Backyard Cuckoo Hashing:
Constant Worst-Case Operations with a Succinct Representation

Yuriy Arbitman* Moni Naorf Gil Segev?

April 7, 2010

Abstract

The performance of a dynamic dictionary is measured mainly by its update time, lookup
time, and space consumption. In terms of update time and lookup time there are known
constructions that guarantee constant-time operations in the worst case with high probability,
and in terms of space consumption there are known constructions that use essentially optimal
space. However, although the first analysis of a dynamic dictionary dates back more than 45
years ago (when Knuth analyzed linear probing in 1963), the trade-off between these aspects of
performance is still not completely understood. In this paper we settle two fundamental open
problems:

e We construct the first dynamic dictionary that enjoys the best of both worlds: it stores
n elements using (1 + €)n memory words, and guarantees constant-time operations in
the worst case with high probability. Specifically, for any ¢ = Q((loglogn/logn)'/?)
and for any sequence of polynomially many operations, with high probability over the
randomness of the initialization phase, all operations are performed in constant time which
is independent of e.

The construction is a two-level variant of cuckoo hashing, augmented with a “backyard”
that handles a large fraction of the elements, together with a de-amortized perfect hashing
scheme for eliminating the dependency on e.

e We present a variant of the above construction that uses only (14 o(1))B bits, where B is
the information-theoretic lower bound for representing a set of size n taken from a universe
of size u, and guarantees constant-time operations in the worst case with high probability,
as before. This problem was open even in the amortized setting. Our approach is based
on k-wise almost independent permutations with a succinct representation and a constant
evaluation time.

*Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100,
Israel. Email: yuriy.arbitman@gmail. com.

fIncumbent of the Judith Kleeman Professorial Chair, Department of Computer Science and Applied Mathematics,
Weizmann Institute of Science, Rehovot 76100, Israel. Email: moni.naor@weizmann.ac.il. Research supported in
part by a grant from the Israel Science Foundation. Part of this work was done while visiting the Center for
Computational Intractability at Princeton University.

iDepartment of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100,
Israel. Email: gil.segev@weizmann.ac.il. Research supported by the Adams Fellowship Program of the Israel
Academy of Sciences and Humanities.

mailto:yuriy.arbitman@gmail.com
mailto:moni.naor@weizmann.ac.il
mailto:gil.segev@weizmann.ac.il

1 Introduction

A dynamic dictionary is a data structure used for maintaining a set of elements under insertions,
deletions, and lookup queries. The first analysis of a dynamic dictionary dates back more than 45
years ago, when Knuth analyzed linear probing in 1963 [Knu63] (see also [Knu98]). Over the years
dynamic dictionaries have played a fundamental role in computer science, and a significant amount
of research has been devoted for their construction and analysis.

The performance of a dynamic dictionary is measured mainly by its update time, lookup time,
and space consumption. Although each of these performance aspects alone can be made essentially
optimal rather easily, it seems to be a highly challenging task to construct dynamic dictiona-
ries that enjoy good performance in all three aspects. Specifically, in terms of update time and
lookup time there are known constructions that guarantee constant-time operations in the worst
case with high probability! (e.g., [DMadH90, DDM*05, DMadHP*06, ANS09]), and in terms of
space consumption there are known constructions that provide almost full memory utilization (e.g.,
[FPST05, Pan05, DWO7]) — even with constant-time lookups, but without constant-time updates.

In this paper we address the task of constructing a dynamic dictionary that enjoys optimal
guarantees in all of the above aspects. This problem is motivated not only by the natural theoretical
insight that its solution may shed on the feasibility and efficiency of dynamic dictionaries, but also
by practical considerations. First, the space consumption of dictionary is clearly a crucial measure
for its applicability in the real world. Second, whereas amortized performance guarantees are
suitable for a very wide range of applications, for other applications it is highly desirable that
all operations are performed in constant time in the worst case. For example, in the setting of
hardware routers and IP lookups, routers must keep up with line speeds and memory accesses are at
a premium [BMO01, KMO07]. An additional motivation for the construction of dictionaries with worst
case guarantees is combatting “timing attacks”, first suggested by Lipton and Naughton [LN93].
They showed that timing information may reveal sensitive information on the randomness used by
the data structure, and this can enable an adversary to identify elements whose insertion results in
poor running time. The concern regarding timing information is even more acute in a cryptographic
environment with an active adversary who might use timing information to compromise the security
of the system (see, for example, [Koc96, TOS10]).

1.1 Owur Contributions

In this paper we settle two fundamental open problems in the design and analysis of dynamic
dictionaries. We consider the standard word RAM model in which the elements are taken from a
universe of size u, and each element can be stored in a single word of length w = [logu] bits. Any
operation in the standard multiplication instruction set can be executed in constant time on w-bit
operands. This includes addition, subtraction, bitwise Boolean operations, left and right bit shifts
by an arbitrary number of positions, and multiplication. Our contributions are as follows:

Achieving the best of both worlds. We construct a two-level variant of cuckoo hashing [PR04]
that uses (1 + ¢)n memory words, where n is the maximal number of elements stored at any
point in time, and guarantees constant-time operations in the worst case with high probability.
Specifically, for any 0 < € < 1 and for any sequence of polynomially many operations, with over-
whelming probability over the randomness of the initialization phase, all insertions are performed

More specifically, for any sequence of operations, with high probability over the randomness of the initialization
phase of the data structure, each operation is performed in constant time.

in time O(log(1/€)/€?) in the worst case. Deletions and lookups are always performed in time
O(log(1/€)/€?) in the worst case.

We then show that this construction can be augmented with a de-amortized perfect hashing
scheme, resulting in a dynamic dictionary in which all operations are performed in constant time
which is independent of €, for any € = Q((loglogn/logn)'/?). The augmentation is based on a
rather general de-amortization technique that can rely on any perfect hashing scheme with two
natural properties.

Succinct representation. The above construction stores n elements using (1 4 o(1))n memory
words, which are (1 + o(1))nlogu bits. This may be rather far from the information-theoretic
bound of B(u,n) = [log (*)] bits for representing a set of size n taken from a universe of size u.
We present a variant of our construction that uses only (1+ o0(1))B bits?, and guarantees constant-
time operations in the worst case with high probability as before. Our approach is based on
hashing elements using permutations instead of functions. We first present a scheme assuming the
availability of truly random permutations, and then show that this assumption can be eliminated
by using k-wise §-dependent permutations.

One of the main ingredients of our construction is a permutation-based variant of cuckoo
hashing. This variant improves the space consumption of cuckoo hashing by storing n elements
using (2+ €)nlog(u/n) bits instead of (2+ €)nlogu bits, and both the construction and its analysis
may be of independent interest. When dealing with a rather small universe, this improvement to the
space consumption of cuckoo hashing might be much more significant than that guaranteed by other
variants of cuckoo hashing that store n elements using (1 + €)nlogu bits [FPST05, Pan05, DWOT].

Application of small universes: A nearly-optimal Bloom filter alternative. The differ-
ence between using (1+ o(1)) log (%) bits and using (1+ o(1))nlogu bits is significant when dealing
with a small universe. An example for an application where the universe size is small and in
which our construction yields a significant improvement arises when applying dictionaries to solve
the approximate set membership problem: representing a set of size n in order to support lookup
queries, allowing a false positive rate of at most 0 < d < 1, and no false negatives. In particular,
we are interested in the dynamic setting where the elements of the set are specified one by one via
a sequence of insertions. This setting corresponds to applications such as graph exploration where
the inserted elements correspond to nodes that have already been visited (e.g. [CVW192]), global
deduplication-based compression systems where the inserted elements correspond to data segments
that have already been compressed (e.g. [ZLP08]), and more. In these applications ¢ has to be
roughly 1/n so as not to make any error in the whole process.

The information-theoretic lower bound for the space required by any solution to this prob-
lem is nlog(1/4) bits, and this holds even in the static setting where the set is given in advance
[CFGT78]. The problem was first solved using a Bloom filter [Blo70], whose space consumption is
nlog(1/9)loge bits (i.e., this is a compact representation). See more in Appendix A.

Using our succinctly-represented dictionary we present the first solution to this problem whose
space consumption is only (1 + o(1))nlog(1/d) + O(n + logu) bits, and guarantees constant-time
lookups and insertions in the worst case with high probability (previously such guarantees were only
known in the amortized sense). In particular, the lookup time and insertion time are independent of
9. For any sub-constant d (the case in the above applications), and under the reasonable assumption

“Demaine [Dem07] classifies data structures into “implicit” (redundancy O(1)), “succinct” (redundancy o(8)) and
“compact” (redundancy O(B)).

that u < 290" the space consumption of our solution is (1 4+ o(1))nlog(1/d), which is optimal up
to an additive lower order term (i.e., this is a succinct representation)?.

1.2 Related Work

A significant amount of work was devoted to constructing dynamic dictionaries over the years, and
here we focus only on the results that are most relevant to our setting.

Dynamic dictionaries with constant-time operations in the worst case. Dietzfelbinger
and Meyer auf der Heide [DMadH90] constructed the first dynamic dictionary with constant-time
operations in the worst case with high probability, and O(n) memory words for storing n elements
(the construction is based on the dynamic dictionary of Dietzfelbinger et al. [DKM™94]). While this
construction is a significant theoretical contribution, it may be unsuitable for highly demanding
applications. Most notably, it suffers from large multiplicative constant factors in its memory
utilization and running time, and from an inherently hierarchal structure. Recently, Arbitman et al.
[ANS09] presented a de-amortization of cuckoo hashing that guarantees constant-time operations
in the worst case with high probability, and achieves memory utilization of about 50%. Their
experimental results indicate that the scheme is efficient, and provides a practical alternative to
the construction of Dietzfelbinger and Meyer auf der Heide.

Dynamic dictionaries with full memory utilization. Linear probing is the most classical
hashing scheme that offers full memory utilization. When storing n elements using (14 €)n memory
words, its expected insertion time is polynomial in 1/e. However, for memory utilization close to
100% it is rather inefficient, and the average search time becomes linear in the number of elements
stored (for more details we refer the reader to Theorem K and the subsequent discussion in [Knu98,
Chapter 6.4]).

Cuckoo hashing [PR04] achieves memory utilization of slightly less than 50%, and its generali-
zations [FPST05, Pan05, DW07] were shown to achieve full memory utilization. These generali-
zations follow two lines: using multiple hash functions, and storing more than one element in each
bin. To store n elements using (1 + €)n memory words, the expected insertion time when using
multiple hash functions was shown to be (1/€)OU°gl08(1/€)) “and when using bins with more than
one element it was shown to be log(1/e)?Uogloe(1/€)) - For further and improved analysis see also
[CSW07, DM09, DGM™09, FR07, FP09, FM09, FMMO09, LP09).

Fotakis et al. [FPST05] suggested a general approach for improving the memory utilization of a
given scheme by employing a multi-level construction: their dictionary comprises of several levels
of decreasing sizes, and elements that cannot be accommodated in any of these levels are placed
in an auxiliary dictionary. Their scheme, however, does not efficiently support deletions, and the
number of levels (and thus also the insertion time and lookup time) depends on the overall loss in
memory utilization.

Dictionaries approaching the information-theoretic space bound. A number of dictio-
naries with space consumption that approaches the information-theoretic space bound are known.
Raman and Rao [RR03] constructed a dynamic dictionary that uses (1 + o(1))B bits, but provides
only amortized guarantees and does not support deletions efficiently. The above mentioned con-
struction of Dietzfelbinger and Meyer auf der Heide [DMadH90] was extended by Demaine et al.

3For constant & there is a recent lower bound of Lovett and Porat [LP10] showing we cannot get to (1 -+
o(1))nlog(1/6) bits in the dynamic setting.

[DMadHP*06] to a dynamic dictionary that uses O(B) bits?, where each operation is performed
in constant time in the worst case with high probability. Of particular interest to our setting is
their construction of quotient hash functions, that are used to hash elements similarly to the way
our construction uses permutations (permutations can be viewed as a particular case of quotient
hash functions). Our approach using k-wise almost independent permutations can be used to sig-
nificantly simplify their construction, and in addition it allows a more uniform treatment without
separately considering different ranges of the parameters.

In the static dictionary case (with no insertions or deletions) much work was done on succinct
data structures. The first to achieve a succinct representation of static dictionary supporting O(1)
retrievals were Brodnik and Munro [BM99]. More efficient schemes were given by [Pag01] and
[DP08]. Most recently, Patragcu [Pat08] showed a succinct dictionary where the redundancy can

be O(n/polylog(n)).

1.3 Paper Organization

The remainder of this paper is organized as follows. In Section 2 we briefly overview several tools
that are used in our constructions. In Section 3 we present our first construction and analyze its
performance. In Section 4 we augment it with a de-amortized perfect hashing to eliminate the
dependency on €. In Section 5 we present our second construction, which is a variant of our first
construction, whose memory consumption matches the information-theoretic space bound, up to
additive lower order terms. In Section 6 we present several concluding remarks and open problems.
In Appendix A we propose an alternative to Bloom filters that is based on our constructions, and
in Appendix B we discuss the notion of negatively related random variables which is used as a tool
in our analysis.

2 Preliminaries and Tools

k-wise independent functions. A collection F of functions f : U — V is k-wise independent
if for any distinct x1,...,2, € U and for any y1,...,yx € V it holds that

Prif(z1) =yi A A flap) =y = 1/|VI" .

More generally, a collection F is k-wise d-dependent if for any distinct x1,...,x, € U the dis-
tribution (f(z1),..., f(zx)) where f is sampled from F is d-close in statistical distance to the
distribution (f*(z1),..., f*(zx)) where f* is a truly random function. A simple example for k-wise
independent functions is the collection of all polynomials of degree k — 1 over a finite field.

In this paper we are interested in functions that have a short representation and can be evaluated
in constant time in the word RAM model. Although there are no such constructions of k-wise
independent functions, Siegel [Sie04] constructed a pretty good approximation that is sufficient for
our applications (see also the recent improvement of Dietzfelbinger and Rink [DRO09] to Siegel’s
construction). For any two sets U and V of size polynomial in n, and for any constant ¢ > 0,
Siegel presented a randomized algorithm outputting a collection F of functions f : U — V with
the following guarantees:

1. With probability at least 1 —n~¢, the collection F is n®-wise independent for some constant
0 < a < 1 that depends on |U| and n.

4Using the terminology of Demaine [Dem07], this data structure is “compact”.

2. Any function f € F is represented using n? bits, for some constant o < 8 < 1, and evaluated
in constant time in the word RAM model.

Several comments are in place regarding the applicability of Siegel’s construction in our setting.
First, whenever we use n®wise independent functions in this paper, we instantiate them with
Siegel’s construction, and this contributes at most an additive n™¢ factor to the failure probability
of our schemes®. Second, the condition that U and V are of polynomial size does not hurt the
generality of our results: in our applications |V| < |U|, and U can always be assumed to be of
sufficiently large polynomial size by using a pairwise (almost) independent function mapping U
to a set of polynomial size without any collisions with high probability. Finally, each function is
represented using n? bits, for some constant 3 < 1, and this enables us in particular to store any
constant number of such functions: the additional space consumption is only O(n”) = o(n log(u/n))
bits which is negligible compared to the space consumption of our schemes.

A significantly simpler and more efficient construction, but with a weaker guarantee on the
randomness, was provided by Dietzfelbinger and Woelfel [DW03] following Pagh and Pagh [PP0S]
(see also [DR09]). For any two sets U and V of size polynomial in n, and for any integer k < n
and constant ¢ > 0, they presented a randomized algorithm outputting a collection F of functions
f: U — V with the following guarantees:

1. For any specific set S C U of size k, there is an n™¢ probability of failure (i.e., choosing a
“bad” function for this set), but if failure does not occur, then a randomly chosen f € F is
fully random on S.

2. Any function f € F is represented using O(klogn) bits, and evaluated in constant time in
the word RAM model.

Note that such a guarantee is indeed slightly weaker than that provided by Siegel’s construction:
in general, we cannot identify a bad event whose probability is polynomially small in n, so that
if it does not occur then the resulting distribution is k-wise independent. Therefore it is harder
to plug in such a distribution instead of an exact k-wise independent distribution (e.g., it is not
clear that the k-th moments remain the same). Specifically, this type of guarantee implies that
for a set of size n, if one considers all its subsets of size k, then a randomly chosen function from
the collection behaves close to a truly random function on each set, but this does not necessary
hold simultaneously for all subsets of size k, as we would like in many applications. Nevertheless,
inspired by the approach of [DR09], in Section 5.4 we show that our constructions can in fact rely
on such a weaker guarantee, resulting in significantly simpler and more efficient instantiations.

k-wise almost independent permutations. A collection II of permutations w= : U — U is
k-wise é-dependent if for any distinct x1,...,2; € U the distribution (7(x1),...,7(zx)) where
is sampled from II is d-close in statistical distance to the distribution (7*(x1),...,7*(xg)) where
7* is a truly random permutation. For £ > 3 no explicit construction is known for k-wise exactly
independent permutations (i.e., § = 0), and therefore it seems rather necessary to currently settle
for almost independence (see [KNRO09] for a more elaborated discussion).

In Section 5.3 we observe a construction of k-wise d-dependent permutations with a short
description and constant evaluation time. The construction is obtained by combining known results
from two independent lines of research: constructions of pseudorandom permutations (see, for
example, [LR88, NR99]), and constructions of k-wise independent functions with short descriptions
and constant evaluation time as discussed above.

®Note that property 1 above is stronger in general than k-wise d-dependence.

Deviation inequalities for random variables with limited independence. Our analysis
in this paper involves bounding tail probabilities for sums of random variables. For independent
random variables these are standard applications of the Chernoff-Hoeffding bounds. In some cases,
however, we need to deal with sums of random variables that are dependent, and in these cases
we use two approaches. The first approach, due to Schmidt et al. [SSS95, Theorem 5], is using tail
bounds for the sum of n random variables that are k-wise independent for some k& < n. Schmidt
et al. proved that for an appropriate choice of k it is possible to recover the known bounds. The
second approach, due to Janson [Jan93], is to prove that the random variables under consideration
are negatively related. Informally, this means that if some of the variables obtain higher values than
expected, then the other variables obtain lower values than expected. We elaborate more on this
approach in Appendix B.

3 The Backyard Construction

Our construction is based on two-level hashing, where the first level consists of a collection of bins
of constant size each, and the second level consists of cuckoo hashing. One of the main observations
underlying our construction is that the specific structure of cuckoo hashing enables a very efficient
interplay between the two levels.

Full memory utilization via two-level hashing. Given an upper bound n on the number
of elements stored at any point in time, and a memory utilization parameter 0 < € < 1, set
d = [clog(1/€)/€?] for some constant ¢ > 1, m = [(1 + ¢/2)n/d], and k = [n®] for some constant
0 < a < 1. The first level of our dictionary is a table T containing m entries (referred to
as bins), each of which contains d memory words. The table is equipped with a hash function
ho : U — [m] that is sampled from a collection of k-wise independent hash functions (see Section
2 for constructions of such functions with succinct representations and constant evaluation time).
Any element = € U is stored either in the bin Tp[ho(x)] or in the second level. The lookup procedure
is straightforward: when given an element x, perform a lookup in the bin Ty[ho(x)] and in the second
level. The deletion procedure simply deletes x from its current location. As for inserting an element
x, if the bin Ty[ho(x)] contains less than d elements then we store x there, and otherwise we store
z in the second level. We show that the number of elements that cannot be stored in the first level
after exactly n insertions is at most en/16 with high probability. Thus, the second level should be
constructed to store only en/16 elements.

Supporting deletions efficiently: cuckoo hashing. When dealing with long sequences of
operations (as opposed to only n insertions as considered in the previous paragraph), we must be
able to move elements from the second level back to the first level. Otherwise, when elements are
deleted from the first level, and new elements are inserted into the second level, it is no longer
true that the second level contains at most en/16 elements at any point in time. One possible
solution to this problem is to equip each first-level bin with a doubly-linked list, pointing to all
the “overflowing” elements of the bin (these elements are stored in the second level). Upon every
deletion from a bin in the first level we move one of these overflowing elements from the second
level to this bin. We prefer, however, to avoid such a solution due to its extensive usage of pointers
and the rather inefficient maintenance of the linked lists.

We provide an efficient solution to this problem by using cuckoo hashing as the second level
dictionary. Cuckoo hashing uses two tables T} and T, each consisting of » = (1 +)¢ entries
for some small constant § > 0 for storing at most ¢ = en/16 elements, and two hash functions

hi,ha : U — {1,...,7}. An element z is stored either in entry hi(x) of table T} or in entry
ha(x) of table Ty, but never in both. The lookup and deletion procedure are naturally defined,
and as for insertions, Pagh and Rodler [PR04] proved that the “cuckoo approach”, kicking other
elements away until every element has its own “nest”, leads to an efficient insertion procedure.
More specifically, in order to insert an element x we store it in entry T1[hq(z)]. If this entry is not
occupied, then we are done, and otherwise we make its previous occupant “nestless”. This element
is then inserted to 75 using hs in the same manner, and so forth iteratively. We refer the reader to
[PRO4] for a more comprehensive description of cuckoo hashing.

A very useful property of cuckoo hashing in our setting is that in its insertion procedure,
whenever stored elements are encountered we add a test to check whether they actually “belong”
to the main table Tj (i.e., whether their corresponding bin has an available entry). The key
property is that if we ever encounter such an element, the insertion procedure is over (since an
available position is found for storing the current nestless element). Therefore, as far as the cuckoo
hashing is concerned, it stores at most en/16 elements at any point in time. This guarantees that
any insert operation leads to at most one insert operation in the cuckoo hashing, and one insert
operation in the first-level bins.

Constant worst-case operations: de-amortized cuckoo hashing. Instead of using the clas-
sical cuckoo hashing we use the recent construction of Arbitman et al. [ANS09] who showed how
to de-amortize the insertion time of cuckoo hashing using a queue. The insertion procedure in the
second level is now parameterized by a constant L, and is defined as follows. Given a new element
2 (which cannot be stored in the first level), we place the pair (z,1) at the back of the queue (the
additional value indicates to which of the two cuckoo tables the element should be inserted next).
Then, we carry out the following procedure as long as no more than L moves are performed in
the cuckoo tables: we take the pair (y,b) from the head of the queue, and check whether y can
be inserted into the first level. If its bin in the first level is not full then we store y there, and
otherwise we place y in entry Ty[hy(y)]. If this entry was unoccupied (or if y was successfully moved
to the first level of the dictionary), then we are done with the current element y, this is counted
as one move and the next element is fetched from the head of the queue. However, if the entry
Ty[hy(y)] was occupied, we check whether its previous occupant z can be stored in the first level and
otherwise we store z in entry T5_[hs_p(z)] and so on, as in the above description of the standard
cuckoo hashing. After L elements have been moved, we place the current “nestless” element at the
head of the queue, together with a bit indicating the next table to which it should be inserted, and
terminate the insertion procedure (note that it may take less than L moves, if the queue becomes
empty). An important ingredient in the construction of Arbitman et al. is the implicit use of a small
auxiliary data structure called “stash” that enables to avoid rehashing, as suggested by Kirsch et
al. [KMWO09].

A schematic diagram of our construction is presented in Figure 1, and a formal description of
its procedures is provided in Figure 2.

Bin capacity:
log(1/€)

d=—2—

&2

Number of bins:
& n
m=(1+3) 7

Figure 1: A schematic diagram of the backyard scheme.

We prove the following theorem:

Theorem 3.1. For any n and 0 < € < 1 there exists a dynamic dictionary with the following
properties:

1. The dictionary stores n elements using (1 + €)n memory words.

2. For any polynomial p(n) and for any sequence of at most p(n) operations in which at any point
in time at most n elements are stored in the dictionary, with probability at least 1—1/p(n) over
the randomness of the initialization phase, all insertions are performed in time O(log(1/€)/€?)
in the worst case. Deletions and lookups are always performed in time O(log(1/€)/€?) in the
worst case.

Proof. We first compute the total number of memory words used by our construction. The main
table Ty consists of m = [(1 + €/2)n/d] entries, each of which contains d memory words. The
de-amortized cuckoo hashing is constructed to store at most en/16 elements at any point in time.
Arbitman et al. [ANS09] showed that the de-amortized cuckoo hashing achieves memory utilization
of 1/2 — ¢ for any constant 0 < ¢ < 1, and for our purposes it suffices to assume, for example, that
it uses en/4 memory words. Thus, the total number of memory words is md + en/4 < (1 + €)n.

In the remainder of the proof we analyze the correctness and performance of our construction.
We show that it suffices to construct the de-amortized cuckoo hashing under the assumption that
it does not contain more than en/16 elements at any point in time, and that we obtain the worst-
case performance guarantees stated in the theorem. The technical ingredient in this argument is a
lemma stating a bound on the number of “overflowing” elements when n elements are placed in m
bins using a k-wise independent hash function h : i — [m]. Specifically, we say that an element is
overflowing if it is mapped to a bin together with at least d other elements.

We follow essentially the same analysis presented in [PP08, Section 4]. For the following lemma
recall that d = [clog(1/€)/e?], m = [(1 + ¢/2)n/d], and k = [n®] for some constant 0 < a < 1.
Given a set S C U we denote by Q = Q(S) C S the set of elements that are placed in bins with no
more than d — 1 other elements (i.e., @ is the set of non-overflowing elements).

Lookup(x) : Delete(x):
1: if x is stored in bin hg(z) of Ty then 1: if «x is stored in bin ho(x) of Ty then
return true 2 Remove z from bin hg(x)
else 3: else
return LookupCuckoo(x) 4 DeleteFromCuckoo ()

Insert(x):
1: InsertIntoBackOfQueue(x,1)
2: y <L // y denotes the current element
3: for i =1to L do // L denotes the number of permitted moves in cuckoo tables

4: if y =1 then // Fetching element y from the head of the queue
5: if IsQueueEmpty() then
6: return
7 else
8: (y,b) « PopFromQueue ()
9: if there is vacant place in bin ho(y) of Tp then
10: Store y in bin hg(y) of T
11: YLl
12: else
13: if Ty[hs(y)] =L then // Successful insert
14: Tolhw(y)] < v
15: ResetCDM()
16: y <L
17: else
18: if LookupInCDM(y,b) then // Found the second cycle
19: InsertIntoBack0fQueue (y,b)
20: ResetCDM()
21: y <L
22: else // Evict existing element
23: Z 4= Tb[hb(y)]
24: Ty[ho(y)] <y
25: InsertIntoCDM(y, b)
26: Y4z
27: b+—3-10
28: if y #1 then
29: InsertIntoHeadOfQueue (y,b)

Figure 2: The procedures of the backyard scheme.

Lemma 3.2. For any set S C U of size n, with probability 1 —2~<08") oyer the choice of a k-wise
independent hash function h : U — [m], it holds that |Q(S)| > (1 — €/16)n.

Proof. Denote by B; C S the set of elements that are placed in the ¢-th bin, and denote by
z = w(logn) the largest integer for which 2°d < k. Split the set of bins [m] into blocks of at
most 2% consecutive bins I; = {275 +1,...,2%(j + 1)}, for j = 0,1,...,m/2* — 1. Without loss of
generality we assume that 2% divides m. Otherwise the last block contains less than 27 bins, and
we can count all the elements that are mapped to these bins as overflowing, and as the remainder
of the proof shows this will have only a negligible effect on the size of the set Q.

First, we argue that for every block I; it holds that |U;es; Bi| < (1—¢/4)2*d with probability 1—
2~w({logn) We prove this by using a Chernoff bound for random variables with limited independence

due to Schmidt et al. [SSS95]. Fix some block I;, and for any element z € S denote by Y; ; the
indicator random variable of the event in which x is placed in one of the bins of block I;, and let
Y; =3 ,cq Yz Each indicator Y, ; has expectation 2%/m, and thus E(Y;) = 2°n/m. In addition,
these indicators are k-wise independent. Therefore,

Pr||[Uier, Bi| > (1= 2) 2°d] = Pr|v; > (1 - 7) 2°]
ruf (- 5) (149 e

<Pr|y; > (1+5) B(Y)|

< Pr :|Yj - E(Y;)| > % -E(Yj)]

< exp (_ (5)2 . Egﬂ) (3.1)

_ 2—w(10g n)

9

where (3.1) follows from [SSS95, Theorem 5.1.b] by our choice of k.

Now, assuming that for every block I; it holds that | Uies; Bi| < (1 —€/4)2%d, we argue that for
every block I; it holds that |Q N (Uijer, B;)| > (1 — €/16)| Uy, B;| with probability 1 — 27~ {oen),
and this concludes the proof of the lemma.

Fix the value of j, and note that our choice of z such that 2°d < k implies that the values
of h on the elements mapped to block I; are completely independent. Therefore we can apply a
Chernoff bound for completely independent random variables to obtain that for any i € I; it holds
that

—Q(e2
Pr (1B - B(B)| > o E(IBil)] < 2¢7% .

€
32
Denote by Z; the indicator random variable of the event in which |B;| > (1 + ¢/32)E(|B;|), and
by Z; the indicator random variable of the event in which |B;| < (1 — ¢/32)E(|B;|). Although
the random variables {Z;}c 1; are not independent, they are negatively related (see Appendix B
for more details), and this allows us to apply a Chernoff bound on their sum. The same holds
for the random variables {Z, }icr;, and therefore we obtain that with probability 1 — g~w(logn) for
at least (1 — 4e~€®)27 bins from the block I; it holds that (1 —€/32)| Uier; Bi|/2* < |B;i| < d.
The elements stored in these bins are non-overflowing, and therefore the number of non-overflowing
elements in this block is at least (1 —6/32)(1—4€_Q(€2d))|Uiejj B;|. The choice of d = O(log(1/¢)/e?)
implies that the latter is at least (1 —¢/16)| Uses, Bl

]

Consider now a sequence of at most p(n) operations such that at any point in time the dictionary
contains at most n elements. For every 1 < i < p(n) denote by S; the set of elements that are
stored in the dictionary after the execution of the first i operations, and denote by A; C S; the
set of elements that are mapped by the function hg of the first-level table to bins that contain
more than d elements from the set S; (i.e., using the terminology of Lemma 3.2, A; is the set of
overflowing elements when the elements in the set S; are placed in the first level). Then, Lemma
3.2 guarantees that for every 1 < i < p(n) it holds that |A;| < en/16 with probability 1 — 2~ (g7,
A union bound then implies that again with probability 1 — 2-<(°8™) it holds that |A;| < en/16
for every 1 < i < p(n). We now show that this suffices for obtaining the worst-case performance
guarantees:

10

Lemma 3.3. Assume that for every 1 <i < p(n) it holds that |A;| < en/16 (i.e., there are at most
en/16 overflowing elements at any point in time). Then with probability at least 1 — 1/p(n) over
the randomness used in the initialization phase of the de-amortized cuckoo hashing, insertions are
performed in time O(log(1/€)/€?) in the worst case. Deletions and lookups are always performed in
time O(log(1/€)/€%) in the worst case.

Proof. The insertion procedure is defined such that whenever it runs into an element in the second
level that can be stored in the first level, then this element is moved to the first level, and either
an available position is found in one of the second-level tables or the queue of the second level
shrinks by one element. In both of these cases we turn to deal with the next element in the queue.
Thus, we can compare the insertion time in the second level to that of the de-amortized cuckoo
hashing: as far as our insertion procedure is concerned, the elements that are effectively stored at
any point in time in the second level are a subset of A; (the set of overflowing elements after the i-th
operation), and each operation in the original insertion procedure is now followed by an access to
the first level. Any access to the first level takes time linear in the size d = [clog(1/€)/€?] of a bin,
and therefore with probability 1 —1/p(n) each insert operation is performed in time O(log(1/¢)/€?)
in the worst case. As for deletions and lookups, they are always performed in time linear in the
size d = [clog(1/€)/e?] of a bin.]

This concludes the proof of Theorem 3.1. [|

4 De-amortized Perfect Hashing: Eliminating the Dependency on €

The dependency on € in the deletion and lookup times can be eliminated by using a perfect hashing
scheme (with a succinct representation) in each of the first-level bins. Upon storing an element in
one of the bins, the insertion procedure reconstructs the perfect hash function for this bin. As long
as the reconstruction can be done in time linear in the size of a bin, then the insertion procedure
still takes time O(d) = O(log(1/€)/€?) in the worst case, and the deletion and lookup procedures
take constant time that is independent of €. Such a solution, however, does not eliminate the
dependency on € in the insertion time.

In this section we present an augmentation that completely eliminates the dependency on e.
We present a rather general technique for de-amortizing a perfect hashing scheme to be used in
each of the first-level bins. Our approach relies on the fact that the same scheme is employed
in a rather large number of bins at the same time, and this enables us to use a queue to guar-
antee that even insertions are performed in constant time that is independent of e. Using this
augmentation we immediately obtain the following refined variant of Theorem 3.1 (the restriction
e = O((loglogn/logn)/?) is due to the specific scheme that we de-amortize — see more details
below):

Theorem 4.1. For any integer n there exists a dynamic dictionary with the following properties:
1. The dictionary stores n elements using (14¢€)n memory words, for e = O((loglogn/logn)/?).

2. For any polynomial p(n) and for any sequence of at most p(n) operations in which at any point
in time at most n elements are stored in the dictionary, with probability at least 1 — 1/p(n)
over the randomness of the initialization phase, all operations are performed in constant time,
independent of €, in the worst case.

This augmentation is rather general and we can use any perfect hashing scheme with two natural
properties. We require that for any sequence o of operations leading to a set .S of size at most d—1,

11

for any sequence of memory configurations and rehashing times occurring during the execution of
o, and for any element = ¢ S that is currently being inserted it holds that:

Property 1: With probability 1 — O(1/d) the current hash function can be adjusted to support
the set S U {z} in expected constant time. In addition, the adjustment time in this case is
always upper bounded by O(d).

Property 2: With probability O(1/d) rehashing is required, and the rehashing time is dominated
by O(d) - Z where Z is a geometric random variable with a constant expectation.

Our augmentation introduces an overhead which imposes a restriction on the range of possible
values for e. The restriction comes from two sources: the description length of the perfect hash
function in every bin, and the computation time of the hash function and its adjustment on every
insertion. We propose a specific scheme that satisfies the above properties, and can handle ¢ =
Q((loglogn/logn)'/?). It is rather likely that various other schemes such as [FKS84, DKM*94]
can be slightly modified to satisfy these properties. In particular, the schemes [Pag99, Woe06] seem
especially suitable for this purpose.

To de-amortize any scheme that satisfies these two properties we use an auxiliary queue (one
queue is used for all bins), and the insertion procedure to the bins is now defined as follows: upon
insertion, the new element is always placed at the back of the queue, and then we perform a constant
number of steps (denoted by L) on the element currently located at the head of the queue. If these
L steps are not enough to insert this element into its bin, we return it to the head of the queue, and
continue working on this element upon the next insertion. If we managed to insert this element by
using less than L steps, we continue with the next element and so on until we complete L stepsS.
As for deletions, these are also processed using the queue, and when deleting an element we simply
locate the element inside its bin and mark it as deleted (i.e., deletions are always performed in
constant time).

The key point in the analysis is that properties 1 and 2 guarantee that the expected amount of
work for each element is a small constant, which in turn implies that the queue does not grow beyond
O(log n) with high probability. Specifically, we show that the constant number of operations that
we perform upon every insertion can be chosen independently of € such that with high probability
the queue is always of size O(logn). Thus, as long as the queue does not overflow, all operations
are performed in constant time that is independent of €. In what follows we formally prove that
with high probability the queue does not overflow.

Consider a sequence of at most p(n) operations, for some polynomial p(n), such that at most n
elements are stored in the data structure at any point in time. Fix the first-level hash function hy,
and denote by o = (z1,...,2zxN) the sequence of operations on the first-level bins in reverse order
(each operation is either insertion or deletion depending on whether the element is currently stored
or not). For any element x; denote by W(z;) the total amount of work required for storing z; in
its bin (note that elements may appear more than once).

Lemma 4.2. For any constant c; > 0 and any integer T' there exists a constant ca, such that for
any 1 <19 < N —T it holds that

T
Pr [Z W(zig+i) > 2T | <exp(—ciT/d) .

i=1

SA comment is in place regarding rehashing. If rehashing is needed, then we copy the content of the rehashed bin
to a dedicated memory location, perform the rehash, and then copy back the content of the bin, and all this is done
in several phases of L steps. Note that the usage of the queue guarantees that at any point in time we rehash at
most one bin.

12

Proof. For simplicity we let W; = W (x;,+i), and assume that all 7" operations are insertions (as
discussed above, deletions are always performed in constant time). We argue that although the
W;’s are not independent, they are nevertheless dominated by independent random variables with
the same distribution. First, note that since different bins use independently chosen perfect hash
functions, then given the allocation of elements into bins (i.e., conditioned on the function hg of the
first level), W;’s that correspond to different bins are independent. Consider now a pair W; and W;
for which the elements z; and x; are mapped to the same bin, and assume without loss of generality
that x; is processed from the head of the queue before x;. Then by the time we process x;, we either
already adjusted the hash function to store x;, or we are already done with the rehashing of the bin
due to x; (this follows from the fact that we always return the current element we work with to the
head of the queue). Properties 1 and 2 hold for any memory configurations and rehashing times (in
particular, those possibly caused by z;), and therefore W; and W; are dominated by independent
random variables with the same distribution as guaranteed by these two properties (that is, the
time it takes to process x; can be assumed to be independent of the time it took to process ;).
Note that this argument is actually not limited to considering only pairs, and thus we conclude
that Wy, ..., Wr are dominated by independent random variables with the same distribution.

We split the elements z1,...,z7 into two sets: those that cause rehashing, and those that
does not cause rehashing. Property 2 implies that the expected number of elements that cause
rehashing is at most o7'/d, for some constant «, and thus a Chernoff bound guarantees that with
probability 1 — exp(—(7'/d)) at most 2aT/d elements cause rehashing. For these elements a
concentration bound for the sum of i.i.d. geometric random variables (also known as the negative
binomial distribution”) with expectation O(d) implies that with probability 1 —exp(—Q(7/d)) the
sum of their corresponding W;’s does not exceed O(T).

As for the remaining elements (i.e., those that do not cause rehashing), property 1 and the
above discussion guarantee that the sum of their corresponding W;’s is dominated by sum of T
ii.d. random variables with support {1,...,0(d)} and constant expectation. Thus, the Hoeffding
bound guarantees that with probability 1 — exp(—Q(T/d?)) their sum does not exceed O(T).

|

Denote by £ the event in which for every 1 < j < N/logn it holds that

logn

Z W(SU(]_U logn+i) < Co IOgTL .
=1

An appropriate choice of the constant ¢; in Lemma 4.2 and a union bound imply that the event
& occurs with probability at least 1 — n™¢, for any pre-specified constant c¢. The following lemma
bounds the size of the queue assuming that the event £ occurs.

Claim 4.3. Assuming that the event £ occurs, then during the execution of o the queue does not
contain more than 2logn elements at any point in time.

Proof. We prove by induction on j, that at the time z;io5p,41 is inserted into the queue, there
are no more than logn elements in the queue. This clearly implies that at any point in time there
are at most 2logn elements in the queue. For j = 1 we observe that at most logn elements were
inserted into the first level. In particular, there can be at most log n elements in the queue.
Assume that the statement holds for some j, and we prove that it holds also for j + 1. The
inductive hypothesis states that at the time 21,541 is inserted, the queue contains at most logn

"See, for example, [DP09, Problem 2.4].

13

elements. In the worst case, these elements are {Z(;_1)iognt1,---1Tjlogn} (it is possible that the
element at the head of the queue is replaced by another element from its bin due to rehashing, but
this only means that a certain amount of work was already devoted for that operation). There-
fore, the event £ implies that the elements {Z(;_1)iogn+1;--->Tjlogn} can be handled in czlogn
steps. By choosing the constant L such that Llogn > cologn (recall that L is the number
of steps that we complete on each operation), it is guaranteed that by the time the element
Z(j4+1)logn+1 is inserted into the queue, these logn elements are already processed. Thus, by the
time the element x(;1)10gn+1 18 inserted into the queue, the queue contains at most the elements
{Zj10gn+15s- - - 7$(j+1)1ogn} (where, again, the element at the head of the queue may be replaced by
another element from its bin due to rehashing).]

Finally, we note that there are several possibilities for implementing the queue with constant
time deletions and lookups. Here we adopt the suggestion of Arbitman et al. [ANS09] and use a
constant number £ of arrays A, ..., Ay each of size n’, for some § < 1. Each entry of these arrays
consists of a data element, a pointer to the previous element in the _queue, and a pointer to the
next element in the queue. The elements are stored using a function h chosen from a collection of
pairwise independent hash functions. We refer the reader to [ANS09] for more details.

4.1 A Specific Scheme for € = Q((log log n/ logn)'/?)

The scheme uses exactly d memory words to store d elements, and 3 additional words to store the
description of its hash function. The elements are mapped into the set [d] using two functions. The
first is a pairwise independent function h mapping the elements into the set [d2]. This function can
be described using 2 memory words and evaluated in constant time. The second is a function g
that records for each 7 € [d?] for which there is a stored element z with h(x) = r the location of x
in [d]. The description of g consists of at most d pairs taken from [d?] x [d] and therefore can be
represented using 3dlog d bits.

The lookup operation of an element 2 computes h(x) = r and then g(r) to check if z is stored in
that location. In general, we cannot assume that the function g can be evaluated in constant time,
and therefore we also store a lookup table for its evaluation. This table is shared by all the bins, and
it represents the function that takes as input the description of g and a value r, and outputs g(r)
or null. The size of this lookup table is 23¢10gd+2logd .60 ¢ bits. The deletion operation performs
a lookup for x, and then updates the description of g. Again, for updating the description of g
we use another lookup table (shared among all bins) that takes as input the current description
of g and a value r = h(x), and outputs a new description for g. The size of this lookup table is
g3dlogd+2logd . 37]0g d bits.

As for the insert operation, in Claim 4.4 below we prove that with probability 1 —O(1/d) a new
element will not introduce a collision for the function A. In this case we store the new element in
the next available entry of [d], and update the description of g. For identifying the next available
entry we use a global lookup table of size 2%logd bits (each row in the table corresponds to an
array of d bits describing the occupied entries of a bin), and for updating the description of g we
use a lookup table of size 23?1°8d+2logd . 37150 d bits as before. With probability O(1/d) when
inserting a new element we need to rehash by sampling a new function h, and executing the insert
operation on all the elements. In this case the rehashing time is upper bounded by O(d) - Z where
Z is a geometric random variable with a constant expectation. Thus, this scheme satisfies the two
properties stated in the beginning of the section.

The total amount of space used by the global lookup tables is O(23?°8d+2logd . jlog d) bits.
For € = Q((loglogn/logn)/?) this is at most n® bits for some constant 0 < o < 1, and therefore

14

negligible compared to our space consumption. In addition, the hash function of every bin is
described using 2logu + dlogd bits, and therefore summing over all m = [(1 + €/2)n/d| bins
this is O(n/d - logu + nlogd). For e = Q(loglogn/logn) this is at most enlogw bits, which
is again negligible compared to our space consumption. Thus, this forces the restriction ¢ =

Q((loglog n/logn)'/?).
For simplifying the proof of the following claim we introduce a “forced rehashing” condition into
our scheme. We add to the description of the hash function in every bin an integer v € {1,...,d}

that is chosen uniformly at random, and we always rehash after v update operations, unless we
rehashed sooner due to a collision in the function h. On every rehashing we choose a new value
v. Note that this increases the probability of rehashing in every update operation by an additive
term of 1/d, and this does not hurt properties 1 and 2.

Claim 4.4. Let 1 < ¢ < d, fir a sequence o of operations leading to set S of size £, and assume
that S does not have any collisions under the currently chosen function h : U — [d%]. Then, for
any sequences of memory configurations and rehashing times that occurred during the execution of
o, and for any element x ¢ S, the probability over the choice of h that x will form a collision with

an element of S is O(1/d).

Proof. Assume first that there are only insertions and no deletions. Then the current hash function
h is uniformly distributed in the collection of pairwise independent functions subject to not having
any collisions in the set S. Therefore, for any element = ¢ S it holds that

Pr [z collides with an element of S | h is 1-1 on 9]
_ Prz collides with an element of S A his 1-1 on S|
N Pr[h is 1-1 on S]
< Pr [z collides with an element of S|
- Prhis 1-1 on S|

The function A is chosen from a collection of pairwise independent hash functions, and therefore
Pr [z collides with an element of S] < |S|/d? < 1/d ,

and
Pr[his 1-1 on S] > 1 —d(d —1)/2d* > 1/2 .

These implies that
Pr [z collides with an element of S | his 1-1 on S| <2/d .

When dealing with both insertions and deletions, it is no longer true that the current hash
function is uniformly distributed subject to not having any collisions in the set S. However, since
we always rehash after at most d update operations, then even if we ignore all deletions since the
last rehash (i.e., we include in the set S all the deleted elements since the last rehash) we are left
with a set of size at most 3d/2, for which the latter is true, and the same analysis as above holds.
]

5 Matching the Information-Theoretic Space Bound

In this section we present a variant of our construction that uses only (1 + o(1))B bits, where
B = B(u,n) is the information-theoretic bound for representing a set of size n taken from a universe

15

of size u, and guarantees constant-time operations in the worst case with high probability as
before. We first present a scheme that is based on truly random permutations, and then present
a scheme that is based on k-wise d-dependent permutations. Finally, we present a construction of
such permutations with short descriptions and constant evaluation time. We prove the following
theorem:

Theorem 5.1. For any integers u and n < u there exists a dynamic dictionary with the following
properties:

1. The dictionary stores n elements taken from a universe of size u using (1 + €)B bits, where
B = [log (*)] and e = ©(loglog n/(logn)/?).

2. For any polynomial p(n) and for any sequence of at most p(n) operations in which at any point
in time at most n elements are stored in the dictionary, with probability at least 1 — 1/p(n)
over the randomness of the initialization phase, all operations are performed in constant time,
independent of €, in the worst case.

One of the ideas we will utilize is that when we apply a permutation 7 to an element z we
may think of 7(z) as a new identity for x, provided that we are also able to compute 7 *(z).
The advantage is that we can now store explicitly only part of 7w(x), where the remainder is stored
implicitly by the location where the value is stored. This is the idea behind quotient hash functions,
as suggested previously by Pagh [Pag01] and Demaine et al. [DMadHP*06].

5.1 A Scheme based on Truly Random Permutations

Recall that our construction consists of two levels: a table in the first level that contains m ~ n/d
bins, each of which stores at most d elements, and the de-amortized cuckoo hashing in the second
level for dealing with the overflowing elements. The construction described in this section shares
the same structure, while refining the memory consumptions in each of the two levels separately. In
turn, Theorem 5.1 (assuming truly random permutations for now) follows immediately by plugging
in the following modifications to our previous schemes.

5.1.1 First-Level Hashing Using Permutations

We reduce the space consumption in the first level of our construction by hashing the elements into
the first-level table using a “chopped” permutation 7w over the universe U as follows. For simplicity
we first assume that v and m are powers of 2, and then we explain how to deal with the more
general case. Given a permutation 7 and an element = € U, we denote by 71, (x) the left-most log m
bits of m(z), and by mr(x) the right-most log(u/m) bits of w(x). That is, w(x) is the concatenation
of the bit-strings 7y (z) and wr(z). We use 7y as the function mapping elements into bins, and
mr as the identity of the elements inside the bins: any element x is stored either in the first level
in bin 77 (z) using the identity mg(x), or in the second level if its first-level bin already contains
d other elements. The update and lookup procedures remain exactly the same, and note that the
correctness of the lookup procedure is guaranteed by the fact that 7 is a permutation, and therefore
the function 7p is one-to-one inside every bin.

In the following lemma we bound the number of overflowing elements in the first level when
using a truly random permutation. Recall that an element is overflowing if it is mapped to a bin
with at least d other elements. The lemma guarantees that by setting d = O(log(1/¢)/e?) there are
at most en/16 overflowing elements with an overwhelming probability, exactly as in Section 3.

16

Lemma 5.2. Fiz any n, d, €, and a set S CU of n elements. With probability 1 — 2=<0987) oyer
the choice of a truly random permutation 7, when using the function 7y, for mapping the elements

of S into m = [(1 4 €)n/d]| bins of size d, the number of non-overflowing elements is at least
(1—¢€/32)(1 — de~USD)py,

Proof. For any i € [m| denote by B; the number of elements that are mapped to the i-th bin.
Each B; is distributed according to the hypergeometric distribution (i.e., random sampling without
replacement) with expectation n/m, and using known concentrations results for this distribution
(see, for example, [Chv79, Hoe63, SSS95]) we have that

Pr||B; — E(B)| > — - E(Bi)] < 2¢~Ued)

32

Denote by I; the indicator random variable of the event in which B; > (1 + ¢/32)E(B;), and by I,
the indicator random variable of the event in which B; < (1 — €/32)E(B;). Although the random
variables {I,;}™, are not independent, they are negatively related (see Appendix B for more details),
and this allows us to apply a Chernoff bound on their sum. The same holds for the random variables
{I;}7,, and therefore we obtain that with probability 1 — 27<{°8") for at least (1 — 4e=USD))y,
bins it holds that (1 —€/32)n/m < B; < d. The elements stored in these bins are non-overflowing,
and therefore the number of non-overflowing elements is at least (1 — €/32)(1 — 4e~XED)p,]

We now explain how to deal with the more general case in which v and m are not powers

of 2. First, if m divides u then our approach naturally extends to defining 7z (x) = L%J and
mr(x) = m(z) mod u/m, and the exact same analysis holds. Second, if m does not divide u, then
it seems tempting to artificially increase the universe to a universe of size v’ < u + m such that
m divides u'. However, when u is very small compared to n (specifically, when u < 2n), this may
significantly hurt the space consumption of our construction. Therefore, instead of increasing the
size of the universe, we decrease the size of the universe to v’ > u — m by ignoring at most m — 1
elements, such that m divides u’. Then clearly (1:;) < (z), and therefore the space consumption
is not hurt. However, we need to deal with the deleted elements separately if we ever encounter
them. The number of such elements is less than m, which is significantly smaller than the number
of elements in the second level, which is en/16. Therefore we can simply store these elements in

the second level without affecting the performance of the construction.

5.1.2 The Bins in the First-Level Table

We follow the general approach presented in Section 4 to guarantee that the update and lookup
operations on the first-level bins are performed in constant time that is independent of the size of
the bins (and thus independent of €). Depending on the ratio between the size of the universe u
and the number of elements n, we present hashing schemes that satisfy the two properties stated
in the beginning of Section 4. Our task here is a bit more subtle than in Section 4 since we must
guarantee that the descriptions of the hash functions inside the bins (and any global lookup tables
that are used) do not occupy too much space compared to the information-theoretic bound. This
puts a restriction on the size of the bins. We consider two cases (these cases are not necessarily
mutually exclusive):

Case 1: u < n - 208 n)? for some B < 1. In this case we store all elements in a single word
using the information-theoretic representation, and use lookup tables to guarantee constant
time operations. Specifically, recall that the elements in each bin are now taken from a

17

universe of size u/m, and each bin contains at most d elements. Thus, the content of a
bin can be represented using [log (“/dm)] bits. Insertions and deletions are performed using a
global lookup table that is shared among all bins. The table represents a function that receives

as input a description of a bin, and an additional element, and outputs an updated description

for the bin. This lookup table can be represented using 2'°¢ ("4 1+ Tog 521 [log (“{imﬂ bits.

u/m u/m
Similarly, lookups are performed using a global table that occupies gfog (*4")1+Mlog “G=1 pits.

These force two restrictions on d. First, the description of a bin has to fit into one memory
word, to enable constant-time evaluation using the lookup tables. Second, the two lookup
tables have to fit into at most, say, (¢/6) - nlog(u/n) bits. When assuming that v < n -
200sm)” for some B < 1, these two restrictions allow d = O((logn)'=?). Recall that d =

O(log(1/€)/€?), and this implies that ¢ = <%).

Case 2: u > n - 20°8")” for some B < 1. In this case we use the scheme described in Section
4.1. In every bin the pairwise independent function f can be represented using 2[log(u/m)]|
bits (as opposed to 2[logu] bits in Section 4.1), and the function g can be represented
using 3d[logd| bits (as in Section 4.1). Summing these over all m bins results in O(n/d -
log(u/n) + nlogd) bits, and therefore the first restriction is that the latter is at most, say,
(¢/12) - nlog(u/n) bits. Assuming that u > n - 20°6™” for some 8 < 1 (and recall that

d = O(log(1/€)/€?)) this allows ¢ = Q (hggling)g)

In addition, as discussed in Section 4.1, the scheme requires global lookup tables that occupy
a total O(23d1oed+2logd . 1og d) bits, and therefore the second restriction is that the latter is
again at most (¢/12) - nlog(u/n) bits. This allows d = O(logn/loglogn), and therefore € =

O ((loglosn V2 Thus, in thi n deal with e = Q [m loglogn ~(loglogn 2
e . Thus, s case we can deal with e = X | {ozni? 2 | logn .

An essentially optimal trade off (asymptotically) between these two cases occurs for § = 1/3,

. /2 . .
which allows € = (%) in the first case, and € = Q (ﬁ%) in the second case. There-

fore, regardless of the ratio between u and n, our construction can always allow € =) (dgil%).

5.1.3 The Second Level: Permutation-based Cuckoo Hashing

First of all note that if u > n'™® for some constant o < 1, then logu < (1/a + 1)log(u/n), and
therefore we can allow ourselves to store aen overflowing elements using logu bits each as before.
For the general case, we present a variant of the de-amortized cuckoo hashing scheme that is based
on permutations, where each element is stored using roughly log(u/n) bits instead of logu bits®.

Recall that cuckoo hashing uses two tables T} and Tb, each consisting of r = (1 + §)¢ entries for
some small constant & > 0 for storing a set S C U of at most £ elements, and two hash functions
hi,he : U — [r]. An element x is stored either in entry hj(x) of table T} or in entry ho(z) of table
T5. This naturally defines the cuckoo graph, which is the bipartite graph defined on [r] x [r] with
edges {(hi(x), ha(z))} for every z € S.

We modify cuckoo hashing to use permutations as follows (for simplicity we assume that u and
r are powers of 2, but this is not essential?). Given two permutations m; and 7 over U, we define
h1 as the left-most log r bits of w1, and ho as the left-most log r bits of mo. An element x is stored

8There is also an auxiliary data structure (a queue) that contains roughly logn elements, each of which can be
represented using log u bits.
9More generally, as discussed in Section 5.1.1, it suffices that r divides u. The choice of r is flexible since the space

18

either in entry hj(x) of table T using the right-most log(u/r) bits of 71(x) as its new identity,
or in entry ha(z) of table T using the right-most log(u/r) bits of ma(x) as its new identity. The
update and lookup procedures are naturally defined as before. Note that the permutations m; and
w9 have to be easily invertible to allow moving elements between the two tables, and this is satisfied
by our constructions of k-wise d-dependent permutations in Section 5.3. We now argue that by
slightly increasing the size r of each table, the de-amortization of cuckoo hashing (and, in particular,
cuckoo hashing itself) still has the same performance guarantees when using permutations instead
of functions. The de-amortization of [ANS09] relies on two properties of the cuckoo graph:

1. With high probability the sum of sizes of any log ¢ connected components is O(log ¢).
2. The probability that there are at least s edges that close a second cycle is O(r~*).

These properties are known to be satisfied when h; and he are truly random functions, and here
we present a coupling argument showing that they are satisfied also when h; and hsy are defined
as above using truly random permutations. Our argument relies on the monotonicity of these
properties: if they are satisfied by a graph, then they are also satisfied by all its subgraphs. We
prove the following claim:

Claim 5.3. Let { = [en/16] and r = [(1 + 0)(1 + €){] for some constant 0 < § < 1. There ezists
a joint distribution D = (Gy, f,,Gr,ms) Such that:

o Gy, 1, is identical to the distribution of cuckoo graphs over [r]x[r] with [(14€)l] edges, defined
by h1 and ha that are the left-most logr bits of two truly random functions fi, fo : U — U.

® G\ m is identical to the distribution of cuckoo graphs over [r] x [r] with { edges, defined by
h1 and ho that are the left-most logr bits of two truly random permutations my,mo : U — U.

o With probability 1 — e~ ") ouver the choice of (G fo, Grimo) < D, it holds that G, x, s a
subgraph of Gy, f,.

Proof. Let S C U be a set containing ¢ elements. We describe an iterative process for adding
¢ = [(1+ €)l] edges one by one to the cuckoo graph on [r] x [r] defined by truly random functions
f1, fo : U — U (this specifies the distribution Gy, r,). During this process we identify the edges that
correspond to the subgraph defined by truly random permutations 71,72 : U — U (this specifies
the distribution G, r,).

The process consists of several phases, where at the beginning the values of fi, fo, 71, and m9
are completely undefined. In the first phase we go over all the elements of S (say, in lexicographical
order), and for each element x € S we sample the two values fi(x), fa(z) € U uniformly at random
and independently of all previous choices. If the value fi(x) does not collide with any previously
defined value 71 (2’), and the value fo(z) does not collide with any previously defined value ma(z’),
then we define m1(z) = f1(z) and ma(z) = fo(x). In addition, we add the edge (hq(zx),ha(z)) to
the cuckoo graph, where hy and ho are the left-most logr bits of fi; and fo, respectively. If there
is a collision in at least one of fi(z) and fa(z), then we still add the edge (hi(x),ha(x)), but do
not define the values 7 (x) and ma(x), and x is moved to the second phase, and so on. If we have
completed the process of defining the values of 7 and 7 on S by adding only ¢ < ¢ edges to the
graph, then we add ¢ —t edges uniformly at random and halt. Otherwise, if we have already added

consumption of the second level should be O(en). With our choice of m and r, we can increase 7 to r’ < r +m such
that m will divide 7, and then decrease u to u’ > u—r’ such that r’ will divide u’ (effectively ignoring at most O(en)
elements that are placed in the second level if ever encountered, as suggested in Section 5.1.1).

19

¢ edges and did not complete the process of defining the values of 71 and 7 on S, then we define
71 and 79 uniformly at random (as permutations) on the remaining elements.

It is straightforward that the resulting f; and fo are truly random functions, and the resulting
w1 and 7o are truly random permutations. Moreover, as long as we completed the process of
defining the values of m; and 3 on S by adding at most £’ edges, then the graph defined by 7 and
o is contained in the graph defined by f; and fs. Thus, it only remains to prove that with high
probability at most ¢ edges are required for defining 7, and w5 on S.

Observe that the number of edges needed for defining 71 and w2 on S is dominated by the sum
of ¢ ii.d. geometric random variables with expectation 1 + €/2. Indeed, for every element = € S
denote by Z, the random variable corresponding to the number of edges that are sampled until
successfully defining 71 (z) and mo(z). At any point in time the permutations 7 and w9 are defined
on at most ¢ elements, and therefore a union bound implies that the probability of collision with
a previously defined value is at most 2¢/u < €/16, and this holds independently of all the other
samples. Therefore, the expectation of each Z, is at most 1/(1 —€/16) < 14 ¢€/2, and we can treat
these random variables as completely independent. Therefore, a concentration bound for the sum
of ¢ i.i.d. geometric random variables (also known as the negative binomial distribution'’) with
expectation 1 + ¢/2 implies that with probability 1 e~ U = 1 — =AU their sum does not
exceed ¢/ = [(1+ €)l]. |

5.1.4 The Total Memory Utilization

We now compute the total number of occupied bits by considering the different parts of our con-
struction. In the first level there are m = [(1+¢)n/d] bins each storing at most d = O(log(1/¢)/e?)
elements. The representation of the bins depends on the ratio between u and n as considered above.
In both cases we showed that the overhead of describing the hash functions of the bins and the
global lookup tables is at most €/3/6 bits. We now consider the two cases separately:

Case1: u<n- 2(0gn)? for some B < 1. In this case the elements inside each bin are repre-
sented using [log (u/ mﬂ bits, and therefore the total number of bits occupied by the elements

in all m bins is
o ()] < ())

log <n1~jd> (5.1)

IN

IN

U 2n
<1 -
- <(1+6) d
u 2
< log +en (5.2)
n
= (u) +elog u)n+e2n
n n
U U
<lo <>+elog<>+en
n n
<(l+e+é)B,

where Equation (5.1) follows from the inequality (Zi)(gj) < (Ziiz,;), and Equation (5.2)

198ee, for example, [DP09, Problem 2.4].

20

follows from the fact that

n

(1) (I+e)n)---(n+1)

n

(on) _ (@=n) - (a1 +gn+1) _ (5"

Case 2: u > n - 20°60)” for some B < 1. In this case the elements inside each bin are repre-
sented using dlog(u/m) bits, and therefore the total number of bits occupied by the elements
in all m bins is

(1+¢€)n

d

e)nlogg + {(1 4—e)nlogd+dlogE +dlogd}
n n

IN

m-d-log = +1>-d-(1og“+1ogd)
m n

+

4—e)nlogg—i—e-nlogE (5.3)
n n

+

where Equation (5.3) follows from the restriction € = Q(loglogn/(logn)?) that is assumed in
this case.

Finally, the second level uses at most eB bits, and therefore the total number of bits used by
our construction is at most (1 + 3¢)B.

5.2 A Scheme based on k-wise d-dependent Permutations

We eliminate the need for truly random permutations by first reducing the problem of dealing
with n elements to several instances of the problem on n® elements, for some o < 1. Then, for
each such instance we apply the solution that assumes truly random permutations, but using a
k-wise d-dependent permutation, for & = n® and 6 = 1/poly(n), that can be shared among all
instances. Although the following discussion can be framed in terms of any small constant o < 1,
for concreteness we use a ~ 1/10.

Specifically, we hash the elements into m = n%19 bins of size at most d = n'/10 4 n3/40 each,
using a permutation w : Y — U sampled from a collection II of one-round Feistel permutations,
and prove that with overwhelming probability there are no overflowing bins. The collection II is
defined as follows. For simplicity we assume that u and m are powers of 2, and then we explain
how to deal with the more general case. Let F be a collection of k’-wise independent functions
f 2 {0, 1}leew/m) _ fo 1}o8™ where k' = O(n'/?Y), with a short representation and constant
evaluation time (see Section 2). Given an input = € {0,1}'°8% we denote by z, its left-most logm
bits, and by x g its right-most log(u/m) bits. For every f € F we define a permutation m = 7y € II
by m(z) = (xr @ f(zgr),zr). Any element z is mapped to the bin 7y (x) = 1 ® f(xr), and is
stored there using the identity mr(z) = xr. A schematic diagram is presented in Figure 3.

21

log m bits log (u/m) bits

s N

Xr | | Xr

Y
?«f

[0 | [M) |

s

Figure 3: The one-round Feistel permutation used in our construction.

Then, in every bin we apply the scheme from Section 5.1 that relies on truly random per-
mutations, but using three k-wise d-dependent permutations that are shared among all bins (re-
call that the latter scheme requires three permutations: one for its first-level hashing, and two
for its permutation-based cuckoo hashing that stores the overflowing elements)!!. By setting
k = n!/10 4 p3/40 it holds that the distribution inside every bin is d-close in statistical distance
to that when using truly random permutations. Therefore, Lemma 5.2 and Claim 5.3 guarantee
that these permutations provide the required performance guarantees for each bin with probability
1 — (27«{gn) 4 §) =1 — 1/poly(n). Thus, applying a union bound on all m bins implies that our
construction provides the same performance guarantees as the one in Section 5.1 with probability
1 —1/poly(n), for an arbitrary large polynomial.

We note that a possible (but not essential) refinement is to combine the queues of all m bins.
Recall that each bin has two queues: a queue for its de-amortized cuckoo hashing (see Section 3),
and a queue for its first-level bins (see Section 4). An analysis almost identical to that of [ANS09]
(for the de-amortized cuckoo hashing) and of Section 4 (for the first-level bins) shows that we can
in fact combine all the queues of the de-amortized cuckoo hashing schemes, and all the queues of
the first-level bins.

We are only left to prove that with high probability no bin contains more than d = n/1%+n
elements:

3/40

Claim 5.4. Fiz u and n < u, let m = n%1°, and let F be a collection of k' -wise independent
functions f : {0, 1}ls@/m) 5 [0 1}l08™ for k' = |nl/20/el/3|. For any set S C {0,1}1°8% of size
n, with probability 1 —2-“1°8") guer the choice of f € F, when using the function x — x1, & f(xzr)
for mapping the elements of S into m bins, no bin contains more than n'/10 + n3/40 elements.

Proof. Without loss of generality we bound the number of elements that are mapped into the first
bin, and the claim then follows by applying the union bound over all m bins. Given a set S of size
n we partition it into disjoint subsets Si,...,S; according to the xp values of its elements (i.e.,
two elements belong to the same S; if and only if they share the same zp value). Any element x
is mapped into the bin zy @ f(zg), and therefore from each subset S; at most one element can
be mapped into the first bin. For every i € [t] denote by Y; the indicator of the event in which
an element of S; is mapped into the first bin, and let Y = 37,1, ¥;. Then for every i € [t] it

holds that E(Y;) = |S;|/m, and thus E(Y) = n/m = n'/19. Since each subset S; corresponds
to a different xr value, we have that the Y;’s are k’-wise independent. Therefore, we can apply
a Chernoff bound for random variables with limited independence due to Schmidt et al. [SSS95,

1When dealing with a universe of size u < n'*7 for a small constant v < 1, we can even store three truly random
permutations, but this solution does not extend to the more general case where u/m might be rather large.

22

Theorem 5.1.a]. Their bound guarantees that for independence k' = L(n_1/40)2 : nl/lo/el/ﬂ, the
n1/20)

probability that ¥ > n!/10 4 n3/40 is at most e K/2] — ¢=SU .
|

Finally, we compute the total space consumption of the construction. The representations of
the k’-wise independent function and the three k-wise d-dependent permutations require only a
negligible number of bits compared to eB. In addition, the scheme uses m = n%10 bins, each
containing at most d = n'/10 4+ n3/40 elements that are represented with (14€)log (“{im) bits using
the scheme from Section 5.1. Therefore, their space consumption is at most

m-(1+¢)log (U/dm> = (L+e)log <<uilm>m)

e 2

where Equation (5.4) follows from the inequality (Zi) (Zz) < (gifg), and Equation (5.5) follows
from the fact that

((que)n) B (u—n)-(u—(14+€en+1) < <g>en
() (14+€e)n)---(n+1) —\n '

We now explain how to deal with the more general case in which v and m are not powers
of 2. In fact, m can be chosen as the smallest power of two that is larger than n?/10 (and d is
then adapted accordingly), and therefore we only need to handle u. Dealing with the one-round

Feistel permutation is similar to Section 5.1.1. If m divides w then the construction extends to
m(x) = (xr + f(rr) mod m,zR), where zp = Lu/imJ and g = x mod u/m. If m does not divide

u, then we decrease the size of the universe to u/ > u — m by ignoring at most m — 1 elements,
such that m divides u/. We store these ignored elements (if ever encountered) using a separate
de-amortized cuckoo hashing scheme. There are less than m < 2n%/10 such elements, and therefore
the additional space consumption is only O(n?%logu) = O(n%1%logn) (recall that we can always
assume that u < n¢ for a sufficiently large constant ¢ > 1, by hashing the universe into a set of
size n¢ using a pairwise independent hash function).

Dealing with the bins depends on the ratio between u and n (recall that inside the bins the
elements are taken from a universe of size u/m). If u < n'*? for some small constant v < 1, then
in fact we can afford to explicitly store three truly random permutations over a universe of size
u/m and continue exactly as in Section 5.1.1. In addition, if u > n'*® then the space consumption
in each of the bins is in fact (1 + o(1))mlog(u/m) (see Case 2 in Section 5.1.4), and therefore we
can allow ourselves to increase the size of the universe to «' which is the smallest power of 2 that
is larger than u (v’ < 2u and this hardly affects the space consumption). Now both u' and m

23

are powers of two, and therefore u'/m is a power of 2, which means that we can use the k-wise
d-dependent permutations described in Section 5.3.

5.3 k-Wise §-Dependent Permutations with Short Descriptions and Constant Evalu-
ation Time

There are several known constructions of k-wise d-dependent functions with short descriptions and
constant evaluation time (see Section 2). Naor and Reingold [NR99, Corollary 8.1], refining the
framework of Luby and Rackoff [LR88], showed how to construct k-wise ¢’-dependent permutations
from k-wise d-dependent functions. In terms of description length, each permutation in their col-
lection consists of two pairwise independent permutations, and two k-wise d-dependent functions.
Similarly, in terms of evaluation time, their construction requires two evaluations of pairwise inde-
pendent permutations and two evaluations of k-wise d-dependent functions. Thus, by combining
these results we obtain the following corollary:

Corollary 5.5 ([NR99, Sie04]). For any n, w = O(logn), and constant ¢ > 1, there exists a
polynomial-time algorithm outputting a collection I1 of permutations over {0, 1}* with the following
guarantees:

1. With probability 1 — n=¢ the collection 11 is k-wise d-dependent, where k = n® for some
2 2
constant o < 1 (that depends on n and w), and 6 = T’jﬁ + g—w

2. Any permutation © € II can be represented using n® bits, for some constant « < < 1, and
evaluated in constant time in the word RAM model.

As discussed in Section 2, the restriction to a polynomial-size domain does not hurt the gener-
ality of our results: in our applications the domain can always be assumed to be of sufficiently large
polynomial size by using a pairwise (almost) independent function mapping it to a set of polyno-
mial size without any collisions with high probability. In addition, for our schemes we need to use
§ = 1/poly(n), which might be significantly smaller than k2/2%/2. Kaplan, Naor, and Reingold
showed that composing ¢ permutations that are sampled from a collection of k-wise d-dependent
permutations results in a collection of k-wise (O(d))!-dependent permutations. Specifically, given
a collection II of permutations and an integer ¢, let II* = {m10---0 Tt}my,...mell, then:

Theorem 5.6 ([KNRO09]). Let II be a collection of k-wise d-dependent permutations, then for any
integer t, II' is a collection of k-wise ((28)")-dependent permutations.

Finally, we note that the above corollary shows that we can deal with roughly any k < 2v/4
(in addition to the restriction k = n® where the constant « provided by Siegel’s construction).
More generally, for any constant 0 < 7 < 1/2, Naor and Reingold presented a variant of their
constructions that allows k < 2@(1/2-7) that consists of essentially 1 /7 invocations of the k-wise
independent functions. This generalization, however, is not required for our application.

5.4 Using More Efficient Hash Functions

As discussed in Section 2, whenever we use k-wise independent functions in our construction (for
k = n® for some constant 0 < « < 1), we instantiate them with Siegel’s construction [Sie04]
and it simplification due to Dietzfelbinger and Rink [DR09]. The approach underlying Siegel’s
construction is currently rather theoretical, and for the case of full independence simpler and more
efficient constructions were proposed by Dietzfelbinger and Woelfel [DWO03] following Pagh and
Pagh [PP08]. These constructions, however, provide a weaker guarantee than k-wise independence:

24

For any specific set S of size k, there is an arbitrary polynomially small probability of failure (i.e.,
choosing a “bad” function for this set), but if failure does not occur, then a randomly chosen
function is fully random on S.

In what follows we prove that our scheme can in fact rely on such a weaker guarantee, resulting
in significantly more efficient instantiations. Specifically, we show that Theorem 5.1 holds even
when instantiating our scheme with the functions of Dietzfelbinger and Woelfel [DWO03] (i.e., the
scheme is exactly the same one, except for the hash functions). There are two applications of k-
wise independent functions in our scheme. The first is the one-round Feistel permutation used for
mapping the elements into first-level bins of size roughly n® each. The second is the construction
of k-wise d-dependent permutations which are used for handling the elements insides the first-level
bins. We deal with each of these applications separately.

Application 1: one-round Feistel permutation. In this case we need to prove that Claim 5.4
holds even when the collection F of functions satisfies the weaker randomness guarantee discussed
above. The main difference is that now the error probability will be 1/poly(n) for any pre-specified
polynomial, instead of 278" a5 in Claim 5.4. Note that we can allow ourselves to even use
k = n/log?n in the construction of [DW03], since such functions will be described using O(n/ logn)
bits (see Section 2) which do not hurt our memory consumption. We prove the following claim:

Claim 5.7. Fiz any integers u and n < u, let m = n%10, and let F be a collection of functions

f o {0, 1Yosw/m) 10 1}o8™ with the following property: for any set S C {0,1}°8% of size
k=mn/ log?n it holds that with probability 1 — n=¢ the values of a randomly chosen f € F are
uniform on S'. Then, for any set S C {0,1}1°8% of size n, with probability 1 — n= (D over the
choice of f € F, when using the function x — xp ® f(xr) for mapping the elements of S into m
bins, no bin contains more than n'/1° 4+ n'/2%logn elements.

Proof. Given a set S of size n, we partition it arbitrarily to n/k = log?n subsets Si,.. s Sk
of size k = n/ log? n each (for simplicity we assume that k divides m, but this is not essential for
our proof). Then, with probability at least 1 — logi”, it holds that a randomly chosen f € F
is uniform on each of these subsets (note, however, that the values on different subsets are not
necessarily independent). In this case, the same analysis as in Claim 5.4 (this time using a Chernoff
bound for full independence), shows that with probability 1 — 2—«(0gn) 16 bin contains more than

1
n97’j10 + (ﬁ) elements from each subset. Therefore, summing over all n/k subsets, the number

of elements mapped to each bin is at most

n k k 12 1/10 1/20

Application 2: first-level bins. This case is much simpler since all we need is a function that
behaves almost randomly on the specific sets of elements that are mapped to each bin (recall that
each bin contains roughly n® elements). Therefore, the type of guarantee provided by [DWO03]
together with a union bound over all bins are clearly sufficient. We obtain the following corollary
as an alternative to Corollary 5.5:

Corollary 5.8 ([NR99, DWO03]). For any n, k < n, w = O(logn), and constant ¢ > 1, there
exists a polynomial-time algorithm outputting a collection 11 of permutations over {0,1}" with the
following guarantees:

25

1. For any set S C {0,1}" of size k, with probability 1 —n=¢ for a randomly chosen permutation
w € 1I, the distribution of the values of w on S is d-close to the distribution of the values of

. 2 2
a truly random permutation on S, where 6 = 25/2 g—w

2. Any permutation m € II can be represented using O(klogn) bits, and evaluated in constant
time in the word RAM model.

On one hand the above corollary is weaker than Corollary 5.5 in terms of the guarantee on
the randomness, as discussed in Section 2. On the other hand, however, when setting kK = n® the
number of bits required to describe a function is only O(n®logn) compared to n? for some constant
a < f < 1in Corollary 5.5. In turn, this allows to use slightly larger first-level bins which yields
a better space consumption. In addition, the construction stated in the above corollary enjoys the
same advantages of [DWO03] over [Sie04], and in particular a better evaluation time.

We note that as in Section 5.3, Theorem 5.6 can be applied to reduce the value of § in the
above corollary to any polynomially small desirable value, by composing a constant number of such
permutations (as long as k < 2@(1/4=7) for some constant 0 < v < 1/4).

6 Concluding Remarks and Open Problems

Implications of our constructions for the amortized setting. We note that our construc-
tions offer various advantages over previous constructions even in the amortized setting, where
one is not interested in worst-case guarantees. In particular, instantiating our dictionary with the
classical cuckoo hashing [PR04] (instead of its de-amortized variant [ANS09]) already gives a loga-
rithmic upper bound with high probability for the update time. This property is satisfied by the
classical cuckoo hashing, but is not known to be satisfied by its generalizations. Additionally, we
obtain a space consumption of (1 4 €)n memory words for a sub-constant e.

On the practicality of our schemes. In this paper we concentrated on showing that it is
possible to obtain a succinct representation with worst-case operations. The natural question is
how applicable these methods are. There are a number of approaches that can be applied to reduce
the overflow of the first-level bins. First, we can use the two-choice paradigm (or, more generally, d-
choice) in the first-level bins instead of the single function we currently employ. Another alternative
is to apply the generalized cuckoo hashing [DWO7] inside the first-level bins, limiting the number
of moves to a small constant, and storing the overflowing elements in de-amortized cuckoo hashing
as in our actual construction. Experiments we performed indicate that these approaches result in
(sometimes quite dramatic) improvements. The experiments suggest that for the latter variant,
maintaining a small queue of at most logarithmic size, enables us even to get rid of the second-level
cuckoo hashing: i.e., an element can reside in one of two possible first-level bins, or in the queue.
Another natural tweak is using a single queue for all the de-amortizations together. Finally,
while the use of chopped permutations introduces only a negligible overhead, the use of an inter-
mediate level seems redundant and we conjecture that better analysis would indeed show that.

Clocked adversaries. The worst-case guarantees of our dictionary are important if one wishes
to protect against “clocked adversaries”, as mentioned in Section 1. This in itself can yield a
solution in the following sense: have an upper bound « on the time each memory access takes, and
then make sure that all requests are answered in time exactly a times the worst-case upper bound
on the number of memory probes. Such an approach, however, may be quite wasteful in terms of
computing resources, since we are not taking advantage of the fact that some operations may be

26

processed in time that is below the worst-case guarantee. In addition, this approach ignores the
memory hierarchy, that can possibly be used to our advantage.

Lower bounds for dynamic dictionaries. The worst-case performance guarantees of our con-
structions are satisfied with all but an arbitrary small polynomial probability over the randomness of
their initialization phase. There are several open problems that arise in this context. One problem
is to reduce the failure probability to sub-polynomial. The main bottleneck is the approximation
to k-wise functions or permutations. Another bottleneck is the lookup procedure of the queue (if
the universe is of polynomial size then we can in fact maintain a small queue deterministically).
Another problem is to identify whether randomness is needed at all. That is, whether it is possible
to construct a deterministic dictionary with similar guarantees. We conjecture that randomness
is necessary. Various non-constant lower bounds on the performance of deterministic dynamic
dictionaries are known for several models of computation [DKM*™94, MNR90, Sun91]. Although
these models capture a wide range of possible constructions, for the most general cell probe model
[Yao81] it is still an open problem whether a non-constant lower bound can be proved!2.

Extending the scheme to smaller values of €. Recall that in the de-amortized construction
of perfect hashing inside the first-level bins (Section 4), we suggested a specific scheme that can
handle € = Q((loglogn/logn)/?). This restriction on e was dictated by the space consumption of
the global lookup tables together with the hash functions inside each bin. The question is how small
can € be and how close to the information theoretic bound can we be, that is for what function f
can we use B + f(n,u) bits. A possible approach is to use the two-choice paradigm for reducing
the number of overflowing elements from the first level of our construction, as already mentioned.

Constructions of k-wise almost independent permutations. In Section 5.3 we observed
a construction of k-wise d-dependent permutations with a succinct representation and a constant
evaluation time. Two natural open problems are to allow larger values of k (the main bottlenecks
are the restrictions k < u!'/2 in [NR99] and k < n® in [Sie04]), and a sub-polynomial § (the main
bottleneck is the failure probability of Siegel’s construction [Sie04]).

Supporting dynamic resizing. In this paper we assumed that there is a pre-determined bound
on the maximal number of stored elements. It would be interesting to construct a dynamic dictio-
nary with constant worst-case operations and full memory utilization at any point in time. That is,
at any point in time if there are £ stored elements then the dictionary occupies (14 o(1))¢ memory
words (even more challenging requirement may be to use only (1 + o(1))B(u,¥) bits of memory,
where B(u, /) is the information-theoretic bound for representing a set of size ¢ taken from a uni-
verse of size u). This requires designing a method for dynamic resizing that essentially does not
incur any noticeable time or space overhead in the worst case. We note that in our construction
it is rather simple to dynamically resize the bins in the first-level table, and this provides some
flexibility.

Dealing with multisets. A more general variant of the problem considered in this paper is
constructing a dynamic dictionary that can store multisets of n elements taken from a universe of

size u. In this setting the information-theoretic lower bound is log (“Zn) bits. Any such dictionary

12There is an unpublished manuscript of Rajamani Sundar from 1993 titled “A lower bound on the cell probe
complexity of the dictionary problem”, reported by Miltersen [Mil99] and Pagh [Pag02]. To the best of our knowledge,
the nature of this result is currently unclear.

27

with a succinct representation and constant-time operations in the worst case can be used to
construct a Bloom filter alternative that can also support deletions (similar to Appendix A). This
will improve the result obtained by the construction of Pagh et al. [PPRO05] that supports deletions,
but guarantees constant-time operations only on amortized, and not in the worst case.

Acknowledgments

We thank Rasmus Pagh and Udi Wieder for many useful remarks and suggestions.

References

[ANS09]

[Blo70]

[BMO99]

[BMO1]

[BMO3]

[CFG*78]

[ChvT79]

[CKR*04]

[CSWO07]

[CVW+92]

[DDM05]

Y. Arbitman, M. Naor, and G. Segev. De-amortized cuckoo hashing: Provable
worst-case performance and experimental results. In Proceedings of the 36th Inter-
national Colloquium on Automata, Languages and Programming, pages 107-118,
2009.

B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Commu-
nications of the ACM, 13(7):422-426, 1970.

A. Brodnik and J. I. Munro. Membership in constant time and almost-minimum
space. SIAM Journal on Computing, 28(5):1627-1640, 1999.

A. Z. Broder and M. Mitzenmacher. Using multiple hash functions to improve 1P
lookups. In INFOCOM, pages 1454-1463, 2001.

A. 7. Broder and M. Mitzenmacher. Network applications of Bloom filters: A
survey. Internet Mathematics, 1(4), 2003.

L. Carter, R. W. Floyd, J. Gill, G. Markowsky, and M. N. Wegman. Exact and
approximate membership testers. In Proceedings of the 10th Annual ACM Sympo-
sium on Theory of Computing, pages 5965, 1978.

V. Chvatal. The tail of the hypergeometric distribution. Discrete Mathematics,
25(3):285-287, 1979.

B. Chagzelle, J. Kilian, R. Rubinfeld, and A. Tal. The Bloomier filter: an efficient
data structure for static support lookup tables. In Proceedings of the 15th Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 30-39, 2004.

J. A. Cain, P. Sanders, and N. C. Wormald. The random graph threshold for
k-orientiability and a fast algorithm for optimal multiple-choice allocation. In Pro-
ceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms, pages
469-476, 2007.

C. Courcoubetis, M. Y. Vardi, P. Wolper, and M. Yannakakis. Memory-efficient
algorithms for the verification of temporal properties. Formal Methods in System
Design, 1(2/3):275-288, 1992.

K. Dalal, L. Devroye, E. Malalla, and E. McLeis. Two-way chaining with reassign-
ment. SIAM Journal on Computing, 35(2):327-340, 2005.

28

[Dem07]

[DGM*09]

[DKM*94]

[DMO09]

[DMadH90)

[DMadHP*06]

[DPOS]

[DP09)

[DRO9)]

[DW03]

[DWO07]

[FKS84]

[FMO9]

[FMMO09]

[FP09)

E. Demaine. Lecture notes for the course “Advanced data structures”. Available
at http://courses.csail.mit.edu/6.851/spring07/scribe/lec21.pdf, 2007.

M. Dietzfelbinger, A. Goerdt, M. Mitzenmacher, A. Montanari, R. Pagh, and
M. Rink. Tight thresholds for cuckoo hashing via XORSAT. arXiv report
0912.0287v1, 2009.

M. Dietzfelbinger, A. R. Karlin, K. Mehlhorn, F. Meyer auf der Heide, H. Rohnert,
and R. E. Tarjan. Dynamic perfect hashing: Upper and lower bounds. SIAM
Journal on Computing, 23(4):738-761, 1994.

L. Devroye and E. Malalla. On the k-orientability of random graphs. Discrete
Mathematics, 309(6):1476-1490, 2009.

M. Dietzfelbinger and F. Meyer auf der Heide. A new universal class of hash
functions and dynamic hashing in real time. In Proceedings of the 17th International
Colloquium on Automata, Languages and Programming, pages 6-19, 1990.

E. D. Demaine, F. Meyer auf der Heide, R. Pagh, and M. Patragcu. De dictionariis
dynamicis pauco spatio utentibus (lat. On dynamic dictionaries using little space).

In Proceedings of the 7Tth Latin American Symposium on Theoretical Informatics,
pages 349-361, 2006.

M. Dietzfelbinger and R. Pagh. Succinct data structures for retrieval and appro-
ximate membership. In Proceedings of the 35th International Colloguium on Au-
tomata, Languages and Programming, pages 385—-396, 2008.

D. P. Dubhashi and A. Panconesi. Concentration of Measure for the Analysis
of Randomized Algorithms. Cambridge University Press, 2009.

M. Dietzfelbinger and M. Rink. Applications of a splitting trick. In Proceedings
of the 36th International Colloguium on Automata, Languages and Programming,
pages 354-365, 2009.

M. Dietzfelbinger and P. Woelfel. Almost random graphs with simple hash func-
tions. In Proceedings of the 35th Annual ACM Symposium on Theory of Computing,
pages 629-638, 2003.

M. Dietzfelbinger and C. Weidling. Balanced allocation and dictionaries with tightly
packed constant size bins. Theoretical Computer Science, 380(1-2):47-68, 2007.

M. L. Fredman, J. Komlés, and E. Szemerédi. Storing a sparse table with O(1)
worst case access time. Journal of the ACM, 31(3):538-544, 1984.

A. Frieze and P. Melsted. Maximum matchings in random bipartite graphs and the
space utilization of cuckoo hashtables. arXiv report 0910.5535v3, 2009.

A. Frieze, P. Melsted, and M. Mitzenmacher. An analysis of random-walk cuckoo
hashing. In 13th International Workshop on Randomized Techniques in Computa-
tion, pages 490-503, 2009.

N. Fountoulakis and K. Panagiotou. Sharp load thresholds for cuckoo hashing.
arXiv report 0910.5147v1, 2009.

29

http://courses.csail.mit.edu/6.851/spring07/scribe/lec21.pdf

[FPS*05]

[FRO7]

[Hoe63]

[Jan93]

[KMO7]

[KMW09]

[KNROY]

[Knu63]

[Knu9g]

[Koc96]

[LNO3]

[LP09)

[LP10]

[LRSS]

[Mil99]

[Mit02]

D. Fotakis, R. Pagh, P. Sanders, and P. G. Spirakis. Space efficient hash tables
with worst case constant access time. Theory of Computing Systems, 38(2):229—
248, 2005.

D. Fernholz and V. Ramachandran. The k-orientability thresholds for G, ,. In
Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 459-468, 2007.

W. Hoeffding. Probability inequalities for sums of bounded random variables. Jour-
nal of the American Statistical Association, 58(301):13-30, 1963.

S. Janson. Large deviation inequalities for sums of indicator variables. Technical
Report 34, Department of Mathematics, Uppsala University, 1993.

A. Kirsch and M. Mitzenmacher. Using a queue to de-amortize cuckoo hashing in
hardware. In Proceedings of the 45th Annual Allerton Conference on Communica-
tion, Control, and Computing, pages 751-758, 2007.

A. Kirsch, M. Mitzenmacher, and U. Wieder. More robust hashing: Cuckoo hashing
with a stash. SIAM Journal on Computing, 39(4):1543-1561, 20009.

E. Kaplan, M. Naor, and O. Reingold. Derandomized constructions of k-wise (al-
most) independent permutations. Algorithmica, 55(1):113-133, 20009.

D. E. Knuth. Notes on “open” addressing. Unpublished memorandum
(available at http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.
56.4899), 1963.

D. E. Knuth. The Art of Computer Programming. Volume 3: Sorting and
Searching, Second Edition. Addison-Wesley, 1998.

P. C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In Advances in Cryptology — CRYPTO ’96, pages 104-113,
1996.

R. J. Lipton and J. F. Naughton. Clocked adversaries for hashing. Algorithmica,
9(3):239-252, 1993.

E. Lehman and R. Panigrahy. 3.5-way cuckoo hashing for the price of 2-and-a-
bit. In Proceedings of the 17th Annual Furopean Symposium on Algorithms, pages
671-681, 2009.

S. Lovett and E. Porat. A lower bound for dynamic Bloom filters. Manuscript,
2010.

M. Luby and C. Rackoff. How to construct pseudorandom permutations from
pseudorandom functions. SIAM Journal on Computing, 17(2):373-386, 1988.

P. B. Miltersen. Cell probe complexity - a survey. In Proceedings of the 19th
Conference on the Foundations of Software Technology and Theoretical Computer
Science, Advances in Data Structures Workshop, 1999.

M. Mitzenmacher. Compressed Bloom filters. IEEE/ACM Transactions on Net-
working, 10(5):604-612, 2002.

30

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.56.4899
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.56.4899

[MNR90]

[NR99)]

[Pag99]

[Pag01]

[Pag02]

[Pan05]

[P&t0s]

[Por09]

[PPOS]

[PPRO5]

[PRO4]

[RRO3]

[Sie04]

[SSS95]

[Sun91]

[TOS10]

K. Mehlhorn, S. Naher, and M. Rauch. On the complexity of a game related to the
dictionary problem. SIAM Journal on Computing, 19(5):902-906, 1990.

M. Naor and O. Reingold. On the construction of pseudorandom permutations:
Luby-Rackoff revisited. Journal of Cryptology, 12(1):29-66, 1999.

R. Pagh. Hash and displace: Efficient evaluation of minimal perfect hash func-
tions. In Proceedings of the 6th International Workshop on Algorithms and Data
Structures, pages 49-54, 1999.

R. Pagh. Low redundancy in static dictionaries with constant query time. SIAM
Journal on Computing, 31(2):353-363, 2001.

R. Pagh. Hashing, randomness and dictionaries. PhD thesis, Department of
Computer Science, University of Aarhus, Denmark, 2002.

R. Panigrahy. Efficient hashing with lookups in two memory accesses. In Proceedings
of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 830-839,
2005.

M. Patragcu. Succincter. In Proceedings of the 49th Annual IEEE Symposium on
Foundations of Computer Science, pages 305-313, 2008.

E. Porat. An optimal Bloom filter replacement based on matrix solving. In Pro-
ceedings of the 4th International Computer Science Symposium in Russia, pages
263273, 2009.

A. Pagh and R. Pagh. Uniform hashing in constant time and optimal space. SIAM
Journal on Computing, 38(1):85-96, 2008.

A. Pagh, R. Pagh, and S. S. Rao. An optimal bloom filter replacement. In Pro-
ceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms, pages
823-829, 2005.

R. Pagh and F. F. Rodler. Cuckoo hashing. Journal of Algorithms, 51(2):122-144,
2004.

R. Raman and S. S. Rao. Succinct dynamic dictionaries and trees. In Proceedings
of the 30th International Colloguium on Automata, Languages and Programming,
pages 357-368, 2003.

A. Siegel. On universal classes of extremely random constant-time hash functions.
SIAM Journal on Computing, 33(3):505-543, 2004.

J. P. Schmidt, A. Siegel, and A. Srinivasan. Chernoff-Hoeffding bounds for ap-
plications with limited independence. SIAM Journal on Discrete Mathematics,
8(2):223-250, 1995.

R. Sundar. A lower bound for the dictionary problem under a hashing model. In
Proceedings of the 32nd Annual IEEE Symposium on Foundations of Computer
Science, pages 612-621, 1991.

E. Tromer, D. A. Osvik, and A. Shamir. Efficient cache attacks on AES, and
countermeasures. Journal of Cryptology, 23(1):37-71, 2010.

31

[Woe06] P. Woelfel. Maintaining external memory efficient hash tables. In 10th International
Workshop on Randomization and Computation, pages 508-519, 2006.

[Yao81] A. C.-C. Yao. Should tables be sorted? Journal of the ACM, 28(3):615-628, 1981.

[ZLPO0g] B. Zhu, K. Li, and R. H. Patterson. Avoiding the disk bottleneck in the data
domain deduplication file system. In Proceedings of the 6th USENIX Conference
on File and Storage Technologies, pages 269-282, 2008.

A Application of Small Universes: A Nearly-Optimal Bloom Filter Alternative

In this section we demonstrate an application of our succinctly-represented dictionary that uses
a rather small universe, for which the difference between using (1 + o(1))log (*) bits and using
(14 o(1))nlogu bits is significant. We consider the dynamic approximate set membership problem:
representing a set S of size n defined dynamically via a sequence of insertions, in order to support
lookup queries, allowing a false positive rate of at most 0 < § < 1, and no false negatives. That is,
the result of a lookup query for any element = ¢ S is correct with probability at least 1 — §, and
the result of a lookup query for any element x € S is always correct. In both cases the probability
is taken only over the randomness of the data structure. The information-theoretic lower bound
for the space required by any solution to this problem is nlog(1/d) bits, and this holds even in the
static setting where the set is given in advance [CFGT78].

This problem was first solved using a Bloom filter [Blo70], a widely-used data structure proposed
by Bloom (see the survey by Broder and Mitzenmacher [BM03] for applications of Bloom filters).
Bloom filters, however, suffer from various weaknesses, mostly notably are the dependency on ¢ in
the lookup time which is log(1/d), and the sub-optimal space consumption which is nlog(1/4)loge
bits. Over the years extensive research was devoted for improving the performance of Bloom filters
in the static case (e.g., [Mit02, DP08, Por09]), as well as for the closely related retrieval problem
(e.g., [CKRT04, DMadHP*06, DP0S]).

A general solution using a dictionary. Carter et al. [CFGT78] proposed a general method
for solving the above problem using any dictionary: given a set S = {z1,...,z,} C U, sample a
function h : U — [n/d] from a collection H of universal hash functions, and use the dictionary for
storing the set h(S) = {h(x1),...,h(x,)}. The correctness of the dictionary guarantees that the
result of a lookup query for any element = € S is always correct. In addition, for any element z ¢ S
is holds that

Pr[h(z) € h(S)] <> Pr(h(x) = h(z;)] =n- % =4
=1

Therefore, the result of a lookup query for any element = ¢ S is correct with probability at least
1 — ¢ over the choice of h € H. Note that in case that the dictionary supports insertions (as in our
case), then the elements of the set S can by provided one by one.

This approach was used by Pagh et al. [PPR05] who constructed an alternative to Bloom
filters by relying on the dictionary of Raman and Rao [RR03]. Their construction uses (1 +
o(1))nlog(1/6)+O(n+logu) bits of storage, guarantees constant lookup time which is independent
of 4, and supports insertions and deletions in amortized expected constant time (that is, they
actually solve a more general variant of this problem that deals with multisets). Another feature of
their construction, which is also shared by our construction, is the usage of explicit hash functions,
as opposed to assuming the availability of a truly random hash function as required for the analysis
of Bloom filters.

32

Using our succinctly-represented dictionary. Using our succinctly-represented dictionary
and the method of Carter et al. [CFG1 78] we immediately obtain an alternative to Bloom filters,
which uses (1 + o(1))nlog(1/) + O(n + logu) bits'3, guarantees constant lookup time which is
independent of §, and supports insertions in constant time (independent of §) in the worst case with
high probability. As pointed out in Section 1.1, for any sub-constant §, and under the reasonable
assumption that u < 20 the space consumption is (1 4+ o(1))nlog(1/§), which is optimal up to
an additive lower order term.

B Negatively Related Random Variables

In the proofs of Lemmata 3.2 and 5.2 we apply Chernoff bounds on the sum of indicator random
variables that are not independent, but are negatively related as defined by Janson [Jan93], who
showed that these bounds are indeed applicable in such a setting.

Definition B.1 ([Jan93]). Indicator random variables (I;)", are negatively related if for every
J € [m] there exist indicator random variables (J; ;)i"; defined on the same probability space (or
an extension of it), such that:

1. The distribution of (J; ;)i is identical to that of (/;);“; conditioned on I; = 1.
2. For every i # j it holds that J; ; < I;.

In the proof of Lemma 3.2 we consider an experiment in which n balls are mapped independently
and uniformly at random into m bins. For every i € [m] denote by I; the indicator of the event in
which the i-th bin contains at least ¢ balls, for some threshold ¢ (dealing with the case of bins with at
most ¢ balls is essentially identical). We now argue that the indicators (1;)[”; are negatively related
by defining the required indicators (J; ;)i for every j € [m]. Consider the following experiment:
map n balls into m bins independently and uniformly at random, and define (;)]*; accordingly.
If the j-th bin contains at least ¢ balls then define J; ; = I; for every i € [m]. Otherwise, denote
by T the number of balls in the j-th bin, and sample an integer 7" from the distribution of the
number of balls in the j-th bin conditioned on having at least ¢ balls in that bin. Choose uniformly
at random 7" — T balls from the balls outside the j-th bin, and move them to the j-th bin. Define
(Jij)i%, according to the current allocation of balls into bins (i.e., J; ; = 1 if and only if the i-th bin
contains at least ¢ balls). Then, the independence between different balls implies that the indicators
(Ji;)i~, have the right distribution, and that for every i # j it holds that J; ; < I; since we only
removed balls from other bins.

In the proof of Lemma 5.2 we consider a similar experiment where the mapping of balls into
bins is done using a chopped permutation 7 over . The above argument extends to this setting,
with the only difference that moving balls from one bin to another is a bit more subtle. Specifically,
for moving 7" — T balls to the j-th bin, we first randomly choose 7" — T values y1,...,yr—7 € U
that belong to the j-th bin (after the chopping operation) and their 7—! values are not among
the n balls (these y;’s correspond to empty locations in the j-th bin). Then, we randomly choose
Z1,...,xp_7 € U from the set of balls that were mapped into other bins, and for every 1 < ¢ <
T' — T we switch between the values of 7 on ; and 7! (y;).

13Specifically, the dictionary uses (1 + o(1))n log ("7/15) < (1+0(1))nlog(1/8) + O(n) bits, and the universal hash
function is described using 2[log u] bits.

33

	Introduction
	Our Contributions
	Related Work
	Paper Organization

	Preliminaries and Tools
	The Backyard Construction
	De-amortized Perfect Hashing: Eliminating the Dependency on epsilon
	A Specific Scheme for ...

	Matching the Information-Theoretic Space Bound
	A Scheme based on Truly Random Permutations
	First-Level Hashing Using Permutations
	The Bins in the First-Level Table
	The Second Level: Permutation-based Cuckoo Hashing
	The Total Memory Utilization

	A Scheme based on k-wise delta-dependent Permutations
	k-Wise delta-Dependent Permutations with Short Descriptions and Constant Evaluation Time
	Using More Efficient Hash Functions

	Concluding Remarks and Open Problems
	Application of Small Universes: A Nearly-Optimal Bloom Filter Alternative
	Negatively Related Random Variables

