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1 Introduction

Given a cryptosystem, an important (and traditional) cryptographic task is to classify the
attacks which the system can withstand. The power of an attacking adversary is usually
given by the information it is allowed to know about/ extract from the system. Chosen-
ciphertext attack is considered to be the strongest attack on a cryptosystem. In this attack
the adversary is first allowed to probe the decoding mechanism polynomially many times
choosing ciphertexts of his choice getting the corresponding plaintext (messages), then with-
out the decoding help the attacker has to break the system. (Breaking can be defined in
various ways, we use the weakest existential breaking, that is getting any partial extra
information about the plaintext when given the ciphertext).

A public-key cryptosystem as defined by Diffie and Hellman [8] consists of two stages.
In the initiation stage, each receiver Bob publishes a public encryption key eB (say, in some
public file), while keeping secret the private decryption key dB. In the second stage, the
system is used for secure message transmissions: whoever wants to send a plaintext message
M secretly to Bob, picks Bob’s key eB from the public file, encrypts the plaintext and sends
him the resulting ciphertext EeB (M). Only Bob can decrypt the message by applying the
decryption key DdB (EeB (M)) = M .

Implementations of the notion were suggested by Rivest, Shamir and Adleman [32] and
Merkle and Hellman [26]. The exact nature of security of these implementations was not
given in a precise form, since an exact definition of security was not known at the time.
Rabin [30], nevertheless, has given a scheme where an eavesdropper’s ability to extract the
complete message when given a ciphertext is computationally equivalent to factoring; this
was the first system in which security problem was reduced to some complexity assumption
(i.e., the intractability of Factoring). This presented a methodology of reducing the security
property to a well-defined complexity assumption which, in the absence of lower bound
proofs, has become the major one in cryptography.

Later, Goldwasser and Micali [19] developed the idea of probabilistic encryption, in which
the capability to extract any partial information on the plaintext from the ciphertext, is
reduced to an underlying hard problem (hard predicate). Their system which was based on
the quadratic residuosity intractability assumption was the first one with this property.

The probabilistic encryption scheme of [19] and the ones that followed them were shown
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to withstand a chosen-plaintext attack, where the attacker is allowed first to use the encryp-
tion mechanism. (In a public-key cryptosystem the adversary definitely has this power.)
However, it was not known whether any public key implementation is secure against chosen-
ciphertext attack, where the attacker is allowed first to use the decryption mechanism as
well. (A precise definition for these classical attacks is given in the next section.) Further-
more, schemes for cryptosystems which are provably secure as factoring against a chosen
plaintext attack such as the Blum-Goldwasser efficient scheme for probabilistic encryption
[6] are provably insecure against a chosen-ciphertext attack. (The same basis for its security
[1] is the basis for its vulnerability to chosen ciphertext attacks.)

Previously, in order to construct message transmission systems secure against chosen
ciphertext attacks, the public-key model was relaxed, and some interaction was assumed
between the users prior to the actual transmission of the message. (see remark 1 in section
2.4).

We remark that chosen-ciphertext attack is also known in the folklore as the “midnight”-
attack or the “lunch-break”-attack, both names describing the real-life scenario of an in-
sider/outsider who (in the absence of others) employs the decryption mechanism, in the
hope that this will help him in the cryptanalysis of future communication.

We present a method for constructing public-key cryptosystems which are secure against
chosen ciphertext attacks (CCS-PKC). We use (single-theorem) non-interactive zero-knowledge
proof systems for language membership which were introduced by Blum, Feldman and Mi-
cali [4]. In such a system for a language L the prover P and the verifier V share a random
string. P can prove to V that x ∈ L by sending a message (which is a function of x and the
shared string). Improved implementations of non interactive proof systems were done by
De Santis, Micali and Persiano [7] and a better version is to be given in [5]. [4] have pointed
out the potential of applying non-interactive proof systems to achieve chosen ciphertext
security; this was the motivation for our investigation.

The way [4] suggested to cope with chosen ciphertext attacks was by using the notion of
“non-interactive zero-knowledge proof of knowledge”. However, they did not elaborate on
how this notion might be implemented. Silvio Micali [27] has interpreted the claim to mean
that when a user subscribes to the system he proves interactively possession of knowledge
of a sender key, and this proof is used later on to prove non-interactively possession of
knowledge of the plaintext. Thus the scheme does not fall into the category of a Diffie-
Hellman PKC. To use the terminology of Micali, Rackoff and Sloan [28], this is at least a
“three pass” scheme, whereas the scheme we present is “one and a half pass”.

In our scheme, non-interactive zero-knowledge proofs of language membership are used
in order to show the consistency of the ciphertext, but not to show that the generator of
the ciphertext necessarily “knows its decryption”.

The model, definitions and background are presented in section 2; the scheme and its
components in section 3 and the proof of security of the scheme in section 4.
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2 Background, model and definitions

2.1 Basic definitions

The notion of computationally indistinguishable distributions which originated in [19, 35]
plays an important role in defining security in many cryptosystems, in particular in the
context of encryptions and zero-knowledge [20, 18]. For a distribution Q , let x ∈R Q
denote that x is generated by distribution Q. An ensemble of probability distributions
Q(x) is polynomial time sampleable if there is a probabilistic polynomial (in |x|) time
machine that on input x its output is distributed according to Q(x).

Definition 2.1 Two ensembles of probability distributions A(x) and B(x) are polynomial-
time indistinguishable if for any probabilistic polynomial time machine C, called the distin-
guisher, that acts as follows: first x ∈R C(n) is generated and then C is given the output
generated by either A(x) or B(x),

|Prob[C(x, y) = 1|y ∈R A(x)]−

Prob[C(x, y) = 1|y ∈R B(x)]| < 1

p(n)

for all polynomials p, for all sufficiently large n. If there exists a distinguisher C and an
ϵ(n) such that infinitely often

|Prob[C(x, y) = 1|y ∈R A(x)]−
Prob[C(x, y) = 1|y ∈R B(x)]| > ϵ(n)

we say that C distinguishes with probability ϵ

By negligible probability we mean a probability which for any polynomial p is smaller
than 1

p(n) , for all but finitely many security parameters n, while an overwhelming probability

is a probability which is at least 1 − 1
p(n) for infinitely many n’s. Thus, two ensembles of

probability distribution are indistinguishable if no polynomial time machine can distinguish
between them, but with negligible probability.

2.2 Public Key Cryptosystems

Definition 2.2 A public-key cryptosystem consists of

1. A key generator G that on input n, the security parameter outputs a pair (e, d) where
e is the public-key written in a public file and d is the private key.

2. An encryption mechanism that given a message m and the public key e produces a
ciphertext c.

3. A decryption mechanism that on input e the public key and d the private key and a
ciphertext c produces a plaintext message m.

The components obey the following:
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1. If the decryption mechanism is given e, d, c where c was produced by the encryption
mechanism on input e and m and e, d were produced by the generator, then it outputs
the message m.

2. The generator, encryption mechanism and decryption mechanism can be operated by
probabilistic machines that operate in expected polynomial in n time.

Note that for a given key e and message m the encryption mechanism can assign one of
several possibilities as a ciphertext for m.

We assume that the total number of messages sent by the cryptosystem (and their total
length) is polynomial in the security parameter n.

2.3 Cryptographic attacks and security

In order to define the security level of a cryptosystem we have to specify the type of attack we
are assuming (the power of the adversary) and the type of breaking which we wish to prevent
(what tasks should the adversary be able to perform as the result of the attack). Given these
specifications, we have to show that breaking the cryptosystem with the specified attack is
as hard as performing a certain (presumed hard) computational task (such as distinguishing
quadratic residues and non residues modulo a Blum integer).

The types of attacks considered in the literature are presented in an increasing order of
severity:

1. ciphertext-only attack - in which the adversary sees only ciphertexts.

2. known-plaintext attack - in which the adversary knows the plaintexts (messages) and
the corresponding ciphertexts transmitted.

3. chosen-plaintext (CP) attack - where the adversary gets to pick (adaptively) plaintexts
of his choice and by exploiting the encryption mechanism he sees their encryption
value.

4. chosen-ciphertext (CC) attack - where in addition to access to the encryption mech-
anism the adversary can pick (adaptively) ciphertexts of his choice and by using the
decryption mechanism (as a black box) he gets the corresponding plaintexts.

In a public-key setting, a chosen plaintext attack is the weakest one which is relevant:
since the encryption key is public, the adversary can definitely encrypt any plaintext of his
choice.

To specify the type of breaking which we are interested in preventing, it is necessary
to define the tasks that the adversary is expected be able to perform following the attack.
For instance, we can consider an attack to be successful if the adversary is able to fully
decrypt any ciphertext. Clearly, this requirement is too strong ( that is, it does not provide
enough security), since we are interested in preventing the adversary from learning partial
information about the plaintext. We should note however, that even under this requirement
no previous scheme was shown to be provably secure against chosen ciphertext attacks.

The notion of semantic security, as defined by Goldwasser and Micali, captures the
requirement that it should be impossible to extract partial information on the plaintext
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from the ciphertext. Informally, semantic security means that any function of the plaintext
that is computable with the ciphertext should be computable without it.

Though semantic security expresses the desired security properties of cryptosystems a
notion that is easier to prove is indistinguishability of encryptions (a.k.a. polynomial se-
curity). These two notions were shown to be equivalent by Goldwasser and Micali [19]
(indistinguishability ⇒ semantic), Micali, Rackoff and Sloan [28] (semantic ⇒ indistin-
guishability) and Goldreich [14] (the uniform case).

Under the notion of indistinguishability of encryptions, the cryptosystem is considered
to have been broken if the adversary can find two messages m0 and m1 in the message
space such that it can distinguish between encryptions of m0 and m1. This requirement
implies that in the public-key setting the encryption must be probabilistic, i.e. E(m1)
and E(m2) are probability distributions that are indistinguishable to those who do not
know the decryption key. From now on we identify the notion of security with that of
indistinguishability of encryptions.

We now, following [13], define precisely what we mean by a chosen ciphertext attack:
an attack consists of three probabilistic polynomial time machines A, F , T . Each machine
corresponds to a different stage of the attack.

A (participating) CC-attacker is a probabilistic machine A whose input is a security
parameter n (in unary), and a public key e drawn from In. A is allowed to query the
decryption machine ( which knows the key d corresponding to e) with any ciphertext poly-
nomially many times. Each time it gets as a result a plaintext corresponding to the input
ciphertext. A’s computation is allowed to be a function of the input, the queries and an-
swers and of its random bits. A produces some output, which w.l.o.g. can be the entire
history of its computation and its internal state (which are polynomial in n).

The second machine F , the message-finder, has as input the public key, the security pa-
rameter n and an auxiliary input (which may contain the entire history of A’s computation
plus its inner state). F produces as output two messages m0,m1.

The third machine T , themessage-distinguisher, gets as its input the security parameter,
the public key, the computation history of F which includes the pair of messages m0, m1,
the inner state of F and a challenge which is an encryption of one of the two messages m0,
m1. It outputs one bit which is its guess as to which of the two messages was encrypted.

A chosen plaintext attack is defined similarly, except that the participating stage A does
not have access to the decryption mechanism, but has access to the encrypting mechanism.
(This is trivially achieved in a public-key cryptosystem).

Definition 2.3 Consider the following experiment which we call an XX-attack. Run the
algorithm G on input 1n to produce a pair of keys (e, d) (d is kept secret at the decoding
machine). Then run a participating XX-attacker, with input e to produce a history h. Next,
give the public key e and h as input to F in order to obtain a pair of messages m0,m1 ∈ Mn

and the attack history h; choose one of these at random, mb say, and give (mb, e) to E to
produce an encryption α; finally, give (e,m0,m1, h, α) as input to T to obtain the bit b′.
The experiment is a success if b = b′; otherwise it is a failure.

XX can stand for either CC or CP resulting in a CC-attack or CP-attack respectively.
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Definition 2.4 We say that PKC (E,D) is secure against XX-attack if for any polynomial
p, for any XX-attacker A, for any XX-message-finder F , for any message-distinguisher T ,
for all sufficiently large n:

|Prob[success]− Prob[failure]| < 1

p(n)
.

We have defined the attack in terms of Turing machines. Alternatively, we could have
chosen a non-uniform model such as circuits. The results of the paper remain the same in
this case, i.e. a non-uniform assumption yields a non-uniform scheme.

2.4 Background Remarks

Before we continue we close the section by some background and essential clarifying remarks
on related work.
Remark 1: Since CCS-PKC were not known, a totally different mode of operation was used
to achieve CC secure message transmission: interactive protocols ( telephone conversations),
rather than PKC (mail sending). In interactive protocols the parties exchange messages,
and indeed the solutions suggested by Goldwasser, Micali and Tong [22], Yung [36] and
Galil, Haber and Yung [13] were all inherently interactive. (This, of course, did not solve
the open problem regarding PKC). The first two were given without the exact notion of
security and used exchange of new cryptographic keys via interaction. The third one uses
“interactive proof-systems of knowledge” as was formalized by Feige, Fiat and Shamir and
Tompa and Woll [11, 34]. The sender proves that she knows the ciphertext and thus the
CC-attack is reduced to chosen-plaintext one. As mentioned above, Micali [27] has clarified
that the claims about chosen ciphertext secure cryptosystems made in section 5 of [4] refer
to a system with initial interaction as well.
Remark 2: More is known about security of signatures than CCS-PKC: Goldwasser,
Micali and Rivest [21] have defined a hierarchy of attacks similar to the one given here.
They showed how to implement a signature scheme secure against the strongest attack on
signature schemes (adaptive chosen message attack) with the weakest notion of breaking
(existentially forgeable) under the assumption that factoring is hard (or that claw-free
trapdoors exist). Later, Bellare and Micali [3] showed how to base signatures on any
trapdoor permutation. Naor and Yung [29] then showed how to construct a trapdoor-
less signature, basing it on what they called universal one-way hash functions which they
implemented using any 1-1 one-way function. Recently, Rompel [33] has shown how to
construct universal one-way hash functions from any one-way function.
Remark 3: Bellare and Goldwasser [2] have shown how to get signatures from non interac-
tive zero-knowledge proof systems combined with the pseudo-random functions of Goldreich,
Goldwasser and Micali [15]. Their scheme required a stronger definition of non interactive
zero knowledge proof system that is not known to be equivalent to the one used here.
Nevertheless it can be implemented under QRA.
Remark 4: We use a cryptosystem design principle which can be called secret hiding:
design the system such that it has two “secrets”. In order to operate it, only one of the
secrets needs to be known. However, to an outsider it should be indistinguishable which of
the secrets is known. This principle was introduced by Feige and Shamir [10].
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3 The scheme

In our scheme the public key of a user consists of three parts: two keys e1, e2 of an
encryption function E and a random string R generated by some distribution. To send
a message in this scheme, it should be encrypted according to each encryption key and a
proof should be appended that the same message was encrypted in both keys. The proof
would be in a non-interactive zero-knowledge proof system with a shared random string R.
When decrypting a message, it is first verified in the non-interactive proof system that the
two encryptions are consistent, and only then is the message decrypted.

In section 3.1 we define the basic tools needed for the scheme: a probabilistic encryption
scheme secure against chosen plaintext attacks and (single theorem) non-interactive zero-
knowledge proof systems in the shared string model. The non-interactive proof systems
as defined by Blum, Feldman and Micali [4] are not strong enough for our purposes. Our
scheme actually requires it to satisfy additional properties. In section 3.2 we show how to
transform any non-interactive zero-knowledge proof system so as to satisfy these additional
requirements. Finally in section 3.3 we present the scheme itself.

3.1 Basic tools

Probabilistic encryption
For our scheme we require the following assumption

Assumption 1 There is a triple (E,D,G) with the following properties

• G, the key-generator, is a probabilistic machine that, given the security parameter n,
halts in expected time polynomial in n and outputs a pair of strings (e, d). (e a public
key and d a secret key).

• E, the encryption function, gets 3 inputs: e which is the first output of G, b ∈ {0, 1}
and r which is a random string of length p(n) where p is a polynomial. Ee(b, r) is
computable in polynomial time.

• D, the decryption function, gets two inputs: c which is a ciphertext and a private key
d which was produced by G. Dd(c) is computable in expected polynomial time

• if G outputs (e, d), then

∀b ∈ {0, 1}, ∀r ∈ {0, 1}p(n) Dd(Ee(b, r)) = b

• Indistinguishability - for all polynomial time machines M

|Prob[M(e,Ee(0, r)) = 1]−

Prob[M(e, Ee(1, r)) = 1]| < 1

poly(n)

where the probability is taken over the coin flips of G,E and M .
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For implementations of probabilistic encryption see [19, 1, 6, 35, 28]. From the hard core
predicate results of Yao [35], Levin [25] and Goldreich and Levin [17] it follows that if there
are public-key cryptosystems which are secure in any reasonable sense (i.e. if the plaintext
is chosen at random, then it is hard to completely retrieve it given only its ciphertext), then
schemes with the properties of assumption 1 exist. In particular, if trapdoor permutations
exists, then such schemes exist.

Non-interactive zero-knowledge proof systems
We define non-interactive proofs as in [4]. A (single theorem) non-interactive proof

system for a language L allows one party P to prove membership in L to another party
V for any x ∈ L. P and V initially share a string R of length polynomial in the security
parameter n. To prove membership of a string x in Ln = L ∩ {0, 1}n, P sends a message p
as a proof of membership. V decides if to accept or to reject the proof.

The shared string R is generated according to some distribution U(n) that can be
generated by a probabilistic polynomial time machine. (In all the examples we know of it
is the uniform distribution, though it is required for our scheme.)

Let L be in NP. For any x ∈ L there is a set of witnesses for its membership. Let
WL(x) = {z| z is a witness for x}. For the proof system to be of any use, P should be
able to operate in polynomial time if it given a witness z ∈ WL(x). In general z is not
available to V.

Let P(x, z,R) be the distribution of the proofs that P generates on input x, witness z
and shared string R. Suppose that P sends V a proof p when the shared random string is
R. Then the pair (R, p) is called the conversation. Any x ∈ L and z ∈ WL(x) induces a
probability distribution CONV(x, z) of conversations (R, p) where R ∈ U is a shared string
and p ∈ P(x, z,R) is a proof.

For the system to be zero-knowledge, it should have a simulator S. S on input x
generates a conversation (R, p). Let S(x) be the distribution of the conversation that S
generates on input x, and let SR(x) be the distribution of the R part of the conversation.

Let ACCEPT (R, x) = {p|V accepts on input R, x, p},
and let REJECT (R, x) = {p|V rejects on input R, x, p}.

The following is the definition of non-interactive proof systems of [4] which is modified
to incorporate the tractability of P. The uniformity conditions of the system are adopted
from Goldreich [14].

Definition 3.1 A triple (P,V,U) where P is a probabilistic machine, V is a polynomial
time machine and U is a polynomial time sampleable probability distribution is a non-
interactive zero-knowledge proof system for the language L ∈ NP if:

1. Completeness: (if x ∈ L then P generates a proof that V accepts). For all x ∈ Ln, for
all z ∈ WL(x), with overwhelming probability for R ∈R U(n) and p ∈R P(x, z,R), p
is in ACCEPT (R, x). The probability is over the choices of the shared string R and
the inner coin flips of P.

2. Soundness: (if y ̸∈ L then no prover can generate a proof that V accepts). For all
y ̸∈ Ln with overwhelming probability over R ∈R U(n) for all p ∈ {0, 1}∗, p is in
REJECT (R, y). The probability is over the choices of the shared string R.
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3. Zero-knowledge: (There is a probabilistic polynomial time machine S which is a simu-
lator for the system). For all probabilistic polynomial time machines C, if C generates
x ∈ L and z ∈ WL(x) then,

|Prob[C(w) = 1|w ∈R S(x)]−

Prob[C(w) = 1|w ∈R CONV(x, z)]| < 1

p(n)

for all polynomial p and sufficiently large n.

Assumption 2 For all L ∈ NP there is a non-interactive proof system as defined above.

Currently this assumption is known to be true assuming the intractability of quadratic
residuosity [4, 7] or given any trapdoor one-way permutation [12]. Recently, Kilian and
Petrank [23, 24] found more efficient implementations of such schemes. Their scheme is for
the circuit satisfiability problem. The length of a proof (and the size of the shared random
string) of a satisfiable circuit of size L, assuming trapdoor permutation on k bits, is O(Lk2).
Remark: Note that though the same R will be used for many proofs we do not require the
multi-theorem version of non-interactive zero-knowledge proof systems (which we have not
defined). Using the Bellare and Goldwasser [2] definition of multi-theorem zero-knowledge
would have simplified somewhat the proof. However, we do not know if the two definitions
are equivalent in the sense that the existence of the single theorem type implies the existence
of the Bellare-Goldwasser type.

3.2 Strengthening non-interactive proof systems

For the non-interactive proof system to be useful for our purposes it must satisfy more
requirements. We will show how to transform any non-interactive zero-knowledge proof
system into one that satisfies those requirements. In the transformations applied to the
proof system we utilize the fact that we can run several proof systems simultaneously, while
maintaining the zero-knowledge property. This parallel composition is not known to be true
in interactive proof systems (see Goldreich and Krawczyk [16] for evidence against it).

Consider the following “generic” transformation: Let

(P1,V1,U1), (P2,V2,U2), . . . , (Pn,Vn,Un)

be non-interactive proof systems for a language L. Let (P,V,U) be constructed as follows:
U generates a string R = R1, R2 . . . , Rn such that Ri ∈R Ui(n) for 1 ≤ i ≤ n. On input
x and z ∈ WL(x) and R = (R1, R2, . . . , Rn) P generates p = (p1, p2, . . . , pn) where pi ∈R

Pi(x, z,Ri) for 1 ≤ i ≤ n. Verifier V, on input p = (p1, p2 . . . pn), x , R = (R1, R2, . . . , Rn),
runs Vi on x, Ri, pi for all 1 ≤ i ≤ n. V accepts if all the Vi’s accept.

Lemma 3.1 (P,V,U) is a non-interactive zero knowledge proof system for L.

Proof: It is not hard to see that completeness and soundness are preserved. Suppose that
there is a distinguisher C for for the system. I.e. C can generate an x ∈ L and z ∈ WL(x)
and can distinguish with probability ϵ between

(CONV1(x, z), CONV2(x, z), . . . , CONVn(x, z))
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and
(S1(x),S2(x), . . .Sn(x))

From this it follows that there is 1 ≤ i ≤ n such that C can distinguish with probability at
least ϵ

n
(CONV1(x, z), CONV2(x, z)), . . . CONV i−1(x, z),Si(x), . . .Sn(x)

and
(CONV1(x, z), CONV2(x, z)), . . . CONV i(x, z),Si+1(x), . . .Sn(x)

By definition of non-interactive proof system CONVj and Sj are polynomial time sam-
pleable. Thus, C can distinguish between Si and CONV i with probability ϵ

n . 2.

Strong soundness
The first requirement is that the soundness condition will hold even if x is chosen after

R is known. (This is required since R is given as part of the public-key, and x, which should
be a consistent double encryption, is selected by the sender afterwards.) Strong soundness
requirement is: with overwhelming probability over R ∈R U(n), ∀y ̸∈ Ln, ∀p ∈ {0, 1}∗,
p ∈ REJECT (R, y). In order to satisfy this requirement, a quantifier swapping technique
of Zachos [37] can be used: For words of length n, R would actually be a sequence of 2n
strings R1, R2, . . . R2n, where each Ri ∈R U(n). To prove that x ∈ Ln, for all 1 ≤ i ≤ 2n a
proof pi in ACCEPT (Ri, x, z) is given. To verify a proof, run V on each proof pi. Accept if
for all 1 ≤ i ≤ 2n V accepted. By Lemma 3.1 the resulting scheme is still a non-interactive
zero-knowledge proof system.

As for strong soundness, for any y ̸∈ Ln and any 1 ≤ i ≤ 2n the probability that
there exists a proof pi such that pi ̸∈ REJECT (Ri, y) is small. Thus the probability that
there are proofs pi ̸∈ REJECT (Ri, y) for all 1 ≤ i ≤ 2n is smaller than 2−2n. Thus, for
R = R1, R2 . . . R2n where Ri ∈R U(n) the probability that there exists a y ̸∈ L of length n
such that for all 1 ≤ i ≤ 2n there is a pi ̸∈ REJECT (Ri, y) is smaller than 2−n.

We can therefore assume that the soundness condition holds even if x is chosen after
R = R1, R2 . . . R2n is known.

Valid distributions
A harder requirement to satisfy is what we call validity. By the strong soundness

we know that if R ∈R U , then for all y ̸∈ L, REJECT (R, y) contains all p’s with high
probability. However, SR(x), the distribution of the part R that the simulator generates on
x is not necessary U . Nevertheless, we would like it to be impossible to find a y ̸∈ L and p
such that p ̸∈ REJECT (R, y). One cannot argue that if false statements are proved using
the output of the simulator, then we have a distinguisher between QR(x) and U(|x|) (and
thus a distinguisher between S(x) and CONV(x, z)), since we might not recognize that a
false statement is being proved.

Definition 3.2 An invalid word for R in a proof system P,V,U is a pair (y, p) such that
y ̸∈ L yet p ∈ ACCEPT (y,R).

By definition, in a proof system with strong soundness with overwhelming probability
there are no invalid words for R ∈R U .

What we would like to achieve is that if x ∈ L then it should be hard to find invalid
words for R ∈R Sr(x), and that for any x the invalid words of R ∈r SR(x) can be identified.

10



Definition 3.3 Let L be a language for which a non-interactive zero-knowledge proof sys-
tem (P,V,U) exists. A family of distributions {QR(x)|x ∈ L} such that QR(x) generates
strings R of the length required by the proof system for words of length |x| is valid if there is
no probabilistic polynomial time machine C that: first produces x ∈ L, then on input R ∈R

QR(x) can find with non-negligible probability a y ̸∈ L and a proof p ̸∈ REJECT (R, y).
The probability of the success of C is taken over QR(x) and the inner coin flips of C.

Let (P,V,U) be a proof system satisfying strong soundness. The distribution U is valid.
We construct a system (P ′,V ′,U ′) such that the distribution S ′

R is valid. In the new
system, for security parameter n, R is a sequence R1, R2, . . . Rn. (Each Ri ∈R U(|x|) is, as
above, in itself a sequence, assuring strong soundness.) To prove that x ∈ L, P ′ picks a
random subset J ⊂ {1 . . . n} of size n

2 . For each i ∈ U a proof pi ∈R ACCEPT (Ri, x, z) is
generated. The proof p = (pi1 , pi2 , . . . pin

2
) where ij ∈ J . To verify a proof, for each ij ∈ J

run V on pij with Rij . Accept if for all 1 ≤ j ≤ n
2 V accepted; ACCEPT ′(R, x) is defined

accordingly.
The simulator S ′ for the new proof system works by letting S, the simulator for the

old system, run n
2 times and in addition generating n

2 strings by distribution U(n). The
outputs of S and the outputs of U are randomly shuffled to generate the simulated R. The
subset J and the proof p are chosen appropriately. By an argument similar to Lemma 3.1
the resulting system is still a non-interactive zero-knowledge proof system for L.

We will show that the distribution S ′
R(x) obeys the requirements specified above.

Claim 3.1 If there exists a probabilistic polynomial time machine M that given R =
R1, R2, . . . Rn can find the n

2 Ri’s that were generated by S with non-negligible probability,
then it can be used to distinguish between the output of the simulator S and true conversa-
tions.

Proof: Suppose that M has some non-negligible probability δ of finding the outputs of
S. Suppose that instead of n

2 outputs of S randomly shuffled with n
2 outputs of U , M is

given two sets of n
2 strings, the first set containing i outputs of SR(x) and n

2 − i outputs
of U and the second set contains only outputs of U . The two sets are randomly shuffled.
Let qi be the probability that M succeeds in finding the correct partition to the two sets.
Clearly, q0 = 1

( n
n/2)

and by assumption qn/2 > δ. Thus, there is some 1 ≤ i < n
2 such that

qi+1 − qi >
δ
n .

Given a string R for which it should be decided whether it is the output of SR or of U
do the following: add it to a set composed of i outputs of S and n

2 − i− 1 outputs of U and
randomly shuffle it with a set of n

2 outputs of U and give it to M. If M guesses the right
partition, then guess that R is not random. Otherwise flip a coin. 2

Claim 3.2 The distribution S′
R is valid

Proof: Suppose that there is a probabilistic polynomial-time machine M such that given
the output of S ′, R = R1, R2, . . . Rn, then with non negligible probability M can find an
invalid word (y, p). Given that M found such a y and p, then with overwhelming probability
the set of indices J that is used in p is exactly those indices i for which Ri was an output

11



of S, since for the random Ri’s generated by U , with overwhelming probability there are
no pi ̸∈ REJECT (Ri, y) (by the strong soundness requirement). Thus M can be used to
separate the outputs of S from the random ones and by the previous claim to distinguish
between S(x) and CONV(x, z). 2.

The following claim implies that in case x ̸∈ L there is a method for recognizing the
invalid words.

Claim 3.3 There is a procedure M that can be run by a machine having as input S ′’s
random tape such that for any probabilistic polynomial time machine C that first creates x,
then gets R ∈R S′

R(x) and then produces a word w = (y, p) such that p ∈ ACCEPT ′(R, y)
the following properties hold:

• if C has a non-negligible probability to output x ̸∈ L and then given R ∈R S′
R(x) C finds

an invalid word w for R, then M recognizes an invalid w as such with overwhelming
probability.

• if C outputs x ∈ L with non-negligible probability, then with overwhelming probability
M does not recognize falsely as invalid a word that C outputs given R ∈R S′

R(x) for
x ∈ L.

Proof: The method to recognize a word (y, p) as invalid for R = R1, R2, . . . Rn is to check
if p uses exactly those indices that were generated by S. (This can be done efficiently by a
machine M that has S ′’s random tape, since it can simulate S ′ directly using S as a black
box and it has access to the choice of J on the random tape). Since (P,V,U) satisfies strong
soundness, an invalid word for R = R1, R2, . . . , Rn uses with overwhelming probability those
Ri’s that were generated by S. Thus, the first property is satisfied. By the previous claim
(S ′

R is valid) it is clear that if x ∈ L, with overwhelming probability C will not output a
word that is recognized as invalid by this method. 2

Call the properties defined in the claim above recognizability.
Thus we have:

Theorem 3.2 Any non-interactive zero-knowledge proof system for a language L can be
converted to one with the following properties.

• Strong soundness: with overwhelming probability over R ∈R U(n), ∀y ̸∈ L, ∀p ∈
{0, 1}∗, p ∈ REJECT (R, y).

• Validity: the family of distributions {S ′
R(x)|x ∈ L} is valid.

• Recognizability: there is an efficient method for recognizing invalid words.

We call a proof system with those properties a certifying system.

3.3 The scheme

Definition 3.4 Let (E,D,G) be as in assumption 1. For public keys e1, e2 a consistent
double encryption is w = Ee1(b, r1), Ee2(b, r2) for some b ∈ {0, 1}, r1, r2 ∈ {0, 1}p(n).

12



The language of consistent double encryptions

L = {e1, e2, w|w is a consistent double encryption}

is in NP. For a given word w = Ee1(b, r1), Ee2(b, r2) the pair r1, r2 is a witness for its
membership in L. By assumption 2 and Theorem 1 there is a certifying system (P,V,U)
for L.

We are now ready to present the scheme

Key generation:
Run G(n) twice to generate (e1, d1) and (e2, d2). Generate R ∈R U(n).
Public key is ⟨e1, e2, R⟩. Private key is ⟨d1, d2⟩.
Encryption:
To encrypt a message m = b1, b2, . . . bk, with public key ⟨e1, e2, R⟩:
for each 1 ≤ i ≤ k

1. generate ri1 , ri2 ∈R {0, 1}p(n)

2. compute ci = Ee1(b, ri1), Ee2(b, ri2)

3. run P on ci with witness (ri1 , ri2) and string R to get pi.

The encrypted message is (c1, p1), (c2, p2) . . . (ck, pk).

Decryption:
To decrypt a ciphertext (c1, p1), (c2, p2) . . . (ck, pk):
for all 1 ≤ i ≤ k

1. verify that ci is consistent by running the verifier V on ci, pi, R.

2. If V accepts, then retrieve bi by computing either Dd1(Ee1(bi, ri1)) or Dd2(Ee2(bi, ri2)).
Otherwise the output is null.

From this description it is clear that the generator and the encryption and decryption
mechanism can be operated in polynomial time. Also if the decryption mechanism is given
a legitimate ciphertext and the right key it produces the message encrypted.

4 Proof of security

We now show that the scheme described in the previous chapter is secure against chosen
ciphertext attacks. We will show that if it can be broken, then either assumption 1 is false,
specifically there is a way to distinguish between Ee(0, r) and Ee(1, r), or assumption 2 is
false, namely the system (P,V,U) is not zero-knowledge.

The proof utilizes the following properties of the scheme

• Decryption (of legitimate ciphertexts) requires knowledge of only one of d1 or d2.

• Given a ciphertext, any user can verify that it is a legitimate ciphertext, i.e., a vali-
dated double encryption.

13



The idea of the proof is to use the chosen ciphertext attack on the scheme to conduct a
chosen plaintext attack on the probabilistic encryption scheme. Given an instance of the
encryption scheme from assumption 1, i.e. a key ⟨e1⟩ for which we wish to distinguish
between Ee1(0, r) and Ee1(1, r), using a plaintext attack, we generate another instance of
the probabilistic encryption e2 and R ∈R U(|x|) and create a public key (in our scheme)
⟨e1, e2, R⟩. We now simulate a chosen ciphertext attack on ⟨e1, e2, R⟩. We can simulate
such an attack since we know d2 and from the properties listed above, this suffices. It is
then shown how to use the broken public-key ⟨e1, e2, R⟩ in order to break ⟨e1⟩.

In order to formalize this intuition we first prove in Lemma 4.2 that we can assume that
our message space is {0, 1}. Then we present procedure B that performs the simulation
described above. Lemma 4.2 shows that B is well defined using the validity and recogniz-
ability of the proof system (implied by Theorem 1). Lemma 4.3 and the protocol following
it show how to use B in order to break ⟨e1⟩ or ⟨e2⟩.

Theorem 4.1 The scheme described in section 3.3 is secure against CC-attack.

Proof: If the scheme can be broken, then there are machines A, F and T such that A
conducts the participating chosen ciphertext attack, F finds a pair of messages and T can
distinguish between the pair with probability ϵ where ϵ is at least 1

p(n) for some polynomial
p for infinitely many n’s.

We first show that we can restrict ourselves to the single bit message version. We present
a standard reduction for any such n from a fixed k = poly(n) bit long message space to a
1-bit long messages.

Lemma 4.2 If an attack on ⟨e1, e2, R⟩ is successful, then T can be used to distinguish
between encryptions of 0 and 1.

Proof: For ⟨e1, e2, R⟩ to have been broken means that F has found two sequences m =
b1, b2, . . . bk and m′ = b′1, b

′
2, . . . b

′
k such that the distributions of the encryptions of m and

m′ can be distinguished by the machine T with some non-negligible probability q (i.e. q
is the difference in the probability that the distinguisher T outputs a ’1’ when given an
encryption of m and m′. Consider a walk on the k-cube that connects vertex m and m′,
m = m1,m2, . . .mℓ = m′, (l ≤ k). For each neighboring pair of vertices on the walk, mi and
mi+1, let qi be the difference of the probabilities that the distinguisher outputs ’1’ given an
encryption of mi and mi+1. q =

∑ℓ
i=1 qi. This implies q ≤

∑ℓ
i=1 |qi|. Hence there must be

some i such that |qi| ≥ q
ℓ . Say that mi and mi+1 differ in the jth bit.

To distinguish between encryptions of ’0’ and ’1’ the following can be done: Given an
encryption of a bit, generate encryptions of the rest of the matching bits in the messages
mi and mi+1; compose them to create an encryption of word which is either mi or mi+1,
depending if the given bit is a ’0’ or a ’1’. Now the distinguisher’s response is a guess for
the given bit. The distinguishing difference is qi. 2

Therefore w.l.o.g., the message space for the challenge is {0, 1} and we assume that a
successful CC-attack is possible, thus T can distinguish with some probability ϵ ≥ 1

p(n)
between encryptions of 0 and 1 for some polynomial p for infinitely many n’s. From now
on we assume that n is in this infinite set.
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Recall that a string c = Ee1(b1, r1), Ee2(b2, r2), p is an invalid word for R if b1 ̸= b2 and
yet p ̸∈ REJECT (R, c). Recall that with overwhelming probability over R ∈R U there is
no invalid word for R.

We now present procedure B, a gedanken (thought) experiment which is the keystone
in breaking the scheme of assumption 1 ⟨E⟩ with a plaintext attack. Assume that e1 and
e2 were generated by G and r1 and r2 are random.

Procedure B:
Input: security parameter n, encryption keys e1 , e2, ciphertexts Ee1(b1, r1), Ee2(b2, r2) and
either decryption key d1 or d2.

1. Using the simulator S generate a string R and a proof p that Ee1(b1, r1) and Ee2(b2, r2)
are consistent.

2. Give the attacker A the key ⟨e1, e2, R⟩ and simulate a CC-attack on it. When A
asks for the decryption of a ciphertext, verify its consistency and then decrypt using
whichever key is known, d1 or d2.

3. Run T in attempt to decrypt ⟨Ee1(b1, r1), Ee2(b2, r2), p⟩. Say that T ’s guess is
t ∈ {0, 1}.

Before we proceed, we must verify that procedure B is well defined, i.e., that a decryption
always exists for the words the attacker chooses (we haven’t defined the decryption of an
invalid word), and that the outcome of B does not depend on whether d1 or d2 are known.

Lemma 4.3 With overwhelming probability the attacker does not ask for the decryption of
an invalid word. The probability is over r1, r2 and the coin flips of G, S and A.

Proof: If b1 = b2 then the simulator has to provide a proof for a word which is in the
language of consistent encryptions. We are assured by Theorem 1 that the distribution of
strings R that the simulator generates is valid in this case and hence the attacker A has
only negligible probability of finding an invalid word.

Suppose that if b1 ̸= b2 then A has a non-negligible probability of finding an invalid
word. Recall from Claim 3.3 the following procedure M for recognizing invalid words: S
generated R = R1, R2, . . . Rn, half of which were generated by U . Given a proof p, check
whether the subset J ⊂ {1, .., n} of indices used in the proof p includes exactly the Ri’s
that were not generated by U . The recognizability property is that with overwhelming
probability (over the choices of R) all invalid words are recognized by M and that, if S is
given a consistent encryption then no probabilistic polynomial time machine can find with
non-negligible probability a word that will be recognized as invalid by M .

We will use this procedure for a plaintext attack on E. Assume that when b1 = 1 and
b2 = 0 the attacker A has a non-negligible probability δ of finding invalid words; (this is
w.l.o.g., since under the assumption one of the two inconsistent cases must have such non-
negligible probability on infinitely many n’s). given Ee1(b1, r1) we want to guess b1 with
probability better than 1

2 .

1. Using G generate e2 and d2.

2. Generate random r2 and compute Ee2(0, r2).
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3. Run B on input e1, e2, Ee1(b1, r1), Ee2(0, r2), d2;
Stop if an invalid word is recognized (by the method described above).

4. If an invalid word was recognized, guess that b1 = 1. Otherwise flip a coin.

If b1 = 1 there is non-negligible probability δ that an invalid word is found by A. With
overwhelming probability the invalid word is recognized at step 3, and the probability that
both events happen is at least 3

4 · δ. If b1 = 0, then the probability of finding an invalid

word or of erroneously identifying one as such is negligible and smaller than δ
4 . Thus the

probability of distinguishing between encryptions of ’0’ and ’1’ is at least δ
2 which is non-

negligible. 2

The significance of Lemma 4.2 is that we can now define P00, P01 and P11 as the
probabilities that the output of T in step 3 of B is t = 1, given that b1 = b2 = 0 ,
0 = b1 ̸= b2 = 1, and b1 = b2 = 1 respectively. The probabilities are taken over the
distributions of G, of ⟨Ee1(b1, ·⟩ and ⟨Ee2(b2, ·⟩ and the coin flips of the machines S, A and
T . It is easy to see that these probabilities are independent of whether we are running B
knowing d1 or d2 (up to a negligible factor).

Lemma 4.4 |P00 − P11| > ϵ
2

Proof: Let P ′
00 and P ′

11 be the probability that the output t is 1 in case R used in step 1
and p used in step 3 are generated by the certifying system and not by the simulator, i.e.
R ∈R U(n) and p ∈R P((Ee1(b, r1), Ee2(b, r2)), (r1, r2), R). By assumption of the success of
the CC- attack |P ′

00−P ′
11| > ϵ. If |P00−P ′

00| or |P11−P ′
11| are not negligible, then we have

a distinguisher between the simulator and the proof-system’s output: given

(Ee1(b, r1), Ee2(b, r2)), (e1, e2), (d1, d2), R, p

for which we wish do check if (R, p) are the output of S or not, we run B with R in step 1
and p in step 3. The probability that t = 1 is Pbb in case (R, p) ∈R S and P ′

bb otherwise.
Thus (by the assumption that CC- attack is successful and the zero-knowledge property)

we can conclude that |P00 − P11| > ϵ
2 . 2

Corollary 4.1 either |P00 − P01| > ϵ
4 or |P01 − P11| > ϵ

4 .

Assume w.l.o.g. that |P01 − P11| > ϵ
4 for infinitely many n’s (which is the set of n’s

under attack). Consider the following procedure for a chosen plaintext attack on ⟨e1⟩:
Input ⟨e1⟩, Ee1(b, r1)

1. Using G generate e2, d2.

2. generate random r2 and compute Ee2(1, r2).

3. run procedure B on input e1, e2, Ee1(b, r1), Ee2(1, r2), d2.

4. output t, ( T ’s guess from step 3 of B).
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We know that Pr[t = 1|b = 0] = P01 and that Pr[t = 1|b = 1] = P11. From the above
we can conclude that

|Pr[t = 1|b = 0]− Pr[t = 1|b = 1]| > ϵ

4

and thus we have a distinguisher for Ee1 . In other words ⟨e1⟩ has been broken by a plaintext
attack only, contradicting our assumption. This concludes the proof of the theorem 2

Using the results of [12, 5] we have:

Corollary 4.5 If trapdoor one-way permutations exists, then there exist CCS-PKC.

5 Conclusions and extensions

We have shown how to construct a public key system secure against chosen ciphertext
attacks from probabilistic encryption schemes and non-interactive zero-knowledge proof
systems. This motivates searching for more general assumptions (than quadratic residuos-
ity) under which non-interactive zero-knowledge proof system are possible. In particular,
our work suggests looking for non-interactive proofs of consistency that are not necessarily
good for all languages in NP.

Recently, Dolev, Dwork and Naor have introduced a new primitive called non-malleable
bit commitment. In the public-key setting, this primitive yields a scheme where an eaves-
dropper cannot create a ciphertext whose corresponding plaintext is a function of the mes-
sages that were sent in the system (except for exact copying). This in conjunction with our
CCS-PKC implies a cryptosystem that is secure against an even stronger attack than CC,
suggested by Rackoff and Simon [31]: the attacker gets to use the decryption mechanism
even after seeing the ciphertext he is interested in cracking. The only restriction is that he
won’t use the decryption mechanism on exactly the same ciphertext he wants to crack.
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