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Abstract

We investigate issues related to the probe complexity of quorum systems and their implementation
in a dynamic environment. Our contribution is twofold. The first regards the algorithmic complexity of
finding a quorum in case of random failures. We show a tradeoff between the load of a quorum system
and its probe complexity for non adaptive algorithms. We analyze the algorithmic probe complexity of
the Pathsquorum system suggested by Naor and WooP#],[and present two optimal algorithms. The
firstis a non adaptive algorithm that matches our lower bound. The second is an adaptive algorithm with a
probe complexity that is linear in the cardinality of the smallest quorum set. We supply a constant degree
network in which these algorithms could be executed efficiently. ThuBdtiesquorum system is shown
to have good balance between many measures of quality. Our second contribution is pr&saramgc
Paths- a suggestion for a dynamic and scalable quorum system, which can operate in an environment
where elements join and leave the system. The quorum system could be viewed as a dynamic adaptation
of the Pathssystem, and therefore has low load high availability and good probe complexity. We show
that it scales gracefully as the number of elements grows.

1 Introduction and Motivation

Quorum systems serve as a basic tool providing a uniform and reliable way to achieve coordination between
processors in a distributed system. Quorum systems are defined as follows:

Definition 1. LetU be a universe of elements. A set syste$n= {51, 5, ...,S,,} is said to be ajuorum
systemover the universé’ if Vi .S; C U andVi, j S; N S; # @. Each setS; is referred to as ajuorum set
or simply as aguorum

Quorum systems have been used in the study of distributed control and management problems such as
mutual exclusion (cf. 0],[33]), data replication protocols (cf.10]) and secure access contra2{]). In
many applications of quorum systems the underlying universe is associated with a network of processors,
and a quorum is employed by accessing each of its elements. For example, in a typical implementation of
mutual exclusion using quorum systems, processors request access to the critical section from all members
of a quorum. A processor can enter its critical section only if it receives permission from all processors in a
guorum. The intersection property guarantees the integrity of the mutual inclusion. In a typical application
of data replication, the quorum sets are divided into reading quorums and writing quorums where each
reading quorum intersects each writing quorum. When a data item is added to the system, it is written into
all the members of a writing quorum. A data item is searched by querying all the members of a reading
quorum. The intersection property guarantees the effectiveness of the search. We investigate two aspects of
qguorum systems:
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1. Itis often assumed that processors can somehow find and communicate with one another. We analyze
algorithms for finding quorum systems in a distributed network while taking into accounetherk
implementationi.e., the network and the quorum system should be compatible such that elements
from the same quorum are connected to one another. We supply algorithms for finding a quorum set
(even in the case of failures) and analyze their running time and communication complexity. In this
setting non-adaptive algorithms are attractive since they can be executed in parallel.

2. The setting in which the quorum operates is often dynamic, and should accommodate changes in the
guorum system over time. See for instan2# [ 33]. We address the problem of designing a quorum
system that is fit for a scalable and dynamic environment where processors leave and join at will.
Abraham and Malkhi3] address this problems when the intersection property is not guaranteed but
rather occurs with high probability.

1.1 Scalable Dynamic Data Structures - P2P

Recently a new approach for construction of dynamic distributed data structures on overlay networks was
suggested, which offers excellent scalability. The main motivation for this line of research comes from
the rise in popularity of P2P application, therefore the attention was put on the construction of distributed
hash tables (cf.46],[ 23], [34], [32]). In these works an overlay network is built dynamically. Processors
may fail (with some probability) and are allowed to join and leave. Each processor holds some data items.
The construction ing6] for instance, guarantees that any data item could be found in logarithmic time,
while imposing small load on every processor. In this paper we suggest quorum systems that operate in a
dynamic peer-to-peer model. We combine techniques developed in these papers, 26hamy [32], with
appropriate quorum systems, and provide the distributed algorithms for finding the quorums. We allow two
types of events:

1. A Processor may temporarily fail (halt). The failure of a processor occurs with some fixed probability
and is independent from failures of other processors in the network. It is desired that the probability
that a live quorum is found be as high as possible.

2. Processors may wish to join the system or to leave it (a long term failure of a processor could be
regarded as if the processor left the system). It is desired that the quorum sets be updated such that
these processors are included/excluded from the system.

1.2 Measures of Quality

The metrics that measure the quality of a dynamic quorum system relate botlhdmiténatorialstructure
and to its capability of being implemented in a distributed network. The following metrics were analyzed
by Naor and Wool in28] and are used to measure the quality of static systems as well.

e Load - A strategy is a distribution over quorum sets, giving each quorum set an access probability
(i.e., the probability by which it is accessed by the user). A strategy induces a load on each element,
which is the sum of the probabilities of quorums it belongs to. This represents the fraction of the time
an element is used. For a given quorum systrthe load((S) is the minimal load on the busiest
element, minimizing over the strategies. The load measures the quality of the quorum system in the
following sense: if the load is low, then each element is accessed rarely, thus it is free to perform other
unrelated tasks. Letbe the cardinality of the smallest quorum set. Naor and Wool provagiiie
following lemma:

Lemma 2. The load of a quorum system is always at Ieﬂsk{%, =} which implies that (S) >
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e Availability - Assuming that each element fails with probability what is the probability
F,, that the surviving elements do not contain any quorum? This failure probability measures how
resilient the system is, and we would likg to be as small as possible.

The Load is especially important if the application of the quorum system involves replication of data, as was
described in the previous section. In this case the load is proportional to the fraction of data each element
has to hold, and therefore smaller load means that each processor needs to allocate a smaller amount of
memory. The notion of availability is important when dealing wigéimporary faults The most common
strategy to deal with faults is foypasghem; i.e., find a quorum set for which all processors are alive. This
introduces the following notion:

e Algorithmic probe complexity - The complexity of the algorithms for finding a quorum
should be low. Even if all processors are alive tregworkshould allow easy access to elements of
the same quorum system. In case some elements fail, finding a live quorum set can be a difficult
algorithmic task. Peleg and Wool analyzed &9][the probe complexity of several quorum systems.
They assume that an adversary decided which elements fail and analyzed the number of elements
needed to be probed before either a living quorum is found or an evidence for the lack of it. They
assume that each probing takegl ); i.e., they ignore the complexity caused by the implementation of
the network. Hassin and Peleg extend these resulisfjrig the case where each processor fails with
some fixed probability . ThAlgorithmic probe complexitis the actual time and message complexity
needed to find a live quorum. It is determined by tiegworkand by the quorum system. A related
term is theCost of Failuresntroduced by Bazzif]. Given a network implementation and an algorithm
for finding quorums, the cost for failures measures the average communication overhead caused by
encountering a faulty processor.

The introduction of a dynamic environment requires another set of demands:

e Integrity - A new processor that joins the system, and a processor that leaves the system, should
change the quorum sets. The integrity of the system should be preserved in two aspects: First the
intersection property must hold. Bearden and Bianchini sugge$f i protocol for an online ad-
justment of quorum systems without compromising the integrity of the intersection praheityg
the adaptation. It is necessary that the adaptations themselves do not corrupt the intersection property
of the quorum system; i.e., that the intersection property holds after the adaptations took place. The
second aspect is application oriented. Quorums that were used in the past (say for mutual exclusion)
might not be legal quorum sets after the adaptation. It is necessary that when an adaptation occurs,
the intersection guarantee that the quorum system supplies the application is not compromised.

e Scalability - The number of elements in the quorum system may increase over time. The increase
in the size of the system should maintain the good qualities of it, i.e., it should decrease the load on
each processor and increase the availability of the system. It is important that when the system scales
the algorithmic probe complexity would remain low. Finally the Join and Leave operation should be
applied with low time and message complexity.

1.3 New Results and Paper Organization

The paper is divided into two parts. In the first part, we show a tradeoff between the load and the non-
adaptive probe complexity of quorum systems (Sec#prthus proving a lower bound for non-adaptive
probe complexity. In SectioBwe show a non-adaptive algorithm for finding a quorum inRaghsquorum
system which is tight in that respect. We further show an adaptive algorithRafoswith probe complexity



O(y/n), which is optimal (up to constants). Thus combined with the result2ghthe Paths system is the

first quorum system shown to have an excellent balance between many somewhat contradictory measures of
quality. In the second part of the paper (Secddwe present and analyZ®/namic Pathsa construction for

a dynamic and scalable quorum system which could be viewed as a dynamic adaptatidratfissgstem.

To the best of our knowledd@ynamic Pathss the first scalable quorum system which is shown to have low
load, high availability and good probe complexity. Thus it is an excellent candidate for an implementation

of quorums in a dynamic distributed network.

2 Non Adaptive Algorithms vs. Load

A non adaptive algorithm for finding a live quorum is an algorithm which decides which elements to probe
beforeit gains any knowledge as to which elements failed and which did not. Non-adaptive algorithms are
important in the context of a distributed network since they are easy to implement in parallel. It might be
worthwhile to ‘pay’ in a higher message complexity, and reduce the total time complexity of the algorithm.
As an illustrative example consider a quorum system in which gfilyelements participate in quorum sets.
Clearly querying only thosg/n elements is sufficient to find a live quorum. The drawback of this approach

1
is that the load on these elements would be high (Ler@rimaplies that it would be at least™ ). In this
section we show a tradeoff between the load of a quorum system and its probe complexity for non adaptive
algorithms.

Theorem 3. LetS be a quorum system over univefgevith a load of¢ = ((S). Assume that each element
in U fails with some fixed probability < % Let X C U be a predefined set of elements such that

. . 1
Pr[X contains a live quorufm> 3

then . log(1/40)
og
X1 = 2log(1/p) +1 ' ¢

X|isQ(y/nlogn).

In particular if {(S) is O(ﬁ) then,

Proof. Let Sy be all the quorum sets containedin i.e.,Sy = {S|S € SAS C X}. LetR be all the sets
which are an intersection of with a quorum; i.e.,

R={RIR=S5NX,S €S}

By the intersection property each detc R intersects all the sets iiy. Therefore, if for a seR € R
all elements inR fail then X does not contain a live quorum. We show ti&amust contain mangisjoint
sets of small cardinality. Lef be a distribution over quorum sets which imposes the optimaldpadd let
a = |X|¢. Distribution f induces a marginal distribution over the s&s= R by taking.S N X for each
sampled se$. Under this distribution, the expected sizefofs at most (i.e.,E¢[|R|] < a), otherwise the
load on the elements of would be higher thag. By Markov's inequality we have that with probability at
Ieast% the sampled set is of size at m@st so we have

Z Pr[R is sample¢l> 1)
R:|R|<2a

N | —

On the other hand since the load inducedftig at most, we have



Ve e X Pr[R is sampled < ¢ 2
Rge:R !

Next we show that inequalitied)and @) imply thatR contains a collection®’ of at Ieast% disjoint
sets of size at mo&tu. To see this employ the following procedure: pick a@et R such that@| < 2a and
put@ in R'. DefineR¢ C R to be all the small sets iR which intersect), i.e.,Rg = {R € RIRNQ #
@ A |R| < 2a}. Now since@ has at mosRa elements then by inequalit)we have

> Pr[Ris samplefi< 2a¢ (3)
RERQ !

Remove the setR from R and repeat the procedure by picking anothergedintil all the sets of cardi-
nality < 2a were removed. By inequalitieg)and @) we can perform this procedu;—éf times. Clearly all

the setg) chosen in this process are disjoint and of small cardinality. For eadh seR’ the probability

that all its elements fail is at leagt®. Since the sets are disjoint, these events are mutually independent. In
order for the probability of finding a live quorum to be at Ieéls/t/e must have then that

2a
exp <_§@C> > el

2a -log(1/p) + loga > log(1/4¢)
. log(1/40)
— 2log(1/p) +1

Now since| X | = ¢ this implies the theorem. O

Theorem3 lower bounds the probe complexity obn-adaptivealgorithms. The smaller the load is,
the larger the probe complexity is. The Paths system has a Io@rﬂ%). The theorem implies that any
non-adaptive algorithm would have to probe a predefined g8t ¢fn log n) processors, in order to succeed
with probability%. If the load is very large, say constant, then the bound given by The8ierf2(1). In
case of the Majority system, the bound is much worst than the trivial lower bou§d @his however is
unavoidable since quorum systems with high load may have quorum sets of small cardinality, so any bound
which uses the load alone will deteriorate when the load increases.

3 The Paths Quorum System

We recall the construction of tHeathssystem from 28]. We start with a precise definition of the grid we
will be using.

Definition 4. LetG(¢) be the subgrid oZ? with vertex sef (vy,v2) € Z? : 0 < v; <L+ 1,0 < vg < ¢}
and edge set consisting of all edges joining neighboring vertices except those joining vertigath either
up=v1=00ru; =vy =¥¢+ 1.

Definition 5. Let G*(¢), the dual of G(¢) be the subgrid with vertex s¢tvy,v2) + (3,24) : 0 < vy <
¢,—1 < vy < (£} and edge set consisting of all edges joining neighboring vertices except those joining
verticesu, v with eitherus = vy = —% or up = vp = £ + 1.
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Figure 1: The grid€7(3) (thick lines) and=*(3) (thin lines).

4

(0,0)

Note that every edge € G(¢) has a dual edge* € G*(¢) which crossesit. We call suche and
e* adual pair of edges Note also thatz(¢) and G*(¢) are isomorphic. BothG(¢) and G*(¢) contain
2+ (0+1)% =20 + 2/ + 1 edges.

Definition 6. ThePaths quorum systeof order/? hasn = 2¢2 +2/+1 elements, and we identify an element
in U with a dual pair of edges € G(¢) ande* € G*(¢). A quorum in the system is a set of elements which
contains (elements identified with) the edges of a left-right pati(if) and the edges of a top-bottom path
in G*(¢).

The Paths quorum system of ordeis depicted in Figurd. The intersection property of the quorum
system follows from the following fact:

Fact 7. Every left-right path inG(¢) crosses every top-bottom pathdit (¢).

Naor and Wool proved that the load of the Paths quorum system is at%%@s(wvhereﬁ is best
possible). Furthermore it is shown that if each processor fails with probability smaller than half, then the
probability a live quorum exists is at lealst- e~ 2(v7).

3.1 Algorithmic Probe Complexity

The analysis of the algorithms we present is based on The8rbpllow due to MenshikovZ4] from
Percolation Theory. Consider the infinite two dimensional @idand fix a vertex:. DefineS(k) to be

the ball of radiust with « at its center, where the distankas taken according to the grifl; metric. The
setyS(k) consists of the vertices in the boundary of the ball. Assume each edge fails with some fixed
probability p > % Note that since the failure probability is greater t@nNe discuss the case in which
mostedges fail. Defined, to be the event that there is a path of surviving edges betwesmd some
vertex indS(k). The following is Menshikov's Theorem. A good reference for its proof could be found in
Grimmett’s book 12].

Theorem 8. Let% < p < 1 be some failure probability, and let; be defined as above. There exists some
positive constanty(p) such thatPr[A4,] < e~¥®)* for all k.

Let G(¢) be the dual grid of7(¢) (just like G*(¢)), however if an edge iG(¢) survives then its dual
edge inG(¢) fails and if an edge ii7(¢) fails then its dual edge it¥(¢) survives. The graph¥(¢) is used
for the analysis and is not a part of the construction itself. Now, since the failure probabitiy/inis
smaller than%, the failure probability inG(¢) is greater than}, and we can use Theore@n Theorem8
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Figure 2: The dashed lines indicate the duals of failed edges. The bold line indicates a left-right path.

bounds the radius of a connected componerdt @. It states that the radius of a connected component has
an exponential decay.

Corollary 9. If each edge of(¢) fails with probabilityp < 3, there exists some constant= §(p) such
that with high probability every connected component@f/) is contained in some ball of radiuslog n
(where the balls are defined by the metric of the grid before failures).

Proof. Theorem8 states that the probability that a ball of raditikg n centered at vertex. does not
contain the component af in G(¢) is less thare—¥P)1og™ - Sets such that - 1»(p) > 2. Now for each
vertexw this probability is less thar;lb%. When applying the union bound over all thevertices we have:
Pr[ All components are contained in balls of radigsé log n] is at leastl — %

O

3.1.1 A Non Adaptive Algorithm.

We show an algorithm that matches the lower boung'efog n for non adaptive probes from Theor&@mA
left-right path inG(¢) mustavoidall the components of surviving edges(ifi/). See Figur&. We describe

a non-adaptive algorithm that finds a left-right path, when each element fails with probpbﬁitj The
case of a top-bottom path is analogous. Choose a horizontal strip of width &2déest: + 1 (whered is
taken from Corollary®) and examine all the edges. The algorithm tries to find a left-right crossing within
the boundaries of this strip.

Claim 10. If each element in the quorum system fails independently with probabiliaty%, then after
probing non-adaptivelg/(26logn + 1) = O(y/nlogn) elements, the algorithm finds a quorum with high
probability.

Proof. Corollary9 implies that there is no path i@(¢) that crosses the strip top to bottom (otherwise this
path is part of a component which can not be containeddtog » radius ball). By Fac¥ this implies a
left-right path in the strip. See Figug O

Note that while the we showed that probioqg./n logn) elements is sufficient to succeed with high
probability, Theoren8 states thaf(/n logn) probes are necessary to succeed with merely proba%ility
As mentioned, since the algorithm is non adaptive it could be implemented in parallel. The actual running
time of the algorithm depends on the implementation of the network.

1The term ‘with high probability’ (w.h.p) means with probability— n~¢ wheree is some positive constant.



The Load After Failures Naor and Wool show ing8] (Proposition5.8) that the load of the Paths system
is @(ﬁ) even after failures. In this section we present an efficient non-adaptive algorithm for picking a
quorum which meets this bound w.h.p.

Lemma 11. If each edge fails with probability < % then there exists a positive constant= «(p) such
that in every strip of widthy log n there existdog n left-right paths that are edge disjoint.

Proof. Denote byL R the event that there exists a left-right path in a strip of widthg n (the constanty
will be fixed later). Denote by R, the event that there areedge disjointeft-right paths in the strip. Fix
somep’ such thap < p’ < 3. Proposition.8 in [28] uses a known result from percolation theo} in
order to show the following:

pier) 2 1- (3=2) - piem)

Whenr = logn we have tha(;,__f;)r is O(n*) for some constark. Sincep’ < 3, by Corollary9 and

Claim 10we can choose to be large enough so that- Pr,, (LR) < n~*+1) and the Lemma follows. [J

The strategy of picking a quorum is the following: First pickatdoma strip and probe all its elements.
Find the edge disjoint left-right paths and pick at random one of these paths.

Corollary 12. If p < % then the load imposed on the elements by the strategy described al@l(v%is;.

Proof. Given a node., the probability that node belongs to the randomly chosen strim-)'slo%). Lemma
11 implies that given that; is in the strip, the probability it belongs to the chosen quorum set is at most

@(loén). As the second event is conditioned upon the first, we may multiply the probabilities and deduce

that the load imposed by the strategﬁ%) even after failures. O

3.1.2 An Adaptive Algorithm for Paths

Adaptive algorithms can do better than non adaptive ones. Hassin and Peleg presehtgd itojver
bound of = + O(1) on the expected probe complexity, whers the cardinality of the smallest quorum
set. They proved that for some quorum systems this bound is tight. We note that it is pro2&ithmaf
¢(8) > max{2, £} therefore this lower bound is at best linear in the inverse of the load. In the following
we present an adaptive algorithm for the Paths quorum system which need®@yihy) probes. It is
optimal in the sense that every quorum system with optimal load mustcdave(,/n). Various adaptive
algorithms for quorums were analyzed by Hassin and Pdldg [The only quorum system with a better
probe complexity is the Crumbling Walls system. This system however suffers from high load. Bazzi
presented in7] the Triangle Lattice quorum system, which resembles Paths, and an adaptive algorithm for
finding quorums in case of failures. Bazzi proves that its cost of failures (i.e., the communication overhead
due to encountering a failed processor) is constant. Our algorithm, is an adaptation of Bazzi's algorithm
to the grid, and therefore Bazzi’s analysis applies in our case and shows the followigpbéethe set of
processors probed by the algorithm until a quorum was foundFLet( be the subset of which that failed,
then there exists a constamtsuch thaf F'| < % This result does not bound thetal numberof probed
processors. Our goal in this section is to show thih high probability the total number of processors
probed isO(y/n).

We start with a formal description of the algorithm, as before it is sufficient to show how to find a left-
right path. The algorithm is a variant of a DFS-search with a specified strategy for picking the next edge to
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Figure 3: The dashed lines indicate the duals of failed edges. The bold line indicates a possible path
taken by the adaptive algorithm.

probe. We say that a patircumventsa component o7 (¢) if it travels along the surface of it; i.e, it travels
along edges, the duals of which are adjacent to the component and not part of it. The algorithm would try
to find a path which is a straight left-right line. Whenever a compone6i(éf is encountered it would be
circumvented. More formally:

1. Chooser at randoml < r < /. The search begins at edgef the left column, and aims to travel
along rowr.

2. Go to the right. When a failed edge is encountesiedumventthe component until row is reached
again. Ifr < %6 from above, otherwise from below. Return to row

The path in bold presented in FiguBalemonstrates a possible path of the DFS search. The path taken
by the algorithm needs to circumvent a componenG6f) only if it contains the dual of an edge in row
r. For each failed edge of row r defineC, to be the number of edges in the componentGgf) that
contains the dual of. If e did not fail thenC, = 0. The numbelC, is an upper bound on the length of the
circumvention the path had to take in order to avoid the failed edge

Observation 13. The length of the path taken by the algorithm is at ndost) ~ C. where the sum is taken
over the edges of row.

Theorem 14. The probe complexity of the algorithm@¢) = ©(/n) with high probability (where the
probability is taken over the occurrence of faults).

Proof. Assume that the random starting point selected in $temf the algorithm is a starting point of

some left-right path of the grid. By Lemnid we know that the probability of this is constant. Thus we
repeat the procedure above, until a good starting point is found. We need to show that all the circumventions
taken in Stefd2), i.e.,> C., accumulate to no more th&(¢). Fix some edge on rowr, and let vertex

belong to its dual edge. Lé&t, be the number of edges in the component.afi G(¢). Let A, denote the
diameter of that component. Since the verteis adjacent to the dual efit holds thatC,, > C.. The grid
topology implies that iC,, > k then4,, > $v/k. We have (by Theorer8)

Pr[C, > k] < Pr[A, > 1VE] < e *®VE for somey(p) > 0 (4)
E[C) =p <Y ke ?@VE = O(1) (5)
k=1



The algorithm may need to avoid at md@stomponents of7(¢). By linearity of expectation the expected
probe complexity of the algorithm i®(¢). To show that this sum i®(¢) with high probability we need
a slightly different argument. Divide the grid in(cgkf—gn) vertical strips each of width log n, whereé is

taken from Corollan®. Each strip is wide enough such that w.h.p it is wider than any componént/of
Assume this high probability event occurs. Defﬂﬁﬁdif >~ C. where the sum is taken over edges of row
and stripi. The length of the path the algorithm took is at mést X;.

Lemma 15. E[X;] < pd logn and w.h.p for alli we haveX; < 262 log? n.

Proof. The width of the strip i9 logn and the expected size of each componept iherefore by linearity

of expectationF[X;] < udlogn. By Corollary9 we know that w.h.p all the components are contained in
adlogn radius ball. Therefore w.h.p all the components are confined into a rectangle &faieg” n.
which proves the second claim. O

Definel, = {1 <i < s+ @ mod 3=0},0 € {0,1,2}.

Lemma 16. Conditioned on the event that all the components are of diani&fiexs ), which by Corollary
9 occurs with high probability, the sétX; };c;, consists of independent random variables.

Proof. If all components are of small diameter, then every connected compon@iit phelongs to at most
two strips. ThereforeX; depends only upon the probes of edges in stripsl, i,i + 1. This means that
X;, X153 are independent. O

By using the appropriate Chernoff Hoefding bound (&fl][page17) we have

22| 1, |
Pr (Y X - Y B > tIIg|] < 2oxp (20 EL)
i T (202 log” n)?

Since|l,| is in the order ofh;fn, the probability that there is a large deviation decays exponentially fast.
In particular setting to be some large enough constant implies b, X; > ©(¢)] < L foro €
{0,1,2}. Now we apply the union bound over the high probability events of CoroBaand Lemmas
15,16, which means that with high probability the probe complexity of the algorith@(y = O(y/n).

This concludes the proof of Theoreld. O

Network implementation In order to calculate thactualrunning time and message complexity of these
algorithms we need to take into consideration the topology and implementation of the network over which
the quorum system is defined. The most natural network topology to consider is thét)ot* (¢) them-

selves. Each processor is associated with a pair of dual edges, and is connected to the processors that are
associated with edges that are adjacent to its own edges. In other words, the topology of the network is the
line graphof the two dimensional grid. In Figuréthe thick solid edges belong to the line graphcf),

the dotted edges belong to the line graph{¢) and the diagonal edges belong to both. A quorum set
therefore is composed of processors (nodes) that form a left-right path using the solid horizontal, vertical and
diagonal edges and a left-right path using the dotted and diagonal lines. In this implementation the message
complexity and the time complexity of the adaptive algorithm are ind®gg. The non-adaptive algorithm

can probe its chosen strip in parallel, and achieve a running tim@(6f and a message complexity of
©(y/nlogn). Other data structures that are implemented on the network might support the implementa-
tion of the quorum system. For instance if the network implements a DHT (such as the one presented in
[26]) then the DHT could be used for probing the strip in parallel and the time complexity would reduce to
©(logn) with an extra logarithmic factor in the message complexity.
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Figure 4: The line graph of 4 x 4 grid and its dual.

Figure 5: A possible sample from the distribution over inputs. The bolded edges are closed. Tk
row is an open path.

ne third

Worst case model Assume an adversary is given the possibility to crash a constant fraction of the el-
ements. It is easy to see that an adversary can ‘kill" all the short paths, and leave only paths of length

Q(£?) = Q(n). However an adversary may force any algorithm (even probabilistic) to fohe ele-

ments, even if we are guaranteed that there exists a short left-right path. We sketch the proof using Yao’s
minimax principle (cf. R5]). We need to supply a distribution of theputssuch that every deterministic

algorithm would need to probe an expecfe@:) elements. The distribution over inputs is as follows:
1. Kill every line of even index.
2. From the remaining lines choose at random one which would remain alive.

3. Kill each remaining line by choosing at random one element from it and deleting it.

An example of a possible input is seen in Figaravhere the third row from the top is the only surviving
row. Now everydeterministicalgorithm needs to find the line that survived. Every such algorithm will

need to probé&)(¢) lines, each of these lines should be prolEd) times. All in all every deterministic

algorithm would probe on expectatiéd(¢?) edges. We conclude that for every algorithm (deterministic

or randomized) there is an input, for which the expected probe complexity of the algorithin )is Peleg

and Wool analyze inJ0] the probe complexity of several quorums under the model of adversarial deletion.
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Figure 6: Addition of a new generator.

They show several lower bounds, all of which turn to{b@) in the Paths system. Note that even though
the algorithmic probe complexity is high, tikest of failureqas were defining by Bazzy]) is a constant.

4 The Dynamic Paths Quorum System

In this section we suggest a quorum system that operates in a dynamic model, where processors may join
and leave. The applications of quorum systems in a dynamic setting were considered in a wide range of
papers cf. 1],[15],[17]. Previous constructions of dynamic quorums focusednaplementingquorum

systems in a dynamic environment and designing algorithms that allowed a group of proce$sorsato

new quorum in a consistent way (cfLd],[19],[31], [13],[20]). We focus on thecombinatorialproperties

of dynamic quorums. Our goal is to design dynamic quorums that enjoy low load, high availability, low
probe complexity and that scale gracefully in respect to these parameters. The good properties of the Paths
guorum system motivates us to desigtlymamic versiomf the Paths system. The main idea is to substitute

the grid with thecontinuousunit squar€g0, 1) x [0,1) C R2. The unit square is then decomposed into cells,
where each processor is associated with a cell. The entrance and exit of a processor dynamically changes
the decomposition. The decomposition of the square into the cells is done via Voronoi Diagrams. Our
technique is similar to the one presented2#][for building DHT'’s. Stojmenowi and P&a [35] suggest a

location based dynamic quorum system for use in ad-hoc wireless networks. The system is composed of
North-South and West-East paths which are constructed dynamically according to the physical location of
the nodes. Our work differs by assignimgtual coordinates to processors, thus using the quorum system

in a more general setting. We then provide a rigorous analysis in which the combinatorial properties (load,
availability, integrity) of the system are analyzed.

4.1 Dynamic Voronoi Diagrams

Definition 17 (planar ordinary Voronoi diagram). Given a finite number (at leag) of distinct points in

the Euclidean plane, we associate all locations in that space with the closest member(s) of the point set with
respect to the Euclidean distance. The result is a tessellation of the plane into a set of regions associated
with members of the point set. We call this tessellationpthear ordinary Voronoi diagramenerated by

the point set, the points are sometimes referred tgerseratorsand the regions constituting the Voronoi
diagramVoronoi cells The dual triangulated graph is called tiizelaunay triangulation

See Okabeet al [29] for a thorough overview of Voronoi diagrams and their applications. Given an
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existing Voronoi diagram, the entrance of a new generator and the exit of an existing one affects only
the cells adjacent to the location of the generator. Therefore a Voronoi diagram can be maintained by a
distributed algorithm, in which every cell is calculated separatelyiacally. The time and memory needed

to compute a single Voronoi cell ®(d) whend is the number of neighbors the cell has; i.e., the degree

of the generator in the Delaunay tessellation. See Fi§umr a demonstration of an insertion of a new
generator. It is well known that the average degree of a Voronoi célllisfollows that if the generators of

a Voronoi diagram are entered in random order, then the averags et mosi as well. In the worst case

d might be as high as — 1.

4.1.1 The Join/Leave operations

Processors are associated with generators of a Voronoi diagram. Each processor holds its own location on
the plane and the location of its neighbors in the Delaunay triangulation. A processor that wishes to join the
system does the following:

1. Choose a location: in the unit square (typically: would be chosen randomly and uniformly from
[0,1) x [0,1)).

2. Find the processor whose cell containd_earn the location of its neighbors.

3. Calculate the boundaries of the new Voronoi cell and inform the neighbors so that they can update
their tables.

Before analyzing the algorithm we show the properties of a Voronoi diagram in which the location of
each generator was chosen randomly and uniformly. We show that with high probably the Voronoi diagram
decomposes the square into more or less equal cells.

Theorem 18. If the location of each generator of the Voronoi diagram was chosen uniformly and randomly
in [0,1) x [0,1) then with high probability the following holds:

1. The area of the largest Voronoi cell is at m@(tl"%).
2. The number of neighbors each Voronoi cell (the maximum degree of the Delaunay gra@phgis ).

3. The projection of each Voronoi cell on the axis lines is at nddsy/logn/n).

Proof. Divide the square intg.2 squares of sizg/ k’% X k’i”. Now model the process as putting

balls in 1gLn bins. Itis well known that when balls are put uniformly at random ingggLn bins, then w.h.p
every bin contain® (log n) balls. Assume this high probability event occurs and each small square contains
O©(logn) balls. Fix a generatar;. A simple geometric argument demonstrated in Figustows that all

the neighbors of; must lie within the25 squares that compose the< 5 grid which surrounds the square

of z;. This asserts claimd ), (3). Since each square contai$log n) generators the number of neighbors

of x; is also bounded b@ (log n). O

Since the computation of a Voronoi cell is a local operation, $3¢mwf the Join algorithm take®(d)
time and memory, wheré is the degree of the Voronoi cell in the Delaunay graph. The average degree
is 6 and Theorend8 assures that w.h.p all degrees are at niodbgn). Step(2) of the the algorithms
requires locating the processor whose cell contains the poifihe complexity of Stef2) depends upon
the topology of the network and the search options it provides. If the topology of the network is that of the
Delaunay graph, then the processor holdingpuld be found by a greedy algorithm along the geometry of
the Voronoi diagram; i.e., the query moves along the Delaunay edges in a greedy way to the direction of
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Figure 7: If each square contains at least one vertex, then the cell generateid bgntained in the
circle.

Thus the time complexity and the message complexity of 8tgpreO(y/n). A similar approach is taken
in CAN [32]. Additional structure of the network may reduce the complexity of S&p The Distance
Halving DHT suggested in 2f]) is implemented using the same Voronoi diagram and therefore requires
low overhead. Using it Stef®) could be performed i) (log n) time andO(log n) messages. The interface
of a DHT allows searching for a processor whose cell contains a certain point, without knowing a-priori the
processor’s i.d.

The Leave operation is done similarly. When a processors wishes to leave the system, it informs its
neighbors which in turn divide and redistribute the area of its cell among themselves.

4.2 The Quorum System

In the Dynamic Paths quorum system, a quorum set is the union of (elements identified with) the vertices
(generators) that form a left-right path and a top-bottom path in the Delaunay graph.

Load We upper bound the load by analysing a specific distribution over quorum sets: choose at random
two points(z, y) in the interval[0, 1). Now the pick the quorum set that is composed from all the cells that
intersect the horizontal line and the vertical line;. An example of a quorum set is depicted in Figtfe

The bound on the projection of a cell in Theor&8implies that with high probability the load imposed by

this strategy is at moﬁ(%).

Availability  Basic results in percolation theory imply that if the locations of the generators were picked
uniformly at random, and the failure probability is strictly less than half, then with probability that tends
to1 (asn — oo) there exists a left-right path. This could be proved using planar duality in the same
manner in which the critical probability of edge percolation is proven. A rough outline of the argument
is as follows: If there is no left-right crossing, then there must be a top-bottom crossiaitedf\Voronoi

cells. The procedure of creating the Voronoi diagram is symmetric and imposes the same probability over a
top-bottom and a left-right crossing. Therefore if the failure probability is Iess%hae expect a crossing

to exist. Currently an analysis of the actual probability of the crossing, (i.e., the rate in which the probability
of a crossing converges 19 is unknown.
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(b)

Figure 8: When adding a processor either the load of quotusnsplit between quorumd;, A, as seen
in (b), or A grows, as seen ifr).

Integrity It is necessary that processors save some information about the quorum sets that were used.
A quorum set is associated with a path. Every time a quorum is used, a processor that participates in
the quorum should remember the identity of the processors before and after it in the path. When a new
processor joins the system either the quorum set grows or the load should be divided evenly between the
new quorums. Figur@ demonstrates the process. Figigshows the Voronoi diagram before the entrance

of v. Figure(c) demonstrates the case wheris added to quorumd. Figure(b) shows the case where the
responsibilities of quorum (represented by the line in bold) should now be split between quoAym4,.

If for instance the application of the quorum system is mutual exclusion, and quéiisraurrently active,

then processors, v should decide among themselves which one of them remains active, and inform their
neighbors. If the quorum system is used for replication of data, then the procedure is slightly more delicate.
Each data item is associated with a quorum set. Processorshould divide among themselves the data
items that were previously associated with quordnand of course inform their neighbors.

Algorithmic probe complexity The algorithms described in Secti@rhave obvious analogs in the Dy-

namic Paths system. In order to prove that the probe complexity of the non-adaptive and adaptive algorithms
is ©(y/nlogn), ©(y/n) respectively we need an analog for Theoi&me., we need that for a small failure
probability, the radius of a component fafiled cells would decay in sub-exponential rate. Unfortunately

such a theorem is yet unknown, yet prominent researchers in the field4p.gofijecture that it is true. If

indeed the conjecture is true then the performance of the algorithms could be analyzed in the same manner
as in Sectior8 and the Dynamic Paths quorum system enjoys excellent probe complexity.

4.3 A Balanced Voronoi Diagram

The reason some of the parameterdDghamic Pathsare not as good as the parameterslathsis that
when each processor chooses its location randomly, some of the Voronoi cells are quite big. The load of the
system is proportional to the size of the projection of the cells over the axis lines. Th&8iteounds the

size of the projection (and therefore the IoadW), in the case where the location of the processors
is chosen uniformly and randomly {0, 1) x [0,1). Furthermore the existence of large cells makes the
analysis of the availability and probe complexity of the system very difficult. A more sophisticated and
coordinated procedure for choosing the location upon entrance may reduce the size of the largest cell and

create &alancedvoronoi diagram. Abalanced Voronoi Diagrans a diagram in which every Voronoi cell
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is contained in a square of aréi(%). One such procedure is the following: upon entrance a processor
chooses at randoing n points and chooses its location to be inside the largest cell it encounters. An easy
alteration of Theoremo in [26] shows that this procedure guarantees that as long as there are no deletions
each cell would be contained in a square of a@éé). This approach however cannot deal with random or
worst case deletions of processors. In order to handle deletion some sort of balancing mechanism must be
introduced. Balancing mechanism for the one dimensional case were introdu@&j [2¢] and [2].

In a balanced diagram the projection of each cell on the axis Iin@$1\'}%), therefore the load of the
quorum system would be optimal. Balancing the Voronoi diagram enables us to analyze the availability and
probe complexity of the quorum system. As mentioned before, we conjecture that the availability and probe
complexity of the quorum system based on random entrance is indeed similar to that of Paths. However if
the diagram is balanced and each Voronoi cell is contained in square cﬁ)(}ke)ahen we can prove our
claims. Intuitively if the Voronoi diagram is balanced then ‘it looks like a grid’ and therefore theorems that
are correct for the grid should apply for the diagram. The technique we use follows this intuition, though
it is rather delicate. We use domination by product measures as shown by leggeéih [18]. We need
some definitions from probability theory. In the following we define the necessary definitions and sketch the
idea of the proof. A good exposition of the notions we use appears in Grimmett'sli#hokhe discussion
below follows it.

4.3.1 Domination by Product Measures

We begin by defining stochastic domination in our context. Say we have a finite aed a state space
Q = {0,1}°. The setS may be the set of edges in a two dimensional grid @rttie set of configurations
when some of the edges fail. Given,w; € 2 we say thaty; < ws if Vs € S wi(s) < wa(s). In our case
w1(s) < wy(s) if all the surviving edges i, have also survived iw,.

Given a functionf : 0 — R we say thatf is increasingif

wi <wy = f(w1) < f(w2).

For instance the function that assigns the vdlue a configuration that contains a left-right crossing and
otherwise, is aincreasing function

Now, given two probability measures éh i andv we shall say that stochastically dominates- and
write ;o > v - if for any increasing functiory we haveE,(f) > E,(f). This is a very strong condition
which amounts to saying that in every possible waputs more mass on bigger element$)dhany does.

In case thay is defined as above, it means that the probability there exists a left-right path is laugaim

itis in v. A canonical example for domination is the following: Assume we have a two dimensional grid.
Denote byr, the product measure with probability i.e., the case in which each edge fails independently
with probability1 — p. Itis intuitive (though requires proof) that,, > m,,, whenp; > po.

The analysis oPathsused bounds on increasing events on plheduct measurever the grid. Our
approach would be to show that the process of randomly failing cells in a balanced Voronoi digréam
natesa product measure on the grid, thus lower bounding the probability there exists a left-right path in the
Voronoi diagram.

Let T be a balanced Voronoi diagram withgenerators and assume that each cell survives with proba-
bility p > % and fails with probabilityl — p, independently from all other cells. Now construgy/a x /n
grid calledG on topof the Voronoi diagram, as shown in Figu®e We say that an edge € G failed iff
it intersects a failed cell of’. Let X, be the indicator of the state ef(i.e., X. = 1 iff e survived). Now
Pr[X. = 1] is exactlyp to the power of the number of cells it intersects. However sifiége balanced, we
know that this power is bounded by some constant, therefore there existgpseme independent of:,
such that for alk € G, Pr[X,. = 1] > p’. Assume thap was large enough such thait> %
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Figure 9: The grid7 is put on top of the diagrarm.

Observation 19. If there exists a left-right crossing of survived edgesirthen there exists a left-right
crossing of survived Voronoi cells ifi (i.e., a crossing in the Delaunay graph).

Sincep’ > % one is tempted to use known results from percolation theory that show that the probability
of a crossing is very high, as was used 28|[to prove the availability ofPathsand as was used in this
paper to prove the low probe complexity Baths The problem is that the random variableX, }.c are
not mutually independentn particular, if two edges are contained in the same cé€ll ithen the state of
both of them is determined by the state of that cell. The key observation is thatlSisdealanced X, is
independent from all bua constant numbeof other edges. Let be the probability measure thus defined
on{X,}eeq- Liggettet alshow in [L8] that in this case: dominateshe product measure over the edges of
G for some other value’ < p’. Theoreml.3 in [18] could be stated in our case as follows:

Theorem 20. Let . be some probability measure over the set of configurations of the edgesAdsume
that each edge 6 survives with probability at leagt, and that the state of each edge is dependent on the
state of at most other edges for some constantThen there exists soméwhich is a function of/, k and
independent of. such thatu = =,.. Furthermore by increasing/, ' could be made arbitrarily close to.

Intuitively speaking Theoren0 states that if we have a two dimensional grid, and each edge fails
‘almost’ independently from all other edges, then by reducing the failure probability, we may think as if
each edge failed independently. Note that the existence of a left-right path in the grid is an increasing
event. The diameter of a connected component in the dual graph (which is bounded in T8eisralso an
increasing function. Theoref0implies that by reducing the failure probability, we may use these theorems
to bound those random variables in the balanced Voronoi diagram.

Denote byG,(p’) the random graph induced By, }.c. Denote byG (') the random graph induced
by the product measure with probability

Corollary 21. Letp’ be close enough tb. There exists someé < p’ independent from, such that the
probability there exists a crossing @, (p’) is at least the probability there exists a crossingidn(r’), and
the probability a component of the du@l,(p’) is of diameterk, is at most the probability a component of
the dual ofG,(r') is diameterk. Furthermore by increasing’, v’ could be made arbitrarily close tb.

Corollary21is directly used to analyze the availability and probe complexitpyriamic Paths

Theorem 22. LetT be a balanced Voronoi diagram, and [Bte the Dynamic Paths quorum system derived
by it. Then the load of the syste(sS) is O(ﬁ). There exists somé < p. < 1 such that fop, < p < 1,
if each processor fails independently with probability- p then the following hold:
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Figure 10: An example of a quorum on a Voronoi diagram. The cells that belong to the quorum set are
the ones that intersect the dashed lines.

1. The probability a live quorum set existslis- e (V)
2. The non-adaptive algorithmic probe complexityié,/n log n) w.h.p.

3. The adaptive algorithmic probe complexity(g./n) w.h.p.

4.4 A simpler Quorum System:

A possible simplification of the Dynamic Paths system is the following: Define a quorum set to be all the
(elements identified with) cells that intersect the same horizontal and vertical line (seeFgurkis quo-

rum system is a dynamic adaptation of a quorum system suggested by Ma@Rhwiadlight improvement

was suggested by Agrawet alin [5] where instead of looking at horizontal and vertical lines, they examine
diagonal lines that resemble the paths of billiard balls. Thedt8mmplies that the load of these quorum

systems i9(, /1"%). The integrity of these systems could be maintained by associating each quorum set
with the numeric value of the vertical and horizontal lines, thus the implementation is simpler. The main
drawback of these systems is their low availability. If each processor fails with probﬁ(l@ﬁ"), then

with high probability no quorum set survives.

5 Conclusion and Open Questions

The main open problem is to improve the load of Bymamic Pathgjuorum system so that it matches the
load of Paths The load ofDynamic Pathss determined by the size of the projection of cells over the axis
lines. The Join algorithms as we described it guarantees that the projection of all cells is é)t(r-ﬁ%).
It is interesting to find other (perhaps more sophisticated) Join algorithms that guarantee a better load. A
deterministic Join algorithms that guarantees excellent load in the worst case is presezéedimgndom
algorithm appears ir2]. These algorithms operate in tbae dimensionalniverse, i.e when processors are
located along a line. It would be interesting to find a two dimensional analog to that algorithm. Some work
in this direction was done i, however they considered splitting the plain into rectangles (as in CAN) and
not a Voronoi diagram.

A better understanding of percolation theory over Voronoi diagrams would improve the analysis of the
algorithms. In particular it is important to bound the probability of a diametmponent in a percolation
withp < % A ‘Menshikov style’ theorem of this sort that states that this probability is exponentially small in

18



k, would imply a©(log n+/n) algorithmic probe complexity fobyanmic Pathgven for the simple random
Join algorithm.

Conclusion The Paths quorum system is shown to have excellent adaptive and non-adaptive probing al-
gorithms. It was previously known that the Paths system has optimal load and availability, thus the Paths
system offers excellent balance between different quality measures. This makes Paths a natural candidate for
an adaptation into a dynamic setting. A general technique for designing scalable dynamic data structures is
presented ing6]. Applying this technique results with tH2ynamic Pathguorum system which is scalable

and operates in a dynamic settingynamic Pathsnaintains the good qualities of the Paths system. Its low

load, high availability and simple probing algorithms makes it an excellent candidate for an implementation
of dynamic quorums.
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