ν)|0.

Define a matrix PRV ν by the formula

(PRV ν)nij=1 :=
(
Υ(θj(vi))

)
ij
.

Remark that the entries of the matrix PRV ν are elements of S(h).
The matrix PRV ν has the following property: jth column of this matrix is zero at the

point µ ∈ h∗ iff θj(Ṽ (ν)) ⊂ Ann Ṽ (µ)— see Lemma 7.2 in [J1].

For any change of the above bases (and of the space of harmonics H), the new matrix
is of the form M(PRV ν)N where M,N are invertible matrices. Therefore, the corank of
the PRV ν(µ) is correctly defined for each µ ∈ h∗ and detPRV ν ∈ S(h) is defined up to
a non-zero scalar. Moreover

corankPRV ν(µ) = [AnnH Ṽ (µ) : Ṽ (ν)] (2)

3.1.1. In [GL] we decomposed detPRV ν into linear factors and showed that

detPRV ν = trνP (3)

where P ∈ S(h) is a polynomial (depending from ν) which has no zeroes in the set h∗s and
the polynomial t and the number rν are given by the formulas

t(µ) :=
∏

β∈∆+
1

(β, µ+ ρ) ∀µ ∈ h∗

rν :=
∞∑
n=1

(−1)n+1 dim Ṽ (ν)nβ1
.

Note that rν is a non-negative number for any ν ∈ P+(π). Introduce

h∗d := {µ ∈ h∗| t(µ) = 0},
h∗sd := h∗d ∩ h∗s.

As a corollary of the formula (3) we obtained the following theorem.

3.1.2. Theorem. The annihilator of the Verma module M̃(µ) is generated by its
intersection with the centre Z(g) iff µ ̸∈ h∗d.

3.1.3. We also proved in [GL] that for any µ ∈ h∗d and ν ∈ P+(π)

corankPRV ν(µ) ≥ rν . (4)

For any µ ∈ h∗ set

d(µ) := Card{β ∈ ∆+
1 , (µ+ ρ, β) = 0}.
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Then (3) implies that the order of zero of detPRV ν at a point µ ∈ h∗s is equal to rνd(µ).
Hence (4) forces the equalities

corankPRV ν(µ) = rν ∀ν ∈ P+(π) (5)

for any µ ∈ h∗s such that d(µ) = 1.

3.2. Matrices PRV ν
µ . Fix µ ∈ h∗ and set

m := AnnZ(g) M̃(µ).

Let L be an ad g-submodule of U(g) such that

U(g) = L ⊕ U(g)m. (6)

By Theorem 2.9, one has the following isomorphisms of g-modules

L ∼= U(g)/(U(g)m) = (H⊗Z(g))/(H⊗m) ∼= H.
Thus [L : Ṽ (ν)] = dim Ṽ (ν)|0 for all ν ∈ P+(π). This allows us to define a matrix PRV ν

µ

as follows.

Fix ν ∈ P+(π). Let {θ1, . . . , θn} be a basis of Homg

(
Ṽ (ν),L

)
and {v1, . . . , vn} be a

basis of Ṽ (ν)|0. Define a matrix PRV ν
µ by the formula

(PRV ν
µ )

n
ij=1 :=

(
Υ(θj(vi))

)
ij
.

3.2.1. Let us compare matrices PRV ν and PRV ν
µ .

Denote by ψ a canonical map from U(g) to U(g)/(U(g)m). Since m is an ideal of Z(g),
ψ is a homomorphism of g-modules and of algebras. By (6), the restriction of ψ on L
and on H are isomorphisms onto ψ(U(g)). Therefore there exists a basis {η1, . . . , ηn} of

Homg

(
Ṽ (ν),H

)
such that

ψ(ηj(v)) = ψ(θj(v)), ∀j = 1, . . . , n (7)

where v is a highest weight vector of Ṽ (ν). Since ψ is a homomorphism of g-modules, it
implies that

ψ(ηj(vi)) = ψ(θj(vi)), ∀i, j = 1, . . . , n. (8)

By Theorem 2.9, there exist elements zpj ∈ Z(g) such that

θj(v) =
∑
p

ηp(v)zpj, ∀j = 1, . . . , n. (9)

Every zpj is ad-invariant so θj(vi) =
∑
p

ηp(vi)zpj and therefore

Υ(θj(vi)) =
∑
p

Υ(ηp(vi))Υ(zpj), ∀i, j = 1, . . . , n

since the restriction of Υ on U(g)|0 is an algebra homomorphism.
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The matrix
(
Υ(ηj(vi))

)
ij
is a usual PRV ν matrix. Hence

PRV ν
µ = PRV ν

(
Υ(zpj)

)
. (10)

Since U(g)m ⊂ Ann M̃(µ) it follows that Υ(kerψ) = Υ(U(g)m) = mµ where mµ = {Q ∈
S(h)| Q(µ) = 0} is a maximal ideal in S(h). Comparing (7) and (9), we conclude that
ψ(zpj) = δjp and so Υ(zpj) = δjp modulo mµ for all p, j = 1, . . . , n. Then the formula (10)
implies that PRV ν

µ (µ) = PRV ν(µ) and moreover detPRV ν
µ = detPRV ν(1 + Q) where

Q ∈ mµ that is Q(µ) = 0. By (3), detPRV ν = trνP where P is a polynomial which has
no zeroes on the set h∗d. We can summarize our conclusions as follows:

3.2.2. Lemma. For any ν ∈ P+(π) one has

(i) corankPRV ν
µ (µ) = corankPRV ν(µ).

(ii) detPRV ν
µ = trνP1 where P1 ∈ S(h) is a polynomial such that P1(µ) ̸= 0.

4. The centralizer of U(g)0 in U(g)

4.1. In this section we describe the centralizer A of U(g)0 in U(g) that is

A := {a ∈ U(g)| ∀b ∈ U(g)0 ab = ba}.

This algebra admits another natural description:

Lemma. The algebra A is the set of elements in U(g) which act by scalars on each
homogeneous component of any simple highest weight graded module that is

A = {a ∈ U(g)| ∀(µ ∈ h∗, i, j ∈ Z2) ∃c ∈ C s.t. (a− c)Ṽ (µ, i)j = 0}.

Proof. Assume that a ∈ U(g) acts by scalars on each homogeneous component of any
simple highest weight graded module. Then for any b ∈ U(g)0, the element (ab− ba) acts
by zero on any simple highest weight module so ab− ba = 0 by 2.10. Conversely, assume
that a ∈ A. Note that h ⊂ U(g)0, so A ⊂ U(g)h and therefore any weight subspace of
any g-module is A-stable. Thus any weight subspace of any simple highest weight graded
module contains an a-eigenvector, since it is finite dimensional. Taking into account, that
each homogeneous component of any graded simple highest weight module is a simple
U(g)0-module, we conclude that a acts by a scalar on whole homogeneous component as
required. �



10

4.2. Lemma. Υ(A) ⊆ S(h)D.

Proof. Recall that D is the subgroup of W generated by the reflections sα, α ∈ ∆
+
0 . Fix

α ∈ ∆
+

0 and a ∈ A. The homogeneous component M̃(µ, i)i is generated as U(g)0-module

by a primitive highest weight vector of weight µ and so (a−Υ(a)(µ))M̃(µ, i)i = 0. Taking

into account that M̃(µ, i) ⊃ M̃(sα.µ, i) if ⟨µ+ ρ, α⟩ ∈ N+ (see 2.7.2), we conclude that

Υ(a)(µ) = Υ(a)(sα.µ) = sα.(Υ(a))(µ), ∀µ s.t. ⟨µ+ ρ, α⟩ ∈ N+.

Since both Υ(a) and sα.(Υ(a)) are elements of S(h) and the set {µ ∈ h∗| ⟨µ+ρ, α⟩ ∈ N+}
is a Zariski dense subset of h∗, we conclude that Υ(a) = sα.(Υ(a)) as required. �

4.3. Since D is a subgroup of index 2 in W , W acts on S(h)D by the identity and by a
non trivial involution denoted by σ. Note that for any odd root β one has

sβ.Υ(a) = σ(Υ(a)) ∀a ∈ A.

The following proposition describes the action of A on the graded highest weight simple
modules Ṽ (µ, i).

4.3.1. Proposition. For any µ ∈ h∗, i ∈ Z2 and a ∈ A one has

a acts by the scalar

{
Υ(a)(µ) on Ṽ (µ, i)i

σ(Υ(a))(µ) on Ṽ (µ, i)i+1

Proof. It is clear that (a−Υ(a)(µ))Ṽ (µ, i)i = 0. Let us verify that

(a− σ(Υ(a)(µ)))Ṽ (µ, i)i+1 = 0.

Fix a ∈ A and let ϕ be the map h∗ \ {0} → C such that a acts by the scalar ϕ(µ) on

Ṽ (µ, i)i+1. We shall first show that ϕ is a restriction of a polynomial function.

For each µ ∈ h∗, i ∈ Z2 choose a highest weight vector vµ ∈ Ṽ (µ, i). Fix β ∈ ∆+
1

and choose y ∈ g−β \ {0} and x ∈ gβ such that [y, x](λ) = (β, λ) for any λ ∈ h∗. Then

yvµ ∈ Ṽ (µ, i)i+1 so

xayvµ = ϕ(µ)xyvµ = ϕ(µ)(β, µ)vµ.

Since xay ∈ U(g)|0 one has xayvµ = Υ(xay)(µ)vµ. Thus

ϕ(µ)(β, µ) = Υ(xay)(µ). (11)

This implies that Υ(xay)(µ) vanishes on whole hyperplane (β, µ) = 0, which means that
(β, µ) divides Υ(xay)(µ) and therefore ϕ is a restriction of the polynomial function
Υ(xay)(µ)/(β, µ).
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Assume now that µ is such that ⟨sβ.µ+ρ, β⟩ ∈ (2N+1) for some β ∈ ∆+
1 . In that case,

by 2.7.2, one has Π
(
M̃(sβ.µ, i)

)
⊃ M̃(µ, i) that is Ṽ (µ, i) is a subquotient of ΠM̃(sβ.µ, i)

so

ϕ(µ) = Υ(a)(sβ.µ) = (sβ.Υ(a))(µ) = σ(Υ(a))(µ).

Since
{
µ s.t. ∃β ∈ ∆+

1 , ⟨µ+ ρ, β⟩ ∈ (2N+ 1)
}
is Zariski dense in h∗ the proposition fol-

lows. �

4.4. For i = 1, . . . , l let xi ∈ S(h) be the function which maps µ to (µ + ρ, βi). With
these notations, W acts on S(h) by signed permutations of the xi’s and D is the stabilizer

of the element t =
l∏

i=1

xi. (see 3.1.1).

Obviously t ̸∈ S(h)W , t2 ∈ S(h)W . Moreover,

S(h)D = S(h)W ⊕ tS(h)W .

Indeed, write S(h)D = ker(σ − id)⊕ ker(σ + id) = S(h)W ⊕ ker(σ + id). By definition of
σ, for any x ∈ S(h)D, σ(x) = −x implies sβi

.x = σ(x) = −x for all i = 1 . . . l. On the
other hand, observe that if x ∈ S(h) is such that sβi

.x = −x then necessary xi|x. Hence
any element of ker(σ + id) is of the form ty with y ∈ S(h)W .

4.4.1. Proposition.

(i) The restriction of Υ on A is an algebra isomorphism from A onto S(h)D.
(ii) There exists an element T in A such that Υ(T ) = t, T 2 ∈ Z(g) and

A = Z(g)⊕ TZ(g).

(iii) Let σ be the involution of A defined by the involution σ on S(h)D (see 4.3) through
the identification (i), that is σ acts identically on Z(g) and maps T to (−T ).
Then, for any u ∈ U(g)1 and a ∈ A one has

ua = σ(a)u.

Proof. Recall that the restriction of Υ on U(g)g0 is an algebra isomorphism from U(g)g0
onto S(h)S. Let T be an element of U(g)g0 such that Υ(T ) = t. By [Mu1] 5.5, T commutes
with the elements of U(g)0 and thus T ∈ A. Since A contains Z(g), we conclude that

Υ(A) is a subalgebra of S(h)S which contains t and S(h)W . Therefore Υ(A) contains
S(h)D and so Υ(A) = S(h)D, by Lemma 4.2. Thus the restriction of Υ on A is an algebra

isomorphism from A onto S(h)D. Now (ii) follows from 4.4.

According to [Mu1] 5.5, Tx+ xT = 0 for all x ∈ g1 so uT = σ(T )u for any u ∈ U(g)1.
Now (iii) follows from (ii). �
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4.4.2. Remark. This element T was considererd by Musson in [Mu1] in order to show
that annihilators of certain Verma modules are not generated by their intersection with
the centre. Also, an explicit construction of T is given in [ABF].

4.5. As a corollary we obtain another characterization of the algebra A:

Corollary. The algebra A coincides with the set of elements of U(g) which act by
scalars on each homogeneous component of any Verma module.

Proof. Any element a ∈ A acts on M̃(µ, i)i by Υ(a)(µ) and on M̃(µ, i)i+1 by Υ(σ(a))(µ)
(this follows from Proposition 4.4.1). Conversely, the assertion that any element which
acts by scalars on each homogeneous components of any Verma module belongs to A,
follows from the fact that the intersection of annihilators of all Verma modules is zero
(see 2.10). �

5. Freeness U(g) over U(g)g0

The goal of this section is to prove the

5.1. Theorem. There exists an ad g0-submodule E of U(g) such that the multiplication
map induces an isomorphism of g0-modules E ⊗ U(g)g0 ∼−→ U(g).

Subsections 5.5-5.9 are devoted to the proof of this theorem. In 5.10, we shall easily
deduce from it the result we shall actually need in the proof of Theorem 6.2, that is the

5.2. Theorem. There exists an ad g0-submodule K of U(g) such that the multiplication
map induces an isomorphism of g0-modules K ⊗A → U(g).

5.3. Remark. For a complex semisimple Lie algebra k, one can show that the centre
Z(k) is integrally closed in U(k). As Pinczon observed in [Pi], this fails to be true for g.
However, one can prove that the integral closure of Z(g) (resp. A) is precisely U(g)g0 .

5.4. Remark. Let H be as in Theorem 2.9 and K as in Theorem 5.2. Since A is free of
rank 2 over Z(g) (see Proposition 4.4.1 (ii)), one has the following multiplicity formula

[K : V (λ)] =
1

2
[H : V (λ)] ∀λ ∈ P+(π). (12)
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5.5. Proof of theorem 5.1. Musson proved in [Mu1], 5.3 that the restriction of Υ on

U(g)g0 is an algebra isomorphism from U(g)g0 onto S(h)S. Following the approach of [BL],
our proof is based on this fact and the lemma below.

Lemma. (see [BL]) Let D be a filtered algebra and M a filtered D-module. Let {mk}
be a family of elements of M such that {grmk} is a free basis of the grD-module grM .
Then {mk} is a free basis of M over D.

However, the proof of Theorem 5.1 will not be an automatic generalization of [BL].
It will require the introduction of several different filtrations and the careful study of
their respective associated gradings. The main reason for these difficulties is that the
canonical filtration F (see 2.4) is not adapted anymore to this situation. Indeed, let
C,C0 be respectively the Casimir elements of Z(g) and Z(g)0. It is easy to check that
x := grF(C − C0) ∈ ∧2g1. Hence x2 = 0 and grF U(g)g0 is not a domain. Moreover, in
the case g = osp(1, 2), one can verify that S(g) is not graded-free over grF U(g)g0 .

Throughout this section when we say that an algebra U is free over its subalgebra A
the action of A on U is assumed to be right multiplication.

All filtrations of Lie superalgebras are assumed to be exhausting increasing 1
2
N-filtrations

such that each step of the filtration is Z2-graded space. If F is such a filtration on a finite
dimensional Lie superalgebra t, then the natural extension of F to U(t) is also exhausting
increasing 1

2
N-filtration such that each step of the filtration is Z2-graded space. More-

over, the associated graded algebra grF U(t) is canonically isomorphic to the universal
enveloping algebra U(grF t). We will identify this two objects.

5.6. Filtration F1. Define a filtration F1 on g by

F (1/2)
1 (g) = g1, F (1)

1 (g) = g0

and extend it to U(g). Since F1 is ad g0-invariant, the associated graded algebra gr1 U(g) =
U(gr1 g) inherits the structure of ad g0-module. Moreover each graded subspace U (n)(gr1 g)
is finite dimensional.

5.6.1. In gr1 g one has the following relations

[gr1(a), gr1(b)] = gr1([a, b]) for a, b ∈ g1, [gr1(a), gr1(b)] = 0 for a ∈ g0, b ∈ g.

5.6.2. As in the classical case one has the following easy implication

Lemma. If gr1 U(g) is graded-free over gr1 U(g)g0 then there exists a g0-submodule E
of U(g) such that the multiplication map induces the isomorphism E ⊗ U(g)g0 ∼−→ U(g).

Proof. Denote by gr+1 U(g)g0 the ideal in gr1 U(g)g0 generated by elements of positive
degree.
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Suppose that gr1 U(g) is graded-free over gr1 U(g)g0 that is there exists a graded sub-
space E of gr1 U(g) such that the multiplication map induces isomorphism

ψ : E ⊗ gr1 U(g)g0
∼−→ gr1 U(g).

In particular one has gr1 U(g) = gr1 U(g) gr+1 U(g)g0 ⊕ E.

Since g0 acts trivially on the elements of gr+1 U(g)g0 , the left ideal gr1 U(g) gr+1 U(g)g0 is
graded g0-submodule of gr1 U(g). Thus there exists a graded g0-submodule E ′ of gr1 U(g)
such that gr1 U(g) = gr1 U(g) gr+1 U(g)g0 ⊕E ′. Denote by ψ′ the map E ′ ⊗ gr1 U(g)g0

∼−→
gr1 U(g) induced by the multiplication. Using the induction on the degree of a homoge-
neous component, it is easy to check that ψ′ is surjective. Indeed, since Imψ′. gr1 U(g)g0 ⊂
Imψ′,

gr
(n+1)
1 U(g) =

n+1∑
k=1

grn+1−k
1 U(g) grk1 U(g)g0 ⊕ (E ′ ∩ gr

(n+1)
1 U(g))

is contained in Imψ′ if gr
(k)
1 U(g) ⊂ Imψ′ for k ≤ n. Taking into account that each

homogeneous component of gr1 U(g) is finite dimensional, we obtain from above that

dim(E ∩ gr
(n)
1 U(g)) = dim(E ′ ∩ gr

(n)
1 U(g))

for all n ∈ N/2. Since ψ is an isomorphism, it follows that ψ′ is also an isomorphism.

For each n ∈ N/2 let ϕn be the canonical map F (n)
1 (U(g)) → gr

(n)
1 U(g) and let En be a

g0-submodule of F (n)
1 (U(g)) such that ϕn(En) = E ′ ∩ gr

(n)
1 U(g). Set E =

∑ En. Clearly,
that E is g0-invariant. Moreover, by Lemma 5.5, E ⊗ U(g)g0 ∼−→ U(g) as required. �

5.7. Filtration F2. Set

g0 := ⊕α∈∆0
(g0)α, gr := ⊕l

i=1(g2βi
⊕ g−2βi

).

Define a filtration F2 on gr1 g by

F (0)
2 (gr1 g) = gr1 g0,

F (1/2)
2 (gr1 g) = gr1 g1 ⊕ gr1 g0,

F (1)
2 (gr1 g) = gr1 g

and extend it to U(gr1 g). Since F2 is h-invariant filtration, the associated graded algebra
gr2 gr1 U(g) = U(gr2 gr1 g) inherits the structure of h-module. The following relations
(with all possible choices of signs) hold in gr2 gr1 g:

[gr2 gr1 x±βi
, gr2 gr1 x±βj

] = 0 iff i ̸= j, i, j ∈ {1, . . . , l},
[gr2 gr1 x±βi

, gr2 gr1 x±βi
] = gr2 gr1[x±βi

, x±βi
], for i = 1, . . . , l.

(13)

Moreover, the even part of gr2 gr1 g coincides with its centre.
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The relations (13) imply that [x, x] ̸= 0 for any non-zero odd x ∈ gr2 gr1 g. Therefore,
by [AL], U(gr2 gr1 g) is a domain. In particular, U(gr1 g) is also a domain.

5.7.1. Denote by t := t0 ⊕ t1 the subalgebra of gr2 gr1 g given by

t1 := gr2 gr1 g1, t0 := [t1, t1] = gr2 gr1 h⊕ gr2 gr1 gr.

The superlagebra t is a graded h-invariant subalgebra of gr2 gr1 g: the non-zero elements
of t1 have degree 1

2
and the non-zero elements of t0 have degree 1.

5.7.2. Lemma. Assume that

(i) gr2 gr1 U(g)g0 ⊂ U(t)
(ii) U(t) is graded-free over gr2 gr1 U(g)g0 .

Then gr1 U(g) is graded-free over gr1 U(g)g0.

Proof. The graded Lie superalgebra gr2 gr1 g is the graded product of the commutative
Lie algebra gr2 gr1 g0 (which lies in degree zero) and the Lie superalgebra t. Therefore
U(gr2 gr1 g0), U(t) are graded subalgebras of U(gr2 gr1 g) and one has

U(gr2 gr1 g) = U(gr2 gr1 g0)⊗ U(t) (14)

as graded algebras.

Recall that gr1 g0 is a Lie subalgebra of gr
(1)
1 g and thus U(gr1 g0) is a graded subalgebra

of U(gr1 g). Let n be a graded linear basis of U(gr1 g0). Since U(gr1 g0) ⊂ F (0)
2 (U(gr1 g) ,

gr2 n is a linear basis of U(gr2 gr1 g0). By (14), it follows that U(gr2 gr1 g) is free over U(t)
with the basis gr2 n.

Observe that the F2-filtration degree of the elements of gr1 g1 and gr1(gr ⊕ h) coincides
with the degree with respect to the grading on gr1 g. Thus there exists a map ι : U(t) →
U(gr1 g) of graded linear space such that gr2 ◦ι(a) = a for every homogeneous element
a ∈ U(t). Let k be a graded basis of U(t) over gr2 gr1 U(g)g0 . Then k × gr2 n is a basis
of gr2 gr1 U(g) over gr2 gr1 U(g)g0 . Since ι is a map of graded spaces, ι(k) consists of
homogeneous elements. Hence, by Lemma 5.5, ι(k)× n is a graded basis of gr1 U(g) over
gr1 U(g)g0 as required. �

5.8. Proof of the assumptions of Lemma 5.7.2. In this subsection we prove the
assumptions of Lemma 5.7.2. By the lemmas 5.6.2,5.7.2 they imply Theorem 5.1.

5.8.1. Consider the canonical filtration F on U(g) defined in 2.4 Recall that the sym-
metric superalgebra S(g) is the associated graded algebra of U(g) with respect to the
filtration F0. We denote the grading map corresponding to the canonical filtration by gr0.

Note that the algebra gr2 gr1 h
∼= gr0 h as graded algebras. Identify the graded algebra

S(h) with U(h) and gr2 gr1(U(h)). The Lie superalgebra gr2 gr1 g admits a triangular
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decomposition

gr2 gr1 g = gr2 gr1 n
− ⊕ h⊕ gr2 gr1 n

+

Let Υ2 : U(gr2 gr1 g) → S(h) be the Harish-Chandra projection with respect to the above
triangular decomposition of gr2 gr1 g. Define similarly Υ0 : S(g) → S(h). By [Mu1], the
restriction of Υ0 on gr0 Z(g) = S(g)g gives an algebra isomorphism from gr0 Z(g) onto
S(h)W .

Remark that all elements of U(g)g0 are even so gr
(n)
2 gr1 U(g)g0 = 0 for all n ∈ 1

2
N \ N.

5.8.2. Proposition.

(i) The restriction of the Harish-Chandra projection Υ2 on gr2 gr1 U(g)g0 is a graded
algebra isomorphism from gr2 gr1 U(g)g0 onto S(h)S.

(ii) gr2 gr1 U(g)g0 ⊂ U(t)h.

Proof. Fix a basis {xi}i∈I of g consisting of weight vectors and fix a total ordering on this
basis compatible with the partial order on the set of weights Ω(g) given by µ1 > µ2 iff
µ1 − µ2 ∈ Nπ.

Consider the corresponding PBW-basis of U(g). Set
I1 := {i ∈ I : xi ∈ g1}, I0 = {i ∈ I : xi ∈ g0}, Ih = {i ∈ I : xi ∈ h}, Ir = {i ∈ I : xi ∈ gr}.

For an element eν =
∏

i∈I x
νi
i of the PBW-basis set

d0(eν) =
∑

i∈I νi,
d1(eν) =

∑
i∈I0 νi +

1
2

∑
i∈I1 νi,

d2(eν) =
∑

i∈Ih∪Ir νi +
1
2

∑
i∈I1 νi

For each element u ∈ U(g) let uν be the coordinate of u corresponding to eν , that is
u =

∑
uνeν . Set supp(u) = {ν : uν ̸= 0}. For i = 0, 1, 2 set

di(u) = max
ν∈supp(u)

di(eν), di(0) = 0.

Note that d0(u) ≥ d1(u) ≥ d2(u).

Identify the PBW-basis with the corresponding PBW bases of the universal enveloping
algebras U(g), S(g), U(gr1 g), U(gr2 gr1 g) and extend these identifications to the iden-
tifications of U(g), S(g), U(gr1 g), U(gr2 gr1 g) as vector spaces. Then the maps gr0, gr1
and gr2 gr1 are given by the following formulas

gri(u) =
∑

ν∈supp(u):di(eν)=di(u) uνeν , i = 0, 1
gr2 gr1(u) =

∑
ν∈supp(u):d2(eν)=d2(u) uνeν

(15)

Note that under the previous identification of U(g), S(g), U(gr2 gr1 g) as vector spaces,
the Harish-Chandra maps Υ, Υ0, Υ2 coincide. Set

Jh = {ν : νi = 0, ∀i ̸∈ Ih}.
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Note that d2(eν) = d0(eν) for all ν ∈ Jh. One has

Υ0(gr0(u)) =

{
gr0Υ(u), if ∃ν ∈ (supp(u) ∩ Jh) : d0(u) = d0(eν)
0, otherwise

(16)

Υ2(gr2 gr1(u)) =

{
gr0Υ(u), if ∃ν ∈ (supp(u) ∩ Jh) : d2(u) = d2(eν)
0, otherwise

(17)

Since F1,F2 are h-invariant filtrations, one has

gr2 gr1 U(g)g0 ⊂ U(gr2 gr1 g)h.

The restriction of the Harish-Chandra projection Υ2 on U(gr2 gr1 g)h is a graded algebra
homomorphism from U(gr2 gr1 g)h to S(h) (see 2.6). Hence to prove (i) it is sufficient to
show that

(a) Υ2(gr2 gr1((a)) ̸= 0, ∀a ∈ U(g)g0 \ {0}
(b) for any homogeneous f ∈ S(h)S ∃a ∈ U(g)g0 s.t. Υ2(gr2 gr1((a)) = f.

Let us show that the condition (a) implies (b). In fact, let f ∈ S(h)S be a homogeneous
element and let f ′ ∈ S(h) be such that f ′(λ) = f(λ+ ρ) for any λ ∈ h∗. Then f ′ ∈ S(h)S.
and moreover gr0(f

′) = f . By 2.6, there exists a ∈ U(g)g0 such that Υ(a) = f ′. Then (a)
implies that Υ2(gr2 gr1(a)) ̸= 0. Therefore, by (17),

Υ2(gr2 gr1(a)) = gr0Υ(a) = gr0(f
′) = f.

Hence (a) implies (b) and it remains to verify the condition (a).

Consider the case z ∈ Z(g) \ {0}. Recall that the restriction of the Harish-Chandra
projection Υ0 on gr0 Z(g) is an injection. By (16), it follows that d0(z) = d0(eν) for some
ν ∈ (supp(z) ∩ Jh). One has

d0(eν) = d2(eν) ≤ d2(z) ≤ d0(z) = d0(eν)

so d2(z) = d2(eν). By (17), Υ2(gr2 gr1(a)) ̸= 0 and this proves (a) for a ∈ Z(g).

Let µ be such that eµ ̸∈ U(t) that is µi ̸= 0 for some i ∈ I0 \ (Ih ∪ Ir). Then d2(eµ) <
d0(eµ) ≤ d0(z) if µ ∈ supp(z). Thus d2(eµ) < d2(z) and so (gr2 gr1(z))µ = 0 by (15).
Hence (gr2 gr1(z))µ = 0 for all µ be such that eµ ̸∈ U(t). Therefore gr2 gr1(z) ∈ U(t) and
thus gr2 gr1(Z(g)) ⊂ U(t).

Fix an arbitrary non-zero element a ∈ U(g)g0 . By [Mu1], 2.5 and 5.3, a is algebraic
over Z(g) that is

∑n
i=0 a

izi = 0 for some elements zi ∈ Z(g), zn ̸= 0. Recall from 7.2.2

that gr1(U(g)), gr2 gr1(U(g)) are domains. Hence, gr2 gr1(a
izi) = (gr2 gr1(a))

i gr2 gr1(zi)
for i = 0, . . . , n. Then there exist 0 < k ≤ n and z′i ∈ {gr2 gr1 zi, 0} for i = 0, . . . , k such
that

∑k
i=0(gr2 gr1(a))

iz′i = 0 and z′k ̸= 0. Hence gr2 gr1(a) is algebraic over gr2 gr1Z(g).

Let
∑k

i=0(gr2 gr1(a))
iz′i = 0 be a minimal polynomial of gr2 gr1(a) over gr2 gr1Z(g).

Since gr2 gr1 U(g) is a domain, z′0 ̸= 0. Since the restriction of Υ2 on U(gr2 gr1 g)h is an



18

algebra homomorphism one has

k∑
i=0

(Υ2(gr2 gr1(a)))
iΥ2(z

′
i) = 0

and Υ2(z
′
0) ̸= 0 as we already showed. Therefore Υ2(gr2 gr1(a)) ̸= 0. Hence the condition

(a) holds and this proves (i).

For (ii), recall that U(gr2 gr1 g) = U(gr2 gr1 g0) ⊗ U(t) (see (14)). Since gr2 gr1 g0 is
a commutative Lie algebra, U(gr2 gr1 g) is isomorphic to the algebra of polynomials in
gr2 gr1 g0 with coefficients in U(t). As we already showed, gr2 gr1 U(g)g0 is algebraic over
gr2 gr1Z(g) and gr2 gr1Z(g) ⊂ U(t). Thus gr2 gr1 U(g)g0 is algebraic over U(t) and so
gr2 gr1 U(g)g0 ⊂ U(t) as required. �

5.8.3. For i = 1, . . . , l set

xi := gr2 gr1 xβi
, yi := gr2 gr1 x−βi

, hi := [yi, xi].

Lemma.

(i) The algebra U(t) is graded free over U(t)h.
(ii) The algebra U(t)h is an algebra of polynomials in variables {hi, yixi}li=1.

(iii) The algebra U(t)h is graded free over gr2 gr1 U(g)g0.

Proof. For i = 1, . . . , l denote by pi the subalgebra of t generated by yi, xi. By (13), pi
are pairwise isomorphic graded Lie superlagebras and t = p1× . . .×pl as graded algebras.
Thus

U(t) = U(p1)⊗ . . .⊗ U(pl).
Since Ω(U(pi)) ⊂ Zβi, it follows that

U(t)h = U(p1)h ⊗ . . .⊗ U(pl)h.

Therefore in order to prove (i) and (ii) it is sufficient to show that for i = 1, . . . , l, the
algebra U(pi) is graded free over U(pi)h and that U(pi)h is an algebra of polynomials in
two variables hi and yixi.

Fix i ∈ {1, . . . , l} and omit the index i. The elements x and y have degree 1
2
and form

a basis of the odd part of p; the elements h = [y, x], [x, x] = 2x2 and [y, y] = 2y2 have
degree 1 and form a basis of the even part of p. Moreover x has weight β and y has weight
−β.

By PBW-theorem, for anym ∈ N the weight subspace U(p)|mβ has a basis {hrykxk+m}r,k∈N
and therefore U(p)|mβ is graded-free over U(p)|0 = U(p)h with the basis consisting of the
one element xm. Similarly, for any m ∈ N the weight subspace U(p)|−mβ is graded-free
over U(p)h with the basis consisting of the one element ym. Hence U(p) = ⊕m∈ZU(p)|mβ

is graded-free over U(p)h. This proves (i).
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Recall that even part of t lies in its centre. Thus x2, y2 and h lies in the centre of p.
Therefore

y2x2 = (yx)(xy) = (xy)(yx)

and, by induction, for any k > 0 one has

y2kx2k = (xy2x)k = (xy)k(yx)k = (yx)k(xy)k = (yx)k(h− yx)k

y2k+1x2k+1 = y(y2kx2k)x = y(xy)k(yx)kx = (yx)ky2(xy)k−1x2 = (yx)k+1(xy)k

= (yx)k+1(h− yx)k.

Since U(p)h has a basis {hrykxk}r,k∈N, it follows that U(p)h is generated as an algebra by
h and yx.

Since both h and yx have degree 1, the homogeneous component of degree n of U(p)h is a
span of {hr(yx)k}r,k∈N,r+k=n . On the other hand, this component has a basis {hrxkyk}r,k∈N,r+k=n

and so has the dimension equal to n+1. Therefore the elements {hr(yx)k}r,k∈N,r+k=n are
linearly independent. Since h and yx are homogeneous, it implies that the elements
{hr(yx)k}r,k∈N are linearly independent. Hence U(p)h is an algebra of polynomials in h
and yx. This proves (ii).

(iii) Define a filtration F3 on U(t)h setting the degree of yixi equal to zero and the degree
of hi equal to one for all i = 1, . . . , l. Since, by (ii), U(t)h is an algebra of polynomials in
{hi, yixi}li=1 the filtration F3 is correctly defined. Identify S(h) with its image in gr3 U(t)h.

One has the following isomorphism of graded algebras:

gr3 U(t)h ∼= C[y1x1, . . . , ylxl]⊗ S(h), (18)

where the grading of the algebra C[y1x1, . . . , ylxl] is trivial one and S(h) has the usual
grading of the symmetric algebra.

Set ek,r =
∏l

i=1 h
ri
i (yx)

ki , |k| = ∑l
i=1 ki, |r| =

∑l
i=1 ri. Fix a ∈ U(g)g0 . Taking into

account that gr2 gr1(a) ∈ U(t)h is a homogeneous element of gr2 gr1 U(g), we conclude
from (ii) that

gr2 gr1(a) =
∑

|k|+|r|=n

ak,rek,r

where the coefficients ak,r are scalars and n is the degree of gr2 gr1(a) as element of the
graded algebra gr2 gr1 U(g). By Proposition 5.8.2 (i), one has

Υ2(gr2 gr1(a)) =
∑
|k|=n

ak,0ek,0 ̸= 0.

Since the degree of ek,r with respect to the filtration F3 is equal to |k|, it implies that
gr2 gr1(a) has degree n with respect to F3 and moreover

gr3 gr2 gr1(a) = Υ2(gr2 gr1(a)).

By Proposition 5.8.2 (i), it implies that

gr3 gr2 gr1(U(g))g0 = S(h)S.



20

Let m be a graded basis of S(h) over S(h)S. Then, by (18), {gr3 e0,r} ×m is a basis of
gr3 U(t)h over S(h)S. Therefore, by Lemma 5.5, U(t)h is graded-free over gr2 gr1(U(g))g0
with the basis {e0,r} ×m. This completes the proof of (iii). �

5.9. Lemma 5.7.2, Proposition 5.8.2 (ii) and Lemma 5.8.3 (iii) imply Theorem 5.1.

5.10. Freeness of U(g) over A. Consider the grading on S(h) given by the total degree.
Then S(h) is graded-free over S(h)S and over S(h)D. Using the reason of 5.6.2, one can
show the existence of aD-invariant graded subspaceN of S(h) such that the multiplication
map induces an isomorphism of D-modules N ⊗ S(h)D ∼−→ S(h). Since S is a subgroup
of D one obtain the isomorphism NS⊗S(h)D ∼−→ S(h)S. Hence S(h)S is free over S(h)D.
Using the isomorphisms from U(g)g0 to S(h)S and from A to S(h)D (see 7.2.2) given by
Υ one deduces that U(g)g0 ≃ A ⊗ Υ−1(NS). Finally, setting K = E ⊗ Υ−1(NS), we get
theorem 5.2.

Remark. One can also prove theorem 5.2 directly exactly as it is done for U(g)g0
throughout 5.5— 5.9. One has just to replace U(g)g0 by A in all steps and to replace
S(h)S by S(h)D in 5.8.2.

6. Verma modules annihilators

6.1. The aim of this section is to prove that the annihilator of any Verma module is
generated by its intersection with the algebra A. We start by giving a precise description
of the annihilators of Verma modules in A. These ideals of A play exactly the same role
as the central characters in the theory of semisimple Lie algebras.

Recall that σ is the involution of A mapping T to (−T ) and acts identically on Z(g).

6.1.1. Proposition.

(i) The map ι : µ → AnnA M̃(µ) induces a bijection between the set of W -orbits of
h∗ and the set of maximal σ-invariant ideals of A. Moreover ι maps h∗d to the set
of σ-invariant ideals of A which are maximal.

(ii) Let N ̸∼= Ṽ (0) be a subquotient of a Verma module M . Then AnnAM = AnnAN .

Proof. As we saw in Corollary 4.5, any element a ∈ A acts on M̃(µ, i)i by Υ(a)(µ) and on

M̃(µ, i)i+1 by Υ(σ(a))(µ). Consequently, AnnA M̃(µ, i)i+1 = σ(AnnA M̃(µ, i)i) and both

AnnA M̃(µ, i)i+1,AnnA M̃(µ, i)i are maximal ideals in A. Therefore their intersection

AnnA M̃(µ) is a maximal σ-invariant ideal of A.

From 4.3 and Proposition 4.4.1 (i) it follows that for any a ∈ A, Υ(a)(w.µ) = Υ(a)(µ)

for all w ∈ D and Υ(a)(w.µ) = Υ(σ(a))(µ) for all w ∈ W \D. Therefore AnnA M̃(µ) =

AnnA M̃(w.µ) for any w ∈ W . Conversely, assume that AnnA M̃(µ) = AnnA M̃(µ′) for

some µ, µ′ ∈ h∗. Since Z(g) ⊂ A it implies that AnnZ(g) M̃(µ) = AnnZ(g) M̃(µ′) and so
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µ ∈ Wµ′. Hence ι induces an injective map from the set of W -orbits of h∗ into the set of
maximal σ-invariant ideals of A.

Let J be a maximal σ-invariant ideal of A. Then there exists a maximal ideal I of
A such that J = I ∩ σ(I). Since the restriction of Υ on A is an injection, there exists

µ ∈ h∗ such that I = {a − Υ(a)(µ)| a ∈ A}. Then J = AnnA M̃(µ) and this proves the
surjectivity of ι.

The ideal AnnA M̃(µ) is maximal iff AnnA M̃(µ, i)i+1 = AnnA M̃(µ, i)i that is Υ(a)(µ) =
Υ(σ(a))(µ) for any a ∈ A. This is equivalent to the condition that Υ(T )(µ) = 0 that is
µ ∈ h∗d. This ends the proof of (i).

For (ii) note that the action of h separates the homogeneous components of a graded
Verma module since it separates U(g)0 and U(g)1. Consequently, one can define on
N and M structures of graded g-modules such that endowed with these structures N
becomes a graded subquotient M . Since N ̸= Ṽ (0), both homogeneous components of
N are non-zero. Since N is a subquotient of M , it implies that AnnAMi ⊆ AnnANi for
i ∈ Z2. Taking into account that both AnnAMi are maximal ideals, we conclude that
AnnAMi = AnnANi and so AnnAM = AnnAN as required. �

6.1.2. Remark. ince Ṽ (0) is one-dimensional, AnnA Ṽ (0) contains the element T−t(0) =
T −∏l

i=1(l − i+ 1/2). Thus this ideal is not σ-invariant.

We shall need later the following

6.1.3. Lemma.

(i)
∩

µ∈h∗
d

AnnA M̃(µ) = AT

(ii) For every µ ∈ h∗d, one has

dim
(
AT/(AT ∩ AAnnZ(g) M̃(µ))

)
= 1.

Proof. From Proposition 6.1.1 (i), it follows that {AnnA M̃(µ)| µ ∈ h∗d} coincides the set
of maximal ideals in A which contain T . This gives (i).

For (ii), fix µ ∈ h∗d. Since T
2 ∈ AnnZ(g) M̃(µ) it follows that

AT∩AAnnZ(g) M̃(µ) = (TZ(g)⊕Z(g)T 2)∩AAnnZ(g) M̃(µ) = T AnnZ(g) M̃(µ)⊕Z(g)T 2.

This proves (ii). �

6.2. Here is the main theorem of our paper.

Theorem. For any µ ∈ h∗, one has

Ann M̃(µ) = U(g)AnnA M̃(µ) (19)
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The proof of Theorem 6.2 is given in 6.5—6.7.

6.3. Corollary.

(i) The annihilator of any Verma module coincides with the annihilator of its socle.
In particular, it is a primitive ideal.

(ii) Any minimal primitive ideal of U(g) is generated by its intersection with the
algebra A.

Proof. Recall that the socle of a Verma module is a simple Verma module. Now (i) follows
from Proposition 6.1.1 (ii) and the above theorem.

(ii) By [Mu2], any primitive ideal P of U(g) is the annihilator of a simple highest weight
module. Thus P contains annihilator of some Verma module which is also a primitive
ideal by (i). Hence the assertion follows from the above theorem. �

6.4. Corollary. For any λ ∈ P+(π)

[U(g)/Ann M̃(µ) : Ṽ (λ)] =

{
dim Ṽ (λ)|0 if µ ̸∈ h∗d∑∞

m=0 (−1)m dim Ṽ (λ)mβ if µ ∈ h∗d

where β is any odd root.

Since the proof uses a step of the proof of Theorem 6.2 we put it in 6.8.

6.5. The overview of the proof of Theorem 6.2. The first step of the proof is to
express the statement of the theorem in terms of PRV-matrices. This is done in the
subsection 6.6. As a result, we obtain that Theorem 6.2 holds if and only if the corank
of any matrix PRV ν (ν ∈ P+(π)) is constant on the set h∗sd— see Claim 6.6.6. In order
to verify this last condition we shall construct in the subsection 6.7 for each µ ∈ h∗sd
new matrices PRV ν

L (ν ∈ P+(π)) with entries in S(h). These matrices are of the type
PRV ν

µ (see 3.2 for definition). Therefore, the PRV ν
L are related to the matrices PRV ν

as it is explained in 3.2. Namely, for each ν ∈ P+(π), the entries of the matrix PRV ν
L

are equal to the corresponding entries of an appropriate matrix PRV ν modulo mµ, where
mµ = {P ∈ S(h), P (µ) = 0}. In particular, for any ν ∈ P+(π) the coranks of the scalar
matrices PRV ν(µ) and PRV ν

L (µ) are equal. Moreover from the formula (3), we conclude
that detPRV ν

L = trνQ where Q ∈ S(h) is such that Q(µ) ̸= 0. The matrices PRV ν
L

are more convenient than PRV ν since the entries of the first rν columns of PRV ν
L are

divisible by t. Using this fact, we obtain that the corank of PRV ν
L (µ) is equal to rν .

Therefore the corank of PRV ν(µ) is equal to rν for any µ ∈ h∗sd. This will complete the
proof of Theorem 6.2.
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6.6. Another formulation of theorem 6.2.
Let M be a Verma module and M ′ be its simple Verma submodule. Assume that
U(g)AnnAM

′ = AnnM ′. By Proposition 6.1.1 (ii), AnnAM = AnnAM
′ and so

U(g)AnnAM ⊆ AnnM ⊆ AnnM ′ = U(g)AnnAM

that is U(g)AnnAM = AnnM .

Consequently, it is enough to verify the statement of Theorem 6.2 only for the case of
simple Verma modules.

Since A contains Z(g), the annihilator of M̃(µ) is generated by its intersection with A
for the case µ ∈ (h∗ \ h∗d) (see Theorem 3.1.2). Hence it is enough to verify the statement
of Theorem 6.2 for the case µ ∈ h∗sd.

6.6.1. Fix µ ∈ h∗d. By Proposition 6.1.1 (i), AnnA M̃(µ) is a maximal σ-invariant ideal.

Using Proposition 4.4.1 (iii), we conclude that U(g)AnnA M̃(µ) is a two-sided ideal and
in particular it is ad g-invariant. Consider the natural g-map

ϕµ : U(g)/(U(g)AnnA M̃(µ)) → U(g)/Ann M̃(µ).

It is clear that ϕµ is a surjective map and that Ann M̃(µ) = U(g)AnnA M̃(µ) iff ϕµ is an
isomorphism.

By Theorem 5.2, one has the following isomorphisms of g0-modules

U(g)/U(g)AnnA M̃(µ) ≃
(
K ⊗A

)
/
(
K ⊗ AnnA M̃(µ)

)
≃ K

since AnnA M̃(µ) is a maximal ideal. Using the multiplicity formula (12), we obtain for
any λ ∈ P+(π)

[U(g)/U(g)AnnA M̃(µ) : V (λ)] = [K : V (λ)] =
1

2
[H : V (λ)]. (20)

On the other hand, Theorem 2.9 implies that U(g)/Ann M̃(µ) is isomorphic to H/
AnnH M̃(µ) as g-modules. Therefore for any ν ∈ P+(π) one has

[U(g)/Ann M̃(µ) : Ṽ (ν)] = [H : Ṽ (ν)]− [AnnH M̃(µ) : Ṽ (ν)]

[U(g)/Ann M̃(µ) : V (ν)] = [H : V (ν)]− [AnnH M̃(µ) : V (ν)]
(21)

6.6.2. Since ϕµ is a surjective map, the equalities (21) and (20) imply that for any µ ∈ h∗d

[AnnH M̃(µ) : V (λ)] ≥ 1

2
[H : V (λ)], ∀λ ∈ P+(π). (22)

Moreover ϕµ is an isomorphism iff for all λ ∈ P+(π) the inequality (22) is an equality.
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6.6.3. Let µ ∈ h∗sd. Combining (2) and (4) we conclude that

[AnnH M̃(µ) : Ṽ (ν)] = corankPRV ν(µ) ≥ rν ν ∈ P+(π) (23)

where rν =
∞∑
n=1

(−1)n+1 dim Ṽ (λ)nβ1
is a non-negative integer.

Recall also that by (5)

[AnnH M̃(µ) : Ṽ (ν)] = corankPRV ν(µ) = rν (24)

for any µ ∈ h∗s such that d(µ) = 1.

6.6.4. Lemma. For any µ ∈ h∗s such that d(µ) = 1 one has

[AnnH M̃(µ) : V (λ)] =
1

2
[H : V (λ)].

Proof. Fix µ ∈ h∗s such that d(µ) = 1. For any λ ∈ P+(π) denote by IndV (λ) the induced
module g-module Indg

g0
V (λ) = U(g)⊗U(g0) V (λ). Frobenius reciprocity gives

[IndV (λ) : Ṽ (ν)] = [Ṽ (ν) : V (λ)] ∀λ, ν ∈ P+(π).

Therefore, using (24), one has for any λ ∈ P+(π)

[AnnH M̃(µ) : V (λ)] =
∑

ν∈P+(π)

rν [Ṽ (µ) : V (λ)]

=
∑

ν∈P+(π)

( ∞∑
n=1

(−1)n+1 dim Ṽ (ν)nβ1

)
[Ṽ (ν) : V (λ)]

=
∑

ν∈P+(π)

( ∞∑
n=1

(−1)n+1 dim Ṽ (ν)nβ1

)
[IndV (λ) : Ṽ (ν)]

=
∞∑
n=1

(−1)n+1 dim IndV (λ)nβ1

and moreover

[H : V (λ)] =
∑

ν∈P+(π)

[H : Ṽ (ν)][Ṽ (ν) : V (λ)]

=
∑

ν∈P+(π)

dim Ṽ (ν)0[IndV (λ) : Ṽ (ν)]

= dim IndV (λ)0.

Hence the lemma is equivalent to the equality

2
∞∑
n=0

(−1)n dim IndV (λ)nβ1
= dim IndV (λ)0.
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One has

ch IndV (λ) = chV (λ) · ch g1 = chV (λ)
∏

i=1,... ,l

(1 + eβi)(1− e−βi).

Set π0(
∑

ν∈Nπ aνe
λ−ν) := a0 for any series of such type. Then

dim IndV (λ)0 = π0

(
chV (λ)

∏
i=1,... ,l

(1 + eβi)(1− e−βi)
)

= π0

(
(2 + eβ1 + e−β1) chV (λ)

∏
i=2,... ,l

(1 + eβi)(1− e−βi)

︸ ︷︷ ︸
a

)

= 2π0(a) + πβ1(a) + π−β1(a)
= 2π0(a) + 2π−β1(a) since a is invariant under sβ1 ∈ W

= 2π0
(
(1 + e−β1)a

)
= 2π0

(
(1 + eβ1)

−1
ch IndV (λ)

)
= 2

∞∑
n=0

(−1)n dim IndV (λ)nβ1

This completes the proof of the Lemma. �

Taking into account 6.6.2, we get

6.6.5. Corollary. For any µ ∈ h∗s such that d(µ) = 1, one has

Ann M̃(µ) = U(g)AnnA M̃(µ).

6.6.6. Claim. The annihilator of any Verma module M̃(µ) (µ ∈ h∗) is generated by
its intersection with A iff for any ν ∈ P+(π) the corank of the matrix PRV ν is constant
on the set h∗sd.

Proof. Assume that for any ν ∈ P+(π) the corank of the matrix PRV ν is constant on
the set h∗sd. Fix µ ∈ h∗sd and µ′ ∈ h∗s such that d(µ′) = 1. Then for all ν ∈ P+(π)

corankPRV ν(µ) = corankPRV ν(µ′). Then, by 6.6.3, (23) AnnH M̃(µ) ∼= AnnH M̃(µ′)

as g-module. Therefore [AnnH M̃(µ) : V (λ)] = 1
2
[H : V (λ)] by Lemma 6.6.4. Hence

Ann M̃(µ) = U(g)AnnA M̃(µ) by 6.6.2. By 6.6, this proves the implication ⇐=.

Conversely, assume that for some ν0 ∈ P+(π) the corank of the matrix PRV ν0 is not
constant on the set h∗sd. This means, by 6.6.3, (23), that for some µ ∈ h∗sd corankPRV

ν0(µ) >
rν0 . Since the numbers rν are non-negative and corankPRV ν(µ) ≥ rν for any ν ∈ P+(π),

Lemma 6.6.4 and (24) imply that [AnnH M̃(µ) : V (λ)] > 1
2
[H : V (λ)] for all λ such that

[Ṽ (ν0) : V (λ)] > 0. Therefore Ann M̃(µ) ̸= U(g)AnnA M̃(µ) by 6.6.2. This proves the
implication =⇒. �
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6.7. The corank of PRV ν is constant on h∗sd.
Retain notation of 6.6.3. In view of Claim 6.6.6, we should verify that for any µ ∈ h∗sd
and ν ∈ P+(π) the corank of PRV ν(µ) is equal to rν . In order to do this, we shall use
the matrices PRV ν

µ introduced in 3.2.

Throughout this subsection µ ∈ h∗sd is fixed.

6.7.1. Notation. Introduce some new notations. Set

m := AnnZ(g) M̃(µ).

Denote by I the intersection

I :=
∩

µ′∈h∗
d

Ann M̃(µ′).

By Lemma 6.1.3 (i) , I ⊇ KAT . On the other hand, by Corollary 6.6.5

I ⊆
∩

µ′∈h∗
d
, d(µ′)=1

Ann M̃(µ′) = K
∩

µ′∈h∗
d
, d(µ′)=1

AnnA M̃(µ′).

Since the set {µ′ ∈ h∗d, d(µ
′) = 1} is a Zariski dense subset of h∗d, one has by Lemma 6.14

in [GL] ∩
µ′∈h∗

d
, d(µ′)=1

AnnA M̃(µ′) =
∩

µ′∈h∗
d

AnnA M̃(µ′) = AT.

Finally

I = KAT. (25)

Choose g-submodules L and L′ of U(g) such that

I = L⊕ (I
∩U(g)m) U(g) = L′ ⊕ (I + U(g)m). (26)

Setting L := L+ L′ one has

L = L⊕ L′, U(g) = L ⊕ U(g)m. (27)

6.7.2. Fix ν ∈ P+(π). Set n := dim(Ṽ (ν)|0) and s(ν) := [L : Ṽ (ν)]. From (27) it follows
that

dim Ṽ (ν)|0 = [H : Ṽ (ν)] = [L : Ṽ (ν)] = [L : Ṽ (ν)] + [L′ : Ṽ (ν)].

Let {θ1, . . . , θs(ν)} and {θs(ν)+1, . . . , θn} be bases of respectively Homg

(
Ṽ (ν), L

)
and

Homg

(
Ṽ (ν), L′

)
. Let {v1, . . . , vn} be a basis of Ṽ (ν)|0. Then the matrix PRV ν

L given by

the formula
(PRV ν

L )
n
ij=1 :=

(
Υ(θj(vi))

)
ij

is a PRV ν
µ matrix in the sense of 3.2.

We will take advantage of the fact that {θi(Ṽ (ν))} ⊂ L ⊂ I for i = 1, . . . , s(ν). Indeed,

since I is the intersection of Ann M̃(µ′) for µ′ ∈ h∗d, the projection Υ(I) lies in the set of
polynomials in S(h) which vanish on the set h∗d. The set of such polynomials is the ideal
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in S(h) generated by t. Hence the entries of the first s(ν) columns of the matrix PRV ν
L

are divisible by t.

Retain notations of 6.6.3. One has

6.7.3. Lemma. For any ν ∈ P+(π), rν = s(ν).

Proof. By Corollary 3.2.2 (ii), detPRV ν
L = trνP1 where P1(µ) ̸= 0. Recall that the entries

of the first s(ν) columns of the matrix PRV ν
L are divisible by t and t(µ) = 0 since µ ∈ h∗d.

It implies that s(ν) ≤ rν for all ν ∈ P+(π).

By formula (25) and lemma 6.1.3 (ii) one has the following isomorphisms of g0-modules

L ∼= I/(I
∩

U(g)m) = (KAT )/(K(AT
∩

m)) ∼= K.

Since s(ν) = [L : Ṽ (ν)], it follows that

[K : V (λ)] = [L : V (λ)] =
∑

ν∈P+(π)

s(ν)[Ṽ (ν) : V (λ)] ∀λ ∈ P+(π).

On the other hand combining (24), Lemma 6.6.4 and the multiplicity formula (12) we
obtain

[K : V (λ)] =
∑

ν∈P+(π)

rν [Ṽ (ν) : V (λ)].

Compairing two last equalities and taking into account that 0 ≤ s(ν) ≤ rν for all ν ∈
P+(π), we conclude that s(ν) = rν for all ν ∈ P+(π). The lemma is proven. �

6.7.4. Summarizing 6.7.2 and Lemma 6.7.3, we obtain that the entries of the first rν
columns of the matrix PRV ν

L are divisible by t. Using Lemma 3.2.2 (ii), we conclude
that the corank of the matrix PRV ν

L (µ) is equal to rν . Therefore the corank of the
matrix PRV ν(µ) is also equal to rν by Lemma 3.2.2 (i). Hence Theorem 6.2 follows
from Claim 6.6.6.

6.8. The proof of Corollary 6.4. If µ ∈ h∗\h∗d the Corollary follows directly from The-
orem 3.1.2 and Theorem 2.9.

Consider the case µ ∈ h∗d. By Corollary 6.3 (i), it is enough to verify the claim in the

case when M̃(µ) is simple that is µ ∈ h∗sd. Combining Claim 6.6.6, (5) and (2), we obtain

[AnnH M̃(µ) : Ṽ (λ)] = rλ

for any µ ∈ h∗sd. It is easy to deduce from Theorem 2.9 that U(g)/Ann M̃(µ) is isomorphic

to H/AnnH M̃(µ) as g-modules. Hence for any µ ∈ h∗sd

[U(g)/Ann M̃(µ) : Ṽ (λ)] = [H : Ṽ (λ)]− [AnnH M̃(µ) : Ṽ (λ)] =

dim Ṽ (λ)|0 −
∑∞

m=1 (−1)m+1 dim Ṽ (λ)mβ =
∑∞

m=0 (−1)m dim Ṽ (λ)mβ

as required.



28

7. Decomposition of Verma modules

Theorem 6.2 allows us to give an answer to the following question posed by Musson
in [Mu1]: for which µ ∈ h∗, M̃(µ) is a direct sum of g0-Verma modules?

7.1. Retain notations of 2.7. Since as a g0-module, M̃(µ, i) = M̃(µ, i)0 ⊕ M̃(µ, i)1 the

question is to know for which µ both M̃(µ, i)0 and M̃(µ, i)1 are direct sum of g0-Verma
modules. Set

Γ = {
l∑

i=1

δiβi, δi ∈ {0, 1}}

Γ0 = {
l∑

i=1

δiβi, δi ∈ {0, 1},
l∑

i=1

δi ∈ 2N}

Γ1 = {
l∑

i=1

δiβi, δi ∈ {0, 1},
l∑

i=1

δi ∈ 2N+ 1}.

By [Mu1] 3.2, M̃(µ, i)i+j considered as a g0-module, has a filtration whose factors are
{M(µ− γ)}γ∈Γ

j
.

For all µ ∈ h∗, γ ∈ Γ, denote by χ0
µ−γ the Z(g0)-character of the Verma module

M(µ − γ). If both multisets {χ0
µ−γ, γ ∈ Γ0} and {χ0

µ−γ, γ ∈ Γ1} consist of distinct
central characters then Z(g0) separates the modules {M(µ− γ), γ ∈ Γj} so

M̃(µ) = ⊕γ∈ΓM(µ− γ).

We will show in Proposition 7.2.2 below that the above condition is also necessary.

7.2. Consider the adjoint action of g on the algebra of endomorphisms of M̃(µ). Let

F (M̃(µ)) be the g-locally finite part of the algebra of endomorphisms of M̃(µ). Denote

by ψ the natural g-map U(g) → F (M̃(µ)). The g0-invariance of ψ forces ψ(U(g)g0) =
(ψ(U(g)))g0 . On the other hand, by [Mu1], 5.3 the algebra U(g)g0 is generated by Z(g)
and Z(g0). Finally

(ψ(U(g)))g0 = ψ(Z(g0)).

7.2.1. Let µ ∈ h∗ be such that

M̃(µ) = ⊕γ∈ΓM(µ− γ).

Observe that dim(ψ(U(g)))g0 = dimψ(Z(g0)) is equal to the number of distinct elements
in the set {χ0

µ−γ, γ ∈ Γ}.

Case µ ̸∈ h∗d. In this case, AnnH M̃(µ) = 0 so, reasoning as in the proof of 6.6.4, one
has

dim(ψ(U(g)))g0 = dimHg0 = [H : V (0)] = dim IndV (0)|0
where Indg

g0
V (λ) = U(g)⊗U(g0) V (λ). From the PBW-theorem, U(g) = U(g0)⊗ Λ(g1) as

h-modules so dim IndV (0)0 = dimΛ(g1)0 = 2l.
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Hence the set {χ0
µ−γ, γ ∈ Γ} contains 2l distinct elements that is all its elements are

distinct.

Case µ ∈ h∗d. In this case, by Theorem 6.2 and Proposition 6.1.1 (i), AnnK M̃(µ) = 0

and AnnA M̃(µ) is a maximal ideal. Therefore the image of ψ is isomorphic to K as
g0-modules. Using (12) we get

dimψ(Z(g0)) = dim(ψ(U(g)))g0 = 1

2
dimHg0 = 2l−1.

Hence the set {χ0
µ−γ, γ ∈ Γ} contains 2l−1 distinct elements.

Let β be an odd root such that (µ + ρ, β) = 0 (it exists since µ ∈ h∗d). For any γ ∈ Γ
the central character χ0

µ−γ coincides with the central character χ0
sβ∗(µ−γ), where

sβ ∗ ν = sβ(ν + ρ0)− ρ0, ν ∈ h∗.

One has

sβ∗(µ−γ) = µ−γ−2(µ−γ+ρ0, β)β = µ−γ−2(µ−γ+ρ+ρ1, β)β = µ−γ−2(ρ1−γ, β)β.
This implies that for any γ ∈ Γ0 (resp. γ ∈ Γ1) there exists γ′ ∈ Γ1 (resp. γ′ ∈ Γ0) such
that sβ ∗ (µ − γ) = µ − γ′. Consequently, the sets of the central characters {χ0

µ−γ, γ ∈
Γ0} and {χ0

µ−γ, γ ∈ Γ1} coincide. Since the union of these sets contains 2l−1 distinct

elements, we conclude that each of them contains 2l−1 distinct elements. Hence both sets
{χ0

µ−γ, γ ∈ Γ0} and {χ0
µ−γ, γ ∈ Γ1} consist of distinct central characters.

We can summarize our conclusions as follows

7.2.2. Corollary. The module M̃(µ) is a direct sum of g0-Verma modules iff both sets
{χ0

µ−γ, γ ∈ Γ0} and {χ0
µ−γ, γ ∈ Γ1} consist of distinct central characters.

Remark. By [Mu1], 3.11 both sets {χ0
µ−γ, γ ∈ Γ0} and {χ0

µ−γ, γ ∈ Γ1} consist of

distinct central characters iff (µ+ ρ, α) ̸= 0 for all α ∈ ∆
+
0 .

8. appendix: index of notations

Symbols used frequently are given below under the section number where they are first
defined.

2 ∆+
0 ,∆

+
1 ,∆irr, ρ, W

2.2 βi

2.3 D,S

2.5 Mλ

2.6 Υ

2.7 M̃(λ, i)
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2.7.1 M̃(λ), Ṽ (λ), h∗s

2.8 V (λ)

2.9 H
3.1 PRV ν

3.1.1 t, rν , h
∗
d, h

∗
sd

3.1.3 d(µ)

3.2 PRV ν
µ

4.1 A
4.4.1 σ, T

5.2 K
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