Available online at www.sciencedirect.com

SCienceDirect ADVANCES IN

Mathematics

ELSEVIER Advances in Mathematics 211 (2007) 621-677
www.elsevier.com/locate/aim

On simplicity of vacuum modules

Maria Gorelik !, Victor Kac ®*?

& Department of Mathematics, The Weizmann Institute of Science, Rehovot 76100, Israel
b Department of Mathematics, 2-178, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA

Received 16 June 2006; accepted 11 September 2006
Available online 23 October 2006
Communicated by Michael J. Hopkins

Abstract

We find necessary and sufficient conditions of irreducibility of vacuum modules over affine Lie algebras
and superalgebras. From this we derive conditions of simplicity of minimal W-algebras. Moreover, in the
case of the Virasoro and Neveu—Schwarz algebras we obtain explicit formulas for the vacuum determinants.
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0. Introduction

0.1. One of the aims of the present paper is to find conditions of irreducibility of vacuum
modules over the affine Lie superalgebra

g=g[t,17']+Ck,
[at™, bt"] =[a, b1 ™" + m8y,_u B(alb)K,
[atm, K] =0,
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associated to a simple finite-dimensional Lie superalgebra g with a non-degenerate even invariant
bilinear form B(.|.). Recall that the vacuum module is the induced module

k _ 1,48
Vet = Indg[t]+(CK Cr
from the 1-dimensional module C; with trivial action of g[¢] and K =k € C.

0.2. In order to state the result, let 2k, be the eigenvalue of the Casimir operator ), a;a' in
the adjoint representation of g, where {a;} and {a'} are dual bases of g, i.e. B(a'|a;) = §;;. The
numbers 4} and k depends on the normalization of the bilinear form B: if B is multiplied by a
non-zero number y, then both 4} and & get multiplied by y~ L

For a simple Lie algebra g the standard normalization is B(«|«) =2 for a long root «. In
this case, hy, is called the dual Coxeter number; it is a positive integer, denoted by 4" (these
integers are listed, e.g. in [13]). For simple Lie superalgebras a “standard” normalization of B
was introduced, and the values of 2" listed, in [17].

For a non-isotropic root « introduce

 k+hy
“7 Bala)’

Note that this number is independent on the normalization of B.

0.2.1. Theorem. Let g be a simple finite-dimensional Lie algebra. The vacuum §-module V* is
not irreducible if and only if ko € Q>0 \ {ﬁ oo_ for a short root a of g (equivalently, if and
only if [(k + h") is a non-negative rational number which is not the inverse of an integer, where

1 is the ratio of the lengths squared of a long and a short root of g).

0.2.2. Theorem. Let g be a simple Lie superalgebra osp(1,2n). The vacuum §-module V* is not
irreducible if and only if ky € Q>0 \ {zmlﬁ}%o:o where « is an odd root of g (equivalently, if and
only if k + 2n + 1 is a non-negative rational number which is not the inverse of an odd integer, if
B(a|a) =1 for an odd root a of g).

0.2.3. Conjecture. Ler g be an (almost) simple finite-dimensional Lie superalgebra of positive
defect [17], i.e. one of the Lie superalgebras sl(m,n) (m,n > 1), osp(m,2n) (m =22, n > 1),
D(2,1,a), F(4) or G(3). Then the g-module V* is not irreducible if and only if

ko € Q0 for some even root a of g. (1)
Note that V* is always reducible at the critical level k = —h},.

0.2.4. Theorem. Conjecture 0.2.3 holds for simple Lie superalgebras of defect 1, i.e. g =
sl(1,n), 0sp(2,n), osp(n, 2), 0sp(3,n) withn > 2, D2, 1,a), F(4), G(3), and for g = gl(2, 2).

More explicitly, in the standard normalization (see 10.1.2) for the Lie superalgebras g =
sl(1,n), 0sp(2,2n), the module V¥ is not irreducible if and only if kK +n — 1 is a non-
negative rational number. For the Lie superalgebras g = osp(3,n), osp(n,2) with n > 2,
F4),G3),D(2,1,a) with a € Q, the module vk is not irreducible iff k + & is a rational
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number, where /1" is given in the table in 10.1.2. For D(2, 1, a), a ¢ Q, the vacuum module vk
is not irreducible iff k € Q>0 UQ~0a UQ~o(—1—a). For g = gl(2, 2) the standard normalization
is B(a|a) = 2 for an even root «; the module V¥ is not irreducible iff k is a rational number.

0.2.5. In order to prove these results, we derive a formula for the determinant of the Shapo-
valov form on any generalized Verma module, induced from a 1-dimensional representation of a
parabolic subalgebra of an arbitrary symmetrizable contragredient Lie superalgebra, using meth-
ods of [8] and [15]. Unfortunately, unlike in the Verma module case [15], the exponents of the
factors of the determinant are rather complicated alternating sums, and it is a non-trivial prob-
lem to find when these sums are positive. It is a very interesting problem to find a determinant
formula for a vacuum module over § with manifestly positive exponents.

0.3. We were unable to find such a formula for affine Lie superalgebras, but we did succeed
in the case of the Virasoro algebra Vir and the Neveu—-Schwarz superalgebra N'S.
Recall that Vir is a Lie algebra with a basis {L,, (n € Z), C} and commutation relations

m3 —m
[Li, Lyl =(m — n)Lm+n + T‘Sm,—nca [C,Lx]=0. (2)

Given ¢ € C, a vacuum module over Vir is the induced module
c__ Vir
V¢ = Indvl.r+ Ce,

where Viry =CC+3_,5_; CL, and C, is the 1-dimensional Vir-module with trivial action of
L,’s, and C = c. The problem is to compute the determinant of the Shapovalov form, restricted
to the N'th eigenspace of Lo in V¢, N € Z>. This is a polynomial in ¢, which we denote by
dety (¢). (It is defined up to a non-zero constant factor, depending on a basis of the eigenspace.)

0.3.1. 1In the case of a Verma module over Vir the answer is given by the Kac determinant
formula [12,16]:

detyp(h, ¢) = const 1_[ or.s(h, )P (N=$)

r,S€L>1

where £ is the eigenvalue of L on the highest weight vector |k, ¢), ¢, (1, ¢) are some (explicitly
known) polynomials of ¢ and & of degree < 2, and p,; is the classical partition function. From
this, using that a Verma module over Vir has no subsingular vectors (see [2] for a simple proof of
this fact), one obtains immediately the roots of dety, (¢), but it is a non-trivial problem to compute
exponents. We obtain the following formula (via checking a simple combinatorial identity):

N2\ \ dimLy?
det)y (¢) = const 1—[ (c — <1 - M)) , 3)

p>q22 Pq
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where p,q € Z>y, LP1=L((p—1)(g—1); 1 — %) is the irreducible highest weight Vir-

2
module with the lowest eigenvalue of Lo equal (p — 1)(g — 1) andc =1 — %, and L7 is
the N'th eigenspace of L in L?°9. The dimensions of these eigenspaces are known explicitly [4]:

dimLy?= )" (pa(N = (Gp+D(g+D) = pa(N = (ip+DGg - —1)). @
JEZ\{0}

Next, we prove the following fact (which can be deduced from [4], but our proof is simpler
and can be extended to other cases).

0.3.2. Theorem. Let v € V€ be an eigenvector of Lo, killed by all L, with n > 0, and not pro-
portional to the highest weight vector |0, c). Then Lov = 2Nv for some positive integer N, and
in the decomposition

v= 2 CjrjpejsL—jiL—jy - L—j10, )
S1Z2pz2js 22
Ji1+jp+-+js=2N

the coefficient 0fL1X2|O, c) is non-zero.
The following corollary of formula (3) and Theorem 0.3.2 is well known.
0.3.3. Corollary. The following conditions on the Vir-module V¢ are equivalent:

(i) V€ is not irreducible;
(i) c=1- Mfor some relatively prime integers p,q € Z>;
(iii) span{L_,v | n > 2, v € V.}, where V. is the irreducible factor module of the Vir-module
V€, has finite codimension in V.

We also obtain results, analogous to formula (3), Theorem 0.3.2, and Corollary 0.3.3, for the
Neveu—-Schwarz algebra, the simplest super extension of the Virasoro algebra.

0.4. Recall (see e.g. [14]) that the g-module vk (respectively, Vir-module V¢) carries a
canonical structure of a vertex algebra, and the irreducibility of these modules is equivalent to
the simplicity of the associated vertex algebras, i.e. to the isomorphism Vi = V¥ (respectively,
V. Z V°). An important problem, coming from conformal field theory, is when a vertex algebra
satisfies Zhu’s C, condition [24]. In the case of the vertex algebra V., C» condition is property
(iii) of Corollary 0.3.3; thus, this corollary says that V. satisfies C» condition if and only if V¢
is not simple. We also show that the same property holds for the Neveu—Schwarz algebra (but it
does not hold for N > 1 superconformal algebras).

It is easy to see that the vertex algebras V¥ and the vertex algebras WX (g, f), obtained from
VK by quantum Hamiltonian reduction (where £ is a nilpotent even element of g) [18,19] never
satisfy the C; condition. It is also not difficult to show that among their quotients only the simple
ones have a chance to satisfy the C» condition, and a simple affine vertex algebra V; satisfies the
C> condition if and only if g is either a simple Lie algebra, or g = osp(1, 2n) (i.e. g has defect
zero), and the g-module V; is integrable.
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Much more non-trivial is the problem for the simple quotients Wy (g, f) of the vertex algebra
W¥X(g, f), which includes the Virasoro, Neveu—Schwarz, and other superconformal algebras. It
has been proved in many cases [1] that the image of a simple V¥-module under the quantum
Hamiltonian reduction is either a simple W* (g, f)-module, or 0. Using this, Theorem 0.2.1 and
the Kazhdan—-Lusztig theory, we were able to find the necessary and sufficient conditions on k
for which W¥(g, f) is simple in the case when g is a simple Lie algebra and f is a minimal
nilpotent element. Namely, for g # slp, the k for which W¥(g, f) is simple are given by The-
orem 0.2.1 (since Wk(sl,, f) is the Virasoro vertex algebra, in this case the answer is given
by Corollary 0.3.3). Consequently, for these values of k the vertex algebra Wi (g, f) does not
satisfy the C, condition.

1. Preliminaries

Our base field is C. We set Zx, := {m € Z | m > n}. If V is a superspace, we denote by p(v)
the parity of a vector v € V. For a Lie superalgebra g considered in this paper, any root space
gy is either pure even or pure odd; we denote by p(y) € Z/2Z the parity of g, and let s(y) =
(=1)?")_ For a Lie (super)algebra g we denote by /(g) its universal enveloping (super)algebra.

1.1. Contragredient Lie superalgebras

Let J be a finite index set, and let p:J — Z/27 = {0, 1} be a map called the parity map.
Consider a triple A = (b, I1, IT"), where b is a finite-dimensional vector space over C, IT =
{ti} jes is a linearly independent subset of h*, and IT" = {h;} je; is a linearly independent set of
vectors of f. One associates to the data (A, p) the contragredient Lie superalgebra g(A, p) as
follows [11,13].

1.1.1. First, introduce an auxiliary Lie superalgebra g(A, p) with the generators ¢;, f;
(j € J) and b, the parity defined by p(e;) = p(fj) = p(j), p(h) = 0, and the following defining
relations:

lei, fil=26ijhi (i,jeJ), [h,h'1=0 (h,h'€b),
[h,ejl=aj(h)e;j, [, fil=—a;(h) f; (hebh, jel).

The free abelian group Q on generators {«;}je; is called the root lattice. Denote by Q7 the
subset of Q, consisting of linear combinations of «; with non-negative coefficients. Define the
standard partial ordering on h*: oo > 8 fora — 8 € Q7. Letting

dege; =aj = —deg fj, degh=0

defines a Q-grading of the Lie superalgebra g(A, p):

§A p) =P fe-
aeQ
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It is clear that each g, has parity p(«), where p: Q — Z/27 is defined by additively extend-
ing p:J — 7Z/2Z. One has the triangular decomposition

Q(Avp)zﬁf@b@FLln

where fi_ (respectively, i) is a subalgebra of g(A, p) generated by the f;’s (respectively, e;’s).
Consequently, o = b, fie = By o+ B

1.1.2. LetI(A, p) be the sum of all Q-graded ideals of g(.A, p), which have zero intersection
with the subalgebra b, and let

g(A, p):=a(A, p)/1(A, p).

The Lie superalgebra g(A, p) carries the induced root space decomposition

g(-A’ P) = @gou
aeQ

and the induced triangular decomposition

gA p)=n_@h@n,, wherego=h n:= P gsa-

acQt

An element o € Q is called a root (respectively, a positive root) if dimg, # 0 and o # 0
(respectively, @ € Q). Denote by A the set of all roots « and by AT = AN Q7 the set of all
positive roots.

The Lie superalgebra g(.A, p) carries an anti-involution o (i.e. o ([a, b]) = [0 (b), 0 (a)] and
o2 =id) defined on the generators by

O’(ej)ij, a(fj):ej, U'b:idh'

1.1.3. The matrix A := («;(h;));, jes is called the Cartan matrix of the data .4 (one can
show that A and dim b uniquely determine A, and that, given A the triple A exists iff dimbh >
| J| 4 corank A). The matrix A is called symmetrizable if there exists an invertible diagonal matrix
D = diag(d;) jes, such that the matrix DA = (b;;) is symmetric. It is easy to see that if A is
symmetrizable then there exists a non-degenerate symmetric bilinear form (.|.) on h such that

dj(hjlh) =aj(h) forall jeJ, heh. (5)

This bilinear form induces an isomorphism v : h — b*, defined by v(h)(h') = (h, k'), h, k' € b,
and we have:

ajzdjv(hj), jEJ,
and, for the induced bilinear form (.|.) on h* we have:

(ailaj)=b;j, i,jel.
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1.1.4. 'The following proposition is proved as in [13].

Proposition. Suppose that the Cartan matrix A is symmetrizable, and let (.|.)y be a non-
degenerate symmetric bilinear form on §. Then g(A, p) carries a unique invariant bilinear form
(.I.) G.e. (la, bllc) = (allb, c])), whose restriction to b is the bilinear form (.|.)y if and only if
(.1.)y satisfies (5) for some non-zero d;’s such that the matrix DA is symmetric. Moreover, this
bilinear form has the following properties:

(1) (galgp) =0ifa+ B #0, (|.)gy+g_, is non-degenerate for o € A,
(i) [a,b]= (alb)v™' (@), ifa € go, b € g, x € A;
>iii) (.].) is supersymmetric.

1.1.5. Choose p € h* in such a way that
p(hj)ZOlj(/’lj)/z:ajj/z foranyjeJ.

One has (p|a ;) = (aj|o;)/2 if A is symmetrizable. (Note that if det A = 0 then p is not uniquely
defined.)

Assume that A is symmetrizable. For each o € A* U {0} choose a basis {e(‘;[} of g, and the
dual basis {e_q ;} of g4, i.€. (eél le—q,j) = dij, and define the generalized Casimir operator

2= 21)_1(,0)4—260’,‘664-2 Z Ze_a,,-e(’;[.
i

aeAt i

This operator is well defined in any restricted g(.A, p)-module V, i.e. a module V such that for
any v € V, gev = 0 for all but finitely many o € A™. The following proposition is proved as
in [13]:

Proposition.

(i) The operator 2 commutes with g(A, p) in any restricted g(A, p)-module.

(i) If N is a g(A, p)-module and v € N is such that ejv =0 for all j € J, and for some X € h*
one has hv = A(h)v for all h € b, then 2(v) = (A + 2p|A)v. Moreover, if v generates the
module N then N is restricted and 2 = (L 4+ 2p|A) Idy.

1.1.6. Lets(a) = (—1)?@ for o € Q, and introduce the following (in general infinite) prod-
uct:

R:= 1—[ (1 —s(cx)e_o‘)s(a)dimg“.

aeAt

Using the geometric series, we can expand the inverse of this product:

R = Z K(a)e ™™, where K (a) € Z>o.

acQt
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Set K(u) =0 for u € O\ QF. Note that K () (the Kostant partition function) is the number
of partition of « into a sum of positive roots (counting multiplicities), where odd roots appear at
most once.

1.2. Generalized Verma modules

Write g(A, p) as g. Given I C J, let Q; be the Z-span of {«;};c;. Set

Ny = @gia» by I=Z(Ch,~, by :={rLeb* | Ah))=0Viel}.

aeQg iel
Note that h; =[ny,n_;]Nh=[ny ;,n_;]NH.

1.2.1. Introduce the following (ny + b 4 n_ ;)-module structure on the symmetric algebra
S(h/b): the action of (ny + by +n_ ) is trivial and i € § acts by the multiplication by the
image h of the map: h — b/b;. Introduce the following g-module:

Mp:=Ind} o,  SO/HD).
Note that M; is a g—f bimodule.

1.2.2. Forie hf denote by Ker,, the kernel of A in S(h/b;). The generalized Verma module
M ()) is the evaluation of M; at A, that is

My (L) := Mj/Mj Ker), = Indﬁ++h+n_‘[ Cy.,
where C, is an even one-dimensional space, (ny + 7 + h_ ;) acts trivially on C;, and h acts
via the character A.

1.2.3. If I is empty then [)} =bh,n_; =0 and My(A) = M(}) is the usual Verma module
with the highest weight X; denote by L(A) its unique simple quotient. Clearly, for any I C J the
generalized Verma module M; (1) is a quotient of M ().

1.2.4. Identify the universal enveloping algebra U () with the symmetric algebra S(h). The
triangular decomposition g =n_ @ h @ n, induces the following decomposition of the univer-
sal enveloping superalgebra: U(g) = S(h) & (n_U(g) + U(g)ny); the corresponding projection
HC:U(g) — S(b) is called the Harish-Chandra projection. Let HC; : U (g) — S(bh/b;) be the
composition of HC and the canonical map S(h) — S(h/h;) = S(h)/S(h)b;. Define the bilinear
form S(.,.), called the Shapovalov form, on M| as follows:

S(u.1,u’.1)=HC (o (wu') foru,u’ € U(g),
where dot denotes the action and 1 stands for the canonical generator of M.

It is easy to see that the bilinear form S: M; ® M; — S(h/b;) satisfies the following proper-
ties, which determine it uniquely:
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S(1,1)=1,
S(uv,v') = S(v,a(u)v’) forueg, v,v' e My,

S, vh) =SWwh,v)=Sw,v)h forheh, v,v' e My. (6)
One easily deduces from the uniqueness that this bilinear form is symmetric.
1.2.5. The module M, is graded by Q: M; = BD.co+ M1, where
My, ={veM; | hv—vh=—v(h)v forh €h}.

The image of My, in M;(}) is the weight space My ,(A) of weight L — v.

It is easy to see that S(My ,, M; ;) =0 for v # u. Let S, be the restriction of S to Mj ,,. Each
component M, is a free S(h/h)-module of rank not greater than K (v). Therefore det S, is an
element of S(h/b), defined up to a non-zero constant factor, depending on the basis of My ,,.
Clearly, det S, = 1 for v =0.

1.2.6. For X e h% the evaluation of S at A gives a bilinear form
SG):Mi(A)@Mi(x) — C,

whose restriction to My ,(A) is S, (A). It is easy to show that the kernel of S(A) coincides with
the maximal proper submodule of M;(X). As a consequence,

M;(A) is simple <= detS,(A)#0 Yve Q.

1.2.7. Introduce the following linear function ¢4 (1) on h* for each « € Q:
1
$a(A) = (A + pla) — E(ala).

Set Af := AN Q7 and introduce the following product:

R;:= l_[ (l —s(a)ef"‘)s(a)dimg“.

aeAT
Using the geometric series, we can expand this product:

R; = Z ki(@)e™™, where kj(a) € Z;

aeQT

setkj(@)=0fora e Q\ OF.
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1.2.8. In Section 2 we will prove the following theorem.

Theorem. Let g(A, p) be the contragredient Lie superalgebra, attached to the data (A, p) with a
symmetrizable Cartan matrix, and let I C J. Then one has for A € hf (up to a non-zero constant
factor depending on the basis of M|, (1)):

o0
detS, =[] TI I @rysa™D " k@K omry—e ding,

r=lyeAt\QF acQf

1.2.9. Remark. For I =, i.e. ordinary Verma modules, Q;r = {0}, k1 (@) = 84,0, and we recover
the determinant formula from [15] in the non-super case, and from [12] in the super case.

1.2.10. Remark. Let b’ be a subspace of b, containing I7V. Then g'(A, p)=n_@®h' ®&n, isa
subalgebra of g(A, p), and any generalized Verma module over g'(A, p) extends (non-uniquely)
to that over g(A, p) by extending A € (h')* to a linear function on h. Defining the weight spaces
of the former as that of the latter, it is clear that, by restriction, Theorem 1.2.8 still holds for the
generalized Verma module M, (1) over g'(A, p), and the formula for det S, (1) is independent of
the extension of A from b’ to b.

1.2.11. Example. The simple finite-dimensional Lie algebras carry, of course a unique, up to an
isomorphism, structure of a contragredient Lie algebra. Simple Lie superalgebras sl(m, n) for
m #n, osp(m,n), D(2,1,a), F(4) and G(3) carry a structure of a contragredient Lie superal-
gebra as well, in fact, several non-isomorphic such structures (which depend on the choice of the
set of positive roots) [11].

The Lie superalgebra s((m, m) is not quite a contragredient Lie superalgebra, but gl(m, m) is.
Hence, by Remark 1.2.10, Theorem 1.2.8 holds for s[(m, m) and s((m, m)/Cl,,, as well.

1.2.12. Example. If g is one of the simple Lie superalgebras from Example 1.2.11, then the
affine Lie superalgebra § = g[r,7~'] @ CK, described in 0.1 is not quite a contragredient Lie
superalgebra, but CD x g, where D = t% on gz, t~and [D, K1=0, is [13].

Recall that the Cartan subalgebra of CD x g is chosen to be

h=ha®CK &CD,
where § is a Cartan subalgebra of g. Define the linear function § on 6 by Slpeck =0,8(D) =1.
Let & € A™ be the highest root, and let eg € gg, fs € g_g be such that (fyleg) = 1.
Recall that if g = g(A, p), where A = (b, I1, IT") is a structure of a contragredient Lie

superalgebra on g, with generators ¢;, f; (j € J) and b, then CD x § = g(fl, p), where
A= (b, 11, V) with

M=N0U{ag=56-0}, MY=01I"Ufhh=K-v'©®)},
and the generators

eo=fot, ej (el  fo=ept™', fi (jeJ),
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so that the index set is J = {0}U J, and p(0) = p(®), p(j) = p(j) for j € J (see [13] for details
in the Lie algebra case). By Remark 1.2.10, Theorem 1.2.8 applies to g.

1.2.13. Example. If g = gl(m, m), then g[t, t~11® CK contains an ideal J = Zn?éo Clppt™,
which intersects h @ CK trivially. Let § = (g[r,t~'1/J) @ CK. It is easy to see that § extends to
a contragredient Lie superalgebra as in Remark 1.2.10, hence Theorem 1.2.8 again applies.The
same is true for § = g[t,1~']1 ® CK, where g = sl(m, m)/Cls,,.

2. Determinant of the Shapovalov form

Let g := g(A, p) be the Lie superalgebra, attached to the data (A, p), with a symmetrizable
Cartan matrix. In this section we prove Theorem 1.2.8.

2.1. Linear factorization
Let
Irr:= {Ol e 0\ 0 | a/ng¢ QF forne Z>2},
Irr:= {m,a) € Zzy xIrr | (@]o) #0} U {1, @) | @ € Irr & (a|) = 0}.

2.1.1. Any simple subquotient of M;(1) is of the form L(A — ) for « € Q7 \ Q.
From Proposition 1.1.5 we conclude that the Casimir element acts on M (L) by the scalar
(A +2p|X), and that if L(A — «) is a subquotient of M (}) then («¢|2(A + p) — o) = 0. Writing
o =mp with B € Irr, m > 1 we obtain that

[M1G): Lo =mB)]#0 = ¢mp(V) =0. )

Observe that ¢, = ¢ if (8|8) = 0. Hence up to a non-zero constant factor one has

detS,W =[] dmp)s®,
(m,B)elrr

where d,,; g(v) are some non-negative integers. Note that d,,; g(v) # 0 forces mg < v, ie. v —

mpBeQt.
2.2. Jantzen filtration

In 2.2.1 we recall the construction of the Jantzen filtration (see [8]). This filtration depends on
a “generic element” p’ € h*. For a semisimple Lie algebra one can take a sum of fundamental
roots: p' := Zje s\ @j- Itis known that for semisimple Lie algebras the Jantzen filtration does
not depend on a choice of “generic” o/, see [3, 5.3.1].
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2.2.1. Fixp'e f)f such that (p’|a) # 0 for any @ € O\ Q}". Let ¢ be an indeterminate.
Take X € f)f Introduce the generalized Verma module M (A + tp’) as follows. Define the
action of (ny + b +n_ ;) on C[r]: (ny + by + n_ ) acts trivially and & € ) acts by the multi-
plication to (A + tp")(h) = A(h) + tp'(h). Now M () +tp’) is the following g — C[¢] bimodule:
. Tnd®
Mi(A+1tp) = Indn++h+n,,, Clr].

The module M; (A + tp) admits a unique invariant C[¢]-bilinear form S**" : M; (A + tp) ®
M (A +1p") — CJ[t] which satisfies the properties (6); this form is symmetric. For r € Z >, set

My A+1p) = {v e Mi(A +1p') | S (v,0)) € 1" Cle] V'),

This defines a decreasing filtration. The second property of (6) insures that each M} (A + tp’) is
a sub-bimodule of M; (A + tp’). The weight spaces of M;(A + tp’) are free of finite rank C[¢]-

modules so we can define det S,),”Hp / (up to a non-zero constant factor). Clearly, det Sl))+tp =
det S, (A + 70’) and this is non-zero due to the linear factorization of detS, and “genericity”
of p'. As aresult, (;2) M} (A +1p") =0.

Specializing this filtration at # = 0 we obtain the Jantzen filtration F" (M (1)) on M;()). The
weight spaces of M} (A + tp’) are free of finite rank C[¢]-modules. Thus F" (M (1)) is just the
image of M7 (A +tp’) under the canonical map M; (A +1tp") — M;(A +1p")/tM;(h +1p") =
M (X). In particular the 7" (M (1)) form a decreasing filtration by submodules of M;(A) having
zero intersection. One readily sees that FOM; (L)) = My () and that F' (M (L)) coincides with
the maximal proper submodule of M;(}).

2.2.2. Define the sets Iém,ﬂ (meZxy,p elryand C(A) (A € bf) as follows:

Rup:={(m', B) € L1 x It | $ply 1 = Gurprls |
CW):={(m,a) € Zzy x Irr | gpa (1) = 0}.

2.2.3.  The following “sum formula” is proven in [8]:

S dmF (M Mi) = D dmp(v), ®)

i=1 (m,B)eC(M)Nlrr
where dy, g(v) are exponents introduced in 2.1.1.

Proof. Note that the sum Zf‘;l dim F" (M;(X);—,) is equal to the order of zero of detS, at
the point A € h}. Let A be the localization of C[t] by the maximal ideal generated by ¢: A =
Cltl)- Let N be a free A-module of finite rank, endowed with a non-degenerate bilinear form

D:N ® N — A. Define a decreasing filtration
F/(N):={ve N|D(,v') € At/ forany v' € N}.

Taking N to be the localized module M;(1);—, ®4 C[t] and D to be the bilinear form induced
by SM0° we see that the filtration on N, induced by the Jantzen filtration, is just F/(N). Now
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the sum formula follows from the following claim: the order of zero of det D at the origin is
equal to

oo
Y dim(F/(N)/(F/(N)NtN)).
j=1
In order to prove the claim, note that N has two systems of generators v; and v} (fori =1,...,r)

such that D(v;, v}) = §;;t% (for s; € Z30). The order of zero of det D at the origin is 2;21 S;
and

dim F/(N)/(F/(N)NtN) =|{i | si > j}]-
The equality D, s; = 2711 |{i | s; > j}| implies the claim. O
2.2.4. Define the functions dy, g, 7o : Q — Z>o (o, B € Q) by

Tg:V—> K(v—a), dm.glco\0+ug; =0, A, gV > dpy (V) forve QT \ Q;.

The following lemma is proven in [10, 6.8] for simple Lie algebras; however, the proof is valid
in our general setup.

2.2.5. Lemma. For any A € hll, m > 1, B € Irr there exist integers a,kn’ﬂ, am,p such that

(1) Z?il Chfi (Ml ()‘)) = Z(m,ﬂ)eC(A) (11);1,!9 ch M()\. — mﬂ),
(i) Z(m’,ﬂ’)elém,,gm?r A pr = Z(mg,g/)eﬁmﬂ A’ BT/ B+

Proof. Combining the fact that F LMy (A)) 1s a g-submodule of M;(}) and formula (7), we
deduce that ch F (M (L)) = Z(m B)eC(r) %m ﬂ ch M (A — mp) for some integers a)‘ m,p° Dote that
the sum is infinite, but “locally finite”: for each v € Q+. only finitely many terms M (A —mpf),—,
are non-zero. Thus we obtain (i) for a;\m pi= Z;‘il a;’fﬂ. For (i) fix a pair (m, B). Let A € ljll be
a “generic point” of the hyperplane {§: ¢,,5(§) = 0} in the following sense: A does not belong to

the hyperplanes {&: ¢, g (&) =0} if (m’, B') ¢ R, .85 in other words, C(A) = Ry, g. Combining
(i) and formula (8) one obtains

Z a,);l,’ﬂ, Tm'B = Z dm/,ﬂ/.

(m',BeC (1) (m’,p")eC(M)NIrr
Since C(A) = Ry, g one gets (ii) for the integers a;, g := a)‘ p O

2.2.6. Corollary.

d, . g (V) a,r g (V)K(v— mﬂ)
m’ B _ m',p
M = T e

(m',B')€ Ry, p NIt (m',"YeRm.p
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Proof. By definition ¢,/ = ¢y for (m’, ') € I%m)ﬂ. In the light of Lemma 2.2.5(ii), both sides

Z(m/ ﬁ’)eR am/’ﬁ/(v)‘[m/ﬁ/(u)
of formula are equal to ¢,,4 mh .

2.3. Leading term

Using the geometric series, we expand

Ri/R= [] (1-se )™ @M% = 5™ k@)™,  where K;(@) € Zso.
acAT\Q; acQt

Set Kj(@) =0fora e Q\ 0% note that K; (@) =0fora € Q;, o #0.
Consider the natural grading on the symmetric algebra S(h/h;) = @2 S"(h/h1). The fol-
lowing proposition is a particular case of [5, Theorem 3.1].

Proposition. Up to a non-zero constant factor, the leading term of det S, is

3

(dim a) . (7])(r71)])(a)1(1(v7roz)
grdetS, = l_[ hg 8) Xrz1

acAT\Qy
where hy € /by is such that u(hy) = (|@) for any p € bf

Proof. We prove the proposition in 2.3.1-2.3.6 below. Denote by A7, A~T the corresponding
multisets of roots, where the multiplicity of y is equal to dim g, . Set At = A~a' U AT Define
similarly A~;r (the multiset corresponding to A;r). Fix a total ordering on AT such that y; > y»
if y1 —ye 0t

2.3.1. Avectorm= {my}yeA~+\A~;r is called a partition ofa € QT \ Qyifa = Zyej+ myy :

my € Zxg for y € Af \ A}, and m), € {0, 1} for y € AT \ AT. Denote by P(«) the set of all
partitions of «. One has |P(«)| = K («).

2.3.2. For y € AT denote by 7 the corresponding element in the set A. Choose bases
{fV}yej+ of n_ and {e),}yeAur of ny such that f, € g_5,e, € gy. In the light of Proposi-
tion 1.1.4(ii), for each & € A™ the entries of the matrix

Do = ([fVi’er])

Fi=vj=a
are proportional to &, and det D, # 0. Hence we can choose the bases in such a way that all

matrices Dy are diagonal: Dy = (8ijhe)i,j.
For every m € P(«), define the monomial

o— m m .__ 1,
=TT, e =[],
o o
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where the order of factors is given by the total ordering fixed above. Take A € h} and let v, be
the highest weight vector of M; (). The set {f™v, | m € P(v)} forms a basis of M;(1),_,. By
definition given in 1.2.4,

detS, = det(HC1 (0 (fm)is))

m,scP(v)*

Since both {0 (f™)}mep () and {€™}mep (1) are bases of the same vector space, one has

detS, = det(HCI (emfs))m,sep(\))’

up to a non-zero constant factor.

233 Set|k|=>"
algebra S(g).

wea+ ko. For u € U(g) denote by gru the image of u in the symmetric

Lemma. For any m, s € P(v), we have

(i) degHC(e™f®) < min(|m], [s|);
(i1) if lm| = |s|, we have

degHC(emfs) =m <<= m=s;
(>iii) up to a non-zero constant factor,

grHC(e™f™) = l_[ h:;ly.

yeA+
Proof is by induction on v € Q" with respect to the partial order (see 1.1.1).

2.3.4. Corollary. Up fo a non-zero constant factor, the leading term of det S, is equal to

1_[ h&a(v) ,

aeA\A;

where

re(v) = Z Z my.

yeA+: y=qmeP()

2.3.5. Lemma. For any y € AT\ A; one has

S my =Y (DI O K - 7).

meP(v) r=1

Proof is by induction on v € Q" \ Q; with respect to the partial order (see 1.1.1).
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2.3.6. Combining Corollary 2.3.4 and Lemma 2.3.5, we obtain Proposition 2.3. O
2.4. Computation of ap, g

Since [ | Em,ﬁ = Z3>1 x Irr, Lemma 2.2.5(ii) gives

Yo dup= D ampTmp )

(m,B)elrr (m,B)eZy xIrr
Both sides of the above formula are well-defined functions on Q: for each v € Q only summands

indexed by the pairs (m, 8), where v —mfB € Q, are non-zero at v, and thus only finitely many
summands are non-zero for each v € Q.

2.4.1. From Proposition 2.3,
o0
Yo dupv)= Y Y (=D @dimg,) K (v - ra),

(m,p)elrr aeAt\Q r=1

and thus, using (9) and 7,,5(v) = K (v — mp), we get

(o)

Yoo anpy K@—mpe =Y Y 3 (=) (dimgy) K (v —raje,
(m,B)eLxq xTrr v aeAt\Q,;r=1 v

which can be rewritten as

00
Z am,p ZK(U)e_U_mﬂ = Z ZZ(_1)(""‘1)17(05)(dimga)KI(v)e—v—ra’

(m,B)EZx xIrr v weArQ =1 v
that is

o
R™" " appe™=RTR; D Y (=D (dimgy)e .

(m,ﬂ)eZ21xIrr (XEA+\Q[ r=1

Therefore the integer a,, g is equal to the coefficient of ¢~ in the expression

o
R, Z Z(_1)(r+1)17(7)(dimgy)e—r)’.
yeAt\Q;r=1
Hence

amp= Y > (=DUFTVPO(dimg,)k;(mB — ry).

yeAt\Q; r=1
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2.4.2.  Substituting the formula for a,, g into Corollary 2.2.6 we get

Kw-mp)y Y2 (=D HDPY) (dim g, )k (mB—ry)
detsi= [ g e -
(m,B)€Zx xIrr

l—[ K0=a) Y eat\g, Lret (=DUFTDPO) (dimg, ks (@—ry)
o
aeQt

o0
1—[ 1—[ 1—[ ¢(—1)(’“)”<V)(dim9y)k1(a—rV)K(V—a)
o

acQtr=lyeAt\Q,

00 . )
l—[ l—[ 1—[ ¢(—1)('+ P (dim gy )k (@) K (v—a—ry)
a+try .

r=laeQt yeAt\Qy

Recalling that k; (a) = 0 for o ¢ Q7 , this completes the proof of Theorem 1.2.8.
3. Vacuum determinant

Let g = g(A, p) be a finite-dimensional contragredient Lie superalgebra and let g(fl, p) =
CD x g be its (untwisted) affinization described in Example 1.2.12, which notation we retain,
except that here we take h = h + CK.

We denote A(A, p) by A and A; = A(A, p) by A, O (A, p) by Q+ and 07 = 01 (A, p)
by O, and so on.

Denote the Weyl group of g (respectively, of §) by W (respectively, by W). Introduce the
twisted action W on 6* as w.A :=w(A + p) — p; notice that w.A :=w(A +p) —p if we W.
Recall that [13]

1
81p) =hy = (0l0) + 2 (610). (10)

Recall that J = {0} U J. We apply Theorem 1.2.8 to g (see Remark 1.2.10)and I = J C J.

3.1. Introduce Ag € h* such that Ag(h) =0 for h € h, Ag(K) = 1. Any A € h7 takes the
form A = kAq for some k € C. Thus, det S, is a polynomial in one variable k.

3.2. The generalized Verma module M;(kAg) is the vacuum module vk, Using Theo-
rem 1.2.8 for g, we obtain the formula for the vacuum determinant:

o]
dets,0) =] [T T] By (b)) @M B K V—a=ry) (DD @), (11)
r=lyeit\aaeQt

where

S ke =[] (- [T+

acQt aeAf aeAf
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Recall that dim §,, = dim b if y € Z§ (unless g = gl(m, m), when dim gss = 2m — 1, see Ex-
ample 1.2.13), and dimg, = 1 if y ¢ Z5.
Write y € AT\ Aasy =ud+y’, where u € Zx and y' € A. Then, by (10):

(p—aly) —r(y'Iy)/2 n (alp) = (aje)/2.

1
_¢ry+oz(k) =k+ h\é +
ru u ru

(12)
3.2.1. Remark. It is easy to see that ¢z = ¢y c—p)+p for any w € W since (A|w&) = (A]§) if
A ehf, forany w e W.

3.2.2.  Apart from the case D(2, 1, a) with irrational a, a finite-dimensional contragredient
Lie superalgebra g admits a symmetrizable Cartan matrix with integer entries. As a consequence,
we can (and will) normalize the bilinear form (.|.) in such a way that the scalar product of any two
roots is rational. Unless otherwise stated, we will assume that g # D(2, 1, @) with irrational a.

Corollary. If g is not of the type D(2,1,a) with irrational a then the vacuum module V¥ is
simple for k ¢ Q.

3.2.3. Write det S, (k) = [pec(k + h) — b)™>) and set
M, =R Zmb(l))e—”.
v

Then

My= > (=P (dim g, )k ()e "7,
(r;y;)€eY (b)

where Y (b) is the set of triples (r; y; «) with ¢, proportional to (k + hg —b), that is

Y(b):={(r;y;a) ‘ reZs., yeAt\ A, a € OF such that (pry% eC*!.
~ k+hp—>b
We know that My # 0. By Corollary 3.2.2, for g = D(2, 1, a) with irrational a, one has M), =
0 if b ¢ Q. In this case, we present a non-zero rational number b in the form b = p/q, where
P, q are relatively prime non-zero integers and g > 1.

3.3. Consider the restriction of the bilinear form (.|.) to the real vector space hg :=
Y wea Ra; the dimension of a maximal isotropic subspace of b is called the defect of g.

A simple finite-dimensional contragredient superalgebra of defect zero is either a Lie algebra
or osp(1, 2n).

3.3.1. Let k(.|.) denote the Killing form. If « is non-zero, set A* = {a € A | k («|a) > 0}.
Then A‘g is the root system of one of simple components of go. If k = 0 then g is of type
A(n,n), D(n+ 1,n) or D(2, 1,a). In this case the root system is a union of two mutually or-
thogonal subsystems: Ag = A, U Ay, Dyy1 U Cy, D2 U Cy, respectively; we let A = A} be the
first subset. Let W¥ be the Weyl group corresponding to Ag, that is the subgroup of W generated
by the r, with o € Ag.
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3.3.2. A subset S of A is called maximal isotropic if it consists of the defect g roots that
span a maximal isotropic subspace of hr. The existence of S is proven in [17]; it is also shown
that one can choose a set of simple roots I7 is such a way that § C I1. We fix S and IT which
contains S. We set

NS := { Znﬁﬂ, nge Z;o}.

pesS

For o € NS denote by hta the height of a: hta = ngifa =3 g snpp.

3.3.3. By a regular exponential function on fj we mean a finite linear combination of ex-

ponentials e*: A € h*. A rational exponential function is a ratio P/Q, where P, Q are regular

exponential functions and Q # 0. The Weyl group W acts on the field of rational exponential
functions by the formulas w(e*) = e®*, w.(e*) = e¥*.

3.4. Retain notation of 3.2.3.

Theorem. Assume that W*S C AT. Then

detS,) =[] JI [ ¢rysat)@medraty,

r2lyeAt\aaeNS
where ¢ry 1o (k) = (Aoly)k + (0 — aly) —r(yly)/2, and d,. o (v) are integers, defined by

Z dr,y,a(‘/’)e_v — (_l)hld-‘r(}”—l)p(]/)R—l Z (_1)l(w)ew.(—ry—oz)’

veQ weWw#
ie.
My = Z (—1)(r+l)p(y)+ht“(dimﬁy) Z (—1)lw) gw-(=ry—e)
(r;y;0)€Xs(b) wew#
where

Ys(b) := (r;y;a))reZ>1, y € AT\ 4, aeNSsuchthatMe(C* .
> k+hy—b

Note that ry + « uniquely determines a triple (r; y; o), and that dim g, = 1, apart from the case
when ¢y, 4o (k) is proportional to k + h}.

Proof. Since S consists of simple mutually orthogonal isotropic roots one has (x|a) = («|p) =0
for any o € NS. This gives the formula for ¢, 1.

For o € NS and § := —w(—a) one has ¢ryt = drytp—wptwa = Gpy-1y478 by Re-
mark 3.2.1. Combining the formulas in 3.2 and Lemma 3.5 we obtain for each r:
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K(v—a—ry)ki(@) _ (=D R (y—ry twp—p—wa)
1_[ 1_[ ¢’V+0‘ l_[ 1_[ 1_[ ¢rw*1y+(x

yedAt\aeeQt yeAt\AweW# aeNS

ry+o

yeAAJr\A weW# aeNS

[T IT I i

V€A+\A aeNS pew#

Now, the formula for the integers d;. ,, o (v) follows from 3.2. O

3.5. Lemma. Assume that W*S C A, Then for any o € Q the orbit W# (—a) meets —NS at
most once and

) 0, ifW.(—x)N(-NS) =0
(@)= (— l)l(w)Jrht( w.(— 0‘)) if —w.(—a)eNS.

Proof. First, let us show that NS N AT = S. Indeed, if the defect of g is not greater than one

the assertion is trivial. The root systems of finite-dimensional contragredient Lie superalgebras

are described in [11, 2.5.4]. All exceptional superalgebras have defect one. For non-exceptional

superalgebras of non-zero defect, hr has an orthogonal basis {&; |8 }i—1,4; j=1,m, Where (g;|&;) =

—(3;18;) for any i, j and A C {+tg;, +18;: t =1,2; +e& +8;; +& T ey +5; + 8} As a

result, S is of the form {+e¢;, 38}, where i; # iy, j; # jy for I #1’. This implies NSN AT = §.
Recall that all root spaces of g are one-dimensional and thus

(1—e) o
_ 1—[ Fr=te Zk,(a)e )

aeAO

Since NS N AT = S we have k; («) = (— )M for ¢ € NS. Theorem 2.1 of [17] states that

op_ ) e’ )
e’R= Y (-1 w<ﬂﬂes<1+e—ﬂ) .

weW#

The assumption W#S C A* forces W#(NS) ¢ Ot and the above formula gives

R = Z (_1)[(11)) Z (_l)htaew.(—a)' (13)

weW# aeNS

We see that k7 () = 0 if W¥.(—«) does not meet NS, and, moreover, w(e” R) = (—1)/®)eP R,
that is

ki(@) = (=D'™k;(—w.(~a)) foranya e Q, we W

We already know that k; (o) = (—1)" for @ € NS. It remains to verify that for any & € Q
the orbit W.(—§) meets —NS at most once or, equivalently, that for any « € NS one has
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W#.(—a) N (=NS§) = {—a}. Indeed, from (13) for any o € NS one has

k(o) = Z (_l)l(w)ﬂ-ht(—w-(—a))‘
weW#: —w.(—a)eNS

However if —w.(—a) € NS then

ki(—w.(—a)) = (=DMEW-C)and - gy (—w.(—a)) = (=D ™k; (@)

s0 k(o) = (=D!w+ht-w.(-0)  Hence k;(a) = ZwEW#:—w.(—a)eNSkl(a) so W¥.(—a) N
(—NS) = {—«a} asrequired. O

4. Virasoro algebra

In this section we prove formula (3) and Theorem 0.3.2 (see Theorem 4.2.1 and Proposi-
tion 4.3.2, respectively).

4.1. Notation

Denote by Vir> (respectively, Vir ;) the subspace spanned by L, j > k (respectively, L,
J < k). Notice that Viry_1, Vir._ are subalgebras. A Verma module M (h;c) (h,c € C) over
Vir is induced from the one-dimensional module C|#; c) of Viryo + CC, where Vir.g acts
trivially, Lo acts by the scalar 4 and C acts by the scalar c. The weight spaces of M (h; c) are
eigenspaces of Lo with eigenvalues h +n,n € Zx.

A vacuum module V¢ is induced from the one-dimensional module C|0; ¢) of Vir»_; + CC,
where Vir_1 acts trivially and C acts by the scalar c. Clearly, V° = M (0; ¢)/M(1;c).

In this section we use letters r, s, p, g, k, m for non-negative integers. For positive integers
p,q we denote, as before, by (p, ¢q) their greatest common divisor. We denote the maximal
proper submodule of M (h; ¢) by M (h; ¢) and the simple quotient of M (h; c¢) by L(h; c).

4.2. Main result

Introduce the anti-involution ¢ on Vir by the formulas o (L,) = L_,, 0(C) = C. Define
the triangular decomposition Vir = Vir.o @ (CLo 4+ CC) @ Viry1, and introduce the Harish-
Chandra projection with respect to this triangular decomposition. Define the contravariant forms
on Verma modules and on vacuum modules as in 1.2.4. Define the Jantzen filtrations on these
modules as in 2.2.1 and observe that the “sum formula” (8) holds in this setup. We denote the de-
terminant of the contravariant form on the eigenspace of L with the eigenvalue h+N (N € Zx)
in M (h; c) by det, 1y (respectively, on the eigenspace Vy of Lo in V¢ with the eigenvalue N by
dety). These are polynomials in / and ¢ (respectively, c).

2
4.2.1. Theorem. Let cp 4 =1 — Sp=q)”
: Pa

(i) Up to a non-zero scalar factor, the vacuum determinant is as follows:

det}v(c) — 1_[ (c— Cp,q)dimL((p_l)(q_l);Cp,q)N’
p>q>1,(p.q)=1

where dim L((p — 1)(g — 1); cp )N is given by the right-hand side of (4).
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(i) A vacuum module V* is simple iff ¢ € {cp q}p.qez>.(p.g)=1-
(iii) If VC is not simple, then F' (V) = L((p — 1)(g — 1); Cp.g)» FE(VE) =0, where ¢ =

Cpg-D-q € Z225 (p, 6]) =1
(iv) The vertex algebra Vir, satisfies Zhu’s Cy condition iff the vacuum module V€ is not simple.

We prove (iv) in 4.3 and (i) in 4.4 below; (ii), (iii) follow from (i) and Jantzen sum formula (8).
4.3. Singular vectors in V¢

Since L_1]0; ¢) = 01in V¢, itis clear that C; holds iff the vectors L’iz|0; c) (k > 1) are linearly
dependent over Co(Vir.) := span{L_;v | k > 2, v € Vir.}. If V¢ is simple then Vir® = Vir, and
the vectors L’i »10; ¢) are linearly independent over C>(Vir.) and thus Vir. does not satisfy C;
condition. Take ¢ such that V¢ is not simple. In order to check the C; condition, it is enough to
verify that a singular vector in V¢ is of the form (L’i2 4+ a)|0; ¢), where a € U(Vir-_1) lies in
the right ideal generated by L_;, i > 2. This will be shown in Proposition 4.3.2.

4.3.1. A total ordering on monomials

For v € V€ call the monomials of v all the ordered monomials appearing in u, where u €
UVir._yp) is such that v = u|0; ¢).

Introduce the following (lexicographic) total order (cf. [22]) on the ordered monomials of
UVir._1) with given ad Lg-eigenvalue: for L_; ...L_; and L_j ...L_j with iy > ... >
122, jp=2---2j=22and Y im=) ja=N,put L; ...L_;; <L_j ...L_j if ei-
ther i1 < ji, or iy = j1, 12 = j2, «- s im = Jjm>» im+1 < jm+1. For example, L%4 >L_sL_3>
L_3L_3L 5> L%,

4.3.2. Proposition. The minimal monomial of a singular vector v of V¢, not proportional to
|0; ¢), is LTz, where m is a positive integer.

Proof. Observe that for u € Vir-_j and k > —1, one has Lyu|0; ¢) = [Lg, u]|0; c). In particular,
if v = u|0; ¢) then the monomials of Liv for k > —1 are the monomials of [L, u], which lie in
UVir._yp).

The minimal monomial of [Ly, L_; ... L_; 1isL_; ...L_;,L_; 4. Inparticular, if X, Y are
monomials in Vir._1 and X < Y then the minimal monomial of [ L, X] is less than the minimal
monomial of [Ly, Y]. If iy >2then L_; ...L_;,L_; 41 belongs to Vir._1. As a consequence,
the minimal monomial of a singular vector v is of the form L_; ... L_; , where i; = 2. Indeed,
suppose that i1 > 2; then the minimal monomial of Lyvis L_; ... L_;,L_; 41, which belongs
to Vir-_1, and thus Liv # 0, so v is not singular.

Now it remains to show that the minimal monomial of v is not of the form X = X'L? L™,
for somer > 2,5 > 0.

Let X = X’LS_rL’f2 be a monomial (+ > 2 and X’ does not contain L_» and L_,). Then the
minimal monomial of L, _,X|0; c¢) is X’ L‘V__rlL’f;r ! Suppose that X is the minimal monomial of
a singular vector v (we have shown that m > 1). Since L,_>v = 0, the monomial

. s—1 1
Z:=X'L",'L"S
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should appear as a monomial in L, _,Y10; ¢) for some ¥ > X. Write Y = Y”Lk_z, where Y” does
not contain L _5. Recall that

Yo x k <m,

g - k=mandY” > X'L% .

The degree of L_; in any monomial of [L,_5, Y] is at most k + 1. Hence L,_»Y|0; ¢) does
not contain Z if k < m.

In the remaining case Y = Y”L™, for Y’ > X'L* ., write Y = Y'L” L™, where Y’ does not
contain L_,. Then ¢ > 2 and the condition ¥ > X forces that either r > r or r = r, Y'L” . >
X'LS,.

Ify= Y’LftL’f2 for some ¢ > r then the degree of L_» in any monomial of [L,_», Y] is at
most m so L,_»Y10; ¢) does not contain the monomial Z.

If Y¥= Y’LZ, L™,, then the only monomial of [L, »,Y], having a factor LT;FI, is

YL LY Since Y/L?, > X'LY,, one has Y'L”,' > X'L7! and so Y'LP,' L™ > 7.

—r?
Hence L, _,Y|0; ¢) does not contain Z, a contradiction. The assertion follows. O

4.4. Proof of Theorem 4.2.1(ii)

4.4.1. Outline of the proof

In Lemma 4.4.2 we will show that V¢ has a subquotient, isomorphic to L((p — 1)(g — 1); ¢)
if c=cp 4, where p > q >2,(p,q) = 1. Using the sum formula (8) we conclude that dety (c) is
divisible by the polynomial

Py(c) :i= H (c — Cp’q)dimL((p_l)(q_l);Cp,q)N.
p>q22,(p,q)=1

In 4.4.3-4.4.5 we will show that the degree of det), (c) coincides with the degree of Py(c) so
det)y (c) =aPy(c) for a € C*. This proves Theorem 4.2.1(ii).

4.4.2. Lemma. Let ¢ = cp 4, where p > q > 2 are relatively prime integers. Then V¢ has a
subquotient isomorphic to L((p — 1)(g — 1); ¢).

Proof. Recall that V¢ = M (0; c)/M (1; c). We will show that M (0; ¢) has a singular vector of
weight (p — 1)(g — 1), whereas M (1; ¢) does not have such a vector.

Recall (see [12], [16, 8.1-8.4]) that the determinant of the contravariant (= Shapovalov) form
for a Verma module over the Virasoro algebra is, up to a non-zero constant factor:

detyip(c,h) = H (h — hr’s(c))Pr[(N—rS)’

r,S€L>1

where p.;(m) is the classical partition function:

(1= =3 patmx,

1 meZ

—18

k
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and the functions 4, ;(c) can be described as follows:

2_1 -1 S AT N2 I \2
PN Gt Gl ) SN Vel ) ek et 0
’ 24 ’ 4p'q’

where p’, ¢’ € C are such that c =1 — M.

Letc =cp 4, where p > g > 2 are relatively prime integers. One has A, (c) # 0 for » > 2 and
hrs(c)=0iff pr —gs =x(p—q); hy,(c) # 1forr > 1 and h, 5(c) = 1 iff pr —qgs = £(p+q).
As aresult, hp_14—1(p,q) =0and h,s(p,q) # 1 if rs < (p + 1)(g — 1). Hence M(0; c) has
a singular vector of weight (p — 1)(¢ — 1), whereas the minimal weight of a singular vector in
M;¢c)isl+(p+1)(g —1) = pg — p + q. The claim follows. O

4.4.3. The leading term of det), (c) is ¢*™), where

d(n) = Z 1.

An, L

Here XA - n stands for a partition of n (we will write |A| = n), /(L) is the number of parts of A,
and 1 € A means that A contains a part equal to 1. One has

Z 10 = 1°_°[ (1- txm)_l

Ailga m=2

and this allows to express the generating function ), d(n)x" as follows:

% (1 —rx™)~!
d _ Ln |A| m 2
Z (mx" =) 10 > _
1¢x
Therefore
00 . 00 x o]
n __ rs
Zd(n)x_nl—x Z] Hl—x Z X,
n m=2 r=2 m=2 r>=2,s>1

which can be rewritten as

lo_o[ (1 _xm) Zd(n)x” = Z (er _xrs+1).

m=1 n r>2,s>1

4.4.4. Take ¢ =cp 4, where p, q € Z are such that p > g > 2, (p, g) = 1. One has

[T - chL((p—Dig—1ic)= 3 (x(IHDUHk) _ xhg=DU+kp)41)

k>1 keZ\{0}
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see [2,4]. In order to prove that the degree of det;\, (c) coincides with the degree of Py (c)
(see 4.4.1) it remains to verify the following identity of formal power series in x:

Yoo eanth= 3 Y (xR0 Gem b g

r>2,s>1 p>q>2,(p,q)=1keZ\{0}
4.4.5. One has
1 1
rs __ _ k+1)(I+1) - k=1)(I-1) _
DR JFCUERES SR
22,531 ki1 k=2

Writing k = jp,l = jq, where j := (k,[) and (p, g) = 1, we obtain

Z K KkEDEHD Z Z xUp+DGg+D)

k=1 iz1p.q=21.(p.g)=I1
= Z( S axUpHhUaED g 37 GHDUPED x</+1>2>
izl " p>q22.(p.g)=1 p=2

and similarly

Z x(kfl)(lfl):Z Z xUp=DGa=1 4 Z xP=D@=D

k122 J22p.q21.(p.g)=1 P.422,(p.g)=1
R DD S Z<2 3 2 U0 +x(j_l)2>
JZ1(p.a)=1,p>q>2 jz2Y p22
S DD SRS +Z<2Zx<j—1>up—1> +xﬁ> o
iZ21(p.9)=1.p>q2>2 j=2 " p>2
Therefore
Y o= (xUPTDUTHD | p=DGa=D)
r>22,521 izl (p.)=1,p>q22
+ ijz + 303 UFDUPED L 33 (=D
jz2 jz1p>2 j>2p>2
-y 3o xUPEDGaED L 3 3 GEDGPED ijz'
JEZ\(0) (p.g)=1.p>q>2 JEZ\(0.~1) p>2 jz2
Moreover,
Z xrs—i—l — Z x(k—l)(l+l)+1
rz2,s>1 k>2,1>1

— Z Z xUP—DUg+D+T Z x(P=Dlg+D+1

J22 p.gq21,(p.q)=1 p=22,921,(p,q)=1
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= Y (rUPTDUEEDEL L UpDUa D Zx./z

jZ2lp>q22,(p,q)=1 ji>2
+ Z Z xUP=DGHDHL Z Zx(jp+l)(j71)+l
j=21p22 j22p22
= Z Z K UPHDGa=D+1 Z Zx(j+l)(jp—l)+1
JEZ\{0} (p.q)=1, p>q 22 JEZN{0,—1} p=2
2
+ Zx/ .
j=2

Now (14) follows from the following identities:

Y xUPDGEDH - EDEGEDPED o § GG,
JEZ\{0,—1} JEZ\{0,—1} JE€Z\{0,—1}

5. Neveu-Schwarz algebra

The Neveu-Schwarz superalgebra V'S is a Lie superalgebra with the basis {C; L;},_ 1z, such
that its even part is the Virasoro algebra (with the basis {C; L;};icz), the element C is central,

and apart from the relations (2) of the Virasoro algebra, the following commutation relations for
meZandi, j € 37\ Z hold:

4i2 -1 mo
[Li. Lj}=2Liyj+d0.i+j—7—C (L. Ljl=\7Z = J |Ljtm-

5.1. Notation

Denote by NS~ the subspace spanned by L, j > k. A Verma module M (h; c) (h,c € C)
over /'S is induced from the one-dimensional module C|A; ¢) of NS¢ + CC, where NS~
acts trivially, Lo acts by the scalar & and C acts by the scalar c¢. The weight spaces of M (k; ¢)
are eigenspaces of Lo with eigenvalues h +n,n € %220.

Notice that NS> _; is a subalgebra. A vacuum module V¢ over N'S is induced from the one-
dimensional module C|0; ¢) of NS>_; + CC, where N'S>_; acts trivially and C acts by the
scalar c. Clearly, V¢ = M(0; ¢)/M (1/2; c). Recall that it carries a canonical structure of a vertex
algebra, denoted by N'S¢. Its unique simple quotient is denoted by N/'S..

Let

Y::{(p,q)eZ>1><Z>1(pzqm0d2, (¥,q>=l}- (15)
Set
o oo
Yo =[]+ 2T (- ).
n=0 n=1

The function ¥ (x, 1) is the super analogue of the Virasoro denominator [];2,(1 — x"), namely
one has: ¥ (x, )~ = ZNE%ZdimM(h; nanxN.
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5.2. Main result

Introduce the anti-involution ¢ on NS by the formulas o (L,) = L_,, 6(C) = C. Define
the triangular decomposition N'S = N'S_g ® (CLy + CC) & N'S-, and introduce the Harish-
Chandra projection with respect this triangular decomposition. Define the contravariant forms
and the Jantzen filtrations on Verma modules and on vacuum modules as in 1.2.4, 2.2.1; observe
that the “sum formula” (8) holds in this setup. We denote the determinant of the contravariant
form on the eigenspace of L( with the eigenvalue h + N (N € %Zgo) in M(h;c) by detyn
(respectively, on the eigenspace Vy, of Lo in V¢ with the eigenvalue N by det),). These are
polynomials in £ and c (respectively, c).

5.2.1. Theorem. Let C;’q = %(1 - %), and recall notation (15).

(1) Up to a non-zero scalar factor, the vacuum determinant for N'S is as follows:

: _ _ .S
detyy (c) = l—[ (c_cqu)dlmL((p Dg=D/2¢p N (16)

P>q22,(p.q)eY

(ii) A vacuum N'S-module V° is simple iff ¢ # Ci,q’ where p >q >2,(p,q) €Y. If V€ is not

simple then its unique proper submodule is L((p — 1)(q — 1)/2; Ci,q) and

ChL((p — (g —1)/2; ci,q) =v¥(x, ! Z (x(kp+1)(kQ+1)/2 _ x((kﬁ+1)(kq—1)+1)/2).
keZ\{0)

(iil) If the NS-module V° is not simple, i.e. c = c;,q, where p >q > 2, (p,q) €Y, then

F(Vv)=L((p—Dg—1/2c5,).  FH(V)=0.
(iv) The vertex algebra N'S, satisfies Zhu’s Co condition iff the vacuum module V¢ is not simple.
5.3. Superpartitions

Let us call A = (A1, A2, ..., Ap) a superpartition of N if Y 7' | Aj =N, A; < Ay < -+ < Ap,
2A; € Z»y forany i, and A; # A;+1 if A; is not integer (i.e., any half-integer appears at most once
in the multiset {A;}7” ). Write A = N if A is a superpartition of N; set |\| = N and [(A) =m if
A=1, 2, ..., Ap). Forb e %Z write b € A if A; = b for some i.

Note that v/ (x, r)~! is the generating function for superpartitions: v (x, 1) ~! = >, ) A

5.4. Proof of Theorem 5.2.1(i)—(iii)

It is straightforward to deduce (ii) from [2, 8.2] (which relies on the Kac determinant for-

mula for N'S [12]). It follows that if ¢ = cg’q, where p > ¢q > 2, (p,q) €Y, then ]—'I(V") =

L((p—D(@—1)/2 C;,q)' From the sum formula (8), it follows that det}, (c) is divisible by the
right-hand side of (16) and, moreover, that (i) implies (iii). We prove (16) by showing that the
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degree of det;\, (c) is equal to the degree of the right-hand side of (16). Let d(N) be the degree of
detyy (c). In terms of generating functions, we need to show that

> dmx" = > dimL((p—1)(g—D/2c) ), X"

nelz p>q22.(p.q)eY

which can be rewritten as

v ) Y dmx"= Y 3 (P EDGaD/2 _ Gtk D4D/2)
neiz p>q=2,(p,q)€Y keZ\{0}
5.4.1. One has

dmy= Y 1.

Abn,1ga L

Observe that

e D M
+tx

An,1¢a, Sen

and this allows to express the generating function 1, d(n)x" as follows:
p g g ne5Z

d (1 —1x)
n_ Al —
2 dma"= 3, I == 0+ 1x 29 (x, 1)

l]

neiz rlgn, b
Since
9 (1—1tx) B (1 —1tx) 2, xnt12 +°° x"
ot (14+1x'2)y(x, 1) (1+1xV2)y(x,1) — 1+ 1xnF1/2 =l

we obtain

oo [ X2 © ”
vix. 1) Z d(n)x":(l—x / )(Zl+xn+1/2+zl_xn)=(1_x /) X2z,
1 n=2

L n=
nes7Z

Put y := x'/2. Let a be a rational number greater than 1 which is not an odd integer. Then a
can be uniquely written as a = p/q, where p > g > 2 are integers of the same parity and g is the
smallest one with this property, i.e., (55L,¢9) = 1.
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5.4.2. One has

649
1 k+1)(I+1 1 k—1)(—1
Z yrs=§ Z y(+)(+)+§ Z y( )( )—y/2
r22,5>1 ki1 k=2
r=s mod 2 k=l mod 2 k=l mod 2
Here and further, r, s, k, [, p, g are integers.

1 1
Z y(k+ Y+1)

kJ0>1

For k =1 mod 2 we can write k = jp, [ = jgq, where j := (%,1) and (p,q) € Y. We get
k=l mod 2

=2 2

jzlp,q=1,(p.q)eY

jz1 " p>q22.(p.q)€Y p22,(p, DeY
and similarly

ip+1)(jg+1
y(1p+ YJg+1)

Z y(k—l)(l—l) — Z Z
k,1>2

in—1)(jg—1
J,(JP )Ug—1
k=l mod 2

jZ22p.q21,(p,q)eY

+ Z y(pfl)<q71)
r.q922,(p.q)€Y

=2y 3

jZ1p>q22,(p,q)eY

N 2(2 Z yU=D@i=1 4 y<i—1>2)
jZ22 " p22,(p.Hey

=2y )

jz21 p>q22,(p,q)eY

+Z(2 T U 7

) +y.
j22 > p=22,(p,HeY

ip—1)(jg—1
y(JP )Ug—1)

ip—1)(jg—1
y(JP )Gg=1

Therefore

r=s mod 2

rs
2. V=2
r>2,s>1 j=1p>

[7+l q+l ']7—1 q—l
q}Z,([%q)E)

i1 m=1

+Y Y i pUHD@nD/4D 4 3 i yU=D@mtnj-1)
i»2

j=2 m=1
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Z Z y(jp+l)(jq+1) + Z i y(j+1)((ZM+1)j+1)

JEZ\{0} p>q>2,(p,q)€Y JEZ\{0,—1} m=1
22
2y
=2
Moreover,
1 k—1)(I+1)+1
Z Yo = yk=D+D+
r>2,5>1 k=201
r=s mod 2 k=l mod 2
— Z Z y(JP—l)(Jq+l)+1 + Z y(p—l)(q+1)+1
iZ2p.qz1.(p.q)eY p=22,921,(p.q)eY
ip—1)(jg+1)+1 ip+1)(ig—1)+1 2
— (y(m YGg+D+ +y(1p+ YJg—D+ )_|_ Zyj
jz1 p>q22,(p,q)=1 j=2
N (Zy<jp—1><j+1>+1 L Zy<jp+1><j—1>+1>
p=2,(p,DeY *j>1 jz2
ip+1)(jg—1)+1 ip+1)(j—1)+1
— Z y(1p+ W=D+l 4 Z Z y(Jp+ )=+
JEZ\{0} p>q 22,(p.q)€Y JEZ\{0,—1} p22,(p,1)eY
2
DM
j=2
One has
Z y(]P—l)(j+1)+1 — Z y(—j)(—(j+1)p+l) — Z y(l+1)(lp+1).
JEZN0,—1} JEZN0,—1} JEZN\0,—1}

Hence we obtain the required equality:

Z (yrs rs+1 Z Z y(jpﬂ)(qu) _ y(jpfl)(jq+1)+1.

r=2,s>1 j=21p>q2>22,(p,q)eY
r=s mod 2

5.5. Proof of Theorem 5.2.1(iv)

Let Co(N'S.) :=span{L_;v | k > 2, v € N'S.}. Recall that the C; condition for NS, means
that Co(N'S.) has finite codimension in V.. Since L_{|0;c) = L_1/310;¢) =0 in V€, it is
clear that the C, condition holds iff the vectors Lk_ 1105 ¢) (k > 1) are linearly dependent over
CZ (NSC)

If V¢ is simple then N'S¢ = NS, and the vectors L% »10; ¢) are linearly independent over
Cr(N'S,), and thus V'S, does not satisfy the C condition.

Take ¢ such that V¢ is not simple. Then V¢ has a unique proper submodule V°. In order
to check the C, condition, it is enough to verify that V¢ contains a vector of the form (L* 5+
a)|0; ¢), where a € U(N'S~_1) lies in the right ideal generated by L_;, i > 2. Let v be a singular
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vector of V¢ (it is unique up to a scalar). In Corollary 5.5.4 we will show that either v or L _ /20
is of the form (L* , + a)|0; ¢). This will prove (iv).

5 5.1. Consider the PBW basis of U (NS _;) which consists of the monomials of the form
L™ . L"}, wherei; e 1Z,1<iy<iy<---<ig,m;>landm; =1ifi; ¢ Z.

Deﬁne the (lex1cographlc) total order on the PBW basis of U(NS-_1) with given ad Lo-
eigenvalue in the same way as in 4.3.1, and retain conventions of 4.3.1.

5.5.2. Lemma. Let v|0; ¢) € V¢, where v € U(N'S - _1), be a singular vector, not proportional to
|0; ¢). Then v contains either a monomial Lliz (k > 0) or a monomial L™,L_3, (m > 0) with
a non-zero coefficient.

Proof. For u € U(N'S-_1) denote by suppu the set of monomials, which u contains. In this
proof the letters U, X, Y, Z stand for monomials in U(N'S__1).

Let X, Y be monomials in Y (NS~._;) and let Y does not contain L_3 ,2 and L_3. Then for
r > 0 one has:

X =X'L_3p, Y esupp[L,, X'],

(i) YL_3p€supp[l,, X] =
/ ’ X =YL (i3

X = X/LS_ZL_3/2, Y €supp[L,, X'],
(i) YL',L_3;esupplL,,X], s>0 = X=YL_ (1L 'L 3)p,
X=YL_¢y3/L% 5;

X=X'L*,, Y esupp[L,, X'],
(i) YL®,esupp[L,,X], s>0 = X=YL_g42L*,
X=YL_ 1L Losp.

Let M be the minimal element in suppv. Arguing as in Proposition 4.3.2, we see that M
contains either L_35 or L_».

Assume that M does not contain L_3/5. Write M =YL?,, where Y does not contain
L_3,2,L_»; by the above s > 0. Then YLg 'L_ 3,2 € supp[L1/2, M]. Since v is singular,
Li,2v =0 and thus the monomial YLY_2 L_3/2 € supp[L1,2, X] for some X € suppv, X # M.
Since M is minimal in supp v, X does not contain L_3,5. From (i), (ii) above we conclude that
X = M, a contradiction.

Hence M contains L_3,5. If M = L" ,L_3 the assertion of the lemma holds so we assume
that

M=X'L' L",L 3,

where r € 1/2Z,r > 2,5 > 1,n > 0 and X’ does not contain L_,.
Note that the minimal monomial of [L,_», M], which belongs to U(NS-._}) is Z :
XL 1L”“L _3,2. Hence Z should appear as [L,_», U] for some monomial U € suppuv,

U > M. From (ii) above we conclude that U = X’ L_r L_(r_l/z)L_2
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Let suppy v consists of the monomials in supp v, which contain L_; and do not contain L_35.
By the above, U € suppyv and so suppgv is not empty. Let My be the minimal element in
supp, v. By the above, My < U, i.e.

My < X/Li_rlL_(r_l/z)ergl.

It remains to show that My = L’i , for some k > 0.

Suppose that My # L’iz and write My = YL’:ij_Z, where j € 1/2Z,j>2,p,k>1land Y’
does not contain L_ ;. Observe that k > n. The minimal monomial of [L ; 5, Mo], which belongs
toUNS._1)isZ := YLf;lLk_‘gl. Therefore Z should appear as [L j >, Y] for some monomial
U e suppv, U # M. By (iii) above, U is either of the form Uy = X'L*5" or Uy = X'L¥ ,L_5.
Since k > n one has Uy < M and thus U, ¢ supp v. Moreover, U; < My and thus U; ¢ suppv as
well. Hence My = L* , asrequired. O

5.5.3. Corollary. Let ¢ = cf,’q, p>q =2 (p,q) €Y. The minimal monomial of a singu-
lar vector v of V¢, which is not proportional to |0;c), is L™,L_3, if p,q are even, and is
L_spLl™ L 3, if p,q are odd (m > 0).

Proof. Note that if v contains LTzL_3 porL s /ersz—3 /2, then the corresponding monomial

is the minimal monomial in v. Moreover, for ¢ = ci’ o the weight of v is (p — I)(¢ — 1)/2 and

thus if v contains L’sz_g./z, then p, g are even and if v contains L_5/2LT2L_3/2, then p, g are
odd.
Suppose that v does not contain L™,L_3,,. Then, by Lemma 5.5.2, v contains L* 5+ Since

[L1)2, Lk_ ,] contains Lk__zlL_g /2, we conclude, using (ii) above, that k¥ > 1 and that v contains
L_spLl™,L 3. O

5.5.4. Corollary. Let J be the right ideal in UIN'S~-_1) generated by L_;,i > 2. Let ¢ = cg’q,
p>q=2,(p,q) €Y and v be the singular vector of a proper submodule of VC. If p,q
are odd, then v = (L'f;l + a)|0; c) for some a € J, m = 0. If p,q are even, then L_1,v =

(LT;I + a)|0; ¢) for somea € J, m > 0.

Proof. The monomials which do not lie in the right ideal generated by L_;,i > 2 are of the
form L™,L_3/5, L™, for m > 0. Therefore if v € V¢ has integer weight then either v" € J|0; c)

or v = (LTSL1 + a)|0; ¢) for a € J,m > 0; in other words, if v/ € V¢ contains the monomial

erz'l then v/ = (LT;H +a)|0; ¢) for a € J,m > 0. Now the assertion for p, g odd immediately
follows from Lemma 5.5.2. If p, g are even, then v contains L"_12L,3 ,2 and L_1,2v contains

L’f; 1, and the assertion follows. O
6. Lie algebra case

In this section we will prove Theorem 0.2.1.
Let g be a simple finite-dimensional Lie algebra. In this section we will use the following
(non-standard) normalization of the form B = (.|.) on h*: (¢]a) = 2 if « is a short root. This
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normalization is convenient since (8|8)/2, (p|B) are positive integers for any root 8. In this
normalization Theorem 0.2.1 takes the form:

vk is not irreducible <= (k+h§)€{0}U{£)peZ>2,qu>1,(p,q):l}.
q

In the notation of 3.2.3 this can be written as
My #0 < p=2 or p=0.
We will check the last equivalence in 6.1-6.5 below.

6.1. Retain notation of 3.3. Since g; = O the set S (introduced in 3.3.2) is empty and the
group W* (introduced in 3.3.1) coincides with W. Theorem 3.4 gives

detS,,(k):H H (pry(k)(diméy)dr,y(‘))’
rzlyeAt\A

bry () = (Aol)k+ Bly) = r(y1y)/2. D drye™ =R Y (=)W,
v weW

Using notation of 3.2.3 we obtain

My = > (dim@, ) E(—ry),
r,y): dry=k+(p18)—b

where E()) := Z (-l ew,
weW

Note that all dimg, = 1in M, if b #0.
6.2. Recall that (p|a) = (p|a) fora € A.Forr,s > 1 and « € AT one has
br(msy (k) =k + (p[8),

r(ala)
2

Grims—a) (k) = (k + (518))m — ( + (pla)),

Psoms-+a) (k) = (k + (618))m — (@ - (pla))-

Therefore for p # 0 the factor k + (5|8) — p/q appears as

(1) drns—a)(k) forr = M, m = ql, where [ is such that r € Z> 1,

(o)

(i) Psmsray(k) fors= W m = ql, where [ is such that s € Z .
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Taking into account that

E(—smb — sa) = — E(_Sm 5t (S ~ 2(p'“))a),

(o)

we obtain

~ C2pl—20ple),
Moa= 2 2 E( w7 ‘”)

€At . 2p-2(p|0)
B e

-y 3 E<—q12pl+2(p|“)5+ 2p! a). (17)
(a|@) (a|er)

+ 2pl+2
acAt >, %;’;"’)5221

Observe that 2(pla)/(a|o) € Z>) fora € AT,
6.3. For p=1 we get

- 2 = (pla)) . 20 - (pla))
Mig=2. 2 E(_ql @w T @w “)

Aty 20=(plo)
ae I WEZ>1

— Z Z E<—qn2(n+(p|a))5+ 2n 05):0
aEAT 5. %GZ)] (Ot|a) (05|05)

(a
via the substitution n :=1 — (p|a).

6.4. Letus show that M}/, =0 for p <0.

The above formulas show that for & € A* one has ¢, (ns+a)(k) =k + (p|8) —a fora > 1;
Dsms—a)(k) =k + (p|8) —a for a < 0 iff (p — sa|p — sa) < (p|p). By Lemma A.1 from Ap-
pendix A, E(—smé — sa) = 0. Hence Mp,,; =0.

6.5. Finally, let us show that M/, # 0if p > 1. Let o be a simple root satisfying (a|a) = 2.
Take / > 0 and introduce r := 22=2019) pl — 1. Then r > 0 and, in the light of Lemma A.2

(er]a)
from Appendix A, the only term in the expression (17) which can be canceled with E(—rmé +

ra) is the term

2pl' +2 2pl’
E(_ql/ pl'+2(ple) o 2p
(ala) (a]a)

a) =E(—ql'(pl' + 1) + pl'a),
where

—rmé +ra=—ql'(pl' +1)8 + pla.

The last formula gives pl — 1 = pl’, which is impossible since p > 2.
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7. The case osp(1,2n)

In this section we will prove Theorem 0.2.2.
Let g = osp(1, 2n). In this section we will normalize the form (.|.) on h* by the condition:
(¢]ar) =2 for @ € Aq. In this normalization Theorem 0.2.2 takes the form

My, #0 < p>0, p#2, (18)

where M, is introduced in 3.2.3, p, g are relatively prime integers and ¢ > 0. In this section
we will check the above equivalence.

7.1.  Set
Abi=lae Al |aj2¢ AY), At i={aeAl|a/2¢A}).
Proposition.

det S, (k) = 1_[ ¢ry(k)(dim@y)dr,y(v)’
(r,y)esf2
where 2:={(r,y) |r €Zs1, y e AT\ AYU{Qj - L,y) | j€Zz1, y € AT\ A},
bry (k) = (Aoly)k + (Bly) —r(v1y)/2,
Zdr,y(l))671} = Ril Z (—l)l(w)€U)‘(7ry). (19)
v

weW

Proof. For g = osp(1, 2n) the set S (introduced in 3.3.2) is empty and the group W# (introduced
in 3.3.1) coincides with W. Theorem 3.4 gives

det S, (k) = l_[ (bry(k)(dim@y)dr,y(‘))’
yeAr\A, r>1
where
Sl e = (~)IPO RL S (),
v weWw
Now the assertion follows from the following observations: ¢2,), = ¢r2y), and doy,, = —d, 2y
if yisodd. O

7.2.  Using notation of 3.2.3 we have for p #0
Mp/q = Z E(=ry),
(r,y)€82: ¢ry=k+(p|8)—p/q

where E(—ry) = » (=11, (20)
weW
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7.3.  The formulas for ¢, sy, ¢r(s+«) have the same form as for Lie algebra case, see 6.2.

Note that a root y € Ao has the form y=Itaifae Zg, ory =108 £28 if [ is odd and
B e Af“. Taking into account that (8|8) =2 for g € Af and (¢|a) =4 for o € Zg, we see that
the factor k + (0|8) — p/q for p # 0 appears as

(i) @rasaa) foro e A if r:= %(m“) >1,
(ii) ¢rs+p) for B € AT if r := pm + (pla) > 1 and r is odd,

(ii)) ¢rassap) for € A] if 1:=gm isodd and r := L2E2CP) ¢ 7.,

In all cases [ = gm.

7.3.1. Remark. Observe that (p|«) is even for o € ZS’ and (p|B) is odd for 8 € AT. As aresult,
pm is even in the cases (i), (ii); in the case (iii) both g, m are odd and pm =2 mod 4, so p is
even.

7.4.  Letus show that M/, # 0 for coprime integers p, g iff p >0, p # 2.
We will use the letters [,1’, m, g, r, s for positive integers.

7.4.1. Identify Ao U A with the root system of Bj; notice that W identifies with the Weyl
group of B,. Now repeating the arguments of 6.4 we obtain M,,, =0 for p <0.

7.4.2. Letus show that M, Z0if p > 1, p #2.

Let B be a simple odd root; then (B, p) = 1. In the light of Lemma A.2 from Appendix A,
for r >> 1 the only term in the expression (20), which can be canceled with E(—r (I8 + B)), is
E(—s(l's§ — ') satisfying —sl'8 + sa’ = sg.(—rl5 — rp), that is

so’ =(r—DB and sl'=rl.

If @’ = B, then s = r — 1, which is impossible since both r and s should be odd (7.3, (ii)). If
o' =28, then s = % From 7.3, (ii), (iii) we conclude that » — 1 and 4s 4+ 2 = 2r are divisible
by p. Moreover, by Remark 7.3.1, p is even. Hence p =2 as required.

7.4.3. Finally, let us show that M2 = 0 if ¢ is odd. In this case, for 8 € A; the term

E(—r(6 + B)) appears if l =qm, r =q2m + (p, B) for some m > 1; thus sg.(—r(§ + B)) =
—rgmé + 2mpB and so E(—r(l§ + B)) cancels with E(—m(rqgé — 28)). For « € Z(")" the term
E(—r(6 4+ «)) appears if = gm, r =m + (p|a)/2 for some m > 1; thus so(—r (6 + o)) =
—rgmé + ma and so E(—r(l§ + o)) cancels with E(—m(rqé — a)).

8. Lie superalgebras of non-zero defect
In this section we prove Theorem 0.2.4:

Theorem. Let g be gl(2,2) or a simple Lie superalgebra of defect one, i.e., g = sl(1,n),
osp(2,n), osp(3,n), osp(n,2) withn > 2, D(2,1,a), F(4), G(3). Then

k+(618)
(o]r)

vk is not simple <= dae Ag such that

€ Q}Q.
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In other words, in the standard normalization of the invariant bilinear form, for g =
sl(1,n), 0sp(2,2n) the vacuum module VK is not simple iff k + &Y is a non-negative ratio-
nal number; for all other Lie superalgebras of defect one, except for D(2, 1,a),a ¢ Q, and for
gl(2,2) the vacuum module V¥ is not simple iff k + k¥ € Q. For D(2, 1,a), a ¢ Q the vacuum
module V¥ is not simple iff k € Q>0 U Q-pa UQ-o(—1 — a), in the standard normalization of
(...

Retain notation of 3.3. In this section p,q,r € Z>1,5 € Z>0, vy € ATt \ A.
8.1. Case g=gl(2,2)
Let us show that V¥ is not simple iff k € Q, in the standard normalization of (.|.).
8.1.1. Choose a set of simple roots IT = {8, @, B2} which contains two odd roots B :=

&3 — €1, B2 := €2 — &4 and the even root « := &1 — &2. The form is given by (g;|¢;) =0 fori # j,
(eilei) =—(gjlej) =1fori =1,2, j =3,4. Then

B1+ B2

={a,a+pi+ B}, AT ={Bi.Bra+Bra+h}. p=-— 5

One has S = {81, B2}, W# = {id, s, } and W#S§ C A*. Theorem 3.4 gives
0O . A
detS@) =[] TT TI ervrimenp@merdrnnt,
r=lyeA+\A j1.220
where d, . j,.j, = (=) HDPOI+it g=le=P (1 — 5,)(eP—/1P1—RP2=rY),

Note that (81, y’) = (B2, y') for any y’ € A. Therefore ¢, 1 j, g, +j,p, depends on ry and the
sum j; + j» and thus

dlmgy ry; m(V)
s, =TT TT TTenss
r=lyeAr\am=20
where the new exponents d,, ., are given by
Rdyyim = (=D FDPOHML(1 —5) (P77 T (m), @1
where
m
J(m) = Ze—jﬂl—(m—j)ﬁz_
j=0

8.1.2. Seta':=a+ pi + Po. Write y =18 + y’, where y’ € A. The factor ¢,y g, is
proportional to k — b(r; y; m), where

r(y'lvN2=(p=mpily) _r&Iy)/2+ m+D(Bily)

b(r;v; =
(r;y;m) ; 7
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We have the following table:

y' b(r;y;m)
0; +8; 0
ta+p) FoH
+o ﬂF(m-il-l)+r
to Ent)-r

8.1.3. In the space £ of regular exponential functions let &,.5 (respectively, £y.5) be the
subspace generated by et h = x58 + xqo + x1B1 + x282 € b, where x| + x = y (respectively,
xs =y). Clearly, £y.4, &,.s are invariant under the linear operator Q > e¢™ "5 (e” Q). We denote
by P;.p (respectively, P.g) the projection £ — &;.p (respectively, £ — Y . Ex.g) with the
kernel ), #i Ex.p (respectively, & — Z;@o &_x.p) and by P;.s the projection & — &.5 with the
kernel 3 €y:s. Recall that J (m) € E_p;p.

8.14. Casek=—p/q

Let us show that M, /, # 0if p, g are positive integers. Retain notation of 3.2.3, 8.1.3. Notice
that b(r; y;m) = —p/q forces that y’ € AT U {—a'}. The formula (21) shows that Rd;,.,, €
&i.p for some i <0 if y' € A, and for ' = —a’ we have Rd,y.;m € Exp—m:p N Erzs, Where

2r —m > 0, because # = g > 0. Therefore

Piso Prg(M_p/q) = Z Xm;rils
(m,r,)eX;

X = {(m, r, 1)

—m—1
rnl>1 m=0, rem=2 :E, rl:i},
l q

Ximyryl = Rdrgs—ary;m = (_Dme—r(lé—o/)e—p(l - Soz)(epj(m))»
where the last equality uses («’|ar) = 0. Observe that x,,.,.; # 0 since

S (epJ(m)) = P~ mHDe g o).

One readily sees that X,(,41) contains a unique triple (0; p + 1;¢) and thus Py(py1);s o
Py.g(M_p;q) = X0, p+1;q- Hence M_ /4 # 0 as required.

8.1.5. Casek=p/q
Let us show that M/, # 0 if p, g are positive integers. Retain notation of 3.2.3, 8.1.3. We
will use the following formula:

J(m) (e 4 e™2) = J(m + k) + e KPP gon — k) form =k > 0. (22)
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Note that
b(rls —a—Bism+r)=b(r;1§ —a'sm +2r) =b(r; 1§ — a; m).
Combining (21) and (22) we obtain

dr(lS—oz—ﬂl);m-i-r + dr(lS—oz—ﬂz);m-i-r + dr(lS—oz);m + dr(lé—a’);m—&-Zr =0.

Then

2
Mpg=) > Rdy15—a—pj):m

I "—Tl =L m<r

—
J m,r, q

+ Z Rdr(lS—a/);m + Z Rdr(15+a);m-

.mtl—r__p Lr=(m+l) _p
m,r,l: == _q,m<2r m,r,l: —T =3

One has Rdr(l&—a—ﬂ_/);m € gr—m;ﬁ and Rdr(lé—a’);m € g2r—m;ﬂs whereas Rdr(15+a);m € g_m;ﬁ.
Therefore

PO;ﬁ(Mp/q) = Z Rdy(15+);0-

rl: r7_1:§
Hence Py(p+1);5 0 Po.g(Mp/q) = Rd(pi1)(g5+a);0 # 0, and this gives M/, # 0.
8.2. Superalgebras of defect one

Let g be a basic classical Lie superalgebra of defect one: g =sl(1, n), osp(3, 2n), 0sp(N, 2),
osp(2,2m), F(4), G(3), D(2, 1, a). The root systems of these Lie superalgebras are described in
Section 10; in particular, the group W# is explicitly written there. We retain notation of Section 10
and for each algebra fix a system of simple roots IT described there. One has S = {8} C IT, where
B is an isotropic root given there.

8.2.1. Write y =18 +y’, where y’ € A U {0}. The factor ¢,,,4s8(k) is proportional to k +
hY —b(r; y;s), where

_ r(y'ly")/2—(p — Sﬁly/)‘

b(riy;s): ; (23)
For b # 0 Theorem 3.4 gives
My, = Z E(r;y;s),
(r;s57): b(r;y;s)=b
where E(r; ;) i= (—=1)*T07DP0) N (_pyl)gw-ory=sh), (24)

weW#
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Using the W-invariance of § and (p — p), we get
E(r;y;s)=0 <= Stabys(p —ry’ —sB) #id.

8.2.2. If the term E(r; y;s) is non-zero, it is a sum of the form ZEVZVT‘ e*, where all sum-
mands are distinct and there exists a unique index i such that A; is dominant with respect to IT#
(i.e., (Ajla) = 0 forany o € IT%). As a result, Zie[ E(ri; vi; si) = 0 iff the index set / admits an
involution o : I — I such that E(r;; yi; 8i) + E(ro(); Yo(i); Soy) = 0.

We will prove that M}, # 0 by exhibiting the triple (r; s; y) such that

(i) b@;y;s)=b and E(r;y;s)#0,

(i) b0 ius)=buedA\A = E@iy;s)+EQC;us)#0. (25)

8.2.3. Cancelation
Suppose that y, y1 € A are such that y = y; + g and dim g, = dimg,, = 1. Then ¢, 1. (k) =
Pratistrp®) and drigcy = —drigiry since (=D DPOITS = ()= DPODFHS As a re-

r Y1ss+r

sult, ¢ry +Sﬂ cancels with ¢r(V1) )

) dry v(V) dr;yp;s(V)
r yis 1> Yl

l_[ ¢ry+sﬁ ryi+sp 1_[ ¢rm+éﬁ :
r>=1,520 r>s>0

8.3. Case D(2,1,a)

Retain notation of 10.10 and note that (5|8) = 0. We will show that V¥ is not simple iff
ke Q=0 UQ-0aUQo(l +a).If a is rational then V* is not simple iff k € Q.

8.3.1. Takey € AT. Note that b(r; y; s) =0if ¥’ =0, £8. Take y such that ¥’ £ 0, £8. In

the light of 8.2.3 if ¥ — 8 is a root then q&ry +Sﬁ cancels with qﬁrzyy__gfizs +r)p- Observe that exactly

one of the elements y — B, y + B is a root. Theorem 3.4 gives

detS, () =kTT TT [T drasepnplfooe®

1Z21r>520y'cA,y—B¢A
y'#£B

for some d(v) € Zx.
Set P’ :={mé + Z?:o mje;: my,my > 0}. Clearly, for any u € O the orbit W#1. N P’ con-
tains a unique element Z?:o mje; and Stabys p # id iff mym, = 0.
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8.3.2. Writey =15+ y’. For y’ = —p one has ¢, 4,8 = k+ (5]8). For the remaining values
of y' (i.e,,y’'# —Band y — B ¢ A) we have

v b(r;y;s) W*(p —ry —sp)n P’

—2¢&0 (1—}—51)#”’1 —rl§+Q2r—s—Deyg+(s+De;+(s+ ey
—(eo+e1—ep) aF —rl8+(r—s—Deg+ (r+s5+ ey 4+ (r —s — ey
—(eg— &1+ €2) slil —rl§+(r—s—Deg+ T —s—De;+r+s+ ey
26 at=5=1 —rl8 — (s + Deg+ Qr —s — Deg + (s + De

26y £l —rl8 — (s + Deg+ (s + D&y + Qr —s — e
eo+er+ée (1—}—51)%_1 —rl§—(r+s+Deg+TF—s—De;+r—s—1e

83.3. Set X :=Qx0UQ-0aUQ-o(—1—a) and let us show that M;, #0iff b € X.

From the above table we see that for r > s > 0 the term b(r; y;s) € X. Hence M) = 0 if
b ¢ X. Moreover, we see that for r > s the vector p — ry — sp has a non-trivial stabilizer in W#
iff r=s+1and y’ € {—(s0 — &1 + &2), — (80 + &1 — €2), &0 + &1 + &2}. It is easy to see that the
entries of last column are pairwise distinct, i.e. W#(p —ry —s)N P’ = W#(o—riy1 —s18)N P’
forces (r; y; s) = (r1; y1; 51). In the light of 8.2.2 we obtain M}, # 0 for b € X, as required.

8.4. In the remaining part of the section g has defect one and g # D(2, 1, a).

8.4.1. Notation
In all cases, h* has a ba}sis £0; €1, ..., &, and W stabilizes &g and leaves invariant the space
ht = Zi>1 Ce;. For i € b we denote by u®, @ the corresponding coordinates of x and by u*

the projection of 1 on h*:
n n
=8+ uWe,  phi=>"u0e.
i=0 i=1
8.4.2. Recall that W¥ stabilizes § and &o. As aresult, for y, u € A we have
E(r;y:s)+EG; u:s)=0

r'}/(o)‘i_s:r//“l’(O) —|—s/ forg?éF(é")?

8 )
— r =r and
rere {ry(o) +s/2=r'u® +5'/2 forg=F(4).

8.5. Proof that My, ;4 # 0 for g = 05p(3,2)
We will deduce that M/, # 0 from (25). Observe that b(2p + 1; g6 + £1; 0) = p/g. One has
p—ry—sp=—ryPs—(s+1/2+ryP)eg+ (s + 1/2 = ryD)ey.
Therefore E(r; y;s) #0forany y € A. Letus show that E(r; y; s)+ EQp+1;95+¢€1;0) #0
for any triple (r,s,y) such that b(r; y;s) # 0. Assume that E(r;y;s) + EQp + 1;96 +
£1;0) =0.Then (o —ry —sB) € W¥(p — 2p +1)(¢8 + 1)), thatis ry® = 2p+ 1)q, ry© +

s =0,1/2—ry™ =+2p + 1/2). The second formula gives y @ < 0. Since b(r; y; s) =0 for
y' € {0, =8}, we have the following cases: y’ € {£e1, +2¢1}, s =0 or ¥y’ € {—ep, —&0 — €1},
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s = r. By 8.2.3 the terms corresponding to y’ = —e1, —2¢1, s = 0 cancel with the terms corre-
sponding to Yy’ = —&g, —e9 — &1, r = 5. It remains to show that E(r;y;s) + EQp + 1;18 +
e1;0)£0fory' € {e1,2¢1},s =0.If y’ =2¢| we get 1/2 —2r = +(2p + 1/2) which is impos-
sible. Finally, for ' = g the formulas 1/2 —r =£+Q2p+1/2),rl =Q2p+ 1)q giver =2p+1,
g=Ilandthus E(r;y;s)+ EQp+ 1;16 +€1;0) =2EQ2p + 1;15 + €1;0) # 0. Now the in-
equality M/, # 0 follows from (25).

8.6. Proof that M, ;4 # 0 for g # 05p(3,2)

Recall that there exists an isotropic root o € A™ satisfying («|8) = —1, (a|p) =1, a® =
B© . One has b(m; q8 —a; p — 1) = p/q for any m > 1. It is easy to see that E(m; g8 — o;
p — 1) # 0 for m > 0. It remains to verify the condition (ii) of (25) for some m > 0, i.e. to show
that

dm >0 suchthat b(r;y;s)=p/q = E@m;qé—a;p—1)+E(r;y;s)#0.
(26)

We claim that this holds if m >> 0 is a prime number.

Indeed, assume that b(r; y;s) = p/q and E(m; g6 —oa; p— 1)+ E(r;y;s) =0. Write y =
18 +7y’. By 8.4.2 one has rl =mgq.

The assumption gives

ry'lvN2=(p=sBly") _p

l q

Notice that the numerator of the left-hand side is an integer and thus / is divisible by ¢ except the
case g = 0sp(3,2n), 0sp(2n + 1, 2), vy’ = +¢;. Using rl = mq we get (r;1) € {(m, q), (1, mq)}
if g # 0sp(3,2n), 05p(2n + 1,2) or y’ # +¢;.
If g =o0sp(3,2n), 05p(2n + 1,2), y’ = *¢;, then r(y'|y") — 2(p — sB|y’) is an integer, so 21
is divisible by g. Therefore rl = mq gives that (r; 1) € {(m, q), (1,mq), 2m, q/2), (2,mq/2)}.
Now 8.4.2 gives

ry©
BO

s=p—1—m—

Since m 3> 0 we obtain ry @ « 050 ¥© <0 and r > 0. Examining root systems, we see that
y©@ < 0 implies that either y@ = —8@ or ' = —28@¢. Finally, we obtain the following
cases:

(i) y©O=-pQand (r1,5)=(m,q,p—1);
(i) y'=—-28%¢pand (r,1,s) = (m,q.m+p — 1);
(iii) g=o0sp(3,2n),05p2n+1,2), y' = —spand (r,1,5) = 2m,q/2,m + p — 1).

We will show that the cases (ii), (iii) do not hold and (i) implies (r; s; y) = (m; p — 1; ¢é — @),
thatis Em; g6 —a; p— 1)+ E(r;y;s)=2E(@m;qé —a; p — 1) #0.
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8.6.1. Case (i)

Substituting in (23) we get m(y'|y’")/2 — (p — sBly’) = p. The condition m >> 0 forces
(v'ly") =0 and thus (o — (p — DB|—y’) = p. Since y©@ < 0 the root —y’ is positive and
isotropic. From Lemma 10.1.1, —y’ = «. Hence b(m; y;s) = p/q forces (r;s;y) = (m;
p—115—a).

8.6.2. Case (ii)

Onehasmy +sB=m(y +B)+(p—1)Bandy + € A, since y' 4 B = s¢, 8 € A (28P¢y is
aroot, so A is invariant with respect to the reflection s, ). Clearly, (y + B0 =—pO Bysge.l,
b(m;y + B; p—1) = p/q implies y + B = I8 — «, which contradicts y’ = —28¢.

8.6.3. Case (iii)
In this case g = 0sp(3, 2n), 0sp(2n+1, 2), n > 1. Substituting in (23), we get p — 1+ (p|eg) =
p/2, which is impossible since (plgg) =n —1/2 > 1.

8.7. Case M_, 4

We claim that
b(riy;s) <0 = y' eAT\{B} or y =ZsNA. 27)

Indeed, take y’ € A™. Since all simple roots, except 8, have positive lengths squared, both
(¥'|p), —(y'|B) are non-positive. From (23) we see that b(r; y; s) > 0 forces (y'|y") < 0. Ex-
amining the root systems we see that (y'|y’) < 0iff y' = Zeo N A.

8.8. Proofthat M_ ;4 =0 for g=sl(1,n), C(n) = 0sp(2,2n —2)

8.8.1. Takey'e Af suchthaty’+ B ¢ A. Letus show that E(r; y; 5) =0.

Indeed, y’' + B ¢ A forces (8|y’) = 0. Since B is the only isotropic root in I7, («|8) <0
for any @ € A*. Hence (y'|8) = 0. Set IT> := {a € IT*: («|B) =0} and define A;‘, 02, Wo
corresponding to IT>. It is easy to check that (B|y’) = 0 forces ¥’ € AJ. As aresult, (p2|y’) =
(ply’). Since b(r; y; s) <0, (23) gives (o2 —ry’|p2 —ry’) < (p2]p2). Then, by A.1, po —ry’
has a non-trivial stabilizer in W,. Observe that 8, p — py are Wp-invariant. Hence p — ry’ — sB
has a non-trivial stabilizer in Wo ¢ W*. Therefore E (r; y;s) =0, as required.

8.8.2. Retain notation of 10.3, 10.4. For sl(1, n), C(n) (27) gives b(r; y;s) < 0=y’ € AT\
{B}. Notice that for y’ € AT \ {8} one has y’ — B € A. Combining 8.2.3 and 8.8.1, we conclude
that M_,, is the sum of E(r; y;s), where b(r; y;s) =—p/q, v,y + B € Aa' andr > s > 0.

8.8.3. g=sl(1,n)

The conditions y’ € Aar, y'+B e AT meanthaty' =1 —¢,, (1 <m < n).Since b(r; y;s) <
0, (23) gives m — 1 + s > r. Using the condition s < r we see that the permutation (1; 7 —s + 1)
stabilizes the vector p —ry’ —sB = (—n/2 —s)eg+ n/2 —r + )1 + Zzgign,i;ém n/2+1-—
i)ei+m/2+1—m+r)e,. Hence M_,/, =0.
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8.84. g=C(n)

In this case p =n 4+ 1 —i for i > 1. The conditions y’ € Ag, y' 4+ B € AT mean that
y' =2¢e1;61 gy (1 <m < n).

For y' = ¢ — &, the permutation (1;r — s + 1) stabilizes p —ry’ — s8 as in 8.8.3.

Fixm € Zsuchthat | <m <nandsety’:=¢g;+¢,.0nehasb :=b(r;y;s)= Mlﬂﬂ
xi=n+s—r,xj=n+1—jforj#0,1,m,and x,, =n+1—m —r. Since b > 0, one has
x1 > —(m+1—m);if x; #n+1—m then (o — ry’ — sB) has a non-trivial stabilizer (since either
x1=0o0rx; =2x;forl < j<m).If xy =n+1—m,thenr—s=m—1,sob=w and

n
Ser—en(p—1Y —SB)=(+1—m—r)e;+ Y _ (n+1—j)e,. (28)
j=2
For y’ :=2¢; one has b :=b(r;y;s) = w, and so b > 0 forces m < n for m :=
r—s+1;since s <r,wehave l <m <n.Onehas p—ry —sB=m+1—m—r)e; +
2?22(11 + 1 — j)e,. Using (28) we get E(r; 16 + 2¢e1;8) + E(r; 1§ + €1 — &r—5+1; 5) =0, and
this completes the proof for g = C(n).

8.9. Proof that M_ 4 # 0 for g # 5l(n, 1), C(n)
Our proof is based on (25).

8.9.1. g=o0sp(2n,2). One has b(r; 15 — 2¢ep; s) = 2"“14’*]. Clearly, b(r; 16 — 2¢p; s) can
be any negative rational number. Fix (r; s; 1) such that b(r; 1§ — 2¢p; s) = —p/q. The term (p —
ry — sﬁ)# =m—1+s)e1+ 2?22 (n —i)e; is dominant with respect to . Ttis easy to see that
this implies E (r; I8 — 2e9; s) # 0 and E(r; I8 —2e0; s) + E(r'; 'S — 2¢0; s") # 0. The inequality
b(r;16 — 2ep;s) < 0 gives r > n + s. Then, by 8.4.2, E(r;1§ — 2e0;s) + E(r1;7;51) # 0 if
y’ € AT. Now (25) follows from (27). Hence M_,, # 0.

8.9.2. One has

t2or=l - for g = o0sp(2n + 1, 2), 05p(3, 2n);
b(r;16 —ep;5) = 3# for g = F(4);
BEL forg=G(3).

Fix (r;s;1) such that b(r;1§ — e9;s) = —p/q and r is odd. Then r > s and thus, by 8.4.2,
E(r;18 —2g0;5) + E(r1; y; 51) #0if y’ € AT, Using (27) we reduce (25) to the formulas

(i) E(r;18 —eo;8) #0,
(i) E@;18—eo;s)+ E(ri;v:81) #0ifb(ri;yss1) =—p/g &y ' =—teg.  (29)

Take y =116 —teg (t =1,2). Wehave: (p—s18—r1 y)# =(p —sl,B)# is dominant with respect to
IT#, and this gives (29)(i). To verify (29)(ii) assume that p — s —r (I8 —g9) = w(p —s18 —r1y)
for some w € W¥. Then w =id, s; = s and thus r (I8 — g9) = r1y,thatisr =rit,rl =ryl;. Since
r is odd, we have t =1 and (r1,11) = (r,1). Hence E(r; 16 — eo;5) + E(r1; y;51) =2E(r; 16 —
go; ) and 29(ii) follows from 29(i).
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9. Simplicity of minimal W -algebras

Let g be a simple contragredient finite-dimensional Lie superalgebra and let fy be a root
vector attached to the lowest root —8, which assumed to be even. Let (.|.) be the invariant bilinear
form on g, normalized by the condition (#|0) = 2. This normalization may differ in the super
case from the standard normalization (due to inequivalent choices of 6). The corresponding dual
Coxeter numbers /" are listed in [18]. In Section 10 we list them in the standard normalization
of (.].). For each k € C, one attaches to the above data a vertex algebra Wk(g, fy), as described
in [18,19], called the minimal W-algebra. We denote by Wy (g, fo) its (unique if k £ —h") simple
quotient. Our goal is to determine when W (g, fy) is simple. We assume that k £ —h", since in
the “critical” case, when k = —hY, WK (g, fo) is never simple. We shall also exclude the case g =

2
sly, since W2 (sl,, f5) is isomorphic to the Virasoro vertex algebra V¢ with ¢ = 1 — 6(k_k]) .

9.1. Main results

In [18,19] a functor H from the category of restricted g-modules of level k to the category of
Z-graded W¥ (g, fs)-modules is described. The image of the vacuum §-module V* is the vertex
algebra W*(g, f5), viewed as a module over itself. The vertex algebra W (g, f3) is simple iff
H (Vk ) is an irreducible module.

9.1.1. According to [1] the functor H is exact and H (L(})) is either zero or irreducible; one
has [1,18]: H(L(1)) = 0iff f, acts locally nilpotently on L(1).

9.1.2. Theorem.

(i) The vertex algebra W*(g, fo) is simple iff the §-module V* is irreducible, or k € Lo and
VK has length two (i.e., the maximal proper submodule of the §-module VK is irreducible).

(i) If g is a simple Lie algebra, g # slp, then the vertex algebra W*(g, fo) is simple iff the
g-module V* is irreducible.

Proof. By 9.1.1, WX(g, f) is simple if the g-module V¥ is irreducible. Let N' be the maximal
proper submodule of V. If k € Z>o and N is simple then, by 9.1.1, H(VK/N)=H(L(kAg)) =
0 and H(N) is simple. Hence H(Vk) is simple. Now assume that wk (g, fo) is simple and vk
is not irreducible. Since C[ f,,] acts freely on vk, foo does not act locally nilpotently on N.
Therefore H(N) is a non-zero submodule of W* (g, fo). Hence H(Vk/N) = H(L(kAp)) =0.
This gives k € Z>¢. It remains to show that N is simple.

Recall that fy,, ey, generate a Lie algebra s isomorphic to s[(2). Let v be a singular vector
such that C[ f,]v is a simple Verma module over s. Let N’ be a g-submodule of VK generated
by v and N” be the maximal proper submodule of N'. Since C[ f,,]v is a simple Verma module
over 5, N” does not meet C[ f,]v and thus H(N'/N”) #0 by 9.1.1.

Now let N’ be any non-zero submodule of V¥ and v be a singular vector in N’. Note that
Cl fuo v is a Verma module over s, which is either simple or has a unique proper submodule with
an s-singular vector v’. Since [ fy,, ex] = 0 for any o € bk \ {ao}, v’ is singular. Therefore either v
or v/ is a singular vector, which generates a simple Verma module over s. By above, H(N') # 0.

Let N’ be the maximal proper submodule of N. By above, H(V*/N) =0and H(N/N') #0.
Since H(V¥) is simple, this gives N’ = 0 and establishes (i).

Finally, (i) will be proven in 9.2-9.5 below. O
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Now Theorem 0.2.1 gives

9.1.3. Corollary. Let g be a simple Lie algebra, g # sly. Then the vertex algebra W*(g, f3) is
not simple iff [(k + h") is a non-negative rational number, which is not the inverse of an integer
(here l is the “lacety” of g).

9.1.4. Remark. Recall (see [18]) that W¥ (g, f») has central charge

_ ksdimg

— —6k+hY —4, 30
c P + (30)

if (6|0) = 2. For example, if k +n = p/q, where p, q € Z>1, the vertex algebra Wk(sl,, fp) has
the same central charge for ky = —n + p/q and ky = —n + @q/p. For n > 2 we obtain
pairs of non-isomorphic W-algebras of the same central charge: if p =1 and g > 1, the vertex
algebra wki (sl,, fo) is simple, but the vertex algebra wka (sly, fo) is not simple. (For n = 2 these
W -algebras are isomorphic.) Note, that in contrast to the case of g of rank > 1, wk (s, fo) is

simple for k € Z .

9.1.5. The following corollary follows from the above results and the description of the N =
1,2,3,4 and big N = 4 vertex algebras, given in [18], in terms of the minimal W -algebras.

Corollary.

(1) The Neveu—Schwarz (N = 1) vertex algebra is simple iff its central charge c is not of the

form %(1 — M), where p and q are relatively prime positive integers such that p > q
and p/q is not an odd integer. (The latter set coincides with the set of central charges of
N =1 minimal models, cf. e.g. [19, (6.3)].)

(i) The N =2 vertex algebra is simple iff its central charge c is not of the form 3 — 6p/q,
where p and q are relatively prime positive integers and q > 2. (The subset with p =1 of
the latter set coincides with the set of central charges of N = 2 minimal models.)

(iii) The N =3 vertex algebra with central charge c is simple if ¢ is not a rational number. For
all other values of c, except, possibly, for c = —3b, where b is a positive odd integer; this
vertex algebra is not simple.

(iv) The N = 4 vertex algebra with central charge c is simple if ¢ is not a rational number. For
all other values of c, except, possibly, for c = —6b, where b is a positive integer, this vertex
algebra is not simple.

(v) The big N = 4 vertex algebra with central charge c is simple if ¢ ¢ Q>0 U Q-oa U
Q=0(=1 — a). For all other values of c, except, possibly, for c = —3b, where b is a positive
odd integer; this vertex algebra is not simple.

Proof. Combining Theorems 9.1.2, 0.2.4, and formula (30), we obtain (iii)—(v).

(i) follows from Theorem 5.2.1. We will give another proof by deducing (i) from Theo-
rem 0.2.2. Indeed, set a(k) := 2k + 3. Formula (30) gives ¢ = % —3(a+ é). By Theorem 0.2.2
for g = 0sp(1, 2) with the standard normalization (8]0) = 2, V¥ is simple iffa ¢ Q\ {ﬁ}sf:o
By Theorem 9.1.2, WX(osp(1,2), f) is simple for a ¢ Q \ {ﬁ};"zo, and is not simple
foraeQ\ {Tlﬂ; 2m + 3} . Since c(a) = c(1/a) and the Neveu-Schwarz vertex algebra
Wk(osp(l, 2), fp) is determined by its central charge, the vertex algebras wk (0sp(1,2), fo) and
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Wk/(osp(l, 2), fp) are isomorphic if a(k)a(k’) = 1. Hence, since Wk(oﬁp(l, 2), fo) is simple for
ac {2m1+1};’1Q o» it is also simple for a € {2m + 1}~ ;. Hence Wk(osp(1,2), f) is not simple
forc =% —3(a + ) where a € Q \ {2er1 ;2m + l}m _o- Since c(a) = c¢(1/a), we can take

acQ)\ {2m 7 2m + 1}°°_, such that @ > 1 and write a = p/q, where p and g are relatively
prime positive integers. This proves (i).

(ii) The N = 2 vertex algebra is isomorphic to the minimal W-algebra WX(s((2, 1), f5) [18],

and by formula (30) one has ¢ = —3 — 6k. Combining Theorems 9.1.2(i) and 0.2.4, we see that
Wk(sl(2, 1), fp) is simple if c is not of the form 3 — 6p/q, where p and g are relatively prime
positive integers, and that for all other values of ¢, except, possibly, for ¢ = —3b, where b is a
positive odd integer, this vertex algebra is not simple.
By Theorem 9.1.2(i), it remains to verify that if k is a non-negative integer, then the vacuum
5((2, 1)-module V* has length two, i.e., the only singular vectors in V* have weights kAo and
Say-kAg. Consider the natural embedding s[(2) into sl(2, 1). We will describe the weights of
5A[(2)-singular vectors in V¥ and then deduce the required assertion from the fact that (kAo +
0, kAg+ p) = (u+ p, i+ p) if w is the weight of singular vector in 48

Let o be an even root for s[(2, 1) and B, + f be odd roots. Choose the following set of
simple roots for sl(2,1): {« + B, —B}; then 6 = o and the set of simple roots for sl(2, 1) is
{a + B, —B, a0 := 8 — }. Note that 5[(2 1) contains a copy of 5| [(2) with a common simple
root 9. As a result, the shifted actions of the reflection sg := s, With respect to 5[(2, 1) and
5[(2) coincide, i.e., so.;u = so(u + p) — p = so(u + p') — p/, where p corresponds to sl(2]1) and
0’ corresponds to sl(2). A .

For S C At set |S| = ZyeS y. A Verma module M (1) over sl(2|1) has a filtration by s[(2)-

modules M'(A. — |S]): S C AAT \ Af'. Let V¥ be the vacuum module over 5A[(2, 1). Since sl(2)
acts locally finitely on VX, V¥ has a filtration by generalized Verma 5A[(2)—m0du1es M —
IS]), where I = {a}. One has M} (L) = M'(i)/M'(sq.1t). Since the Weyl group of sl(2) is the
infinite dihedral group generated by sy, S0 = Sog, M } () has at most two s [(2)-singular vectors:

of weight u and of weight sg.u if s9.;0 < . Thus the wAeight of a 5:[(2)—singular vector of V¥
is of the form kAo — || or so.(kAg — |S|), where S C AT\ AT. For S = we have kA and

50-k Ao. Let us show that there are no other s [(2]1)-singular vectors.

Indeed, if w is a weight of sl(2)-singular vector then (A + g, A + ) = (1 + p, 4 + P).
Since (so.u + p,s0.0 + 0) = (i + 0, 0 + p), it is enough to show that for S # ¥ one has
(kAo + p,kAg+ p) > (kAo — |S| + o, kAo — | S| + p), which can be rewritten as

2(kAo+ p.151) > (IS, 1S]). (1)
For p € Ay ={fa + B} set S, := SN {k§ + x>0, s, :=#S,. Then S =]
ZueAl |S.|. Observe that S, = {r;8 + i

ré + s, u, where r > M Hence

S =m + (Satp — S—a—p) (@ + B) + (55 — 5_p)B

pea, Sp 50 18] =

i1 where 1 <rp <rp <--- <rs, and thus |S,| =

for some m >y
get

uea, Su(sy + 1). Taking into account (p, B) = (p,a + B) =0, (p,8) =1 we

2(kAo+ 4, IS =20k + Dm > Gk+1) Y sulsu+ D).
ne{Ep,£(@+p)}
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On the other hand,

(1S1.1S1) = —(Satrp — S—ap)(sp — 5_p).

For § # ¢ at least one of the quantities sg,s_g, Sy+8,5—o—p is non-zero (and all of them are
non-negative integers) and thus

k+1) > sulsut 1> (a—p —Satp)(sp —5-p),
ne{EB,£(a+p)}

since k > 0. This establishes (31) and (ii)). O

We believe that in all questionable cases in (iii)—(v) the vertex algebra is not simple, but we
do not know how to prove this.

9.2. Outline of the proof of Theorem 9.1.2(ii)

In 9.2-9.5 we assume that g is a finite-dimensional semisimple Lie algebra and k is a non-
negative integer.

9.2.1. In 9.3 we will show that for k € Z, H(Vk) is not simple iff Qy, , # 1 for some
w € W, where Q stands for the inverse Kazhdan-Lusztig polynomial. (This condition does not
depend on the non-negative integer k and thus H (V*) is simple iff H(V?) is simple.)

Remark that for g = sl,, the Weyl group is the infinite dihedral group; by [7, 7.12] one has
Py, =1 for x < z which implies Q, ; =1 for x < z. This implies the simplicity of H(V5
(which is well known).

9.2.2.  Let ® be the set of pairs (o, X,,), where « is a node of a Dynkin diagram X, satisfying
the property:

Qs,w# 1 forsome w e W(X,),

where W (X,,) is the Coxeter group of type X,,. From 9.3 we see that (¢, X,,) ¢ @ iff for p being
the maximal parabolic not containing «, the generalized Verma module Indg L’ has length two,
where L' is the trivial one-dimensional p-module.

Geometrically, if X, is of finite type, (&, X;,) € ® is equivalent to the fact that a certain codi-
mension one Schubert variety is not rationally smooth. It is well known (see, for example, [23,
12.2.E]) that these Schubert varieties are rationally smooth in rank two cases (n = 2) and for the
pairs (o, Cy,) (in enumeration below). We need to study the case when X, is an affine diagram.

9.2.3.  We have to show that («g, X,(,l)) € ®, where x,ﬁ” is the affinization of a finite type
diagram X, (n > 1) and «y is the affine simple root.
One has:

(i) (o X,)€0O,X, isasubdiagramof X,, = (a,X,) € 0O;
(i) «€ X, isconnectedto &’ only, (&, X, \{a}) €® = (0. Xn)€O, (32)
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where “X, is a subdiagram of X,,” in (i) means that the set of nodes of X/, is a subset of the nodes
of X, and the set of edges of X/, consists of all edges between these nodes in X,,,; and in (ii) the
diagram X, \ {«} is obtained from X, by removing the extremal node « and the edge between
a and o’. We will prove (ii) in 9.4.5; (i) follows from the fact that the inverse Kazhdan—Lusztig
polynomials are the same for a diagram and its subdiagram.

Taking into account (32), the verification (o, X,(ll) ) € ® for n > 2 reduces to the cases
(oep, A3), (o1, C3). Here and further we use the following enumeration of the vertices of X,;:

1 2 3
Asz: o o o
1 2 n
C,: o o o
2
o
1 3 4
D,: o o o g

Indeed, the pair («y, A,(ll)) for n > 2 has a subdiagram (o3, A3); the pair («g, C,(,l)) forn > 2
has a subdiagram (o, C3); applying 32(ii) to (a2, A3) n — 3 times we obtain the pair («,, D;)
and now using 32(i) we obtain the pairs (xg, X ,(11)) for X = B, D, E; finally, applying 32(ii) to
(@1, C3) twice we get (ag, F\").

It is easy to verify that for A3 one has Qy, s,5,555» = 1 + ¢, and that for C3 one has

Oy, 5159518350 = 1 + qz. As a result, (a2, A3z), (@1, C3) € @. The remaining cases (g, Xél))
are verified in 9.5.

9.3. Multiplicity formula
Let W be the Weyl group of §.

9.3.1. Let N be the maximal proper submodule of V¥. By Theorem 9.1.2(i), it is enough to
show that N is not simple. Recall that k A¢ is a dominant integral weight and so all subquotients
of V¥ are of the form L(w.kAg), w € W, where W is the Weyl group of g. The highest weight
of N is s9.k Ag and so L(sg.kAp) is a quotient of N. It remains to verify that

[N: L(w.kAg)]#0 for some w # so. (33)
Let us describe the multiplicity [N: L(w.kAp)] in terms of Kazhdan—Lusztig polynomials.
9.3.2. One has

R
chvk = F’e"AO, chL(kAg) =R~ Y (=1)/Wewkdo,
weW

where R =[], 4+ (1 —e™®), Ry = [[peps (1 — 7).



670 M. Gorelik, V. Kac / Advances in Mathematics 211 (2007) 621-677

Using the well-known formula R; = Zwew(—l)l(w)ew'o we get

ch Vk — R—l Z (_l)l(w)ew.k/\()’
weW
that is
chN=R"" > (=Dt ewto = 3" (1)) F ch M (w .k Ag).

weW\W weW\W

9.3.3. In [20] the Kazhdan—Lusztig conjecture was established for the symmetrizable, hence
affine, Kac—-Moody Lie algebras. This gives

ch M (w.kAg) = Z Py, -(1)ch L(z.kAg),
zeW

where P, . are the Kazhdan—Lusztig polynomials defined in [21] (we describe the polynomials
in 9.4). One has Py, ; # 0 iff w < z. We obtain

[N: L@kAp]= Y ~D'™Hp,.(h= > (D' p, D).

weW\W weW: SoSwWKzZ

Now the condition (33) can be rewritten as

> (=D!™*P, (1) #8y,.; forsomeze W. (34)

weW: so<w<z

One has )

Lusztig polynomials. Hence (34) is equivalent to Qy, (1) # 1 for some w € Ww. Using 38(i) we
conclude that (34) is equivalent to

wellr sogwgz(_l)l(w)H Qso.w Pw.z = 8.2, where Qg ,, are the inverse Kazhdan—
Qso.w 71 forsome w e w.
9.4. Kazhdan—Lusztig polynomials
Let W be a Coxeter group; denote the unit element in W by e. For the elements x, y of W set
[x,y]:={w: x <w <Lyl

9.4.1. For x,y € W the Kazhdan-Lusztig polynomials Py y(g) can be computed recursively

using the following properties: the polynomial Py y has degree < W and
Ov X % Vs
Pey=11, x<yandl(y) —I(x) <2,

Zx<w<y(_1)l(w)fl(x)Rx w Py vql(y)fl(w)’
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where P is the image of P under the algebra involution g > ¢!

can be defined recursively by the formulas

and the polynomials Ry y(g)

Os x%-y’
Ry y =1 Rsx sy, sxX <x, sy<y,

(g — 1)Rsx,y +qux,syv SX >Xx, sy <y,
where s is a simple reflection. One has:
D) Rey=Ry1 13

(i) Ryy=(q—DVTD ifx <y, I(y) —1(x) <2

(i) Rey= ()R, (35)
By [21, 2.3.g], one has:
Pyy= Py, ifsy<y. 36)
9.4.2. 'The inverse Kazhdan—Lusztig polynomials Q, ,,(g) are defined by the formula

DD gy Py =6y 37)
w

A geometric meaning of the inverse Kazhdan—Lusztig polynomials is discussed in [20]. Their
results imply that Q, , have non-negative integer coefficients in the case of a symmetrizable
Kac—Moody Lie algebra.

One has: Qy ; # 0 iff x < z; for x < z the polynomials Q , have the following properties:

I(z) —l(x)—1
(i) Qu:=l+aig+aq’+ - +aq". a el kg%;
(i) Qu.=1 iflx)—I(x) <2
(i) Qee= Y (=D/@TWGWHOG R,
welx,z]
(iv) Q. =1, forallz. (38)

The first property follows from [20]; (ii) follows from (i). From [20, Lemma 5.2.1, 5.3] we obtain,
using (35):

ql(x) O :ql(z) Z Qx,wafl’Zfl :ql(z) Z Qx,w(_Q)l(w)_l(Z)Rw,zy

welx,z] welx,z]

and this gives (iii). Finally, combining (37) and (36) we get (iv).
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9.4.3. Let
M@= Y (—)/@wgln-iwg,
welx,z]
One has
Oxw=1 Ywelx,z] & Mx,w)y=1 Ywelx, z]. 39)

Indeed, assume that Qy ,, = 1 for all w € [x, z]. Then for any y € [x, z] one has Q, ,, = 1 for all
w € [x, y] and 38(iii) gives M (x, y) = 1. For the inverse implication assume that M (x, w) =1
for all w € [x, z]. We prove that Q, ,, = 1 by induction on w € [x, z] with respect to /(w) (note
that I[(x) <Il(w) <I(2)). If I(w) =1(x), for w € [x, z], then w = x and O x = 1. Suppose that
Oy =1 forall w e [x, z] with [(w) < m. Take y € [x, z] such that [(y) =m. Then Q, , =1
for all w € [x, y] and 38(iii) gives

Ovy=M,,— ql(Y)_l(x)Ry,y + ql(y)—l(X)Qx’yRy’y =14+ ql(y)—l(X)(Qx’y -1,

thatis Qy , — 1= g9 S —T1.1f Oy y —1=0, then Oy y — 1 =b1g" +bag +--- +
bsq's, where i] <ip < --- < iy and i] +i5 =I(y) — [(x). However, by 38(i) 2i; < I(y) — I(x),
a contradiction.

9.4.4. 1In [21] there is the following definition:

Definition. Given y, w € W we say that y < w if the following conditions are satisfied: y < w,
[(w) —I(y) is odd and Py ,, is a polynomial in ¢ of degree exactly M

Lemma. Assume that y < z, [(z) — I(y) 2 3. Then Q ., # 1 for some w € [y, z].

Proof. Suppose that Qy, ,, =1 for all w € [y, z]. Then (37) gives

Qy,z =14 (_I)Z(Z) Z (_1)l(w)+1 Pw,z~

wely,z]

The condition y < z implies that the degree of Py, ; is less than the degree of P, ; if w € ]y, z].

Hence Qy; has degree W

and, in particular, Q, , # 1, a contradiction. O
9.4.5. Proof of 32(ii)

Let g be an extremal node of a Dynkin diagram X,,, o1 be the only node which is connected
to ap and X, be the Dynkin diagram obtained from X,, by removing the extremal node oo and the
edge between op and «y. Let W (respectively, W') be the Coxeter group of X,, (respectively, X ).
Assume that («1, X)) € O, that is Qs,,z # 1 for some z € W’; let z be a shortest element with
this property.

Note that Qy, , = 1 for all w € [s1, z[. Formulas 38(iv) and (39) give

M(s1,w)=1 forall w e [s1,z[, M(s1,2) #1, M(e,z)=1. (40)
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Let us show that Qg .~ # 1 for some 7' € [s0, 50zs0]. By (39) it is enough to verify that
M (sg, sozso) # 1. Observe that the elements of [sg, sozsg] are of the form sowsg, sow, wsg if
w € [s1,z] and sow if w < z, w ¢ [s1, z]. Since w does not contain sg (i.e., w ;é s0), one has
I(sowsp) =1(w) +2 if w € [s1,z] and I(sow) = l(w) + 1 if w < z, w ¢ [s1, z]. The properties
of Ry,y imply Ryyw.sozs0 = Rwso,s0z50 = (@ — 1) Ry, 7 (since z ;/é s50) and Ryyuwsy,sozs0 = Ruw,z- We
obtain

M (s0, 50250) = Z (_l)l(sozso)—l()’)ql(y)—l Rys0:50

Y€Elso.s0zs0]

— Z (_I)I(Z)_l(w)ql(w)—‘rlRw,z + (q _ 1) Z (_I)I(Z)+1_l(w)ql(w)Rw,z

we(sy,z] welsy,z]

4 (q _ 1) X:(_1)1(2)-0—1—1(11))ql(w)Rw7Z

w<z
=¢*M(s1.2) —q(qg — DM(s1.2) + (1 — @) M (e, 2)
—1—q+qM(s1,2)#1, by 40).

Hence Qy,  # 1 for some 2" < s9z50.
Using similar arguments and the fact that M (s, y) = 1 for all y € [sq, z[, we can show that
Q.2 = 1 for 2/ < sozso and thus Qg 5 soz50 1. O

9.5. Rank 2 cases

9.5.1. Case Aj A
In this case the Weyl group W is generated by so, 51, 52, where the relations are (sps1)> =
(5052)° = (s0s2)2 = e. It is easy to see that Qg sosys250 =1 +¢.

9.5.2. Case Cy

In this case the Weyl group W is generated by so, 51, s2, where the non-trivial relations are
(sos1)4 = (slsz)4 = (sosz)2 = e. It is not hard to compute that Qg sos;s0s25150 = 1 + qz. We can
also check that Qy, ., # 1 for some w using the tables of Kazhdan—Lusztig polynomials by
M. Goresky: one has sg < sos150525150 [0, the case Ez, No. 57] and then Lemma 9.4.4 implies
the required assertion.

9.5.3. Case Gy

Here we use the tables [6]. Take z := so(slsz)2sos1szs1so (No. 133 in the tables [6]; in their
notation the affine root is the third one). We have so < z and Lemma 9.4.4 gives Oy, ., 7 1 for
some w € [sg, z] (it is easy to see that, in fact, Qg = 1 for w <z and Qy, ., =1+ q4).

10. Root systems of defect one

The list of simple Lie superalgebras g of defect one consists of Lie superalgebras A(0, n) =
si(l,n+ 1), C(n + 1) = 0sp(2,2n), B(1,n) = 0sp(3,2n), B(n,1) = o0sp(2n + 1,2), D(n +
1,1) = osp(2n + 2,2), where n > 1, and the exceptional Lie superalgebras D(2, 1, a), F(4),
G(3) [11,17]. In this section we will describe some properties of the root systems of defect one,
which we use in the paper.
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10.1.  'We choose a set of simple roots of g which contains a unique isotropic root 8. We will
describe A* and W# (see 3.3). Let IT* be the system of simple roots for A* N AT, We have:

() T* =1\ (B);
(i) W#B C AT,
(iii) if g # D(2, 1, a), then there exists a unique simple root o such that («;|8) # 0; for g #
0sp(3,2) one has («1|8) = —1, (¢1|ay) = 2.

The following lemma is used in 8.6.

10.1.1. Lemma. Let g # D(2,1,a), B(1, 1). If a is a positive isotropic root satisfying (p —
tB,a) =t + 1 for some t then o = B + .

Proof. Write IT = {8, a1, @2, ..., o} and &« = moB + >_m; ;. Since o is isotropic, « ¢ A#,
The properties (i), (iii) imply that mq, m| > 1. One has (pla) > m; > 1 and —(Bla) =m1 > 1.
The assumption gives (p|a) = —(B|a) = 1 and thus m| = 1. Then (p|a) =1 forces m; = 0 for
i > 1. Finally, (¢|o) =2 — 2mp =0 and thus o = B8 + a1 as required. O

10.1.2. The standard normalization of the invariant form B, introduced in [17], is given by
(a]er) = 2 for an even root o € A*. In this normalization the dual Coxeter number /" is given by
the following table:

g AO,n—1) Cm) B(1,n) Bn,1),n>1 Dmn+1,1) F&) GQ3) D2,1,a)
o o on—1 n—1 n—1/2 2n-3 2n —2 3 2 0

10.2. Non-exceptional case (g # F(4), G(3), D(2, 1, a)).

The root system is described in terms of a basis {¢;};—o,1,.... We use the following bilinear form
(.|.), which is a multiple of the standard invariant form: (g;|e;) =0if i # j and (ggleg) = —1,
(eile;) =1 for i > 0. Then in all cases (y1]y2) € Z for all roots y1, y». We choose B :=¢gg — €.
One has Ag = Ag \ Zeo and W* is the subgroup of W which stabilizes g. One has Ag = Ao for

A(0,n — 1), C(n); in all other cases, except for B(1, 1) and D(2, 1), Ag corresponds to a simple
component of go which is not isomorphic to s[(2).

10.3. Case A(O,n —1)
In this case the even part is 5[(n) ® C. Let {£(e; —;): 1 <i < j < n} be the root system for

sl(n) and {£(go — &)}_, be the set of odd roots of s[(1,n). One has A = Ag, WF =W =,.
Take

IT:={eg—€1,61 — 2,80 — €3, ..., En—1 — En}, 17#:=170A0=17\{,B},

AT ={e0 — &}y, A ={ei —ejici<j<n-

The highest rootis 8 = g9 — ¢, and p = —%80 + er;:l (% +1—1i)e.
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104. Case C(n+1)

In this case the even part is C,, ® C. Let {£2¢;; &¢; £ ¢;: 1 <i < j < n} be the root system
for the Lie algebra of type C, and {£ep * ¢; ;':1 be the set of odd roots of C(n). One has
A‘g = Ay, W#*=W. Take IT := {eo—e1,61—€2,...,80—1 — &y, 28,}. Then

AT ={eo L&), Al ={2ei. 8 ejlicicj<n-
One has 6 =ep + ¢y and p = —neg+ Y 1 (n+ 1 —i)s;.

10.5. Case B(1,1),n > 1

Take IT := {eg — €1; €1}. Then AT = {e0; 2e1}, AT = {gg * &1; €1}. One has At = 42¢,
W# = 7, is the corresponding Weyl group. One has 6 = g + &1 and 2p = —&o + €.

10.6. Cases B(n,1),B(1,n): n>1

Take IT :={eg — €1;81 — &2, ...,8n—1 — €n, &n}. One has
AT ={eo L eis 0, Ad ={ei,ei ej;260hi<i<j<n  if g= B, 1);
Af =f{eoteiral_), Ay ={2e.8 teje0)i<icj<n ifg=B(l,n).

The group W is the group of signed permutations of {ei}f_jand p = —(n— %)80 +> 0 (n—
i + %)e;. One has 0 =2¢g if g = B(n, 1) and 6 = g + &1 if g = B(1, n).

10.7. Case D(n, 1), n > 1
Take IT :={eg —€1,61 — &2, ...,En—1 — &n, En—1 + €n}. Then
AT ={eo &}, Al ={ei £ &) 200} 1<i<j<ns

W* is the group of signed permutations of {&i}7_, which change the even number of signs. One
has 6 =2gpand p = —(n — Deg+ Y 1 (n — i)s.

10.8. Case F(4)

The even part of F'(4) is B3 ® sl(2). Let {£¢;; £¢; £ ¢j: 1 <i < j < 3} be the root system
for the Lie algebra of type B3z and g be a root corresponding to s[(2). Take

1
B = 5(80-1-81 +eé&+e3), IT:={B,—s1,81 — &2, 82 — €3},
1 .
AT: {5(80:|:81 :tez:tsg)}, A;:{eo;—si,—si e 1< j<i <3}

Normalize the form in such a way that (g, &9) = —6; then (g, &;) = 25; ; if i > 0, j > 0. One
has 0 = &g and p = — (B3¢0 + €1 + 3¢2 + 5¢3) /2.
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10.9. Case G(3)

The even part of G(3) is G, @ sl(2), A* is the root system for G, and W# is the Weyl group
of G,. The roots are expressed in terms of €1, €2, €3: €1 4 &2 + &3 = 0 corresponding to G, and
&o corresponding to sl(2). We take IT := {eg + €1, €2, €3 — &2}, B :=¢€9 + €1. Then

AT ={epse0 e i=1,2,3}, Ad ={2e0; —&1, 82,63, 83 — €2, 62 — £1,63 — &1}

Normalize the form in such a way that (g;|¢;) =2 for i > 0; then (g;]¢;) = —1for 0 <i < j and
(e0le;) = —268¢,;. One has 8 =2gg and p = (—5&¢p — 3e1 + &2 + 3¢3)/2.

10.10. Case D(2,1,a)
In this case the even part is s[(2) @ sl(2) & s[(2). We take
AT ={eg L) o), Al ={2e0,2¢1, 26}

and B :=¢e9—¢e1 — &, I1 :={B,2¢e1,2&}. One has 0 =2gp and p = —B.
We take Ag = {+2¢1, +265}; then W#,B = Ai". We normalize the form as follows:

5

(eoleo) = (e1ler) = a/2, (e2162) = 1/2, (eilej) =0, i# .
Appendix A

We will prove two lemmas used in the main text.

Let g be a semisimple finite-dimensional Lie algebra, A the set of positive roots, P the
weight lattice, and W the Weyl group of g.
A.l. Lemma. If . € P is such that (A\|A) < (p|p), then Y, cy (= 1) We¥* =0.
Proof. First, Staby A #id < Zwew(—l)l(w)e“’)‘ =0, since Staby X is generated by reflections
it contains (see, for instance, [9, A.1.1]). Hence we may assume that A has a trivial stabilizer in W.
Let A’ be the maximal element in the orbit W; then for any simple root & one has s,1" < A/,
hence (A'|) > (p|a). Therefore A’ = p + &, where £ € PT and we obtain

@A) =(p+E&lp+8) = (plp) + (§15) + 2pl§) = (plp),

since2pe Q. O
A.2. Lemma. For each o € AT and all r >> 0 one has

ra=w.(r'a’), forsomea' e AU}, ¥ >1, weW = w=s, or w=id.

Proof. Since W is a finite group, it is enough to show that for each w € W, w # id, s4 one has

r>»>0 = ra#w.(’a) fora’eAU{0}, ¥ >1.
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Assume that ra = w.(r'a’), that is p — wp + ra = r'(wa’). Write p — wp =: >_m; B;, wa’ =:
> kiBi, where {8;} C A is a set of simple roots such that 8; = «. The condition w # id, s
implies that p — wp is not proportional to « so m; # 0 for some i > 1. One has p — wp +ro =
(my+r)B1 + ) ;-,miB; and thus mrln—j“’ = % Since wa!’ lies in a finite set A U {0}, the set of

possible values for 2 is finite so the set of possible values for r is finite as well, which is a

L. m;
contradiction. O
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