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We consider the role of randomness for the decisional complexity in algebraic decision (or compu-
tation) trees, i.e., the number of comparisons ignoring all other computation. Recently Ting and Yao
showed that the problem of finding the maximurmaglements has decisional complex@®ylog? n)

(1994, Inform. Process. Lett49, 39-43). In contrast, Rabin showed in 1972¢fm) bound for the
deterministic case (1973, Comput. System Scb, 639-650). We point out that their technique is
applicable to several problems for which correspondit(g) lower bounds hold. We show that in
general the randomized decisional complexity is logarithmic in the size of the decision tree. We then
turn to the question of the number of random bits needed to obtain the Ting and Yao result. We provide
a deterministicO(k logn) algorithm for finding the elements which are larger than a given element,
given a boundk on the number of these elements. We use this algorithm to obtai{lag? n) random

bits andO(log? n) queries algorithm for finding the maximum. e 2001 Academic Press

1 INTRODUCTION

The power of probabilistic models of computation has been studied extensively since the
duction of randomization to algorithms. The main reason for adding randomization is to obtain
efficient algorithms. In addition to time and space, a natural measure for the complexity of an
rithm is thedecisional complexityvhich corresponds to the number of conditional statements (e
called queries) performed for the worst case input. As it turns out, when considering decision anc
putation trees significant gaps exist between randomized and non-randomized decisional com
classes: In the algebraic decision tree and algebraic computation tree models it is known [Rab72,
MPR94] that the deterministic decisional complexity of finding the maximum ofal numbers is
Q(n). Conversely, the co-nondeterministic decisional complexity of the problem (the smallest |
ber of queries required to prove that an element is not maximal) in this mo@lLjs Ting and Yao
[Ting93, TY94] used the small co-nondeterministic complexity of the problem to constructarandon
algorithm that solves the problem usi@log? n) queries andd(nlog? n) random bits withO(1/n°®)
error.

These gaps make the decisional complexity one of the few measures where randomness is p
exponentially powerful. Such gaps cannot be obtained in all versions of the ACT and ADT mo
In models that use only bounded degree queries, or examine only a bounded number of elem
a query, there are results showing that the decisional complexity of many computation problem:
not reduce much by adding randomness and even a small probability of error (see [MT85, S85,
Gri99)). In this paper we focus our attention on the power of randomness in decisional complexit
what problems are the results of Ting and Yao [Ting93, TY94] applicable; how much randomne
really needed.

Our main results are in showing that randomness can be limitéqltm? n) random bits.

We present a probabilistic algorithm for finding the maximunmafistinct elements wittD(1/n°)
error probability, usingd(log? n) queries. The advantage of the algorithm is that it uses Olgg? n)
random bits, thus improving th®(n log? n) randomness complexity of [TY94]. The algorithm make
use of a deterministic algorithm for finding the elements which are larger than a given element, g
boundk on the number of these elements. Ting [Ting93], gave a probabilistic proof to the existen
an O(k? logn) deterministic algorithm for this later problem. We observe that @l¢logn) queries
are actually needed and then turn Ting’s non-constructive scheme into a completely explicit algc
with O(k log n) decisional complexity. This is done by applying small probability spaces.
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The ideas of [TY94] for thenaximal elemenproblem are applied to derive probabilistic algorithn
with O(logn) decisional complexity an@®(1/n®) error probability also for other problems. On th
other hand, we describe how to obt&k(n) deterministic, nondeterministic, and randomized with 1
error lower bounds for these problems using the results of [Rab72, Jar81, MPR94]. The motivatio
show more examples for the gaps between the deterministic and probabilistic decisional comple
In addition, we show how to reduce the randomness complexity of these problem®f{rolmg n) to
O(logn). We also relate thsize decisional complexifghe number of leaves in the smallest tree) al
the randomized decisional complexity and show that the latter is logarithmic in the former.

Note that there are applications in which the decisional complexity has a special role, for exa
in the technique obprefetchingand inautomated parallelizingn prefetching a block of data is brough
into memory before it is actually referenced. In straight-line algorithms, in which only computat
are performed, prefetching is possible because we know what the next statement is, before the
statement is executed. On the other hand, the step following a conditional statement depends on
the condition holds or not, and hence cannot be fetched before the condition is tested. Straig
algorithms are also generally easier to parallelize than algorithms that involve queries. Note hc
that not every algorithm whose decisional complexity is small is suitable for these applications, al
price of computations should be considered as well.

11. Organization

The paper is organized as follows: Section 2 defines the computation models we use. Se
summarizes related work. Section 4 discusses the gaps between the deterministic and prob:
decisional complexities introduced in [TY94, Rab72, Jar81, MPR94]. The ideas presented in
papers are applied to exhibit gaps between the deterministic and probabilistic decisional compl
also for each of the problemsimultaneous positivity, direct oriented convex hull, successive elem
andsorted list(the exact definitions are given in Section 4.1). In addition, we show how to reduce
randomness complexity of these problems fi©m log n) to O(log n). We also relate the size decisione
complexity (the number of leaves in the smallest tree) and the randomized decisional complexit)

Section 5 describes how to turn Ting’s non-constructive scheme for findinklirgest elements
into a completely explicit algorithm witld (k log n) decisional complexity.

Section 6 describes a probabilistic algorithm for finding the maximum aistinct elements with
O(1/n°) error probability, usingd(log? n) queries.

2 MODEL OF COMPUTATION AND RELATED NOTATIONS

Given an inputx we consider the problems of decidingxfbelongs to a given sé/ (decision
problem) or finding some elements of the input that satisfy a given property (search problem).

We find it easier to describe algorithms explicitly in a model that allows computation steps. Ht
our model of computation is aalgebraic computation tre€ACT), a rooted binary tree with three
kinds of nodes: computation nodes, query nodes, and leavesniputation nodesa computation
z, < f(z1..., zyn) is executed, wheré is a rational function { can be written ad (zy, ..., zn) =
p(z1,...,2Zm)/q(z, ..., Zn), Wherep andq are polynomials), and thg’s are either the input element:
or variables computed in some lower level. These nodes have just one emanating edgerjmade
a queryz, 10 is performed wherg € {=, >, >} andz, € {Xy, ..., Xn} or z, was computed in a lower
level node. The node has two emanating edges, for the two possible outcomes of the query. A
labeled with an output value. For a decision problem, this value is just “1” or “0.” For a search prok
this value is the element or subset of elements that satisfy the required property.

A nondeterministic algebraic computation tree (NACT) is a rooted binary tree that has the three
of nodes of an ACT and algguessing nodeis which a nondeterministic choice is made. These noc
have two unlabeled emanating edges. For every iRp&tR", and every leaf in the NACT that can
reach, the label of the leaf is the correct output valuextor

A probabilistic algebraic computation treACT) is a rooted binary tree that has the three typ
of nodes of an ACT and algmrobabilistic nodesin which a random bit {0, 1} is chosen with equal
probability. A probabilistic node has two emanating edges, for the two possible bits. At each exe
of the algorithm, the sequence of random bits chosen at the probabilistic steps forms a randorr
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r. T is a distribution over deterministic ACTs. For each possible random striagieterministicT; is
executed. A PACTT solves a problem with error probabilityif ¥x € R"

Pr[T gives the correct output value on input> 1 — «.
A setW is accepted by a PACT with one-sided errow if for x € W
Pr[T acceptx] > 1 — «
and forx ¢ W
Pr[T acceptx] = 0.
A setW is accepted by PACT with two-sided errotx if for x e W
Pr[T acceptx] > 1— «
and forx ¢ W
Pr[T accept¥] < a.

We next recall from [MPR94, Definition 2.1] the formal definitions of the complexity measure
be used: LeT be an algebraic computation tree anvd< R".

e Thedecisional heighof a pathP in T, hp(P), is the number of query nodes ¢h
e Thedecisional height of Ts the maximum over all pathB in T of hp(P).

e Thedecisional complexity of WCp (W), is the minimum decisional height of all ACTs that decid
on membership iW.

Analogous measures are defined for PACTs and NACTS:beta probabilistic algebraic computatiol
tree, W C R"andx € R". LetT; be the ACT executed for random stringDenote byT; (x) the path
thatx follows in T,. Therandomized decisional heigbf T is:

RCo(T) = maxe(ho (T ().

The randomized with no error decisional complexafW, RCp(W), is the minimum decisional
complexity over all PACTs that decide correctly on membershiVinRCp (W) corresponds to the
complexity of Las Vegas algorithms.

Another measure considered for PACTSs is tardomness complexitf T. This is the maximum
over all pathsP, of T of the number of probabilistic nodes df, or equivalently, the length of the
longest random string.

For an NACTT, again letT, be the ACT executed for choice stringwherer is the concatenation
of the bits chosen in the guessing nodesTdfand letT; (x) be the path thax follows in T;. The
nondeterministic decisional heighf T is N Tp(T) = maxecr min, (hp(T; (X))). The nondeterminis-
tic decisional complexitpf W € R", NTp(W), is the minimum height of all NACTs that decide or
membership inV. The corresponding complexity measures for search problems are defined sim

Another interesting measure of complexity is the decisional size of an R@Mhich is the number
of leaves inT. We use this measure in connection with the model of ternary algebraic comput:
trees, i.e., where at each node there is a three-way split accordiag=to or =. Eachbinary ACT
has an equivalenternary ACT, constructed in the obvious way. The decisional size complexity
W C R", Cg(W), is the minimum decisional size over all ternary ACTs that decide memberstip ir
We relate the randomized decisional complexity and size complexities of ternary ACTs, by usin
fact that in a ternary ACT there is a way to test (with high probability) if a given input reaches a ce
leaf. However, this technique does not apply anymore when we corsitey ACTs, because of the
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difficulty of distinguishing inputs which are roots of some of the polynomials on the path from the
to the leaf, but do not reach that leaf.

Another model of computation commonly used in the literature isthebraic decision tre€ADT),
which includes only query nodes and leaves (i.e., has no computation nodes). Its hondeterminis
probabilistic versions are the NADT and PADT, respectively, defined similarly to NACT and PAC

3 RELATED WORK

The two main models considered in the study of computational complexity over the reals al
algebraic computation tree and the algebraic decision tree. The set of functions that can be comy
a computation node in the ACT or tested at a query node in the ADT varies from one version of
models to another.

Some geometric techniques were developed for obtaining lower bounds for decision proble
these models. Examples of these are the region counting argument of Dobkin and Lipton [DL7¢
the flat counting of Rivest and Yao [RY80] for linear decision trees and the connected compo
counting of [SY82, BenOr83] for ADTs and ACTs with arithmetic functions.

Rabin [Rab72] studied the decisional complexity of membership problems represented by a co
tion of linear forms. He proved a linear lower bound on the decisional complexity of a restricted ty
ADT for these problems. Jaromczyk [Jar81] showed these lower bounds still hold in the more ge
case of polynomial forms. The generalization of these lower bounds to the broader class of A
proved in [MPR94]. The next section describes these results and some extensions of them.

Similar results were proved also for randomized and nondeterministic algorithms. Meyer Au
Heide [Mey85a, Mey85b] showed that the deterministic and probabilistic complexities of a pro
are polynomially related. He proved that a PACT which accépts R", in expected time, can be
simulated by a deterministic ACT i®(t?n) steps.

Manber and Tompa [MT85] gave examples for problems wiflmlogn) deterministic and non-
deterministic decisional complexities b@t( polylog) co-non-deterministic decisional complexity i
the linear ADT model. One of their results in probabilistic models is2ém) lower bound for deciding
maximality of an element by an ADT that examines a bounded number of elements in each quel

Snir [S85] generalized the arguments of [DL79] to one-sided error linear PADTs. He gave a |
lower bound on deciding maximality of an element in this model. The component counting argu
is generalized for lower bounds on two-sided error linear PADT in [Mey85b].

Grigoriev [Gri99] proved arf2(log N) lower bound for probabilistic computation trees recognizil
an arrangement (i.e., a union of hyperplanes) Wittaces. This is applied to give &(n?) lower bound
for the Knapsackproblem and arf2(n logn) lower bound for theelement distinctnegsroblem in the
PACT model.

The decisional size complexity is considered by Grigoeital.[GKY95], who obtain an exponential
lower bound for the maximal element problem in bounded degree ADTS.

In the Boolean decision tree model, Nisan [Ni91] shows that even allowing error does not
much in reducing the randomized decisional complexity of problems with small non-deternmanigtic
co-non-deterministic decisional complexities.

However, there are some examples for the usefulness of randomization in algorithms. Snir
introduced a family of problemB, that takeO(3") time in the probabilistic linear ADT but cannot be
solved by less tha@(4") in the deterministic linear ADT.

Buergisseet al.[BKL93] describe arO(n) probabilistic algorithm for testing membership inthe s
{(x,y) € R?" | yis a permutation ok}. They use the ACT model where each arithmetic operatior
counted. The deterministic complexity of this problenfig logn).

Ting and Yao [Ting93, TY94] improved the upper bound on the randomized decisional complex
finding the maximum ofi distinct elements. They gave &logn) Monte Carlo algorithm for deciding
maximality, and arO(log? n) Monte Carlo algorithm for finding the maximum.

Ben-Or [BenOr96a] proved the optimality of Ting and Yao’s algorithm for deciding maximality.
showed that fok < n — 1 any randomized algorithm for verifying that = max{xy, ..., X} using
at mostk comparisons of analytic functions must have error probability greater tH#nlh addition,
[BenOr96a] shows that any randomized algorithm with small error probability for verifyingcthat
themedianof x4, ..., X, requires2(n) comparisons of analytic functions.



DECISIONAL COMPLEXITY 31

Wigderson and Yao [WY96] considered the numbesufset minimum testequired forfindingthe
maximum. A subset minimum test is of the form < V” (namely isx € X smaller than all elements
inV C X?). They proved tha®(log? n) such tests are required for finding the maximum efements.
Ben-Or [BenOr96b] has also showed how to find the minimum explicitly, for the case that the i
elements are not necessarily distinct. A description of this algorithm is given in Section 4.3.1.

4 EXTENSIONS TO KNOWN RESULTS

41. Lower Bounds for Error-less Algorithms

The sets accepted by an ACT coincide with the class of semi-algebraic setsWAG&" is semi-
algebraic if it can be described as a boolean combination of polynomial equalities and inequalitie
the setW can be given a®/ = |, {x € R" | pi(x) =0, i j(x) > Ofor j € J}, wherel, J are finite
sets of positive integers (possibly empty), gmdg; j € R[X1, ..., Xnl.

By [BCR87, Theorem 2.7.1], for every closed semi-algebraic sutdset R" there are positive
integersk, t and polynomialsg; ; € R[ X1, ..., Xy] s.t.

t
W=JixeR" | pa(x)=0,.... pix(x) = 0}. @

i=1

The width of W in R", w(W, R"), is the minimum non-negative integkre N for which such a
representation exists.

Rabin [Rab 72] defined the notion otamplete proofor x € W, whereW is a closed semi-algebraic
set of the formW = {x € R" | £1(X) > 0, ..., £m(X) > 0} and{; is linear 1< j < m. A complete
proof foré1(x) > 0, ..., £n(X) > 0is a matrical representation of Eq. (1). Using these notations, Re
proved a lower bound on the width of a complete proofdgx) > 0, ..., £m(X) > 0, which is equal
to the width ofW in R".

Montanaet al.[MPR94] applied the equivalence relation “generically equal” in order to prove lo\
bounds for general ACTs that accept a semi-algebraic set. They showed that in order to bou
decisional complexity of a semi-algebra¢, it is enough to give a lower bound on the width of close
semi-algebraic sets which are generically equaMto

Two semi-algebrai@V/, W C R"are generically equal ifthere exists a polynomia R[ Xy, ..., Xp]
s.t. the two sets are equal, except maybe for points which are roqtsToft is,

W\{x € R" | q(x) = 0} = W'\{x € R" | q(x) = 0}.

Montanaet al. [MPR94] defined the notiogeneric widthand showed it is a lower bound on thg
decisional complexity of any ACT that accemé < R". This notion applies to any semi-algebr&it
and not just closed. The generic width of a semi-algebfdin R", wge(W, R"), is

Wgen(W, R") = min{fw(C, R") : C is closed, generically equal & in R"}.

They established the connection between the generic width of a semi-algebraic set and the com
of its membership problem in the following proposition:

ProposiTiond.1 [MPR94, Proposition 4.1].Let W be a semi-algebraic subset df. Rhen
Wgen(W, R") < Cp(W).

They bounded the generic width of semi-algebraic sets which are defined by a conjunction of polyn
inequalities, satisfying some condition as required in the following propositions:

Recall theJacobian matrix Jof pi(Xg, ..., Xn), ..., Pm(X1, - . ., Xn) @t @ pointx is them x n matrix
of which theith row is the vector of the partial derivatives pf(xs, ..., X,) evaluated atr. That is,

J = (&,j)mxn, Wherea; ; = (3 pi /9X;)(cx).

ProposiTiond.2 [MPR94, Corollary 3.9]. Let pi(X), ..., pm(X) € R[ Xy, ..., Xy] be a collection
of polynomials and leta be a point in R such that p(a) = 0, ..., pm(e) = 0 and the rank of the
Jacobian matrix defined by, X), ..., pm(X) ata ism i.e., rank J(pz, ..., Pm)e = M.
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Let W={x € R" | pi(x) > 0..., pm(X) = 0}. Then wWge({X € R" | p1(X) = O, ..., pm(x) > O},
R™ = m.

ProposiTion4.3 [MPR94, Corollary 3.10]. Let f;, ..., fn € R[X4,..., X;] be a collection of
polynomials for which there is a poiat € R" and a positive integet < k < m s.t.

fi(@) = = fil@) = 0, figal@) > 0, ..., fm(@) > 0

and the rank of the Jacobian matrix verifiegfd, ..., ), = k.
LetW={xe R"| fi(x) > 0,..., fm(x) > 0}. Thenk < wge(W, R").

They applied these conditions to derive linear deterministic lower bounds on the decisional con
ities of the problemsaximal element, simultaneous positivigddirect oriented convex hutlefined
in the sequel. This is also applicable for the problamted listandsuccessive elemeriisted below.

We claim that the notions ofidth andgeneric widthare not only lower bounds for deterministi
algorithms, but also for non-deterministic algorithms and probabilistic algorithms that never err.

The complexity of a non-deterministic ACT is defined in terms of the minimal path length, and
of a probabilistic ACT in terms of the expectation of the lengths of the paths that an input follows
that reason we first define the concept@himal widthwhich relates to the length of tl#hortestpath
the worst input follows. Later, we show that actually thaimal widthof W is equal to itswvidth.

Derinimion 4.1, LetW be a semi-algebraic subseti®?, W closed. The minimal width ofV in R",
minw(W, R"), is the minimum non-negative integere N s.t. there id, and for 1< i <t there are
k(i) € N and polynomialsy; ; € R[ Xy, ..., Xp]for1 < j <Kk(i), s.t.

W={ JixeR"|p.1x)>0,..., pikp(x) >0},

t
i=1

and maxew mini¢ ) k(i) ='s, wherel (x) = {i | pi,1(X) = 0, ..., pi ki) (X) = 0}

If W is an open set, then the minimal width\fis defined by replacingg j(x) > 0" By “ p; j (x) >
0.” Again,minw(R", R") = minw(#, R") = 0.

As defined in the Introduction, a non-deterministic ACT is said to aceeythin timet if and only
if there is an accepting path of length at mb#tatx follows. As will be seen, for the worst case inptL
X € W, this time is bounded from below by the generic widthviifin R". Hence this measure is &
lower bound on the non-deterministic complexity of the membership problek fand consequently
also for its randomized with no error complexity. The following claim shows that the conceptdtbf
andminimal widthare identical.

Ciam 4.1. For every semi-algebraic subset W R", minw(W, R") = w(W, R").

Proof. Obviouslyminw(W, R") < w(W, R"). For the other direction, lab(W, R") = k. Assume
minw(W, R") < k. Then, there is a representation

t
W= U{X eR"[pi1(x)=0,..., pik >0}

i=1

and for every, € R" thereis s.t.p; 1(X) = OA--- A Piki)(X) = 0, andk(i) < k. By possibly reordering
the indices, let 1 <i < sbe the indices s.k(i) < k, but then

W={ JixeR"|p1x)>0,..., piki(x) >0},

s
i=1

andk(i) < k for everyi contradicting the fact thab(W, R") = k. m

The following theorem gives a lower bound for the nondeterministic and randomized with no
decisional complexity of the membership problem of a semi-algebraity sRecall that the randomizec
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decisional height of a PACT is the expected value of the decisional height of the path that the w
input follows:

RCo(T) = maxE(ho (T (x))).

The randomized with no error decisional complexityWf RCp (W), is the minimum decisional
height of all PACTs that decide on membershiphwith no error.
Obviously,RCp (W) > NTp(W).

THeorem1l. Let W C R"be a semi-algebraic sgthen
NTD(W) 2 Wgen(W, Rn).

Proof. Let Wgel(W, R") = M. If M = 0, the inequality trivially holds. Now, assunii¢ > 0.

LetT be an NACT thataccepW. Let Py, . .., Ps be the accepting paths Bf So for every the set of
pointsW(P,) accepted at the leaf endiyis a semi-algebraic set, akld = W(T) = def U?:l W(P;).
Similarly to [MPR94] we produce a semi-algebraic set that is generically eqWeltig the following
steps:

1. Eliminate every path that includes an equation test, i.e., a test of the fppy=07?" Let
Py, ..., P, be the remaining paths, thef(T) = Utjzl W(P;,) is a semialgebraic set, and sinc
we dropped only paths with equalitia&y (T) is generically equal tdV in R".

2. Replace every strict inequalify(x) > 0 on the paths defininwl('f') by a weak inequalityp(x) >
0. Again the obtained s&V,(T) is

t
Wy(T) = U{X eR" [ pi(x)>0,..., piki(x) =0},
i1

wherepi 1, ..., ik are the polynomials tested on pay . Hence W,(T) is generically equal to
Wy (T) in R" and hence, also td/.
Denote byhp (T; (X)) the decisional height of the path thebllows in the NACT for random string:

NTp(T) = Q’Elgmin(ha(ﬂ ())).

SinceM > 0, there existx € W that follows only paths that were not eliminated in steps 1 and
henceNTp(T) > minW(Wx(T), R") = w(Wx(T), R") > M. Since the above inequality is true fo
every NACTT that accept®V, we have that

NTD(W) - NAC'Im'I!rgorW NTD(T) =M "

A corollary from the above lower bound results is that even if all the inputs to the algorithm sa
Q(x) # 0, for some polynomial, then at leastvgen(W, R") — 1 queries are required to decide o
membership in a semi-algebrai¢ C R" by an ACT, NACT, or PACT that never errs. In particula
this gives linear lower bounds on the number of queries required to solve problems as above, giv
pi (x) # O for every polynomialp; appearing in the conjunction of polynomials that defiidés

Each of the problems listed below are membership problems for subsets that are represer
a conjunction of inequalities of the form;(x) >0 as above. Consequently, the deterministic, nc
deterministic, and randomized with no error decisional complexities of each of them)is

Simultaneous positivitydefined in [MPR94]): Givem nonzero real numbersy, ..., X,, decide
whetherx; > 0forl<i <n.

Direct oriented convex hullGiven a sequencey; .. ., z,) of points in the real plang = (x, Vi),
s.t. no three successive points (in cyclic order) lie on the same straight line, decide whether they |
clockwise oriented vertices of their convex hull. By [Jar81] this is the problem of testing membel
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in the set

W= {(z1,....2) € R" | d(z1, 2, 23) = O, ..., d(Zn_2, Zn_1, Zn) = O,

d(zn-1, Zn, 21) > 0,d(zn, 71, 2) > O},

whered(z, z«, zj) = X(Yi — ¥j) + W(X; = Xi) +Yy; - X — Vi - X; andVi d(z, z 41, Zi+2) # O.

Maximal elemeniGiven alist ofdistinctreal numbersy, . . ., X,, decide whethex; is the maximum.

Sorted list Given a list ofdistinct real numbers«, ..., X,, decide whether the list is sorted ir
increasing order.

Successive elemen@venn distinctreal numbers,, . . ., X,, decide whethex; andx, are successive

in sorted order. This holds if and only ¥{ — x)(xo — Xxx) > 0for3<k < n.

42. Small-Bias Probability Spaces

In the sequel, small probability spaces are applied for constructing efficient deterministic algor
and probabilistic algorithms with small decisional and randomness complexities. Specifically, we
use of the following types of random variables:

1. e-biased random variables [NN93] defined as follows:\gt. . ., y, be 0, 1 random variables
with joint probability distributionD. The variablesy, . .., y, are said to be-biased if for all subsets
UC({l,...,n}

< €.

fen-oler-]

jeu jeu

For constant < 1/2, the points of the probability space can be the columns of the generating mat
an error correcting code that corrects a constant fraction of errors (for example Justesen codes |-
Sampling the resulting-biased probability space requir€glogn + log(1/¢)) random bits.

2. k-wisee-biased random variables defined as follows (Definition 2.2 in [NN93]): random varia
Y1, ..., Y¥n € {0, 1} with joint probability distributionD arek-wisee-biased if foreveryJ C {1, ..., n}
such thatU| < k,

<e€.

o]+l

jeu jeu

In [NN93] there is a description of a construction ofkawise e-biased probability space of size
(klogn)/e°®. Hence, for constant, this construction produces a probability space of §i¢kelogn).

3. k-wise §-dependent random variablg§, 1} random variableys, . . ., yn with joint distribution
D arek-wises-dependent i1 < ¢ < k,VS={i1,...,i¢} € {1,...,n},

IDS -U©)lIl= > D%y, %,)=d)=U(X,...,x,)=d) <8,
def{0,1}¢

whereU stands for the uniform distribution.

In particular, forevens C {1, ..., n}suchthatS| =i < k, the probability that the random variable
of Sattain a certain configuration deviates frop21by at mosts. By [AGHP92, ABNNR92], such a
probability space can be constructed, where the number of bits required to specify a pointin the s
space i0(loglogn + k/2 + logk + log(1/8)). Hence, fors = O(1/n€) andk = O(logn), sampling
the resulting space requir€logn) bits.
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43. Monte Carlo Algorithms
43..1 Decisional Complexity

In contrast to the lower bounds of Section 4.1 for error-less algorithms, recent results of Ting
Yao [Ting93, TY94] present a Monte Carlo algorithm witi{log? n) decisional complexity for finding
the maximum oh distinct elements. They defined polynomial queries that can serve as a proof t
non-maximality of an element. They used the fact that for a uniformly random s8hksdftl, . . ., n}
(represented as a vect@i (..., ) € {0, 1}"), if x; is not the maximum, then it is equally likely tha
S contains an odd or even number of indices of elements largexthBenoting the set of indices of
elements larger thax by G;(x) (i.e.,Gi(X) = {] | Xj > x;}), that means,

Pr|: I (xi—x,-)<0:|:Pr|: &y sjzl}zé.

jes\i} jeSNGi(x)

On the other hand, ik is the maximum, then parity test]_[jes\{i}(xi — Xj) > 0 on any subse®
gives a positive result. The error can be reduced/taf by choosingO(logn) subsets uniformly at
random and accepting onlyxf passed the parity tests on all these subsets.

This idea can be extended to other membership problems. Asdlimeepresented as

W={xeR"|pyx)=0,..., pm(x) =0}

Assume we knovq_[j“:1 pj(x) # 0, and we have a way to sample random subsets of polynom
{Pj,, - -+, P} Then forx € W, alwayspj,(x) - - - pj,(X) > 0, and forx ¢ W, Pr[p;,(X)... pj,(x) <
0] =1/2.

Hence, we can execute the same procedure to decide\l¥. That is, we sample uniformly at randorr
O(logn) subsets of1, ..., m} and check if all the parity tests give positive results.

The algorithms of [Ting93, TY94] have polynomial randomness complegi{yn{og n) for checking
maximality andO(n log? n) for finding the maximum). The amplification methods of random walks
expander graphs [AKS87, AS92, CW89, 1789] antiased random variables [ABNNR92, AGHP9Z
NN93] enable us to reduce this randomness cost. We first recall the definitions required for the «
fication methods we use:

A graphG = (V, E) is called an 1, d, c)-expander if V| = n, the maximum degree of a vertex i
d, and for every set of verticed c V such that (W| < n)/2, the inequality N(W)| > c|W]| holds,
whereN (W) denotes the set of all verticesV¥h\W adjacent to some vertex W.

A d-regular expander isé&regular grapl(V, E) such that there existsfor whichG is an f, d, ¢)-
expander.

Let G = (V, E) be ad-regular expander where the absolute value of each of its eigenvalues
eigenvalues of its adjacency matrix) but the first one is at thoAssume a one to one corresponden
betweenV and the set of all possible random strings ofeabiased probability space with randon
variablesy, ..., yn. By [LPS86, Mar88] such agraph can be constructed with detpedi <2./d — 1
for eachd = p + 1 wherep is a prime congruent to 1 modulo 4. The label of each nodeV is
a characteristic vector of a subsgtC {1, ..., n}. A “good” node fori is a node which represents ¢
subset with odd number of elements fr@n(x). By the property of ar-biased probability space, we
know that for every € {1, ..., n} s.t.i is not the maximum, there are at leag@1- ¢ good nodes.

Instead of choosin@(log n) subsets uniformly at random, choose a random walk of le@gtbg n)
on G as described in [AS92, CW89, 1Z89].

At each node on the random walk, test whether

[] ta—x) <o,

jeS\{1}

wherev is the current node on the random walk. If one of the tests produced a positive answer, cor
X1 is not the maximum. Otherwise, conclude it is. The following bound on the error probability is g
in [AS92]:
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THeorRem2 [AS92, Corollary 2.8]. Let G=(V, E) be a d-regular graph on n verticeand suppose
the absolute value of each of its eigenvalues but the first one is atimiost C be a set afn vertices
of G. If

d
2 2\1/2
(= 8)d2 32 < o

then for every¢, the probability that a randomly chosen walk of lengthvoids C is at most/2¢/4.

By using the expander constructions of [LPS86, Mar88] and performing a random walk of le
4clogn, the above scheme produces an algorithm for deciding maximality with error probabiiity :
(using Corollary 2.8 in [AS92]) and decisional and randomness complegtjleg) n).

As before, the same method applies for deciding membership in any subset

m
W={xeR"|py(x)>0.....pn(x) =0},  where] ] pj(x)# 0.
j=1

In particular the following theorem holds:

ThHeorem 3. For each of the problems simultaneous positivityaximal elementdirect oriented
convex hull successive elementand sorted list (as defined in Section 4.&hd for every constant
¢ > 0, an algorithm can be constructed that solves the problem with error probabilfty/ &), and
has ((logn) decisional and randomness complexities.

Ben-Or[BenOr96b] generalized the algorithm for finding maximum to the case where not all eler
are distinct. He changed the procedure for checking if an elerménmaximal as follows:

e Find the number of elemenksequal tox; .
e ChooseO(logn) random subsets,, ..., S € {1,...,n}.

e For each 1< j < ¢, find the number of elements  which are equal t;, then check ifS;
contains an odd number of elements larger tha\s before, if none of the subsets contained an o
number of elements, decideis the maximum.

Ben-Or used the fact that a sub&atontains at leak elements equal ty if and only if

> [Joy—-x)* =0 @)

SeAn ki1 J€S

whereA; = {SC {1,...,n}|| S| = j}. Hence, we can find the exact valuekoby a binary search.
For checking ifS contains an odd number of elements, he tested the sign of the left-hand si
(2). By choosing random subsets of the right size, this procedure for checking maximality rec
O(logklogn) queries and(nlogn) random bits.

The results of [TY94, Rab72, MPR94] also imply the following example of a problem whose I
deterministi@andco-non-deterministic decisional complexities are large, yet the randomized decis
complexity is small:

P1: given distinctxy, Xo, . . ., Xn, Y1, Y2, - - -, ¥n, decide whethek; is the maximum ofk,, ..., X,
and y is notthe maximum ofys, . . ., Vn.

ProrosiTiond.4.  The nondeterministic and co-nondeterministic decisional complexities of the p
lem P1 are 2(n), but the randomized (two-sided error) decisional complexity (8)O

Obviously, there are problems that already their deterministic decisional complexity is low and |
smaller than theitotal complexitycounting arithmetic computations). For example:

Element distinctnes€ivenxy, ..., X, decide whether all elements are distinct.
Set equalityGiven two setgxy, ..., Xn} and{yi, ..., yn} decide whether the two sets are equal.
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ProposiTiov.5. The problemslement distinctnesmdset equalithave total complexit(n logn),
yet their decisional complexity is only(D.

Proof. Each ofxq, ..., X, is unique in the list if and only iI"[i7éj (X — Xj) # 0. For the case dofet
equality, {Xq, ..., %n} = {y1, ..., ¥n} if and only if HGG&(Z?Zl(xj — Yo))?) = 0 (where$, is the
permutation group ofi elements). =

43..2 Decisional Size Complexity

As defined before, the decisional size complexity of an ACi§ the number of leaves if. We give
a general relation between the randomized decisional and size complexities of decision problen
not necessarily search problems) in the following theorem:

TrHeorem4. A semi-algebraic set W& R" has two-sided error randomized decisional complexi
which is Qlog Cs(W) + log 1/68), where G(W) is the size decisional complexity of W (and the size
measured for ternary trees) aids a bound on the error.

Proof. We need the following proposition:

ProposiTiond.6. Let T be aternary ACT that solves the membership problem for W. Given an i
x and a node in T, we can check with probability/@ whether x reaches.

Proof. Letq,...,0s, P1,--., Pm be the polynomials s.t(x) =0, ..., gs(x) =0, p(x) >0, ...,
pm(X) > 0 on the path from the root to. We can decide with probability/d and constant number of
queries whether on inputthe path from the root to is traversed as follows:

S
Choose rando®, S C {1, ..., m} and check ifl_[ pj(x) > 0,forj =1,2 andz qiz(x) =0. =
jeX i=1

Let T be a ternary ACT that solves the membership problenWpand letx be an input. We utilize
a separator decomposition technique used, e.g., in [NA91] for finding the leaf to which the compu
onx leads.

In a rooted tred onn vertices, a node is called aseparatorif its removal fromT splits T so that
each connected component contains at niosof the nodes. By [J069, Meg83] each tree contains
separator.

Any treeT has acomplete decomposition tree &h the same set of vertices [NA91): is a rooted
tree whose roat is a separator of ; v's children (inU) are the roots of the recursively defined separat
decomposition trees for the connected componentsrmefsulting from the removal af.

Let U be a decomposition tree df. In order to compute with unreliable tests, we extéhds
described in th@oisy comparison modelf Feigeet al. [FRPU94]: each leaf is a parent of a chain «
nodes of lengtim’ = O(log(Cs(W)/6)). Each node is labeled with the label of the leaf and has a poir
to the head of the chain.

Throughout the algorithm we use the following notations:

u: current node inJ.

t: node inT corresponding tal.
At any point we have to examine a given node and decide whether onxnihig node is reached.
However, note that we may be in the wrong component altogether, so we should query on the
(in the decomposition tree) of the current node as well.

e Letm = c log(Cs(W)/8), m < m'.

e U < root ofU.

e Repeat for at mosn steps:
1. If uis not the root olJ, then check if we are in the right component, by repeating the tes
the parent ofl.

2. If we are in the wrong component, then go to the connected component correspond
the“grandparent” (parent of the parent)wof
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3. Otherwise, decide ifi is an ancestor ofv by applying the technique described in Propos
tion 4.3.2 (ifu is a chain node, then choose tests of nodes above the chain).

4. If uis an ancestor ofy, then evaluate the test trto determine which ofi’s children inT is
an ancestor ofv, and assign it ta (if u is a chain node, then go the only childwf

5. Otherwise, the connected component is the child obrresponding to the parentin u is
assigned this child (ifi is a chain node, then the connected component is the one corresponding
grandparent of the head of the chain).

By Proposition 1 in [NA91], the height of the decomposition tre® (&g Cs(W)). This is very similar
to the noisy comparison trees model of Feggal.[FRPU94] and the analysis there can be applied he
to show that for probability of erra¥you can find the correct leaf in tim@(log Cs(W) +log 1/6). The
proof is as follows: Take a leaf in U, and suppos& reaches a node in the connected component
w, but a leaf inU corresponds to a connected component with one node,isthe leaf thak reaches
in T. Orient all the edges dff towardsw. So every node has exactly one outgoing edge, and all tf
other adjacent edges are directed toward$he transition probability along the outgoing edge is
least 34, and the transition probability of the incoming edges is at mpst 1

Letms be a random variable counting the number of transitions in the direction of the edges at
the number of backward transitions. 8 + m; = m. Sincem < m’, the algorithm never reaches th
end of a chain. We need to show tmat — m, > log Cs(W) with probability at least 1- §, implying
that the correct chain is reached. We prove this by applying the following version of Chernoff b
[Chernoff52]:

THeorem 5 (Chernoff bound). Let X, ..., X, be independent0, 1} random variables with
Prob(x = 1) = pii =1,...,nand} | p > 0. Let X= > x.Thenfor0 <e < 1

Prob(X < (1 — €)E(X)) < e EX*/2,
In our case

1 a forward transition was performed at step
Xi =
"7 10 otherwise

Prob(x; = 1) >

Ml w

n
ms = Xi

IA

i=1
Prob(m; — m, < logCs(W)) = Prob(m %(m + log CS(W)>

f
f

= Prob(m < %(clog(Cs(W)/é) + log CS(W)>
< Prob<mf < <%(C+ 1) |09(Cs(W)/5>>
< Prob(mf < g(ctl)E(mf)> <5

Forc = (32log3)/log(Cs(W)/5). =

5 FINDING THEk LARGEST ELEMENTS

Assume we have a set nfdistinctelementgxy, ..., X,} and an index s.t. at mosk elements from
the set are larger thaq. In this section we study the decisional complexity of finding these eleme
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Since there are”(l) possible solutions to the problem, a trivial lower bound on this complexity
log(".") = Q(klog(n/k)).

Denote the set of possible inputs B = {x = (X1,...,%) € R" | X # Xj if i # j}. We say
thatx; is of rankk + 1 if there arek elements larger thar, i.e.,rank(x;) =| Gi(x) | +1, where
Gi(x) ={j | Xj > x}. Letx; be s.trank(x;) > 1. A good subset fox; is a subset of1, ..., n} that
contains an odd number of elements fr@y(x). Given such a subs& the non-maximality ok; will
be discovered by the querﬂ‘jes\{i}(xi —Xj) <0?"

Ting [Ting93] proved the existence of a collection ©fklogn) subsets s.t. for eachwith 1 <
rank(x;) < k + 1, there is a good subset in the collection. Given such a collection, Ting sugges
algorithm that is executed in phases as follows: in each phase }Qgg{“}(xi —X;j) < Ofor eachSin
the collection. By the property of the collection, as long as not all elemer@s(a) are found, a good
subset will be reached. Now, find an elemenGy{x) using a binary search on the good subset; i.
divide the subset into two and use a parity test to find which of the two halves contains an odd ni
of members ofG; (x), and repeat the process until reaching a subset of one elemétiiminate the
elementx; that was found (replace it with a very small element, s¢y ", (Xu + 2)%)) and repeat the
procedure untik; passes all the parity tests in the collection. In each scan of the collection, one
element ofG; (x) is found and eliminated from the s&(x); hence aftek such iterations all elements
of Gj(x) are found. One scan of the collection requif@g& logn) queries for finding a good subse
and O(logn) queries for finding a larger element in this subset. Therefore, this scheme produ
non-constructiveD(k? log n) algorithm for the problem.

We first observe that onl@(k logn) queries are needed. This is because once the queries of the
phase are evaluated, they determine the results of the queries in subsequent phases. Specifi
S, ..., Su be the subsets used. Llet, . .., by be the results of the queries in the first phase, whe
b, =1if ]_[jea\{i}(xi —Xj) < O andb, = 0 otherwise. Assumg, is the element found in the first phas
s.t.x; > X;. Then for each subs& s.t.t € S, the result of the query 0§, in the second phase ish,
and itisb, otherwise. Generally, fof > 1 the results of the queries in tlie- 1 phase can be determine
from the results of phase numbgrHence, we need to evaluate o+ klogn = O(k logn) queries
throughout the algorithm.

In order to obtain an explicit algorithm using this scheme, the collection of subsets should be
structed. We claim that this can be done usingveise e-biased probability space. Singg; (x)| < k,
for any subset) C {1, ..., n} at mostk elements irlJ are larger tha;, that is,|U N G;(x)| < k.

A k-wisee-biased probability space withrandom variables that takes their values friinl} gives
us even a stronger property than needed. Each poirt-iwiae e-biased probability space represents
subsetofl, ..., n}, and for every with 1 < rank(x;) < k+ 1, a fractions > 1/2 — ¢ of these subsets
contain an odd number of elements larger tlxarAs was recalled in Section 4.2 kawise e¢-biased
probability space oh random variables can be constructed where the size of the spéxk lisgn).
Using the points of this space as the collection of subsets, we geqaicit O(k log n) algorithm that
finds all members of; (x), for everyx with 1 < rank(x) < k + 1.

The details of the procedure are as folloswill denote the set of larger elements found so far.

1. Initialize:e « %D < &;
Let {Q1,..., Qum} be sets represented by the random strings kfnase e-biased probability
space as above. Thiv = O(klogn).

2. Forj=1toM
check if Q; contains an odd number of elements fr@(x):

1 if HeeQ,\{i}(Xi —X) <0

bj = :
0 otherwise

3. Repeat until all elements & (x) are discovered.

(@) Forj =1toM
check if Q;\({i} U D) contains an odd number of elements fr@(x):
If in second phase or higher, then revelpgéf the last found elemerite Q;.
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(b) For the firstj s.t.b; = 1, perform the following binary search d@; to findt € Q; s.t.
Xt > Xi:
e AssignV « Q;.
e While |V| > 1: LetU be the first|V|/2 elements o¥. If U contains an odd number of
elements fronG; (x) then selV <« U; otherwiseV « |[V|\|U].
e Setx; « the only element iV, D < D [J{t}.

e Replacex; by a very small element, say(zuyét (Xxu + 2)?), and continue to step 2.
(c) If no new element was found, then terminate.

Lemvwa 5.1. Foreveryi withl < rank(i) < k+ 1in {1, ..., n}, the above algorithm finds all the
elements from Gx), and the maximum of xusing Qlk logn) parity tests.

Proof. Suppose that at the beginning of iteratidnof the repeat loop, not all the elementI®{x)
were found yet, k< rank(x;) in the currentinput, and all the input elements are distinct. By the prop
of ak-wise e-biased space, we are guaranteed that for somej1< M, nzer\({i}U oy(Xi —x¢) <0
and we find a new € G;(x). After adding¢ to D, the rank ofx; is decreased by 1. Thus, as long ¢
not all the elements dB;(x) were found, another iteration of the repeat loop will find a new elem
from G; (x). Thus, sinceG;(x)| < k, after at mosk iterations, all the elements &;(x) are found. We
perform at mosO(k log n) parity tests in step 2 to get the results on all subsets. Additional fagity
tests are required at each phase of the repeat loop, for finding a new eleme@;{ponin the good
subset found. Thus, the total complexitydgk logn). =

Uehareet al.[UTW96] considered an analogous problem in the theory of attribute-efficient lear
with k essential attributes. They examined the computational complexity of learning the class of
functionsPARK) defined as follows: Leg be the parity function on variablesxi, . .., X,. Denote by
Os the sub-function ofy obtained fromg by replacing by 0 eack; in the input such that ¢ S. The
classPARK) contains alps where|S| = k. Given a functionf , the problem isto finds.t.gs = f, that
is, to find thek essential variables. Note that tkessential variables here correspond tokhargest
elements in our case since we use parity functions to find them.

They gave a non-constructive scheme to the problem of leaPAR(K). In their model, adaptively
chosen inputs & {0, 1}" are provided, and the correct value bfa) is given in response. An input
a=(ay,..., ay) corresponds to the query sat={i |a =1}. If f(a)=1, then an essential elemer
can be found using a binary search similar to Ting’s technique. They use the fact that we have ir
knowledge on a query s&\{i}, onceS was asked andis an essential element. (We use this idea
our algorithm for finding thek largest elements.) The scheme of [UTW96] gives a non-construc
O(klogn/k) upper bound for the problem (similar to the non-constructive bound we had in the pre
inary version of the paper). Our current constructive boun@@logn) is applicable to the problem
of [UTW96] as well.

6 FINDING THE MAXIMUM USING O(log? n) QUERIES

As mentioned before, there is a linear lower bound on the decisional complexity of determir
non-deterministic and Las Vegas algorithms for the problem of deciding maximality of an eleme
a set ofn distinctelements. Obviously, this also gives a lower bound on the decisional complexitit
the corresponding search problem.

Ting and Yao [Ting93, TY94] presented a randomized algorithm that finds the maximudisifinct
real numbers in the probabilistic polynomial decision tree model. For every corstanO they
presented an algorithm that us@¢log® n) polynomial queries an®(nlog? n) random bits, and has
error probabilityO(1/n®). At the general step of the algorithm they have a candidate elexqerttich
they try to improve by applying a procedure which finds an elemgetdarger tharx;. The algorithm is
started with a uniformly randomly chosenand the above step is repeated until no sxefs found,
or a bound on the number of iterations is reached.

The procedure for finding a larger elementis as follows:

e ChooseO(logn) independent uniform random subsetqnf. .., n}\{i}.
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e Perform a parity test on each subset to find a good subset that contains and odd number of el
larger thanx;.

e Find a larger elemery;. in the good subset by a binary search on the subset.

Ben-Or [BenOr96b] obtained an algorithm for the problem that does not require uniqueness
input elements and has the same decisional and randomness complexities as the algorithm of |
The algorithm applies the procedure that was described in Section 4.3.1.

We present a different algorithm for finding the maximumddistinctelements. Our motivation is
to reduce the number of random bits so that both the decisional complexity and randomness com
of the algorithm areD(log? n).

Since the algorithm of [TY94] is order invariahg probabilistic argument shows that ev@(iog n)
random bits suffice for finding the maximum with(log? n) polynomial queries an®(1/n°) error
probability.

In the following sections we describe an explicit algorithm that finds the maximum Glog? n)
polynomial queriesQ(log? n) random bits, an@(1/n) probability of error.

61. Intuition of the Algorithm

Our algorithm uses a recursive procediax(S) that with high probability returns the maximurr
of {Xi | i € S} whereS C {1,...,n}. The procedure chooses a subSetC S, finds its maximum
recursively, and then uses it to find the maximunBoAs in the algorithm of [TY94] we also have &
candidate for a maximal element. In our algorithm it is the maximum of the si@s#tosen at the
current recursive call. We use a different procedure for obtaining a larger element; namely, we fi
the larger elements in the bigger Sising the deterministic algorithm for finding the largest elemer
from Section 5. Another difference from the algorithm of [TY94] is that we chose all the subsets req
in the algorithm over &-wise§-dependent probability space instead of a uniformly random probabi
space.

The procedure goes as follows: ifd |S| < (c + 1) logn then find the maximum deterministically
For|S| > (c + 1) logn we use the fact that if we chooséavise §-dependent randor§, € Swhere
k = (c+ 1) logn, then with high probability this subset contains an elements with a low raBkiind
the maximumx, of S recursively (with high probability). Ik, is also the maximum o$, then we are
done; otherwise we can apply the algorithm of Section 5 to find the elements largey t#rathalso find
the maximal of them in the process. Choosing the suBseter ak-wises-dependent probability space
we gain several things: we still have the properties that a uniform probability space gives us, ne
with high probability, the size 0§, is smaller by a constant factor than the size of the original sub
S, and thus, afte©(logn) recursive calls we will probably get to a subset of x¢gogn). The second
property ofS that resembles a uniformly chosen subset is that with high probaBilipntains an
element with a low rank, and thus, on the average, finding the elements largey thidinake O(logn)
parity tests, as described later. The advantages of choosiwise §-dependent subset instead of
uniform one is that it much more economic in random bits, and enables us to achieve polylogari
randomness complexity.

62. Scheme of the Main Algorithm

For finding the maximum ofxy, . .., X} perform the following:
e Initialize S={1,...,n},
1
§«— ——j;a<4Cc+1);b+« ——;
nc+1 Iog (HLZS)
1
my < [blogn1 + [log 7 Snl +1;
2

e ReturnMax(S, n).
1The queries used in the algorithm give the same answer on inpyts. (, X,) and {1, ..., yn) that satisfy for every

LXi <X &V <Yj.
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The procedurdlax(S) returns the index of the maximum of; | j € S}, whereS C {1,...,n}, and
goes as follows:
Max(S, n):

1. If |S| < (c+ 1) logn then find the maximum o8 deterministically.
2. If more thamm;, recursive calls were performed then terminate.

3. Otherwise, folkk = (c + 1)logn, choose &-wise §-dependent subsé&} of S (if empty then
terminate).

4. z + Max(S, n).
5. If X, is the maximum ofSthen returre.

6. Otherwise, find the elements 8larger tharx, as follows:
e Setk <2

e Whilek < (c+ 1) logn and the maximum oS war not found:
(&) Apply the algorithm of Section 5 fde to find the elements larger thagm and their maxi-
mumx;,.

(b) If k > 2 and less thak/2 + 1 larger elements were found kr= 2 and no element was
found, then conclude that the rankgfis larger thark + 1 and sek <« 2k.

(c) Otherwise, test ik, is the maximum o by reusing the random walk of step 5xifpassed
the test, returr; otherwise sek < 2k.
7. If k > (c+ 1) logn and the maximum of was found yet, then terminate.

LetS={j1, J2,..., jt} € {1,...,n}andXj1 < Xj2 < --- < Xj¢. In order to choose a subsét € S
in step 3, we set = (c+ 1) logn and usd random variablesy,, y», ..., y; that take their values from
{0, 1} and arek-wise §-dependent. The subs8t is defined a5, = {j; | i = 1}.

In step 5, checking whethey, is the maximum ofSis done by performing a random walk of lengt
a logn on an expander graph, as described in Section 4.3.

We enter step 6 with an elemexytthat is known to have at least one elemenpin| j € S} larger
than it. The first iteration of the while loop finds all the elements larger ghgior x, with rank(x,) < 3,
and the maximum of these elements will pass the test on the random walk. Similarly, if the num|
elements larger thaxy is between 21 + 1 and 2, and 2< j < log(c+ 1) logn, then iterationj finds
all the larger elements.

The correctness of the algorithm is established in the next theorem.

THEOREM 6. For any constant c> 0, the algorithm finds and maximum pfy, ..., x,} with error
probability O(1/n°), using an expected number ofl6g? n) parity tests and Qlog? n) random bits.

Proof. Define the events:

A;: After m; recursive calls we still have a s8with |S| > (c + 1) logn.
A,: At mostm; call were performed and an error occured at one ofthealls.

It follows that
Prlerror] < Pr[A.] + Pr[Az]Pr[—A1] < Pr[A1] + Pr[A;].

By [Ka91], Theorem 1, P&;] < 1/n°.

AssumeS = U; at leveli of the recursiony; = {1,...,n}), andz = z is the element returned
at step 4 of this level. At levél that is not the bottom level, an error may occur because of one of
following events:

Ei: Uil > (c+ 1) logn and none of theq(+ 1) logn largest elements ibj; is in the subse§, C U;
chosen at step 3.

Bi: an element that is not the maximumUdf passed the maximality check on the expander at s
5 or 6.
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If E; occurs, then eithe®, us empty, and the algorithm terminates in step 3, or step 6 might not find al
elements larger thaxy, . By the property ok-wise§-dependent random variables, foe= (c+ 1) logn

1 (c+1)logn 2
PlEl=(3) 8= oor

The probability of error on one random walk@y(1/n°). The random walk check is executed for
most 1+ log(c + 1) logn elements, and thus, M| < (log((c + 1) logn) + 1)/(n°*Y).

m

Pr[Az] < Zl(Ei + Bi) < n—];:

i=1

Hence the total error probability is at mostr®.
We show that the expected number of parity tests performed by the algoritBiog? n). Define
the following notations:

T =The number of parity tests performed during the execution of the algorithm on{iqput. , X,}.
H = The number of recursive calls performed by the algorithm.

L; = The number of parity tests performed in step 5 at léwdlthe recursion.

M; = The number of parity tests performed in step 6 at Ié\adlthe recursion.

At the bottom level of the recursion at most{ 1) logn queries are performed, and thus,

H
T < (c+1)logn+» (Li + M)
=

E[T] < (c+1)logn+ E(E[Li] + E[Mi]).

i=1

L; <alogn, forevery 1<i < m;y.

The rank ofz in U; is arandom variable(z, U;). If r (z, U;) = k, then at step 6 we run the algorithn
for finding them largest elements ib;, form = 2, 4, ..., min{(c + 1) logn, 2M'°9K1}, Following each
such run, we might need to perform a random walk of lerggkbgn. The number of parity tests
performed forx, with rankk s.t. 271+ 1 < k < 2* where 1< ¢ < [log((c + 1)logn)] is at most
Zle(clzi logn + alogn) < a;2¢ logn, for some constard; > 0. If kK > (c + 1) logn then at most
O(log®n) parity tests are performed. It follows that

E[Mi] = E[E[Mi | r(z,Ui) =K]|
< Prlerror]aglog® n + azlognPr[1 < k < 2]
llog(c+1)logn]

+aglogn > P2t <k <22,
=1

for some constard, az, as.
Define the evenB;: the rank ofx, in {x; | j € U;}isk + 1. By the property ok-wise §-dependent
variables, PiB;] < 5% + 8, and we have that for 2 j < [log(c + 1) logn]

. 1 .
Pri2l+1<k<2]<Z + 21

2227

3
Pr[k:lvk=2]§§+28.
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As was shown, Pgror] < 2/nC. Substitutingd = 1/n°+1, we get that

E[M{]

IA

log(c+1)logn]
2! (

1 .
j—1

2 5 3
Faglog n+a1(§+88> logn + a;logn T

=2

O(logn)

and finally, E[T'] = O(log? n).

It remains to show that the number of random bits required by the algoritBxiag? n). At recursive
leveli we look for the maximum df); € {1, ..., n}. Step 3require®(log|U;| + log(1/5)) = O(logn)
bits to choos¢U; | k-wises-dependent random variabl&3(log n) random bits are required for checkin
maximality of an element in the skk in step 5. At step 6¢ we reuse the random walk of step 5, ¢
thus no more random bits are required. Since there are at@{é=gn) recursive iterations, the total
number of random bits required @(log®n). =

7 FURTHER RESEARCH

We saw that allowingd(1/poly) probability of error can improve the running time of problems th
have small co-non-deterministic complexity but high non-deterministic complexity.

The first open question that arises is how much further can the randomized decisional comple
findingthe maximum be reduced s.t. the error probability rem@if/poly).

It would also be interesting to extend the results of [TY94, MPR94, BenOr96b] to a broader
of problems, where the set at hand is a general semi-algebraic set, not necessarily represent
conjunction of a finite number of inequalities.
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