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Abstract

We initiate the study of compression that preserves the
solution to an instance of a problem rather than preserv-
ing the instance itself. Our focus is on the compressibil-
ity of NP decision problems. We consider NP problems
that have long instances but relatively short witnesses. The
question is, can one efficiently compress an instance and
store a shorter representation that maintains the informa-
tion of whether the original input is in the language or not.
We want the length of the compressed instance to be poly-
nomial in the length of the witness rather than the length
of original input. Such compression enables to succinctly
store instances until a future setting will allow solving them,
either via a technological or algorithmic breakthrough or
simply until enough time has elapsed.

We give a new classification of NP with respect to com-
pression. This classification forms a stratification of NP
that we call the VC hierarchy. The hierarchy is based on
a new type of reduction called W-reduction and there are
compression-complete problems for each class.

Our motivation for studying this issue stems from the vast
cryptographic implications compressibility has. For exam-
ple, we say that SAT is compressible if there exists a polyno-
mial p(·, ·) so that given a formula consisting of m clauses
over n variables it is possible to come up with an equiva-
lent (w.r.t satisfiability) formula of size at most p(n, log m).
Then given a compression algorithm for SAT we provide a
construction of collision resistant hash functions from any
one-way function. This task was shown to be impossible
via black-box reductions [41], and indeed the construction
presented is inherently non-black-box. Another application
of SAT compressibility is a cryptanalytic result concerning
the limitation of everlasting security in the bounded storage
model when mixed with (time) complexity based cryptog-
raphy. In addition, we study an approach to constructing
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an Oblivious Transfer Protocol from any one-way function.
This approach is based on compression for SAT that also
has a property that we call witness retrievability. How-
ever, we mange to prove severe limitations on the ability
to achieve witness retrievable compression of SAT.

1 Introduction

In order to deal with difficult computational problems
several well established options were developed, includ-
ing: approximation algorithms, subexponential algorithms,
parametric complexity and average-case complexity. In this
paper we explore our favorite approach for dealing with
problems: postpone them (hopefully, without cluttering our
desk or disk). We initiate the study of the compressibil-
ity of NP problems for their resolution in some future set-
ting. Rather than solving a given instance, we ask whether
a shorter instance with the same solution can be found ef-
ficiently. We emphasize that we are not interested in main-
taining the information about the original instance (as is the
case in typical notions of compression), but rather main-
tain the solution only. The solution can possibly be much
shorter than the input (as short as a yes/no answer), thus the
potential of such a compression is high.

Specifically, we consider NP problems that have long
instances but relatively short witnesses. An NP language
L is defined by an efficiently computable relation RL such
that an input (or instance) x is in L if and only if there ex-
ists a witness w such that RL(x,w) = 1. Throughout the
paper, an NP instance is characterized by two parameters
m and n: The length of the instance x is denoted by m and
the length of the witness w is denoted by n. The problems
of interest are those having short witnesses, i.e. n << m.
Traditionally, the study of NP languages evolves around
the ability or inability to efficiently decide if an instance is
in the language or not, or to find a witness w for an instance
x within polynomial time. We introduce the question of
compressibility of such instances.



Compressing SAT Instances: To illustrate the relevant
setting, we use the well known example of SAT. An instance
Φ for SAT consists of a CNF formula over n variables and
we define that Φ ∈ SAT if there exists an assignment to
the n variables that satisfies all the clauses of Φ. We begin
with compressibility with respect to decision, and discuss
compressibility of the search variant later in the paper. The
question of compressibility of SAT is the following:

Example 1.1 (Compression of SAT instances)
Does there exist an efficient algorithm and a polynomial
p(·, ·) with the following input and output:
Input: A CNF formula Φ with m clauses over n variables
(we are interested in m >> n).
Output: A formula Ψ of size p(n, log m) such that Ψ is
satisfiable if and only if Φ is satisfiable.

The idea is that the length of Ψ should be essentially un-
related to the original length m, but rather to the number
of variables (or in other words, to the size of the witness).
Typically, we think of the parameters m and n as related
by some function, and it is instructive (but not essential) to
think of m as larger than any polynomial in n. So poten-
tially, the length of Ψ can be significantly shorter than that
of Φ.1

In general, one cannot expect to compress all the formu-
las, or else we would have an efficient algorithm for allNP
problems.2 However, once we introduce the setting of a
shorter witness, then compression becomes plausible. Note
that if P = NP and we actually know the algorithm for
SAT then clearly compression is trivial, simply by solving
the satisfiability of Φ and outputting 1 if Φ ∈ SAT and 0
otherwise.

Motivation for Compression: Compressing for the fu-
ture is an appealing notion for various settings. There are
numerous plausible scenarios that will give us more power
to solve problems in the future. We could potentially find
out that P = NP and solve all our NP problems then. We
may have faster computers or better means of computing
such as quantum computers or any other physical method
for solving problems (see Aaronson [1] for a list of sugges-
tions). Above all, the future entails lots and lots of time,
a resource that the present is usually short of. Saving the
problems of today as they are presented is wasteful, and
compression of problems will allow us to store a far greater
number of problems for better days.

Our interest in studying the issue of compression stems
from the vast cryptographic implications of compressibility.

1Note, that since our requirement for compression is only relevant for
problems where m >> n, then an NP-complete problem such as 3-SAT
(where all clauses have exactly 3 literals) is irrelevant for compression as
in such formulas m is already at most O(n3).

2Suppose that every formula can be compressed by a single bit, then
sequentially reapplying compression to the input will result in a very short
formula that may be solved by brute enumeration.

We demonstrate three questions in cryptography that com-
pression algorithms would resolve (see Section 3). We are
confident that the compression of problems implies further
applications both within and outside of cryptography. For
example, in subsequent works, Dubrov and Ishai [13] show
the relevance of the notion of compression to derandomiza-
tion and Dziembowski [15] shows that compression is re-
lated to the study of forward-secure storage (see Section 5
on related work). The concept of compression of problems
is also interesting beyond the confines ofNP problems, and
makes sense in any setting where the compression requires
much less resources than the actual solution of the problem.

1.1 Compression of NP instances

We define the notion of compression with respect to an
NP language. For simplicity, we assume that an input to
an NP language L includes an encoding of the parameter
n that upper bounds the length of a potential witness.3 We
also associate with L a specificNP relation RL that defines
it (as mentioned above). We note that once the parameters
m and n are explicit, it is in most cases immaterial what
specific relation defines the language and the properties we
discuss (such as compressibility) are properties of the lan-
guage at hand (unless stated otherwise). In essence, a com-
pression algorithm is a specialized Karp-reduction that also
reduces the length of the instance.

Definition 1.2 (Compression Algorithm for NP Instances)
Let L be an NP language where m and n denote the in-
stance length and the witness length respectively. A
compression algorithm for L is a probabilistic polynomial
time machine Z along with a language L′ in NP (or more
accurately in NP(poly(m)))4 and a polynomial p(·, ·)
such that for all large enough m:

1. For all x ∈ {0, 1}m with parameter n the length of
Z(x) is at most p(n, log m).

2. Z(x) ∈ L′ if and only if x ∈ L

The above definition is of an errorless compression. We also
consider a probabilistic variant called ε-compression for
some real function ε : N → [0, 1]. The probabilistic defi-
nition is identical to the errorless one except for the second
property that is augmented to:

2’. For large enough n, for all x ∈ {0, 1}m with param-
eter n it holds that:

Pr[(Z(x) ∈ L′) ⇔ (x ∈ L)] > 1− ε(n)

where probability is over the internal randomness of Z.
Typically we require ε(·) to be negligible.

3Typically, the parameter n is indeed part of the description of the prob-
lem (e.g. for Clique, SAT, Long-path and others).

4By NP(poly(m)) we mean in nondeterministic-time poly(m) (that
is, verifiable in time poly(m) when given a non-deterministic hint).



The paper consists of two parts: Part I is a study of the
concept of compression ofNP instances from a complexity
point of view. Part II introduces the cryptographic applica-
tions of compression algorithms.

How much to compress: Definition 1.2 (of compres-
sion algorithms) requires a very strong compression, asking
that the length of the compression is polynomial in n and
log m. For the purposes of part I of the paper (the com-
plexity study), it is essential that the compression is at least
sub-polynomial in m in order to ensure that the reductions
defined with respect to compressibility (See Section 2) do
compose.5 Furthermore, for part II (the applications) this
definition may be strongly relaxed, where even a compres-
sion to m1−ε for some constant ε suffices for some applica-
tions.
The Complexity of L′: Another requirement of Defini-
tion 1.2 is that the language L′ be in NP(poly(m)). In
general, this requirement may also be relaxed and the result
still be meaningful for some applications. In particular, we
do not need to put a bound on the complexity of L′, but
only require that there is enough information in Z(x) to de-
termine whether x ∈ L or not. One case where we use a
definition with unbounded extraction is the compression of
search problems.It should be noted however that in some
settings the requirement for L′ to be in NP(poly(m)) is
essential, such as when defining the witness retrievability
property (Definition 3.2). Moreover, in some cases it is nat-
ural to further restrict L′ to actually be in NP (that is in
NP(poly(n, log m)). For instance, this is the case in the
definition of compression of SAT (Example 1.1). Finally,
note that if the compression is errorless, then L′ must be in
NP(poly(m)) simply by the definition of compression.6

Paper organization: Due to space limitations most of the
formal treatment is deferred to the full version of this paper
[21]. Instead we survey all the results of this paper includ-
ing the complexity study in Section 2 and the cryptographic
applications in Section 3. We give one full cryptographic
application (to collision resistant hash) in Section 4. In Sec-
tion 5 we discuss related and subsequent works. and con-
clude with a discussion and some open problems.

2 Classifying NP Problems with Respect to
Compression.

Examples of compression: We are interested in figur-
ing out which NP languages are compressible and, in

5For clarity we choose a polynomial in log m, although this may be
replaced by any sub-polynomial function m′(.) (a function such that for
large enough m for any polynomial q(·) we have m′(m) < q(m)).

6Suppose that there exists a compression algorithm Z for L then define
L′ to be the language of all Z(x) such that x ∈ L. Then, for every y ∈ L′

a verification algorithm takes as a nondeterministic witness a value x, a
witness to x ∈ L along with randomness for the compression algorithm
and verifies that indeed y = Z(x). Thus if Z never introduces an error
then L′ is in NP(poly(m)).

particular, whether important languages such as SAT and
Clique are compressible. For starters, we demonstrate
some non-trivial languages that do admit compression: we
show compression for the well known NP-complete prob-
lem of vertex-cover (see Section 2.1) and for another NP-
complete language known as minimum-fill-in. We show a
generic compression of sparse languages (languages con-
taining relatively few words from all possible instances). As
a specific example we mention the language consisting of
strings that are the output of a cryptographic pseudorandom
generator and also consider the sparse subset sum problem.
In addition we show compression for the promise problem
GapSAT.7 However, these examples are limited and do not
shed light on the general compression of other NP prob-
lems. Moreover, it becomes clear that the traditional no-
tions of reductions and completeness in NP do not apply
for the case of compression (i.e., the compression of an
NP-complete language does not immediately imply com-
pression for all of NP). This is not surprising since this is
also the case with other approaches for dealing with NP-
hardness such as approximation algorithms or subexponen-
tial algorithms (see for example [38]) and parameterized
complexity (see [12] and further discussion in Section 5 on
related work). For each of these approaches, appropriate
new reductions where developed, none of which is directly
relevant to our notion of compression.
W-reductions and completeness: We introduce W-
reductions in order to study the possibility of compressing
various problems in NP . These are reductions that address
the length of the witness in addition to membership in an
NP language. Formally:

Definition 2.1 (W-Reduction) For two NP languages L
and L′ we say that L W-reduces to L′ if there exist polyno-
mials p1 and p2 and a polynomial time computable function
f that takes an instance x for L and outputs an instance
f(x) for L′ such that: (i) f(x) ∈ L′ if an only if x ∈ L, and
(ii) If x is of length m with witness length n, then f(x) is of
length p1(n, m) with witness length only p2(n, log m).

W-reductions have the desired property that if L W-reduces
to L′, then any compression algorithm for L′ yields a
compression algorithm for L. Following the definition
of W-reductions we define also the matching notion of
compression-complete and compression-hard languages for
a class.

The VC classification: We introduce a classification of
NP problems with respect to compression. The classifica-
tion presents a structured hierarchy of NP problems, that
is surprisingly different from the traditional view and closer
in nature to the W hierarchy of parameterized complexity

7I.e. a promise problem were either the formula is satisfiable or every
assignment does not satisfy a relatively large number of clauses.



(see [12]). We call our hierarchy VC, short for “verifica-
tion classes”, since the classification is closely related to
the verification algorithm of NP languages when allowed
a preprocessing stage. We give here a very loose description
of the classes, just in order to convey the flavor of the clas-
sification. Formal definitions appear in the full version [21].
In the following definition, when we use the term “verifica-
tion” we actually mean “verification with preprocessing”:

• For k ≥ 2, the class VCk is the class of languages that
have verification which can be presented as a depth k
polynomial size circuit (polynomial in n and m). For
example, the language SAT is compression-complete
for the class VC2. Other examples include Integer-
Programming that resides in VClog n and Dominating-
Set that is in VC3. Both of which are shown to be
compression-hard for VC2.

• VC1 is the class of languages that have local verifi-
cation. That is, languages which can be verified by
testing only a small part (of size poly(n, log m)) of the
instance. This class contains many natural examples
such as the Clique language or Long-path.

• VCOR is the class of languages that have verification
which can be presented as the OR of m small instances
of SAT (each of size n). This class contains the lan-
guages that are relevant for the cryptographic applica-
tions. The Clique language is compression-hard for
this class.

• VC0 is the class of compressible languages. In par-
ticular it includes vertex cover, sparse languages and
GapSAT.

We show that the classes described form a hierarchy, that is:

VC0 ⊆ VCOR ⊆ VC1 ⊆ VC2 ⊆ VC3 . . .

We discuss some of the more interesting classes in the VC
hierarchy, classify some central NP problems and mention
compression-complete problems for the classes. Note that
the existence of a compression algorithm for a complete
problem for some class entails the collapse of the hierarchy
up to that class into VC0.

In addition, we study the compression of NP search
problems. That is, compressing an instance in a way that
maintains all the information about a witness for the prob-
lem. We show that the compression of a class of decision
problems also implies compression for the corresponding
search problems. Formally:

Theorem 2.2 If a class VCk has a compression algorithm,
then there is a compression algorithm for the search prob-
lem of a relation RL of L ∈ VCk.

This theorem turns out to be useful for the cryptanalysis
result regarding the bounded storage model (see Section 3).

2.1 Compression for Vertex Cover

Attempting to compressNP instances may require a dif-
ferent approach than actually solving NP problems. The
compressed version may actually be harder to solve (com-
putational time-wise) than the original one (and may require
a somewhat longer witness altogether). However, in some
cases, a solution for compression might arise while trying to
solve the problem. While a full solution of an NP problem
may take exponential time, it is plausible that the first poly-
nomial number of steps leaves us without an explicit solu-
tion but with a smaller instance. One such example is the
well studied NP-complete problem of Vertex-Cover. The
problem receives as input a graph G = (V,E) and asks
whether there exists a subset of vertices S ⊆ V of size at
most k such that for every edge (u, v) ∈ E either u or v are
in S. The parameters are the instance length m, which is at
most O(|E| log |V |), and the witness length n = k log |V |

Claim 2.3 There exists a witness retrievable compression
algorithm for Vertex-Cover.

Proof: We are following the parameterized complexity al-
gorithm for vertex-cover (presented in [12] and attributed to
Buss). If a vertex-cover S of size k exists, then any vertex
of degree greater than k must be inside the set S. The com-
pression algorithm simply identifies all such vertices and
lists them in the cover, while removing all their outgoing
edges (that do not need to be covered by other vertices).
The graph left after this process has maximal degree k, and
furthermore all edges have at least one end in the cover.
Thus, if the original graph has a k vertex cover then the to-
tal number of edges left is at most k2 (at most k vertices
in the cover with at most k edges each). If there are more
then k2 edges then the answer to the problem is NO, oth-
erwise, such a graph can be represented by the list of all
edges, which takes k2 log k bits. The compression can be
made witness retrievable since if we use the original labels
of vertices to store the new graph, then the original cover is
also a cover for the new compressed graph. 2

It is interesting to note that we do not know of a compres-
sion algorithm for the Clique problem or the Dominating
Set problem, which are strongly linked to the vertex-cover
problem in the traditional study of NP , and in fact, the re-
sults in Section 3 show strong cryptographic implications of
a compression algorithm for these languages.

3 Implications to Cryptography
As the main motivation for the study of compression,

we provide some strong implications of compressibility to
cryptography. The implications described are of contrasting
flavors. On the one hand we show constructions of crypto-
graphic primitives using compression algorithms, while on



the other hand we show a cryptanalysis using compression
algorithms (or alternatively, this can be considered as an ap-
plication of incompressibility of languages). For simplicity
we provide the implication with respect to the compression
of SAT. We note however, that the same statements can actu-
ally be made with compression of languages that are com-
pression hard for the class VCOR (such as the Clique lan-
guage). This class is the lowest class in our VC hierarchy,
and potentially easier to compress than SAT. Moreover, the
instances that we need to compress for our applications are
further limited in the sense that (i) the instances are inNP∩
Co-NP and (ii) the (positive and negative) instances have a
unique witness.

Basing Collision Resistant Hash Functions on Any
One-Way Function: Collision Resistant Hash functions
(CRH) are important cryptographic primitives with a wide
range of applications, e.g. [36, 7, 28, 8, 32, 3]. Loosely
speaking, a CRH is a family H of length reducing func-
tions, such that no efficient algorithm can find collisions in-
duced by a random hash from the family. Currently there is
no known construction of CRH from general one-way func-
tions or one-way permutations, and moreover, Simon [41]
showed that basing CRH on one-way permutations cannot
be achieved using black-box reductions. We show how a
general compression algorithm may be used to bridge this
gap.

Theorem 3.1 If there exists an errorless8 compression al-
gorithm for SAT then there exists a construction of collision
resistant hash functions based on any one-way function.

The construction of the CRH in Theorem 3.1 is inherently
non-black-box and uses the program of the one-way func-
tion via Cook’s Theorem [6]. This is essential to the validity
of this approach, in light of the black-box impossibility re-
sult [41].

An interesting corollary of this result is a construction
of statistically hiding bit commitment from any one-way
function, which is currently an open problem. Moreover,
the construction would require only a single round of in-
teraction ([35, 19] show constructions of statistically hiding
bit commitment based on one-way functions with a specific
structure and also require a large number of rounds of inter-
action).

On Everlasting Security and the Hybrid Bounded Stor-
age Model: The bounded storage model (BSM) of Mau-
rer [31] provides the setting for the appealing notion of ev-
erlasting security [2, 10]. Loosely speaking, two parties,
Alice and Bob, that share a secret key in advance, may use
the BSM to encrypt messages in a way that the messages

8The construction of CRH requires that the error probability of com-
pression algorithm will be zero. This can be slightly relaxed to an error
that is exponentially small in m (rather than n).

remain secure against a computationally unbounded adver-
sary, even if the shared secret key is eventually revealed.

However, if the parties do not meet in advance to agree
on a secret key then everlasting security requires high stor-
age requirements from Alice and Bob [16], rendering en-
cryption in this model less appealing. Hoping to overcome
this, it was suggested to combine the BSM with computa-
tional assumptions (what is called here the hybrid BSM). In
particular, to run a computational key agreement protocol
in order to agree on a shared secret key, and then run one of
the existing BSM schemes. Dziembowski and Maurer [16]
showed that this idea does not necessarily work in all cases,
by showing an attack on a protocol consisting of the combi-
nation of a specific (artificial) computational key agreement
protocol with a specific BSM encryption scheme.

We show that compression of NP instances can be used
to attack all hybrid BSM schemes. Or in other words, if
a compression of SAT exists, then the hybrid BSM is no
more powerful than the standard BSM. One interpretation
of this result is that in order to prove everlasting security for
a hybrid BSM scheme, without further conditions, one must
prove that there exists no compression algorithm for SAT.
Alternatively, as a relaxation, one should come up with a
reasonable incompressibility assumption regarding the re-
sulting formulae. Note however that a straightforward as-
sumption of the form “this distribution on SAT formulae is
incompressible” is not efficiently falsifiable, in the sense of
Naor [34], that is, it is not clear how to set up a challenge
that can be solved in case the assumption is false.
ON RANDOM ORACLES: The authors of this paper show
in [20] that if all parties are given access to a random or-
acle, then there actually exists everlasting security in the
hybrid BSM without an initial key and with low storage re-
quirements from Alice and Bob9. Therefore, finding a com-
pression algorithm for SAT would show an example of a
task that is simple with random oracles but altogether im-
possible without them. This would constitute an argument
against relying (blindly) on random oracles to determine
whether a task is feasible at all. This is different than pre-
vious results such as [5, 18, 4] that show a specific protocol
that becomes insecure if the random oracle is replaced by
a function with a small representation. Model separation
results (such as the implication of compression) were dis-
cussed by Nielsen [37](for non-interactive non-committing
encryption) and Wee [44] (for obfuscating point functions),
but the separation there is between the programmable and
non-programmable random oracle models (in contrast, the
hybrid BSM result in [20] holds also if the oracle is non-
programmable).

9This does not contradict the compressibility of SAT, since the crypt-
analytic result is not black-box and assumes access to the full description
of the programs of Alice and Bob. Thus this result is not preserved in the
presence of a random oracle.



The actual model and results: The bounded storage
model bounds the storage space of an adversary rather than
its running time. It utilizes the public transmission of a
long random string R of length m (sometimes referred to
as the broadcast string), and relies on the assumption that
an eavesdropper cannot possibly store all of this string.
The everlasting security achieved by encryption schemes in
this model means that an encrypted message remains se-
cure even if the adversary eventually gains more storage
or gains knowledge of (original) secret keys that may have
been used. However, if the honest parties do not share any
private information in advance, then achieving everlasting
security requires storage capacity of Ω(

√
m) from the hon-

est parties (as shown in [16]).
The hybrid bounded storage model (see [20] for formal

definitions and notions of security) assumes computational
limitations on the eavesdropper up until the time that the
transmission of R has ended. Computational assumptions
with such a strict time limit are generally very reasonable.
For instance, in the key agreement example, all that we re-
quire is that the computational protocol is not broken in the
short time period between its execution and the transmis-
sion of R. An assumption such as the Diffie Hellman key
agreement [9] cannot be broken within half an hour, can be
made with far greater degree of trust than actually assum-
ing the long term security of a computational key agreement
protocol. We consider two models, and give a cryptanalysis
result for each of them:

• The Basic BSM Scheme: The honest parties may only
interact before the broadcast of R (except for actually
sending the encrypted message). Thus the encryption
key is fully determined at the end of the broadcast of
R. Such a scheme is fully breakable in the standard
BSM (without initial keys). We show that compression
of SAT allows to break any basic hybrid scheme.10

• The General BSM Scheme: Alice and Bob can in-
teract both before and after the broadcast of R. In
the standard BSM (without initial keys) such a scheme
is breakable unless Alice and Bob use storage of
size Ω(

√
m). In the hybrid BSM, we show that if

a compression of SAT exists then such a scheme is
breakable unless Alice and Bob use storage of size
Ω(

√
m/p(n, log m)), where n is the security param-

eter of the computational protocol and p is a polyno-
mial (related to the polynomial of the compression al-
gorithm and the running time of the protocol that Alice
and Bob use).

Witness retrievable compression and the existence of
Minicrypt: The next application is an attempt to use com-

10Basic schemes are very relevant to the hybrid BSM as they include a
combination of a key agreement protocol with a private key scheme (such
as the scheme described by [16]).

pression in order to prove, in the terminology of [24], that
Minicrypt=Cryptomania. Impagliazzo [24] summa-
rizes five possibilities for how the world may look like
based on different computational assumptions. The two
top worlds are Minicrypt, where one-way functions ex-
ist but oblivious transfer protocols do not exist (in this
world some interesting cryptographic applications are pos-
sible, and in particular shared key cryptography exists) and
Cryptomania where Oblivious Transfer protocols do ex-
ist (and hence also a wide range of cryptographic appli-
cations like secure computation and public key cryptogra-
phy). Whether OT can be constructed from any one-way
function is a major open problem in cryptography. Impagli-
azzo and Rudich [26] addressed this problem and proved
that key agreement protocols (and hence also OT) cannot
be constructed from any one-way function using black-box
reductions.

We explore an approach of using compression in order
to bridge the gap between the two worlds. In order to do
so we introduce an additional requirement of a compression
algorithm.

Definition 3.2 (Witness Retrievable Compression) Let
Z,L and L′ define a compression algorithm as in Definition
1.2 and let RL be an NP relation for L. The compression
is said to be witness retrievable with respect to RL if there
exists a probabilistic polynomial time machine W such
that if input x ∈ L then for every witness wx for RL it
holds that wy = W (wx, Z(x)) is a witness for Z(x) ∈ L′.
We allow a negligible error in the success of W (where
probability is over the internal randomness of Z and W ).

Theorem 3.3 If there exists a witness retrievable compres-
sion algorithm for a certain type of SAT formulas, then there
exists an Oblivious Transfer protocol based on any one-way
function.
As in the CRH construction (Theorem 3.1), the construction
of OT in Theorem 3.3 is inherently non-black-box. Unfortu-
nately we show that this approach cannot work with a com-
pression algorithm for the general SAT problem, due to the
following theorem:11

Theorem 3.4 If one-way functions exist then there is no
witness retrievable compression of SAT.
Furthermore, we also rule out the possibility of other types
of witness retrievable compression that may be sufficient
for Theorem 3.3. More precisely, the inability of witness
retrievable compression does not change when allowing an
error in the retrieval, or when dealing with a case where
there is a unique witness. These developments rule out bas-
ing the approach of Theorem 3.3 on the compression of

11The first version of this paper [21] (dated Feb 17, 2006) did not contain
this theorem and was hence more optimistic on the possibility of finding a
witness preserving compression algorithm for SAT.



a general and standard language. The approach may still
work out with a witness retrievable compression algorithm
for the specific CNF formulas as stated in Theorem 3.3.

Finally, we point out that almost all of the examples of
compression algorithms in this paper (vertex cover, PRG-
output, sparse subset sum, minimum fill-in and GapSAT)
are in fact witness retrievable. This demonstrates that these
examples fall short of the general compression that we are
seeking. In fact a major obstacle in achieving compression
for problems such as SAT seems to be that most ideas are
witness retrievable.

4 Basing Collision Resistant Hash Functions
on Any One-Way Function

Loosely speaking, a family of length reducing functions
H is called collision resistant hash functions (CRH) if no
efficient algorithm can find collisions induced by a random
member of the family. That is, no PPTM can find for a ran-
domly chosen h ∈R H, a pair of input strings x and x′ such
that x 6= x′ but h(x) = h(x′). In addition we want (i) An
efficient algorithm for sampling from H using (possibly se-
cret) randomness (the secret coins approach is potentially
more powerful then when only public coins are used [23])
and (ii) An efficient evaluation algorithm that given the de-
scription of h ∈ H and x produces h(x). As mentioned
in the introduction, CRHs have wide cryptographic applica-
tions, see discussion and formal definitions in, for example,
[27]. We are interested in basing CRH on as general as-
sumption as possible. There is no known construction of
CRH from general one-way functions or one-way permuta-
tions. Moreover, Simon [41] showed that basing CRH on
one-way permutations cannot be achieved using black-box
reductions. We show that compression can be used to bridge
this gap.

Theorem 4.1 If there exists an errorless compression algo-
rithm for SAT, or for any problem that is compression-hard
for VCOR, then there exists a family of Collision Resistant
Hash functions (CRH) based on any one-way function.

Proof: Let (Commit, Verify) be a statistically binding
computationally hiding commitment scheme based on the
one-way function f . Recall that the protocol Commit takes
from the sender a string S and randomness r and after an
interaction the receiver gets a commitment σ. The polyno-
mial time algorithm Verify takes the commitment σ and a
possible opening to value S′ with randomness r′ and ver-
ifies that S′, r′ are consistent with σ. One could take for
example the commitment scheme of Naor [33] based on the
one-way function f .12 In our setting we can work under

12To be more exact, the commitment of [33] can be based on the pseu-
dorandom generator of Håstad et al. [22] which in turn can be based on the
function f .

the assumption that the sender (in the commitment) is hon-
est, and in such a case, the commitment may be achieved
without interaction at all.13

The CRH construction is inspired by the approach of
Ishai, Kushilevitz and Ostrovsky [27] for constructing col-
lision resistant hash from Private Information Retrieval
(PIR). A high level description is: choose a hash function
from a naive hash family with no computational hardness
guarantees; in the construction below we use the selection
function, i.e. a random position i. The new hash function
is defined by a computationally hiding commitment to the
naive hash function, and the output of the new hash func-
tion is a compression maintaining the information of the
committed naive hash function when applied to the input
(i.e. compression of the formula that checks that the value
is what it claimed to be). Intuitively, finding a collision
would require guessing with non-negligible advantage the
naive hash function (the position i). The actual construc-
tion is given in Figure 1.

By the compressing properties of Z we get that hσ,rZ

indeed shrinks its input (note that shrinkage by a single bit
allows further shrinking by composition). We also have that
sampling hσ,rZ

from H can be done efficiently (with secret
coins).

As for collisions, let x 6= x′ be two strings in {0, 1}m

that form a collision, i.e., hσ,rZ
(x) = hσ,rZ

(x′). This
equality implies, by the property of the compression, that
Φσ,x is satisfiable iff Φσ,x′ is satisfiable (here we use the
fact that the compression is errorless). Due to the binding
property of the commitment we have that any assignment
satisfying Φσ must have y = i (recall that i is the index that
σ is a commitment to). Thus the first part of Φσ,x is only
satisfied when y = i. But the second part is only satisfied
if xy = 1, thus Φσ,x is satisfied if and only if xi = 1. We
get that Φσ,x is satisfiable if and only if xi = 1 and Φσ,x′

is satisfiable if and only if x′i = 1. Therefore it must be
the case that xi = x′i, since otherwise one of them is 0 and
the other one is 1 and Φσ,x satisfiability is not that of Φσ,x′ .
necessarily the strings x and x′ are such that xi = x′i. But
for some j we have xj 6= x′j and for that j we deduce that
σ is not a commitment to j.

Suppose now that we have an efficient method of finding
a collision x and x′ for a given (σ, rZ). Pick any j such
that xj 6= x′j . Then we know that σ is not a commitment to
j. This procedure can be used to break the hiding proper-
ties of the commitment scheme, since it yields an efficient
method that distinguishes the commitment value from ran-
dom with advantage 1/m: given (the real) i and a random
one i′ ∈ [m] in a random order, run the above procedure to

13In the scheme of Naor [33], the receiver is required to provide the
sender with a (public) random string. Certainly, an honest sender can gen-
erate this string by himself without harming the properties of the commit-
ment. Thus in such a setting, the sender can generate the commitment
without interaction.



CRH family Hf :
Description of the hash function: Let Z be a compression

algorithm for SAT. A function in the CRH collection is
denoted hσ,rZ and defined by a commitment σ to a value
i ∈ [m], and randomness rZ for Z. The commitment uses
security parameter n (where n << m).

Input to hσ,rZ : a string x ∈ {0, 1}m

The CNF formula Φσ,x is defined as follows:

• Denote by Verifyσ the algorithm Verify with the
input σ fixed. That is, Verifyσ takes as inputs y
and r and accepts if and only if they form a legal
opening of the commitment σ (and in particular this
means that y = i).

• Translate Verifyσ into a CNF formula Φσ over
the variables y1, ..., y` of y and the bits of r (using
Cook’s reduction).

• For every j ∈ [m] define the clause Cj,x = (yj̄1
1 ∨

yj̄2
2 ∨ .... ∨ y

j̄`
` ) if xj = 0 (where y0 denotes x̄ and

y1 denotes x) and Cj,x = 1 if xj = 1.

• Set
Φσ,x = Φσ ∧

^
j∈[m]

Cj,x

The hash function:

hσ,rZ (x) = Z(Φσ,x, rZ)

Figure 1. The construction of Collision Resis-
tant Hash from any one-way function.

obtain j. If j equals one of the two values i or i′, then guess
this one as the random one and otherwise flip a coin. This
contradicts our assumptions on building blocks (namely, the
one-way function).

To prove the result when using compression for any lan-
guage that is compression-hard for VCOR, a similar con-
struction is defined based on the OR of small circuits rather
than CNF formulas: For every j ∈ [m] let Cσ,j be the cir-
cuit that outputs one if and only if there exists randomness
r such that σ is consistent with (j, r) (that is σ is a possible
commitment to the value j using randomness r). Let Cσ,x

be the circuit that takes the OR of all Cσ,j such that xj = 1
and let Z be a compression algorithm for the language
OR(CircuitSAT). We define hσ,rZ

(x) = Z(Cσ,x, rZ). The
proof is identical to the case of SAT. 2

Note that instead of an errorless compression we can do
away with an error probability slightly smaller than 2−m.
That is, for all x we want the probability that Z(Φσ,x, rZ)
preserves the satisfiability of Φσ,x to be at least 1− 2−m+u

where the probability is over σ and rZ and u ≈ log m. In
this case we can argue (using a union bound) that with prob-

ability at least 1−2−u no x exists violating the preservation
of satisfiability.

We also note that the construction is inherently non-
black box as it uses the code of the one-way function (via
the commitment) in the application of Cook’s Theorem.
This is essential for the validity of the whole approach in
light of the black-box impossibility of Simon [41]. Theo-
rem 4.1 implies the following corollary:

Corollary 4.2 If there exists an errorless compression al-
gorithm for SAT or for any problem that is compression-
hard for VCOR, then there exist statistically hiding, compu-
tationally binding commitment schemes based on any one-
way function.

The corollary follows since CRH imply statistically hid-
ing bit commitment, see Naor and Yung [36] (and Damgård,
Pedereson and Pfitzman [8] for commitment to many bits).
As mentioned in the introduction, the currently known min-
imal assumptions for constructing statistically hiding bit
commitments are the existence of one-way permutations
[35] and the more general one-way functions with known
pre-image size [19]. Furthermore, the commitment schemes
of [35, 19] require many rounds of interaction (at least lin-
ear in the security parameter), while the commitments based
on CRHs are non-interactive, at least after the initial phase
where the function h ∈ H is chosen.

5 Related Work and Further Issues
Related Work: The relationship between compression and
complexity in general is a topic that has been investigated
since the early days of Complexity Theory (i.e. Kolmogorov
Complexity [30]). However, the feature that we are in-
troducing in this work is compressibility with respect to
the solution (witness) rather than the instance. The goal
of maintaining the solution differs our work from a line
of seemingly related works about notions of compression
([14, 42, 43] to name a few), all of which aim at eventually
retrieving the input of the compression algorithm.

There are several examples of other relaxations to solv-
ing NP problems in polynomial time. Each of these relax-
ations yields a corresponding classifications of NP . These
classifications, like ours, are subtle and usually turn out
to be different than the traditional NP classification. For
example, Papadimitriou and Yannakakis [39] introduce L-
reductions and the classes MAX NP and MAX SNP, with
respect to approximation algorithms. Impagliazzo, Paturi
and Zane [25] define reductions with respect to solution in
sub-exponential time.

Perhaps the most relevant classification to ours is that of
parameterized complexity (see the monograph on this sub-
ject by Downey and Fellows [12]). Parameterized complex-
ity studies the tractability of problems when one of the pa-
rameters is considered to be fixed or very small. This is rele-
vant to compression since typically this parameter is related



to the length of the witness. On the one hand, some (but
not all) parameterized complexity algorithms yield natu-
ral compression algorithms (see examples and discussion in
Section 2.1). In addition, some (but certainly not all) com-
pression algorithms may imply a parameterized complexity
algorithm. Also the W -hierarchy of parameterized com-
plexity is reminiscent of the VC-hierarchy (they are both de-
fined by reduction to circuits of bounded depth). However,
our study of compression yields quite a different classifica-
tion. This is mainly because in parameterized complexity
the witness length is taken to be very small and as such,
there is no restriction on running in time that is exponential
(or higher) in this parameter. In compression, on the other
hand, the parameter (witness length) is usually of substan-
tial size (even if much smaller than the instance length).

A related notion to parameterized complexity that is
reminiscent of our work is limited non-determinism, which
started with the work of Kintala and Fischer [29], see sur-
vey by Goldsmith, Levy and Mundheck [17]. This was
further studied by Papadimitriou and Yannakakis [40] who
defined a few syntactic classes within the class of polylog
non-determinism (LOGNP and LOGSNP ). The inter-
esting point is that several natural problems are complete
for these classes. The notion of reduction used is the usual
polynomial reduction and hence the classifications arising
from this study are very different from our VC hierarchy.

Subsequent Works: Dubrov and Ishai [13] discussed the
compression of problems and showed that a certain incom-
pressibility assumption has an application to derandomiza-
tion. Specifically they construct a generator that fools pro-
cedures that use more randomness than their output length.
Their work was mostly conducted independently of ours,
following conversations regarding an early phase of our
work. In addition, inspired by our CRH construction, they
prove that any one-way permutation can either be used for
the above mentioned derandomization, or else can be used
to construct a weak version of CRH.14

In a recent paper, Dziembowski [15] shows the rele-
vance of our notion of witness retrievable compression to
a method for achieving forward-secure storage. He shows a
cryptanalytic result of such compression. Furthermore, fol-
lowing our approach for construction of OT from one-way
functions, he shows that for every one-way function either
a specific storage scheme is forward-secure, or there exists
an OT protocol based on this one-way function.

5.1 Discussion and Open Problems

The issue of compressibility and the corresponding clas-
sification introduced in this work raise many open prob-
lems and directions. The obvious one is to come up with

14This weak version of CRH (like the stronger common version) cannot
be constructed from any one-way permutation by black-box reductions. (in
[41]).

a compression algorithm for a problem like SAT or Clique
(or some VCOR complete or hard problem). Alternatively,
show why such tasks are infeasible. We have seen com-
pressibility of some interesting NP languages and hence
the question is where exactly is boundary between com-
pressibility and incompressibility. We tend to conjecture
that it is in the low levels of the VC hierarchy. We view
PCP amplification methods such as the recent result of
Dinur [11] as potential leads towards achieving compres-
sion. This is since these results show a natural amplification
of properties on a graph, and could potentially be combined
with a simple compression of promise problems (such as
the example for GapSAT) The main issue is doing the PCP
amplification without introducing many new variables.

In particular, the following task would suffice for achiev-
ing non-trivial compression: given CNF formulae φ1 and
φ2 (not necessarily with short witnesses) come up with a
formula φ that is (1) satisfiable if and only if φ1 ∨ φ2 is
satisfiable and (2) shorter than |φ1| + |φ2|. Moreover, due
to the impossibility results for general witness retrievable
compression, a witness for either φ1 or φ2 cannot efficiently
yield a witness for φ.

Short of showing a compression for general complexity
classes, it would be interesting to come up with further in-
teresting compression algorithms as well as to obtain more
hardness results. For instance, is Clique or any other em-
bedding problem complete for VC1? Is there a natural and
simple complete problem for VC1? Also, the VC hierarchy
is by no means the ultimate classification with respect to
compressibility. One can hope to further refine this classifi-
cation, especially within the confines of VC1.

Since we currently do not have a general compressibil-
ity result for a significant class of languages, it is important
to understand what are the implications of incompressibil-
ity. The application to the bounded storage model can be
viewed as such a statement. Other examples are the pre-
viously mentioned works of Dubrov and Ishai [13] regard-
ing derandomization and Dziembowski [15] with respect to
forward-secure storage. In order to gain confidence in an
incompressibility assumption when used in a cryptographic
setting it is important to come up with an efficiently falsifi-
able assumption of this nature (see [34]).

Finally we feel that we have just scratched the surface
of an important topic and in the future there will be other
implications of compressibility or the impossibility of com-
pression, whether in cryptography or in other areas.
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