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Abstract

We show how to efficiently construct a small probability space on n binary random

variables such that for every subset, its parity is either zero or one with “almost” equal

probability. They are called ϵ-biased random variables. The number of random bits needed

to generate the random variables is O(log n + log 1
ϵ ). Thus, if ϵ is polynomially small, then

the size of the sample space is also polynomial. Random variables that are ϵ-biased can be

used to construct “almost” k-wise independent random variables where ϵ is a function of k.

These probability spaces have various applications:

1. Derandomization of algorithms: many randomized algorithms that require only k-

wise independence of their random bits (where k is bounded by O(log n)), can be

derandomized by using ϵ-biased random variables.

2. Reducing the number of random bits required by certain randomized algorithms, e.g.,

verification of matrix multiplication.

3. Exhaustive testing of combinatorial circuits. We provide the smallest known family for

such testing.

4. Communication complexity: two parties can verify equality of strings with high prob-

ability exchanging only a logarithmic number of bits.

5. Hash functions: we can construct a polynomial sized family of hash functions such that

with high probability, the sum of a random function over two different sets is not equal.

∗A preliminary version of this paper appeared in the Proceedings of the 22nd Annual ACM Symposium on

Theory of Computing, Baltimore, Maryland (1990), pp. 213-223.
†Most of this work was done while the author was at the Computer Science Department, Stanford University,

Stanford, CA and supported by contract ONR N00014-88-K-0166.



1 Introduction

Randomness plays a significant role in computer science. However, it is often desirable to reduce

the amount of randomness required. The purpose of this paper is to construct small probability

spaces that approximate larger ones. Let x1, . . . , xn be {0, 1} Bernoulli random variables and

let Ω be the probability space associated with them. If the random variables are independent,

then Ω contains all 2n possible assignments. Our goal is to construct a much smaller probability

space that will behave similarly to Ω in certain respects. Such small probability spaces have

proved to be very useful.

One of the main approaches taken by previous researchers to reduce the size of the sample

space was to require only limited independence among the random variables (as opposed to full

independence). Our approach is different; it is based on the equivalence of the following two

conditions: (See [18] and [52]).

1. The random variables are independent and for all i, Prob[xi = 0] = Prob[xi = 1].

2. For every subset S ⊆ {1, . . . , n}, it is equally likely that the parity of the subset (i.e., the

number of “ones”) is either zero or one.

We are going to relax the second condition and construct a probability distribution such that

for every subset S ⊆ {1, . . . , n}, it is “almost” equiprobable that the parity of the subset is zero

or one. To be more precise, we require that for every subset S,∣∣∣∣∣Prob[∑
i∈S

xi = 0]− Prob[
∑
i∈S

xi = 1]

∣∣∣∣∣ ≤ ϵ

This quantity was called by Vazirani [52] the bias of the subset S. The cardinality of the sample

space we construct is 2O(log 1
ϵ
+logn). Hence, if ϵ is typically polynomially small, then the size of

the sample space is also polynomial.

We also define random variables that are k-wise ϵ-biased. For them, only the bias of sub-

sets that are smaller than k is guaranteed to be bounded by ϵ. We present a more efficient

construction for such random variables: the logarithm of the cardinality of the sample space

is O(log k + log log n+ log 1
ϵ ). In Section 5 we show how the kth moment of the sum of k-wise

ϵ-biased random variables can be bounded via the kth moment of the binomial distribution on

uniform independent Bernoulli variables. This is an important tool for analyzing the behavior

of the distribution of the sum.

We can use k-wise ϵ-biased random variables to construct k-wise δ-dependent random vari-

ables, i.e., variables such that the variation distance between the distribution of any subset of
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k variables and the uniform distribution (on k variables) is at most δ. Their construction is

described in Section 4.

The ϵ-biased random variables are constructed in three stages. In the first stage, we construct

a sample space F of random variables such that the bias of every subset S is bounded by some

constant. Sampling from F requires O(log n) random bits. In the second stage, F is sampled

l times (not necessarily independently), where l depends on ϵ. In the third stage, the ϵ-biased

random variables are generated by picking a linear combination of the assignments sampled in

the second stage. Constructing the probability space is described in Section 3.

Another interpretation of our result is via Fourier transforms. (See Section 2 for precise

definitions). For the uniform distribution, all the coefficients of its Fourier transform are zero,

except for the free coefficient. For an ϵ-biased distribution, the absolute value of each coefficient

is at most ϵ
2n .

Derandomizing algorithms has attracted much attention in recent years. For the purpose

of derandomization, our distribution can replace the uniform one in many cases, so as to allow

an exhaustive search for a good point in a polynomial-size sample space. We exemplify this by

providing a polynomial size sample space for the set balancing problem; this also yields an NC1

algorithm. A previous approach to derandomizing the set balancing problem [13, 39] was to first

construct an nO(logn) sample space, and then conduct a binary search for a good point. As a

result, their time bounds are worse. Another problem we address is finding a heavy codeword

in a linear code. Using ϵ-biased random variables, we provide the first NC algorithm to the

problem.

Another application of our probability distribution is for reducing the number of random bits

required for several randomized algorithms. Karp and Pippenger [32] suggested that random bits

can be viewed as a resource (just as time and space) which is best to use as little as possible. One

motivation to consider randomness as a resource is practical. Random bits are hard to produce

and devices that generate them, such as Geiger counters and Zener diodes are slow. Another

reason is from the complexity theoretic point of view: to provide a full scale of options between

an algorithm that is completely deterministic, and a randomized algorithm that consumes many

bits.

Examples of previous work in reducing the number of random bits in randomized algorithms

are [2, 11, 20, 28, 32, 33, 43, 47, 49]. Karloff and Raghavan [33] for example, studied several

randomized algorithms for selection and sorting and showed that they can be run successfully

when only O(log n) random bits are available.

In Section 7 we describe how to reduce the number of random bits for three problems. The

first one is matrix multiplication verification. Given three n × n matrices A, B and C, how
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can one verify that A · B = C without resorting to matrix multiplication. We show how to

do that in O(n2) time using O(log n) random bits, thus improving on a previous algorithm

of [26] that required O(n) random bits. We next show how Adi Shamir’s Boolean matrix

multiplication algorithm can be implemented by using O(log n) random bits without an increase

in the probability of error. The third problem is verifying n equalities of the form axi =

yi mod p where p is a prime. We show how to do that using only O(log n) random bits and n

multiplications, instead of n log p multiplications needed for testing each equality separately.

In Section 8 we show how to apply our construction to generate fault-diagnostic tests for

combinatorial circuits. A well known problem in that area is to construct a small collection of

assignments to inputs of a circuit such that for any k inputs, all possible configurations appear.

Using k-wise δ-dependent probability spaces, we can get the best explicit constructions. These

are optimal up to the constant factor in the exponent.

Our techniques can be used to minimize the communication complexity of protocols for

testing equality of two strings, while achieving a very low probability of error. Similarly, the

techniques can be applied to construct a small family of hash functions with the property that

summing the hash function over different sets yields a different value with high probability.

These two applications are discussed in Section 9.

In Section 10 we briefly survey recent papers that have used the constructions described in

this paper since it appeared in [42].

Independent of our work, Peralta [44] has considered ϵ-bias probability spaces as well, and

showed some applications to number theoretic algorithms. His construction is based on quadratic

residues and Weil’s Theorem.

2 Preliminaries and definitions

Let x = x1, . . . , xn be {−1, 1} random variables and D their joint probability distribution.

Definition 2.1 The bias of a subset S ⊆ {1, . . . , n} for a distribution D is defined to be,

biasD(S) =

∣∣∣∣∣ProbD
[∏
i∈S

xi = −1
]
− ProbD

[∏
i∈S

xi = 1

]∣∣∣∣∣
Definition 2.2 The variables x1, . . . , xn are ϵ-biased if for all S, biasD(S) ≤ ϵ. They are said

to be k-wise ϵ-biased if for all subsets S such that |S| ≤ k, biasD(S) ≤ ϵ.

Let U denote the uniform distribution and D(S) the distribution D restricted to the subset S.

The variation distance between two distributions D1 and D2 defined over the same probability
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space Ω is

||D1 −D2|| =
∑
ω∈Ω
|D1(ω)−D2(ω)|

Definition 2.3 The variables x1, x2, . . . , xn are defined to be k-wise δ-dependent if for all subsets

S such that |S| ≤ k,

||U(S)−D(S)|| ≤ δ

A similar definition was made by R. Ben-Nathan [12].

The set f : {−1, 1}n → ℜ of real functions on the n-dimensional cube forms a 2n−dimensional

real vector space. The inner product of two functions f and g is defined as,

< f, g >=
1

2n

∑
x∈{−1,1}n

f(x)g(x)

The basis of this vector space is given by the following family of functions, the characters of

Zn
2 . Define for each subset S ⊆ {1 . . . n},

χS(x1, . . . , xn) =
∏
i∈S

xi

The above basis has the following properties:

1. For all S ⊆ {1 . . . n}, the family {χS} forms an orthonormal basis: if S1 ̸= S2, then

< χS1 , χS2 >= 0, and for every S, < χS , χS >= 1.

2. For every S1, S2: χS1 · χS2 = χS1∆S2 , where S1∆S2 is the symmetric difference of S1 and

S2.

The Fourier transform of a function f is its expansion as a linear combination of the χS ’s.

Every function has a unique expression and the coefficients in this expression are called the

Fourier coefficients, denoted by f̂(S) (for S ⊆ {1 . . . n}). Hence, f =
∑

S f̂(S)χS .

Since the family χS forms an orthonormal basis, Fourier coefficients are found via:

f̂(S) =< f, χS >

For a probability distribution D, D =
∑

S D̂(S)χS . The following theorem was proved by

Diaconis and Shahshahani (see [22, Lemma 1, p. 24]). We provide a proof for the sake of

completeness. (A slightly weaker bound was actually proved by Vazirani [52]; it motivated us

to consider ϵ-biased probability spaces).
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Theorem 2.1 Let x1, . . . , xn be {−1, 1} random variables and let D be their joint probability

distribution. Then,

||D − U || ≤ 2n ·

 ∑
S⊆{1...n}

D̂(S)2

 1
2

=

 ∑
S⊆{1...n}

bias2D(S)

 1
2

Proof: We first evaluate D̂(∅),

D̂(∅) =< D,χ∅ >=
∑

x∈{−1,1}n

D(x)

2n
=

1

2n
.

The square of the variation distance is,

||D − U ||2 =

 ∑
x∈{−1,1}n

∣∣∣∣D(x)− 1

2n

∣∣∣∣
2

By the Cauchy-Schwarz inequality, ∑
x∈{−1,1}n

∣∣∣∣D(x)− 1

2n

∣∣∣∣
2

≤ 2n·
∑

x∈{−1,1}n

(
D(x)− 1

2n

)2

= 2n·
∑

x∈{−1,1}n

(∑
S

D̂(S) · χS(x)−
1

2n

)2

Since D̂(∅) = 1
2n ,

2n ·
∑

x∈{−1,1}n

(∑
S

D̂(S) · χS(x)−
1

2n

)2

= 2n ·
∑

x∈{−1,1}n

∑
S ̸=∅

D̂(S) · χS(x)

2

=

2n·
∑

x∈{−1,1}n

∑
S1 ̸=∅

∑
S2 ̸=∅

D̂(S1)D̂(S2)χS1(x)χS2(x) = 2n·
∑
S1 ̸=∅

∑
S2 ̸=∅

D̂(S1)D̂(S2)
∑

x∈{−1,1}n
χS1(x)χS2(x) =

22n ·
∑
S1 ̸=∅

∑
S2 ̸=∅

D̂(S1)D̂(S2) < χS1 , χS2 >

If S1 ̸= S2, then < χS1 , χS2 >= 0; otherwise, < χS1 , χS2 >= 1. Hence,

22n ·
∑
S1 ̸=∅

∑
S2 ̸=∅

D̂(S1)D̂(S2) < χS1 , χS2 > = 22n ·
∑
S

D̂(S)2

Which implies that,

||D − U || ≤ 2n ·

 ∑
S⊆{1...n}

D̂(S)2

 1
2

To complete the proof, recall that the definition of the bias of a subset S is,

biasD(S) = |ProbD[χS(x) = −1]− ProbD[χS(x) = 1]| =∣∣∣∣∣∣
∑

x∈{−1,1}n
D(x)χS(x)

∣∣∣∣∣∣ = 2n| < D,χS > | = |2nD̂(S)|
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and hence,

2n ·

 ∑
S⊆{1...n}

D̂(S)2

 1
2

=

 ∑
S⊆{1...n}

bias2D(S)

 1
2

2

Corollary 2.1 If the random variables x1, . . . , xn are ϵ-biased with respect to a distribution D,

then they are also k-wise δ-dependent, for δ = 2
k
2 · ϵ.

A binary linear code C is a linear subspace of {0, 1}m. If C has dimension n then C is called

an [m,n] code and it transforms words of length n into codewords of length m. A generator

matrix G for a linear code C is an n×m matrix for which the rows are a basis of C. If G is a

generator matrix for C, then the code can be defined as

C = {aG |a ∈ {0, 1}n}

The distance between two codewords is defined to be their Hamming distance. C[m,n, β] denotes

an [m,n] code C for which the distance between any two codewords is at least β ·m. The weight

of a codeword is the number of non-zero symbols that it contains. For more details on linear

codes the reader is referred to [40].

3 Constructing the probability distribution

In this section we show how to construct a probability space Ω of {0, 1} random variables

x = x1, . . . , xn which are ϵ-biased. The cardinality of the sample space will be 2O(log 1
ϵ
+logn).

The joint probability distribution of the variables is denoted by D. We define the function

χ′
S(x1, . . . , xn) for {0, 1} random variables as follows. For each subset S ⊆ {1 . . . n},

χ′
S(x1, . . . , xn) =

∑
i∈S

xi (mod 2).

The construction consists of three stages:

1. A polynomial size family F of {0, 1}n vectors is generated with the following property. Let

r be a vector chosen from F uniformly at random. For all subsets S ⊆ {1, . . . , n},

Prob[χ′
S(r) = 1] ≥ β

where β is some constant. Constructing such a family is discussed in Section 3.1.

2. The vectors r1, . . . , rl are sampled from F (not necessarily independently, but via a Markov

process) such that for all subsets S ⊆ {1, . . . , n},

Prob[For all i, 1 ≤ i ≤ l, χ′
S(ri) = 0] ≤ ϵ
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The value of l will turn out to be O(log 1
ϵ ). Sampling the family F is discussed in Section

3.2.

3. The assignment to the random variables x1, . . . xn is a combination of the vectors sampled

at the previous stage. Let a⃗ = (a1, . . . , al) be chosen uniformly at random from {0, 1}l.
Then,

x =
l∑

i=1

airi

In Section 3.3 we discuss how to choose a⃗ so that x is ϵ-biased.

3.1 Constructing the family F

We will need a family F with the above properties for constructing ϵ-biased probability spaces

and also for other applications as well. (See Section 7). For the latter applications, we extend

the requirements from F to any ring: given a vector v of elements in the ring, a vector r such

that < v ·r > ̸= 0 is called a distinguisher with respect to v. The goal is to find a small collection

of vectors (the family F) such that for any non-zero vector v, if r is chosen at random, then

Prob[< v ·r > ̸= 0] ≥ β. If the ring is GF[2], this requirement is exactly the one mentioned above,

where v is the characteristic vector of the subset S. Henceforth, we describe the construction

for GF[2]. It can easily be generalized for any ring by substituting 1 by some non-zero element

of the ring.

We present two methods for constructing the family F . The first method (Section 3.1.1)

can be applied to any ring, whereas the second one (Section 3.1.2) is applicable only to GF[2].

Another advantage of the first method is that computing the value of a random variable xi ∈ x

can be done in O(1) operations on words of length log n. On the other hand, the second method

provides a general context, i.e., linear codes.

Proposition 3.1 Suppose that r is a vector chosen uniformly at random from {0, 1}n. Then

for all vectors v ∈ {0, 1}n, v ̸= 0⃗, Prob[< v · r > ̸= 0] ≥ 1
2 .

Proof: Let j denote the number of non-zero entries in v. The number of different vectors r

such that v · r = 0 is at most 2j−1 · 2n−j = 2n−1, whereas the number of distinct choices for r is

2n. Hence, the probability that v · r = 0 is at most 1
2 . 2

Unfortunately, this method of generating a distinguisher requires n random bits. Hence,

our aim is to show that a distinguisher can be generated with probability at least β using only

O(log n) random bits. This will guarantee that the size of F is polynomial. Note that F must

contain at least n vectors (potential distinguishers). Otherwise, the rank of the matrix whose

columns are the distinguishers is less than n.
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For our purposes, a collection F of vectors has to be constructed such that:

1. The size of F is “small”.

2. It is “easy” to sample uniformly from F .

3. Given any non-zero vector v, a constant fraction of the vectors in F are distinguishers

with respect to v.

3.1.1 Constructing a small set of distinguishers

A natural approach to the problem of reducing the number of random bits in a randomized

algorithm is to show that limited independence of the random variables suffices to assure a high

probability of success. (See e.g., [5, 36, 38]). However, in our case, it is not clear from the proof

of Proposition 3.1 how many vectors r remain distinguishers with respect to the vector v when

the entries of R are not completely independent. Moreover, an example can be constructed in

which if the entries of r are chosen pairwise independently, no distinguisher will be generated.

Though limited independence is not sufficient for our purposes, we make use of it in two

ways: one is that suggested in [17] that if we sample a universe looking for elements of some

fixed subset, and if the expected number of elements we hit is greater than 1, then by making

our choices only pairwise independent, we are not decreasing the chances of hitting an element

of the subset by much. The other is that if the vector v has at most c non-zero entries, then

the elements of r can be chosen c-wise independent, and with probability at least 1
2 r is a

distinguisher.

We now describe how the above-mentioned difficulties for generating distinguishers can be

overcome. In what follows we will need n random variables such that:

1. Each random variable is uniformly distributed in {1, . . . n}.

2. Every subset of the random variables of cardinality at most c is independent.

There are known methods of generating such random variables that use only O(c log n) random

bits. ([38], [5], [17]).

We first assume that l, the precise number of non-zero elements in v, is known to be in the

range [k . . . 2k − 1]. A two-step process is applied.

1. The vector v is replaced by a new vector v′ = (v′1, . . . v
′
n) that contains only c (for some

constant) non-zero elements. (Any non-zero element of v′ is also non-zero in v).
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2. Now, the elements of the vector r can be chosen c-wise independent, yet Proposition 3.1

still holds.

As we do not have direct access to the elements of v, we show instead how to emulate the

above Step 1 with high probability. Let u = (u1, . . . , un) and w = (w1, . . . , wn) be two random

vectors such that:

1. The entries of u are c-wise independent (c is a constant whose value will be specified later)

where for all 1 ≤ i ≤ n, Prob[ui = 0] = Prob[ui = 1] = 1
2 .

2. The entries of w are pairwise independent where for all 1 ≤ i ≤ n, Prob[wi = 1] = 2
k . (If

k = 1, then Prob[wi = 1] = 1).

We can assume w.l.o.g that k|n. To generate the vector w we generate n random variables

z1, z2, . . . , zn that are pairwise independent, and each is uniformly distributed in {1, . . . , n}. We

then set wi to 1 if zi ≤ 2n
k .

Let us now define the random vector r = (r1, . . . , rn) that will be used as a distinguisher.

For all 1 ≤ i ≤ n,

ri =

 1 if ui = 1 and wi = 1

0 otherwise

Lemma 3.1 The above vector r is a distinguisher with probability at least 1
4 for any vector v

for which l, the number of non-zero elements, is in the range [k, 2k].

Proof: Let us define the vector v′ (from Step 1): for all 1 ≤ i ≤ n,

v′i =

 1 if vi = 1 and wi = 1

0 otherwise

It is clear that the lemma will follow if we show that the vector u is a distinguisher with

respect to v′ with probability at least 1
4 . To do that, it suffices to prove that v′ will contain at

least one non-zero element of v, and at most c non-zero elements of v with probability at least 1
2 .

As the elements of the vector u are c-wise independent, the proof of Proposition 3.1 still holds

when the number of non-zero elements is less than c.

Generating the vector v′ can be thought of as a binomial random variable where each non-

zero entry of v decides with probability p (to be specified later) whether it remains non-zero in

v′. The random choices are pairwise independent. Let h be a random variable that denotes the

number of non-zero elements in v′. It is well known that E[h] = pl and V ar[h] = p(1− p)l. We

chose the value of p such that pk = 2.
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Claim: Prob[0 < h ≤ 7] ≥ 1
2

We prove the claim by Chebyshev’s inequality [Fe] which states that

Prob[|X − E[X]| ≥ λ] ≤ V ar[X]

λ2

where X is a random variable. It is enough to verify the claim in the two extreme cases when

l = k and l = 2k. Thus, substituting λ = 2 and λ = 3, we get that

Prob[|h− pk| ≥ 2] ≤ pk(1− p)

4
≤ 1

2

Prob[|h− 2pk| ≥ 3] ≤ 2pk(1− p)

9
≤ 4

9

Hence, we can choose c = 2kp + 3 = 7 and this is enough to insure success with probability at

least 1
2 . 2.

We conclude that if the approximate number of non-zero entries in v is known, then O(log n)

random bits suffice to insure high probability of success. What can we do if this is not known?

We follow the above algorithm and construct log n collections F1,F2, . . .Flogn, where Fi is

generated under the assumption that the number of non-zero entries in v is between 2i−1 and 2i.

Lemma 3.1 implies that at least 1
4 of the members of at least one collection will be distinguishers.

The same random bits can be used to sample the log n collections, and we obtain a set of

log n vectors r1, r2 . . . rlogn such that at least one of them is a distinguisher with probability at

least 1
4 . Instead of testing each vector separately, we can generate from them a single vector

that is a distinguisher with probability at least 1
8 .

Let S be a subset of {1, . . . log n} which is chosen uniformly at random and let r be defined

by

r =
∑
i∈S

ri

Lemma 3.2 The vector r is a distinguisher with respect to v with probability at least 1
8 .

Proof: We need the following claim:

Claim: Let v be a vector such that the vector r1 is a distinguisher and the vector r2 is not a

distinguisher with respect to v. Then the vector r1 + r2 is a distinguisher with respect to v.

Proof: (r1 + r2) · v = r1 · v + r2 · v = r1 · v ̸= 0.

Let the number of non-zero entries in v be between 2j−1 and 2j and assume that rj is a

distinguisher. This will happen with probability at least 1
4 . If

∑
i∈S−{j}

ri is not a distinguisher,

then with probability 1
2 , j ∈ S and according to the above claim, r will be a distinguisher.
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Otherwise, again with probability 1
2 , j ̸∈ S, and according to the above claim, r will be a

distinguisher. 2

To summarize, we describe the algorithm to generate a random vector r. We assume that n

is a power of 2.

1. Generate the following random variables:

(a) z1, z2, . . . , zn: n random variables that are pairwise independent and uniformly dis-

tributed in {1, . . . , n}.

(b) u = (u1, . . . , un) a vector whose entries are 7-wise independent and uniformly dis-

tributed in {0, 1}.

(c) A random subset S ⊆ {1, . . . , log n}.

2. For each 1 ≤ i ≤ n, compute ji = log n−max{j|2j < zi}.

3. For 1 ≤ l ≤ log n, compute cl = |S
∩
{1, . . . , l}| · 1. (This is scalar multiplication in the

ring, e.g., in GF[2] it is |S
∩
{1, . . . , l}| mod 2).

4. For each 1 ≤ i ≤ n, compute:

ri =

 cji if ui = 1

0 otherwise

Theorem 3.1 The algorithm described above uses O(log n) random bits and generates a distin-

guisher with probability at least β = 1
8 . For all i, 1 ≤ i ≤ n, the complexity of computing the

value of the random variable xi is O(1) operations on words of size O(log n).

Proof: Steps 1a, 1b and 1c require each O(log n) bits. (In fact, Steps 1b and 1c can be

implemented recursively using O(log log n) bits). Given i, to compute ri, one needs to know the

value of zi, cji and ui; that requires a constant number of operations. In Step 3, computing cji

requires counting the number of 1-s in a word of length log n that describes S. 2

3.1.2 A construction based on linear codes

Here we describe how to generate a family F of size O(n) via linear codes due to J. Bruck (private

communication). The construction works for GF[2]. Let C be a linear code. The weight of a

codeword is defined to be the number of non-zero entries.

Proposition 3.2 The minimum distance of a linear code is equal to the minimum weight of a

codeword.

11



Suppose we have a linear code C[n,m, β], i.e. it maps {0, 1}n words into {0, 1}m codewords

and its minimum distance is β ·m. Linear codes for which m = O(n) and β is some constant

exist and are constructible. (For example, Justesen codes [30], [40]). Let G be the generator

matrix of this code. For any non-zero {0, 1}n vector v, v · G contains at least βm non-zero

entries. (By the above proposition). Hence, if we choose a column in G uniformly at random,

Prob[< v · r >= 1] ≥ β. The family F is the set of columns in G. The relation with linear codes

holds in the other direction as well. Given a family F , consider its members as columns of a

generator matrix of a linear code. It follows from the proposition that the minimum distance of

this code is β|F|. Hence, the construction in Section 3.1.1 can be regarded as a linear code.

Given that good codes exist, what advantages does the first method have? The first method

has the property that it works for more general cases where the function χ′
S is defined on any

group, not just addition modulo 2. This will be used in Section 7.1. Another advantage is in

computing a single entry of the sampled vector r. This is very simple in the first method (The-

orem 3.1) whereas all known methods for using (traditional linear codes) are more complicated

and require exponentiation.

Using our techniques we can actually enhance the error-correction of a linear code without

decreasing the rate by much. This is further investigated in [6].

3.2 Sampling the family F

The problem of obtaining the vectors r1, . . . , rl in Stage 2 with the desired property can be

abstracted in the following way. Suppose that there is a universe, and we wish to find a member

in a certain subset S of it. (In our case it is the set of vectors for which χS = 1). Suppose also

that we have a sampling algorithm that uses k random bits and has probability β of picking a

member of the desired set. By sampling l times independently, a set of l elements is generated,

such that with probability greater than 1− β−l, at least one of them is a member of the desired

set. A straightforward implementation would require kl random bits.

Several papers have addressed the question of achieving the probability error while requiring

fewer random bits [1, 20, 28, 32, 47, 49]. We consider the method of [1] which is used by

[20, 28]: For a graph G = (V,E), consider any 1-1 correspondence f : V → {0, 1}k, the different

assignments to the random bits of the sampling algorithm. To generate the l samples, choose a

random vertex of G and perform a random walk of length l. Each vertex in the random walk

corresponds to a sample point. The number of random bits required is the sum of those needed

for sampling one vertex, and those needed for performing the random walk.

Let λ0 be the largest eigenvalue of G and λ̄ be the eigenvalue of second largest value in G.

Let α denote the percentage of vertices that are not members in S. Cohen and Wigderson [21,

12



Theorem 4.5] show that if G is a d-regular graph such that

2α ≤
(

λ̄

λ0

)2

then the probability that at least one of the l samples is a member of S is at least

1−
(√

2|λ̄|
λ0

)l

.

Constructions for regular graphs of constant degree such that the second eigenvalue is

bounded away from λ0 are known [27, 29, 37]. For degree regular graphs of degree d, λ0 = d

and the value of λ̄ can be almost 2
√
d. For a given expander G, let

αG =
1

2

(
λ̄

λ0

)2

and let

l =
log 1

ϵ

log
(√

2|λ̄|
λ0

) .
In our case, β, the precentage of good vectors, is too small to apply the method directly and

we need some initial amplification. To do that, each vertex would now correspond to a set of

assignments to the random bits, such that the probability that at least one element associated

with a randomly chosen vertex is a member of S, is at least 1 − αG. For the purposes of this

paper, this can be done by letting each vertex correspond to h independent samples where

h = log1−β αG.

To conclude, the number of random bits used is log |F|+ l · log d.

3.3 Combining the samples

We have to specify how to choose a linear combination a⃗ of the vectors r1, . . . , rl, given that

for any subset S, Prob[for all i, χ′
S(ri) = 0] ≤ ϵ. The simplest way to select a⃗ is to choose it

uniformly at random.

Claim 3.1 The random variables x1, . . . , xn generated by choosing a⃗ uniformly at random from

{0, 1}l are ϵ-biased.

Proof: Let S be any subset of {1...n}. If there exists a vector rj among the vectors r1, . . . , rk

such that χ′
S(rj) = 1, then by arguments similar to those of Lemma 3.2,

ProbD[χ
′
S(x1, . . . , xn) = 1] = ProbD[χ

′
S(x1, . . . , xn) = 0]

Since the probability of this happening is at least 1− ϵ, biasD(S) ≤ ϵ. 2

The number of random bits required is l. To conclude,
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Theorem 3.2 Generating n {0, 1} random variables that are ϵ-biased can be done using O(log n+

log 1
ϵ ) random bits. Thus, the size of the sample space is 2O(logn+log 1

ϵ
). Given the random bits,

computing the value of a random variable can be done in time polylogarithmic in n.

4 Generating k-wise δ-dependent random variables

We are insured by Corollary 2.1 that if the random variables x1, . . . , xn are ϵ-biased, then they

are k-wise δ-dependent for δ = 2
k
2 · ϵ. However, there is a more efficient construction. This can

be done by combining our methods with those of [5] for generating k-wise independent variables.

Suppose we want to generate {0, 1} uniform random variables y1, . . . , yn that are k-wise

independent. [5] suggest that this can be done by taking n vectors L1, . . . , Ln of length h such

that the vectors are k-wise linearly independent over GF[2]. If the vectors L1, . . . , Ln are columns

of the parity check matrix of BCH codes, then h is k
2 logn. Let R be a vector chosen uniformly

at random from {0, 1}h; for all i, 1 ≤ i ≤ n, let yi = Li ·R. The number of random bits required

for the construction is k log n.

In order to improve on Corollary 2.1, instead of choosing R uniformly at random, suppose

that the entries of R are ϵ-biased random variables.

Lemma 4.1 Let y1, . . . , yn be random variables generated by the above method, where the entries

of R are ϵ-biased random variables. Then, y1, . . . , yn are k-wise ϵ-biased.

Proof: Let S ⊆ {1, . . . , n} be a subset of cardinality at most k. We bound bias(S). For all

i ∈ S, yi = Li ·R. Hence, ∑
i∈S

yi =
∑
i∈S

Li ·R = R ·
∑
i∈S

Li = R ·M

For i ∈ S, the vectors Li are linearly independent, and hence M ̸= 0 and bias(S) ≤ ϵ. 2

The improvement over Corollary 2.1 in the cardinality of the sample space is that now we

have decreased the number of ϵ-biased random variables from n to k log n. Recall that random

variables that are k-wise ϵ-biased, are also k-wise 2
k
2 · ϵ-dependent.

Lemma 4.2 The logarithm of the cardinality of the sample space needed for constructing k-wise

δ-dependent random variables is O(k + log log n+ log 1
δ ).

5 A moment inequality

Basic tools in probabilistic analysis are moment inequalities [25] that bound the deviation of a

random variable from its expected value. More specifically, let y be a random variable such that
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E[y] = 0, then,

Prob[|y| ≥ λ] ≤ E[|y|k]
λk

Let b1, . . . , bn be random variables that have a binomial distribution, i.e., they are indepen-

dent and take their values from {−1, 1} uniformly. The kth moment of their sum will be denoted

by Bk, that is Bk = E
[
|b1 + . . .+ bn|k

]
.

We formulate a moment inequality for the sum of {−1, 1} random variables (x1, . . . , xn) that

are k-wise ϵ-biased. We denote their sum by S =
∑n

i=1 xi. This will be done by bounding the

kth moment of S via the kth moment of the binomial distribution on n uniform independent

Bernoulli variables, denoted by Bk. (We assume w.l.o.g. here that k is even). The kth moment

of S contains nk terms, where each term contains at most k variables. More specifically,

E[Sk] = E

 ∑
i1i2...ik

xi1xi2 . . . xik

 =
∑

i1i2...ik

E [xi1xi2 . . . xik ]

Each term in the above summation is of the form Ti = xp1i1 x
p2
i2
. . . xprir , such that

∑r
j=1 pj = k.

If a term Ti contains a variable whose power is odd, then in Bk its expectation is 0. However,

in our case, it follows from the definition of k-wise ϵ-biased random variables (Definitions 2.2

and 2.3), that the expected value of Ti can be at most ϵ. If all the powers in a term Ti are even,

then the expected value in both cases is the same and equal to 1. Hence,

Theorem 5.1 Let S and Bk be as above, then

Prob[|S| ≥ λ] ≤ Bk + ϵ · nk

λk

6 Derandomization

The probability distribution D constructed in Section 3 can be used for derandomizing algo-

rithms. A randomized algorithm A has a probability space (Ω, P ) associated with it, where Ω

is the sample space and P is some probability measure. We call a point w ∈ Ω a good point

for some input instance I, if A(I, w) computes the correct solution. A derandomization of an

algorithm means searching the associated sample space Ω for a good point w with respect to

a given input instance I. Given such a point w, the algorithm A(I, w) is now a deterministic

algorithm and it is guaranteed to find the correct solution. The problem faced in searching the

sample space is that it is generally exponential in size.

In [36, 38, 5] the following strategy was suggested: show that the n probabilistic choices

of certain randomized algorithm are only required to be k-wise independent. Hence, a sample

space of size O(nk) suffices. This sample space can be exhaustively searched for a good point
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(even in parallel) when k is a constant. A similar strategy can be used with ϵ-biased random

variables. First, show that a randomized algorithm has a non-zero probability of success when

the probabilistic choices are ϵ-biased. Then, conduct a search of the sample space associated

with the variables to find a good point.

This scheme can in principle be applied to all the randomized algorithms for which the limited

independence approach was applied. However, we do not necessarily get better algorithms. An

attractive feature of our scheme is that random variables that are log n-wise δ-dependent, for

δ which is polynomially small, can be constructed with a polynomial sample space. Intuitively,

this means that we can achieve “almost” log n-wise independence with a polynomial sample

space (as opposed to nO(logn)).

The k-wise ϵ-biased random variables are especially useful when the proof that a randomized

algorithm is successful involves any moment inequality. In that case, one should compute what

is the appropriate ϵ such that the error incurred leaves the probability of success non-zero. We

exemplify this by showing how a RNC algorithm for the set balancing problem can be converted

into an NC algorithm.

The second problem we address is finding a heavy codeword in a linear code (Section 6.1).

Such a codeword can be found by a simple randomized algorithm. We show how to derandomize

it in parallel. The importance of this problem is that it demonstrates that for certain problems

it is important to bound the bias of all subsets and not just those of small cardinality.

6.1 Set Balancing

The set balancing problem is defined as follows. A collection of subsets S = {S1, S2, · · ·Sn}
defined over a base set B = {b1, b2, · · · bn} is given such that the cardinality of each subset is

δ. The output is a {−1, 1} coloring of B into two sets. Let the 2-coloring of B be denoted by

x = (x1, x2, · · ·xn). The discrepancy of a subset Si, ∆(Si,x), with respect to x, is defined as∑
j∈Si

xj . The discrepancy of the set family S is defined as,

∆(S,x) = max
Si

∆(Si,x)

Spencer [50, 9] has shown that for each family S, there exists a 2-coloring x such that

∆(S,x) ≤ 6
√
n. This result is the best possible up to constant factors but it has the drawback

of being non-constructive, i.e. does not even imply a probabilistic algorithm. Using the method

of conditional probabilities (sequentially), Spencer devised a polynomial-time deterministic al-

gorithm which guarantees a 2-coloring x such that ∆(S,x) = O(
√
n log n). This was improved

to O(
√
δ log n) by Raghavan [45]. For parallel algorithms we cannot guarantee as small a dis-

crepancy as in the sequential case. However, we can come arbitrarily close to the sequential
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bounds by computing a τ -good coloring.

Definition 6.1 A 2-coloring x is τ -good for a set family S if, for 0 < τ < 1
2 ,

∆(S,x) ≤ δ0.5+τ
√
log n

There is a simple RNC algorithm to find a τ -good coloring for any S: pick a random x

uniformly at random from {0, 1}n. It turns out that for any S, the 2-coloring is τ -good with

sufficiently high probability. (See for example [34]). This algorithm was derandomized by

[13, 39] by proving that log n-wise independence suffices, and then showing how to conduct a

binary search in a sample space of size nO(logn). (The method of conditional probabilities). We

present a direct derandomization which can be implemented in NC1.

Assume that B is colored at random; [13, 39] prove the following lemma.

Lemma 6.1 Let k = a logn/ log δ be even, where a > 1
τ , and let x be k-wise independent

uniform {−1, 1} random variables. Then, for any input set family S, the probability that x is

τ -good is non-zero.

We sketch very briefly the proof idea. Let Ti denote the sum of the random variables in the subset

Si. The main tool used is the kth moment inequality. (See Section 5). More specifically,[13, 39]

show that for a given subset Si,

Prob

[∣∣∣∣Ti −
δ

2

∣∣∣∣ > δ0.5+τ
√
log n

]
≤ E[T k

i ]

(δ0.5+τ
√
log n)k

<
1

δτk
<

1

n

Summing over all subsets, we get that for any set family S, the probability that a random k-wise

coloring is τ -good is non-zero.

What happens when the random variables in x are k-wise ϵ-biased? We want to choose ϵ such

that the probability that the discrepancy in a subset is large, is smaller than 1
n . Substituting in

Theorem 5.1, ϵ and k must be chosen such that

1

δτk
+

ϵδk

(δ0.5+τ
√
log n)k

<
1

n

We choose k = log 2n
τ log δ , and the above inequality holds if

ϵ <
1

2n1+ 1
τ

Hence, the sample space will be at most of cardinality nO( 1
τ ) and if τ is a constant, an exhaustive

search of the sample space can be conducted. Both the construction and the search can be done

in NC1.

For the relationship between the set balancing problem and the lattice approximation prob-

lem [45], the reader is referred to [39].
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6.2 Finding heavy codewords

Let C[n, k, d] be a linear code. In this section we show how to find a codeword whose weight

is at least as heavy as the expected weight of a word in C. We call such a codeword, a heavy

codeword. This problem is a natural generalization of the following problem: given a graph G,

find a cut that contains at least half the edges. It is well known that the set of cuts in a graph

forms a linear subspace. Let G be the generator matrix of the linear code C. It is easy to see

that the expected weight of a codeword in C is n
2 : if x is chosen uniformly at random, then

E[weight of Gx] = n
2 .

The latter observation implies a straightforward randomized algorithm for finding a heavy

codeword. This algorithm can be made deterministic via the method of conditional probabilities

[50, 9] where the entries of x are determined one at a time. How can a heavy codeword be found

in parallel? One possible approach for reducing the sample space is by choosing the entries of x

to be only k-wise independent (for some k < n) and not mutually independent. The difficulty

is that the probability of getting a heavy codeword may vanish.

If x is chosen from an ϵ-biased probability space, then E[weight of Gx] ≥ n(1−ϵ
2 ). If ϵ < 1

2n ,

then there must be a codeword x in the ϵ-biased probability space whose weight is at least n
2 .

This places the problem in NC for the first time. More important, it exhibits that ϵ-biased

random variables are also needed as opposed to just k-wise ϵ-biased random variables.

7 Reducing the number of random bits

In this section we present two algorithms for which the number of random bits required can be

reduced from linear to logarithmic.

7.1 Matrix multiplication verification

Suppose that three n × n matrices A,B and C over an arbitrary ring are given; what is the

complexity of verifying whether A ·B = C? Can this be done by avoiding matrix multiplication?

This problem was first considered by Freivalds [26] who suggested a randomized algorithm of

complexity O(n2), but it required n random bits. In this section we show how to implement it

using only O(log n) random bits with no time penalty. Our results can readily be generalized to

non-square matrices as well.

Let us first review Freivalds’ algorithm [26]. Choose a random vector r⃗ such that each entry

in r is picked uniformly at random to be zero or some fixed non-zero element of the ring. Test

whether r ·A ·B− r ·C = 0. The complexity of applying this procedure is that of multiplying a
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matrix by a vector which is obviously O(n2). For the sake of completeness, we present a proof

of his algorithm.

Theorem 7.1 Suppose that r is a vector chosen in the manner described above. Then with

probability at least 1
2 , if A ·B ̸= C, then also r ·A ·B ̸= r · C.

Proof: Let v be a non-zero column vector of A ·B−C and let j denote the number of its non-

zero entries. The number of different vectors r such that v · r = 0 is at most 2j−1 · 2n−j = 2n−1,

whereas the number of distinct choices for r is 2n. Hence, the probability that v · r = 0 is at

most 1
2 . 2

It follows from the above proof that we can restrict ourselves to the following problem: given

a vector v, check whether it is identically zero, where the only operation permitted on the vector

is taking its inner product with another vector. Recall from Section 3.1 that a vector r that

verifies that a particular vector v is non-zero is called a distinguisher (with respect to v). Hence,

reducing the number of random bits for the above problem is equivalent to generating a small

collection of vectors F , such that the inner product of a constant fraction of them with any

non-zero vector is not zero.

The family F that is constructed in Section 3.1 has this property: with probability at least

β, a vector r sampled uniformly will be a distinguisher. The number of random bits needed for

sampling F is O(log n) and the complexity of the algorithm remains O(n2).

Notice that if the matrices are over an arbitrary ring, then the construction presented in

Section 3.1.2 cannot be used. We can only use the one presented in Section 3.1.1.

7.2 Boolean matrix multiplication

In this section we show how Adi Shamir’s boolean matrix multiplication algorithm (see [19, pp.

772-773]) can be implemented with few random bits without increasing the probability of error.

Let A = (aij) and B = (bij) be n × n Boolean matrices and suppose we would like to

multiply them in the quasiring Q = ({0, 1},∨,∧, 0, 1) by using the algorithms for fast matrix

multiplications, e.g., Strassen’s method. The difficulty is that these methods require that the

matrix multiplication be carried out in a ring. This can be handled by working over a large field,

but makes multiplication more expensive. Instead, Shamir suggested a randomized algorithm

that takes advantage of the fact that the fast methods for matrix multiplication can be carried

out in the ring R = ({0, 1},⊕,∧, 0, 1).

We briefly summarize Shamir’s algorithm. Let C = (cij) = AB in the quasiring Q. Generate

A′ = (a′ij) from A using the following randomized procedure:
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• If aij = 0, then let a′ij = 0.

• If aij = 1, then let a′ij = 1 with probability 1/2 and let a′ij = 0 with probability 1/2. The

random choices for each entry are independent.

Let C ′ = A′B in the ring R. The following lemma is immediate.

Lemma 7.1 If cij = 0, then c′ij = 0. If cij = 1, then Prob[c′ij = 1] ≥ 1/2.

As in the algorithm for verifying matrix multiplication, make the random choices to be ϵ-bias

and get that the probability of error is at most 1/2 + ϵ.

To decrease the probability of failure, we will run the algorithm for log(n2/δ) choices of the

matrix A′. Since the matrix C ′ has n2 entries, the total probability of error is bounded from

above by δ.

7.3 Simultaneous verification of exponentiation

Suppose that for some prime p and integer a we are given n pairs (x1, y1), (x2, y2), . . . (xn, yn)

and we want to verify whether the equality axi = yi mod p is true for all 1 ≤ i ≤ n. A. Fiat and

M. Naor (personal communication) have suggested the following randomized algorithm:

1. Pick a random vector r = (r1, . . . , rn) where each ri is chosen uniformly and randomly

from {0, 1}.

2. Compute t =
n∑

i=1

ri · xi mod (p− 1) and m =
∏
i∈S

yi
ri mod p.

3. Test whether at = m mod p.

As in Freivalds’ algorithm, if for any 1 ≤ i ≤ n, axi ̸= yi, then the above algorithm will detect

it with probability at least 1
2 . The complexity of this algorithm is n multiplications, instead of

n log p for checking each equality separately.

We can actually phrase the problem as that of finding a distinguisher with respect to a non-

zero vector in the integer ring modulo p− 1. Let zi be such that azi = yi. Then, a distinguisher

with respect to the vector w must be found, where wi = xi − zi mod (p − 1). For that we can

use the construction of section 3.1 in a similar way to Section 7.1.

Note that the expected size of each entry in Step 4 of the algorithm in Section 3.1.1 is O(1),

and therefore, the expected number of multiplications remains O(n).

Suppose that a and N are integers such that (N, a) = 1. The above procedure can be applied

to verify n equalities of the type xai = yi mod N . This may be used for instance to check n given

RSA equations [46] and thus amortize the cost of verifying signatures.
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8 Vector sets for exhaustive testing

A problem that has received much attention in the fault diagnostic literature is that of generating

a small set of vectors, T ⊂ {0, 1}n, such that for any k-subset of indices S = {i1, i2, . . . ik}, the
projection of T on the indices S contains all possible 2k configurations. See [51] for a bibliography

on the problem. Such a set of vectors is called (n, k)-universal. The motivation for this problem

is that such a test set allows exhaustive testing of a circuit where each component relies on

at most k inputs. Alternatively, one can phrase the problem as searching for a collection of n

subsets of a ground set which is as small as possible such that the intersection of any k subsets or

their complement is non-empty. This was called k-independent by Kleitman and Spencer [35].

The best known bounds for constructing (n, k) universal sets are given in [51] and [3]. The

connection between k-wise δ-dependent probability spaces and small (n, k)-universal sets is made

in the next proposition.

Proposition 8.1 If Ω is a k-wise δ-dependent probability space for δ ≤ 2−k, then Ω is also a

(n, k)-universal set.

Proof: If for a k-subset i1, i2, . . . ik, there is a {0, 1}k configuration which has probability 0 in

Ω, then the distance from the uniform distribution of xi1 , xi2 , . . . xik is at least 2−(k−1) > δ. 2

Combining the construction suggested in Section 3.1.2 with Lemma 4.2, we can construct a

probability space Ω which is k-wise 2−k-dependent such that the cardinality of Ω is log n · 2O(k).

Thus, our construction for a (n, k) universal set can be phrased in coding theory terminology.

Let G be the generating matrix of a binary [n′, k′, d] linear code for which

d

n′ =
1

2
− 1

22k

and let H be the parity check matrix of a binary [n, n′, k] linear code. The (n, k) universal set

consists of the rows of the matrix G ·H. This is better than the best explicit construction given

in [51] for k << n, and matches the lower bound given there up to constant factors. Alon [3]

has shown an explicit construction of size log n · 2O(k2) which is optimal for constant k. No such

constructions were known for larger values of k. For k which is Θ(log n), this is the first explicit

construction of an (n, k)-universal set of polynomial size.

9 Communication complexity

Suppose player A has a string x ∈ {0, 1}n and player B has a string y ∈ {0, 1}n, and they wish

to decide whether x = y while exchanging as few bits as possible. It is well known that this can

be done by exchanging O(log n) bits and the probability of the protocol arriving at the correct
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result is at least a constant. We can show how to achieve probability of success which is any
1

poly(n) , while maintaining the logarithmic communication complexity.

The algorithm will use the first two stages in constructing the small biased probability spaces.

To achieve probability of error ϵ:

1. Player A chooses O(log n+ log 1
ϵ ) random bits that define vectors r1, r2, . . . , rl. She sends

the random bits to player B and also sends < r1, x >,< r2, x >, . . . < rl, x >.

2. B computes < r1, y >,< r2, y >, . . . < rn, y >. If for any i, < ri, y > ̸=< ri, x > he

announces it. Otherwise, he concludes that x = y.

If x ̸= y, then with probability at least 1 − ϵ, for at least one i, < ri, x ⊕ y > ̸= 0 and hence

< ri, x > ̸=< ri, y >.

Once a distinguisher has been found, detecting an index of an entry on which players A and

B differ is easy by exchanging log n bits.

Another application is for the problem of determining set equality. Suppose that A,B ⊂
{1, . . . , n} and we wish to decide whether A = B. We would like a single pass on the elements

of A and B and the amount of memory should be O(log n). Here again a method that achieves

constant probability error is known (see Blum and Kannan [16] for a description).

We will show that it is possible to achieve any ϵ error while using only O(log n+ log 1
ϵ ) bits of

memory. Let vA and vB denote the incidence vectors of A and B. We can think of the problem

as deciding whether vA ⊕ vB = 0. Again, we can use the first two stages of the construction of

small bias probability spaces.

1. Pick O(log n + log 1
ϵ ) random bits that define r1, r2, . . . , rl. (They are not computed ex-

plicitly at this point.) Let ri(a) denote the ath coordinate of ri.

2. Initialize bits d1, d2, . . . dl to 0.

3. For each element a ∈ A and for each 1 ≤ i ≤ l, di ← di ⊕ ri(a).

4. For each element b ∈ B and for each 1 ≤ i ≤ l, di ← di ⊕ ri(b).

5. If all the di-s are 0, decide that A = B, otherwise A ̸= B.

As before, if for at least one i, < ri, vA ⊕ vB ≯= 0, we will detect the inequality of the sets.

The probability that this happens is at least 1 − ϵ. For this application, the first method of

constructing small bias probability spaces should be used, since we are not interested in the full

vector ri, but in selected locations of it.
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This can be looked upon as a family H of hash functions with the following property. Let

h ∈ H, where h : {1 . . . n} → {1 . . .m}. The family H is accessible with O(log n + logm) bits

and for any subsets A and B of {1 . . . n}, the probability that
∑

a∈A h(a) =
∑

b∈B h(b) is smaller

than 1
mβ for β constant, where addition is bitwise XoR.

10 Further results

Since the preliminary version of this paper appeared in [42], several new applications of small

bias probability spaces have been discovered. Alon [4] used them to obtain an NC1 algorithm

for the parallel version of Beck’s algorithm for the Lovasz local lemma. Feder, Kushilevitz and

Naor [24] have applied them to amortize the communication complexity of equality. Blum et al.

[15] used the hash function construction to authenticate memories. Kushilevitz and Mansour

[31] used small bias probability spaces to derandomize their decision tree learning algorithm.

Alon et al. [7] have used the polylogarithmic size construction of log log n-wise 1/ log n-bias

probablity space in order to derandomize an algorithm for all pairs shortest path whose running

time is almost that of matrix multiplication. Blum and Rudich [14] have used the construction

of (n, k)-universal sets of Section 8 in order to derandomize a k-term DNF polynomial time

learning algorithm, for k which is logarithmic in the number of variables.

Azar, Motwani and Naor [10] defined and constructed small bias probability spaces for non-

binary random variables. Even et al. [23] constructed δ-dependent non-uniform probability

spaces based on small bias probability spaces. Alon et al. [8] provided simple and different

constructions for small bias probability spaces. Their constructions are based on quadratic

characters and linear feedback shift registers. Schulman [48] constructed efficiently probability

spaces with known dependencies.
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