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Abstract

Given a graph G on n nodes we say that a graph T on n + k nodes is a k-fault tolerant

version of G, if we can embed G in any n node induced subgraph of T . Thus T can sustain

k faults and still emulate G without any performance degradation. We show that for a wide

range of values of n, k and d, for any graph on n nodes with maximum degree d there is a

k-fault tolerant graph with maximumdegree O(kd). We provide lower bounds as well: there

are graphs G with maximum degree d such that any k-fault tolerant version of them has

maximum degree at least 
(d

p

k).
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1 Introduction

Given a graph G on n nodes we say that a graph T on n + k nodes is a k-fault tolerant

version of G, if we can embed G in any n node induced subgraph of T . The embedding should

be a one-to-one function, such that any two adjacent nodes in G are mapped into adjacent nodes

in the subgraph of T . An equivalent way to phrase this requirement is to say that any k nodes

of T can be declared faulty and the remaining graph can embed G in the above manner. Thus,

if G represents some desired interconnection, then T is a network that can sustain up to k faults

and still emulate G without any performance degradation.

If we take T to be the complete graph on n+k nodes, then we know that T is k-fault tolerant

for any G on n nodes, Our goal, however, is to minimize the maximum degree in T . Our results

show that this degree can be O(kd) where d is the maximum degree in G.

We present a general method of constructing such fault tolerant versions of graphs. This

method depends only on n and k and not on the speci�c graph. It requires the construction of

a directed graph M and a collection of mappings from T to M . M has k distinguished nodes

called spares. The property that the mappings and M should have is that for any set of k

faults in T there should be a mapping for which there are k disjoint paths in M connecting the

mapped faulty nodes and the k spares. This method is presented in Section 2. In general, it can

construct graphs T with maximum degree O(kd). Sections 3 and 4 are devoted to constructing

M and the mappings.

In Section 3 we consider a graph M based on the grid. We show that a good collection of

mappings exists based on the existence of a certain family of perfect hash functions. Such a

family exists when k < n

1=4

. We provide an explicit construction for n and k such that n is


(k

logk

). For larger k's the explicit construction yields graphs T with maximum degree larger

than O(kd).

In Section 4 we consider expander based graphs. We show (non-constructively) that our

method works (i.e. yields T 's with maximum degree O(kd)) for all n and k such that k is

O(n

1��

) for some � > 0.

In Section 5 we show our lower bounds: there are graphs on n nodes with degree d such that

any k-fault tolerant version of them has maximum degree at least 
(d

p

k). The relationship

between n, k and d that must hold in order for the lower bound proof to work are that d be

larger than log

2

n= log logn and k be smaller than c

1

p

d= logd and n=2d, where c

1

> 0 is some

absolute constant.
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1.1 History, motivation and comparison with other work

As mentioned above, the main motivation for the problem of constructing k-fault tolerant graphs

is �nding fault tolerant architectures. The graph G represents a desired interconnection and the

graph T the actual fault tolerant network that implements it. The graph T can sustain any k

node (processor) faults and still simulate the graph G with no slowdown. Note that there is no

assumption about the distribution of the k faults, and that the redundancy is the lowest possible,

as the number of spares equals the number of faults. This approach to fault tolerance has been

considered in a number of papers previously. The papers [14, 25, 21, 7, 8, 5, 6] considered the

problem for some speci�c graphs such as cycles, arrays and trees. Rosenberg [23] has provided

VLSI area lower bounds for such architectures. Dutt and Hayes [8] and Bruck, Cypher and Ho

[5] have considered the problem of constructing k-fault tolerant versions for arbitrary graphs

and have shown a simple O(k

2

d) construction outlined in Section 2.

There are di�erent approaches for achieving fault tolerance. The approach represented by

works such as [13, 15] is for the faulty network to attempt to simulate the original architecture

with as little slowdown as possible. However, as there is no redundancy, some slowdown is neces-

sary and when no assumptions are made regarding the distribution of the faults, this slowdown

is often non-constant. Other approaches assume that there is some additional switching mech-

anism that is fault-free (see e.g. [22, 16]) or require that there be many more spare processors

than faults (see e.g. [1]), or some combination of the above.

The advantages that k-fault tolerant graphs o�er are clear (e.g. minimal redundancy, no

slowdown, no assumptions on fault distribution, no requirement for a fault-free switching mech-

anism). The question is what price must be paid in terms of the degree of the network in order

to obtained these advantages. Answering this question is the main goal of the paper.

Finally, we should note that some of the techniques developed in this paper might be appli-

cable elsewhere. The results of Section 4 yield an e�cient way to construct superconcentrators

from expander graphs. The construction of families of perfect hash functions in Section 3 may

have applications in data structures.

1.2 Notation

In the following the input graph will always be G = (V;E) and the k-fault tolerant graph will

be T = (U;D). We will also use an intermediate directed graph M = (W;C). Unless stated

otherwise, jV j = n and jU j = jW j = n + k. Given a mapping f : U 7! V and a subset S � U ,

f(S) is the set of all the elements of V that are the image of some element of S. For the directed

graph M = (W;C) and for a node w 2 W let �

M

(w) denote the set of all out-neighbors of w in

M including w itself.
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2 The General Scheme

In this section we describe our general scheme. It involves coming up with an intermediate graph

M and a collection of mappings H with certain properties. These properties are a function of n

and k only, and do not involve G. Given a graphM with maximum in-degree � and a collection

of mappings H of size `, our scheme constructs for any input graph G with maximum degree d

a k-fault tolerant graph T with maximum degree `(� + 1)

2

d.

Consider �rst the method suggested by Bruck, Cypher and Ho [5]. Let V = f1; : : : ; ng and

U = f1; : : : ; n + kg. For every edge (i; j) 2 E create the following edges in T : completely

connect in T the nodes fi; : : : ; i+ kg to the nodes fj; : : : ; j + kg. Given the set of k faults the

embedding strategy is greedy: scan the nodes of V in increasing order and embed node i in the

�rst available (not occupied and not faulty) node in U . For any set of k or fewer faults, we know

that i 2 V is embedded in one of fi; : : : ; i+ kg � U . Therefore for any edge (i; j) 2 E we know

that there is an edge between the node where i is embedded and the node where j is embedded.

Every edge in E induces (k+ 1)

2

edges in D and the maximum degree in T is (k + 1)

2

d.

We now discuss the limitations of such a method. Given G = (V;E) and a k-fault tolerant

version of it T = (U;D), then for any v 2 V let

S(v) = fu 2 U j9 set of k faults such that v is embedded in ug:

In the method above S(i) = fi; ::; i + kg. It is clear that for all v 2 V we must have

jS(v)j � k + 1, otherwise all of S(v) might be faulty and there will be no place to embed v. If

for every (v

1

; v

2

) 2 E we must connect S(v

1

) to all of S(v

2

), we get that every edge in G induces

(k + 1)

2

edges in T .

Our approach in reducing the degree is to partition the sets S(v) in such a way that if v

1

2 V

is mapped to part j in S(v

1

), then v

2

2 V is mapped to part j in S(v

2

). In order to implement it

we chooseM = (W;C), a directed graph on n+k nodes, and a one-to-one mapping m : V 7! W .

We call the nodes w 2 W with no m

�1

(w) the spare nodes. We also choose a collection H of

one-to-one mappings from U to W .

The directed graph M and the collection H now de�ne for any input graph G = (V;E) a

graph T = (V;E) that should be a k-fault tolerant version of G. For each edge (v

1

; v

2

) 2 E

and each h 2 H create the following edges in T : completely connect h

�1

(�

M

(m(v

1

)) and

h

�1

(�

M

(m(v

2

)). Thus

D =

[

h2H

[

(v

1

;v

2

)2E

f(u

1

; u

2

gjh(u

1

) 2 �

M

(m(v

1

)) and h(u

2

) 2 �

M

(m(v

2

))g: (1)

We say that a set S of k faults is good for a mapping h : U 7! W if there are k node disjoint

paths in M connecting h(S) to the k spare nodes. Given a set S of k faults such that h is good
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for S we claim that the following ' : V 7! U embeds G in the non faulty nodes: �x the k node

disjoint paths; for all v 2 V , if m(v) is not on any of the k paths, then '(v) = h

�1

(m(v)).

Otherwise, let w 2 W be the node next to m(v) on the path (connecting a faulty node with a

spare one) in the direction towards the spare and let '(v) = h

�1

(w). Clearly:

Claim 2.1 ' as de�ned above is one-to-one.

Also:

Claim 2.2 For all (v

1

; v

2

) 2 E there is an edge ('(v

1

); '(v

2

)) 2 D.

Proof: Since v

1

is embedded in h

�1

(�

M

(m(v

1

))) and v

2

is embedded in h

�1

(�

M

(m(v

2

))) by

the de�nition (1) of D there is an edge in D between '(v

1

) and '(v

2

). 2

Every h 2 H and every edge (v

1

; v

2

) 2 E induces (deg

M

(m(v

1

) + 1)(deg

M

(m(v

2

) + 1) edges

in T , where here deg

M

(w) denotes the out-degree of w in M . Thus we would like to choose as

small H as possible so that for any set S of k faults, at least one h 2 H is good for S.

If the in-degree of M is bounded by � and the size of H is `, then we get that the degrees in

T are bounded by `(� + 1)

2

d. Therefore we have the following:

Theorem 2.1 Suppose that there exists a graph M = (W;C) with maximum in-degree � and H

a family of mappings U 7! W of size ` such that for any set of k faulty nodes in U there is a

mapping h 2 H such that there are k node disjoint paths in M connecting h(S) to the k spare

nodes. Then for any graph G = (V;E) with maximum degree d there is a k-fault tolerant graph

T = (U;D) with maximum degree (� + 1)

2

`d.

Once we have M and H as in Theorem 2.1 the embedding strategy is straightforward: for a

given set of faults S, �nd an h 2 H such that h is good for S and construct ' as above. Using

a simple observation we can see the limitation of our general scheme:

Theorem 2.2 Let M , H, � and ` be as in Theorem 2.1, then (� + 1)` > k.

Proof: Construct a set S as follows: pick a non-spare node w 2 W and make

S =

[

h

i

2H

h

�1

i

(�

M

(w)):

The size of S is at most `j�

M

(w)j. No h

i

2 H can have node disjoint paths connecting h

i

(S)

to the spare nodes, since w will have no non-faulty out-neighbors under any h

i

. Therefore if

k � j�

M

(w)j` then H and M do not satisfy the requirements of Theorem 2.1. Because w was

an arbitrary non-spare node, it follows that (� + 1)` > k. 2

By Theorem 2.2 it is clear that the strategy in constructing M and H should be to minimize

� as possible, since the actual degree of T will be at least �kd. In the next section we will see a

construction where � = 2 and ` is O(k) that works for k < n

1=4

. A construction with � = O(1=�)
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and `k = O(k) that works for k < n

1��

is given in section 4.

3 Grid Based Constructions

We now describe the application of the general scheme that works for k's which are smaller than

n

1

4

. It is fully constructive for k such that n is 
(k

logk

).

Let n and k be such that k j n and let M = (W;C) be the following graph: W = f(a; b)ja 2

f0; : : : ; n=kg; b 2 f0; : : : ; k� 1gg. Let

C = f((a; b); (a� 1; b))ja 2 f1; : : : ; n=kg; b 2 f0; : : : ; k � 1gg

S

f((a; b); (a; b� 1 mod k))ja 2 f1; : : : ; n=kg; b 2 f0; : : : ; k � 1gg:

We refer to M as a grid and we consider all the nodes with the same a to be a row and

all those with the same b to be a column. The nodes V are mapped by m arbitrarily to

f(a; b)ja 2 f1; : : : ; n=kg; b 2 f0; : : : ; k� 1gg. Therefore the bottom '0' row constitutes the set of

spares.

The following claim provides a su�cient condition for the existence of k disjoint paths con-

necting the faults to the spares.

Claim 3.1 Given a set S = fw

1

= (a

1

; b

1

); w

2

= (a

2

; b

2

) : : :w

k

= (a

k

; b

k

)g of k nodes in W such

that all the members of S are in di�erent rows, i.e all the a

i

's are di�erent, then there exists a

set of k disjoint paths connecting S to the bottom row.

Proof: The path can be found in a greedy manner, processing the members of S bottom up.

Assume that a

1

< a

2

; : : : < a

k

. Suppose that we have arranged paths connecting the �rst i� 1

nodes to the bottom row and we wish to connect w

i

. We will maintain the property that the

paths for the �rst i� 1 nodes use at most i� 1 di�erent columns, i.e. no node from a di�erent

column is on any of the paths. Let c

i

be the �rst column to the left of b

i

that has not been

used (that is, c

i

is the vacant row that minimizes b

i

� c

i

mod k). The path connecting (a

i

; b

i

) to

the bottom row consists of the segment in row a

i

connecting (a

i

; b

i

) to (a

i

; c

i

) and the segment

connecting in column c

i

(a

i

; c

i

) to (0; c

i

). Since a

i

is the highest node processed so far, it is clear

that all the nodes on (a

i

; b

i

)� (a

i

; c

i

) are vacant, and since column c

i

has not been used so far,

the segment (a

i

; c

i

)� (0; c

i

) is vacant as well. 2

Obviously, the condition that all faults are mapped to di�erent rows is not necessary. How-

ever, in all subsequent constructions in this section we will try to ful�ll it. Therefore from

Claim 3.1 we have:

Theorem 3.1 Let M = (W;C) be as de�ned above and suppose that there exists a collection H

5



of mappings U 7! W of size ` with the property that for all S � U where jSj = k there is an

h 2 H such that all the nodes h(S) are in di�erent rows, then M and H satisfy the properties

of Theorem 2.1.

Therefore we are left with the problem of �nding the collection H . This is essentially a perfect

hashing problem with the added restriction that the size of the preimages is �xed at k. For more

information on perfect hashing, see [20, 11, 10, 3]. Unfortunately, no existing construction from

the literature seems to �t our desired parameters.

By (simple) results in perfect hashing it follows that the minimum size of H we can hope

for is 
(k). We now present the �rst construction. This is not an explicit construction, but the

function does have a succinct and e�cient representation. It will serve as the basis for the next

construction as well.

3.1 A shift based construction

Let U = f(x; y)jx 2 f0; : : : ; n=kg; y 2 f0; : : : ; k � 1gg and assume that p = n=k + 1 is a prime.

The functions h 2 H are of the form h((x; y)) = (ay+x mod p; y) for some a 2 f1; : : : ; n=kg. In

order to construct H , choose ` elements a

1

; a

2

; : : :a

`

uniformly at random from f0; : : : ; n=kg and

let h

i

((x; y)) = (a

i

y + x mod p; y). For every pair of distinct elements (x

1

; y

1

) and (x

2

; y

2

) if a

i

is random, Prob[h

i

((x

1

; y

1

)) = h

i

((x

2

; y

2

))] =

1

p

<

k

n

in case y

1

6= y

2

and 0 otherwise. Therefore,

we get that for any set S = f(x

1

; y

1

); (x

2

; y

2

); : : : ; (x

k

; y

k

)g of k nodes in U the probability that

h

i

is not good for S is less than

k

3

n

. By summing up for all subset S � U we get that the

probability that there exists a set S such that none of the h

i

2 H is good for S is at most

 

n+ k

k

! 

k

3

n

!

`

: (2)

If k < n

1=4

and ` = 4k, then (2) is smaller than 1 and we can conclude that a good H exists.

Therefore, by applying Theorem 3.1 we have:

Theorem 3.2 For any k and n such that k < n

1=4

and any graph G with maximum degree d,

there is a k-fault tolerant graph T with maximum degree which is O(kd).

Remark: In the construction above we assumed that k divides n and that

n

k

+ 1 is a prime.

However, the theorem itself can be proved without these assumptions by taking totally random

functions h

i

and by allowing at most one non-full row in our grid.
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3.2 Explicit Constructions

Let P � k be a prime and suppose r is an integer and P

r

= (n + k)=k. We label the nodes W

(and U) with the vectors of length r over GF [P ] such that all the nodes on the same row receive

the same label. Thus, a node w 2 W is (~x; y) where ~x = (x

1

; x

2

; : : :x

r

) and x

j

2 GF [P ]g and

0 � y � k � 1.

The collection H is de�ned by ` vectors ~a

1

;~a

2

; : : :~a

r

of length r over GF [P ]. For each

1 � i � ` the function h

i

2 H is de�ned as h

i

((~x; y)) = (~x+ y~a

i

; y) where the addition is vector

addition over GF [P ] and the multiplication is that of a vector by a scalar, and where y is treated

as an element in GF [P ].

For such a collection to be bad means that there is a set S = f(~x; y

1

);

~

(x)

2

; y

2

); : : :(~x

k

; y

k

)g

such that no member of H is good for S. Therefore, for every element h

i

2 H there is a pair

w

i

1

= (~x

i

1

; y

i

1

) and w

i

2

= (~x

i

2

; y

i

2

) such that h

i

(w

i

1

) = h

i

(w

i

2

), and

~x

i

1

+ y

i

1

~a

i

= ~x

i

2

+ y

i

2

~a

i

:

Pick one such colliding pair for each h

i

2 H and consider the following graph: there are

k nodes, each corresponding to an element of S. Connect two nodes if they were picked as a

colliding pair for some h

i

. Thus the number of edges is `. The following fact is well-known (see

[4] p. 126):

Proposition 3.1 A graph on k nodes with ` edges where ` � 2k has a cycle of length at most

g = 2

�

log k

logb`=kc

�

+ 1:

Find the cycle of length at most g whose existence the proposition ensures, and let its nodes

(after relabeling) be w

1

; w

2

; : : :w

g

. Therefore we have that

~x

1

+ y

1

~a

1

= ~x

2

+ y

2

~a

1

~x

2

+ y

2

~a

2

= ~x

3

+ y

3

~a

2

: : :

~x

g

+ y

g

~a

g

= ~x

1

+ y

1

~a

g

by summing up we get that

P

g

i=1

(y

i+1

� y

i

)~a

i

= 0. Since, for example, y

1

6= y

2

, we get that

there must exist g vectors in ~a

1

;~a

2

; : : :~a

`

that are linearly dependent over GF [P ].

Our strategy in choosing ~a

1

;~a

2

; : : :~a

`

is, therefore, to make them such that no g of them

are linearly dependent. This is exactly the condition required from the columns of a parity

check matrix of a linear error correcting code over GF[P]. See Macwilliams and Sloane [18] for

information on error correcting codes. Take, for instance, a Reed Solomon code of length `,

7



minimum distance g + 1 and dimension ` � r. Such a code exists if g + 1 � r and ` � P � 1.

The columns of the parity check matrix are indexed by the non-zero elements of GF [P ]. For

i 2 GF [P ] we have ~a

i

= (1; i; i

2

; : : : ; i

r�1

) where all the computation is over GF [P ].

Suppose, for example, that k � n

1=20

, ` = kd2

2 log

2

k

logn

e, P is a prime between ` and 2`

and r =

log((n+k)=k)

logP

is an integer. By Proposition 3.1 we can take g to be 2d

log k

log`=k

e + 1 and

we can verify that g + 1 � r, which implies that the appropriate code exists. Although this

example required that (n+ k)=k be a power of P , the approach can be extended to remove this

requirement, yielding:

Theorem 3.3 For any n and k where k � n

1=20

and for any graph G with maximum degree d,

there is an explicit construction for a k-fault tolerant graph T with maximum degree which is

O(d2

2 log

2

k

log n

ekd). Note that when n is 
(k

log k

) this bound is O(kd).

4 Expander Based Constructions

In this section we replace the grid that appears in the constructions in Section 3 by an appropriate

expander. This enables us to extend the O(kd) upper bound for a wider range of the parameters

n, k and d. The crucial property of an expander which is used here is the fact that some of

its expansion properties remain even after deleting many of its edges. This is related to the

main idea in [1], but here we need several additional ideas. Let us call an undirected graph R

an (n; �; �)-graph if it is a �-regular graph on n nodes, and the absolute value of each of the

eigenvalues of its adjacency matrix, besides the largest, is at most �. It is known ([12]) that

random �-regular graphs on n-nodes are almost surely (n; �; �)-graphs for � = O(

p

�) and that

for every � = p+1 where p is a prime congruent to 1 modulo 4 there is an explicit in�nite family

of (n; �; 2

p

� � 1)-graphs ([17], [19]). For more details on such graphs see [2].

Let R = (V (R); E(R)) denote, throughout this section, an (n; �; �)-graph. For a node v of R

let N(v) denote the set of all its neighbors. We say that two sets of nodes of equal cardinality S

and S

0

in R can be linked if there are jSj node disjoint paths in R connecting the nodes of S with

these of S

0

. The main combinatorial property we need is the following result, which seems to be

of independent interest. Proofs of lemmas and theorems in this section appear in the appendix.

Theorem 4.1 Let R be as above and suppose

8

�

�

+ 8(

�

�

)

2

< 1: (3)

Then, every two sets of nodes S and S

0

in R, where jSj = jS

0

j and where for every node v of R

jN(v)\ Sj � �=2 and jN(v)\ S

0

j � �=2, can be linked.

To prove this theorem we �rst need the following simple lemma, whose proof can be found in

8



[2], page 122.

Lemma 4.1 If R = (V (R); E(R)) is as above and X � V (R) is a set of xn nodes then

X

v2V (R)

(jN(v)\X j � x�)

2

� �

2

x(1� x)n:

This lemma implies the following two assertions.

Lemma 4.2 For any two sets B and B

0

in R each of cardinality at least

�

�

n there is at least

one edge between B and B

0

.

Lemma 4.3 Let B and X be two sets of nodes of R and suppose that each node of B has at

least �=2 neighbors in X. If jX j = xn and jBj = bn then

x �

b�

2

4(b�

2

+ �

2

)

: (4)

We can now combine Theorem 4.1 and Theorem 3.1 to prove the following.

Theorem 4.2 For any n and k and any graph G with n nodes and maximum degree d there

exists a k-fault tolerant version T of G with maximum degree

O

�

log n

log(n=k)

kd

�

:

Note that for k < n

1��

for any �xed � > 0 this bound is O(kd).

5 Lower bounds

For a graph G = (V;E) let g(G; k) denote the minimum possible value of the maximum degree of

a k-fault tolerant version of G. As shown in the previous section, if d is the maximum degree of

G and k is not too large as a function of n (e.g., k � n

1=4

) then g(G; k) � O(dk). In this section

we prove that for a wide range of values of k; d and n there exists a graph G on n nodes with

maximum degree d so that g(G; k) � 
(d

p

k). It would be interesting to close the gap between

these two estimates. The precise statement of our lower bound theorem is the following. Proofs

of lemmas and theorems in this section appear in the appendix.

Theorem 5.1 There is an absolute positive constants c

1

such that if d; k and n satisfy

n > d �

(logn)

2

log logn

;

k � c

1

d

1=2

(log d)

1=2

9



and

k <

n

2d

;

then there exists a graph G on n nodes with maximum degree at most d so that g(G; k)�

1

16

d

p

k.

The proof employs a probabilistic construction of a suitable random graph G. Very roughly, it

is based on the fact that any k-fault tolerant version T of G must contain many copies of G

as subgraphs, and for an appropriate random G these copies cannot share too many common

edges, due to the asymmetry of random graphs. This forces the maximum degree of any such T

to be large. In what follows we omit all oor and ceiling signs whenever these are not crucial, to

simplify the notation. In addition, we make no attempt to optimize the constants in the various

estimates. For a graph G and for a subset W of its set of nodes let G[W ] denote the induced

subgraph of G on the set of nodes W .

Lemma 5.1 Let m and q be integers and let 1 > � > 1 be a real satisfying

2mqe

�0:01�m

+ 2q

 

m

2

!

e

�0:01�

2

m

+ q

2

2

2m

(2m)!e

�0:001�

3

m

2

< 1: (5)

Then there exists a graph G = (V;E) on n = 2mq nodes with the following four properties.

(i) G is the node disjoint union of q bipartite graphs G

1

; : : : ; G

q

, where the two node classes of

G

i

are A

i

and B

i

and jA

i

j = jB

i

j = m for 1 � i � q.

(ii) The degree of every node of G is at least

1

2

�m and at most 2�m.

(iii) No two nodes of G have more than 2�

2

m common neighbors.

(iv) For any 1 � i � j � q and for any two disjoint subsets B � B

i

and B

0

� B

j

satisfying

jBj = jB

0

j = �m=4, the number of edges in any graph which is isomorphic to a subgraph of

G[B [ A

i

] and to a subgraph of G[B

0

[A

j

] does not exceed �

3

m

2

=2.

Lemma 5.2 Suppose m; q and � satisfy (5), de�ne n = 2mq and let k, n � k � 1 be an integer,

�k < 1=2. De�ne d = 2�m and let G = (V;E) be a graph satisfying the conditions (i)-(iv) in

Lemma 5.1. Then g(G; k)�

1

16

d

p

k.

Remark A close inspection of the proof of Lemma 5.2 shows that the lower bound holds even if

we allow the fault tolerant graph T to have 2n � n+ k nodes. Thus, if the parameters n; d and

k satisfy the assumptions in Theorem 5.1 then there is a graph G with n nodes and maximum

degree d such that the following holds. If T is a graph with at most 2n nodes and any subgraph

of T obtained by deleting k nodes of T contains a copy of G, then the maximum degree of a

node of T is at least 
(d

p

k).

10



A Appendix: Proofs

Proof of Lemma 4.2: Suppose this is false and let B and B

0

be a counter-example. Put

jBj = bn and jB

0

j = b

0

n. By Lemma 4.1

X

v2B

0

(jN(v)\ Bj � b�)

2

� �

2

b(1� b)n:

However, by assumption there are no edges between B and B

0

and hence the left hand side of

the last inequality is precisely b

0

n(b�)

2

. It follows that

bb

0

�

2

� �

2

(1� b) < �

2

;

which is impossible, since both b and b

0

are at least

�

�

. 2

Proof of Lemma 4.3: By Lemma 4.1

X

v2B

(jN(v)\X j � x�)

2

� �

2

x(1� x)n:

If x � 1=2 then inequality (4) follows trivially. Otherwise, the last inequality implies

bn(

1

2

� x)

2

�

2

� �

2

x(1� x)n;

i.e.,

b�

2

4

� x(1� x)(�

2

+ b�

2

) � x(�

2

+ b�

2

):

This implies (4). 2

Proof of Theorem 4.1 Suppose the theorem is false and let S and S

0

be a counter-example.

By Menger's Theorem this implies that there exists a set C of cardinality jCj < jSj (= jS

0

j)

such that in R � C there is no path between a node in S and a node in S

0

. Let B be the set

of all nodes in the connected components of R� C that contain a node of S and let B

0

be the

set of all nodes in the connected components of R� C that contain a node of S

0

. Without loss

of generality we may assume that jBj � jB

0

j. Put jBj = bn. Since obviously there is no edge

between B and B

0

, Lemma 4.2 implies that b � �=�. De�ne X = B [ (C n S), jX j = xn. We

claim that x < 2b. Indeed, if this is false then jX j � 2jBj and hence jC n Sj � jBj. Since

S � B [ C this implies that

jCj = jC \ Sj+ jC n Sj � jC \ Sj+ jBj � jSj;

contradicting the fact that jCj < jSj. Hence x < 2b as claimed.

Observe now that all the neighbors of every node v of B lie in B [ C � X [ S. Moreover,

since by assumption v has at most �=2 neighbors in S it follows that it has at least �=2 neighbors

in X . Therefore, by Lemma 4.3 and since x < 2b

2b > x �

b�

2

4(b�

2

+ �

2

)

:

13



But since b < �=� this implies that

8(�� + �

2

) � 8(b�

2

+ �

2

) > �

2

;

contradicting the assumption (3). This completes the proof. 2

Proof Outline of Theorem 4.2: If n is large and k exceeds, say, n=10, the claimed bound is

more than n+ k and we can simply take T to be complete. We can thus assume that k � n=10.

Let R be an (n + k; �; �)-graph, where � = c logn= log(n=k), c is an absolute constant and

inequality (3) holds. (Such graphs obviously exist, as mentioned in the beginning of the section,

and can be given even constructively for some in�nitely many values of n). LetM be the directed

graph obtained from R by replacing each edge of R by two antiparallel directed edges. Let S

0

be

a �xed set of k nodes in R (orM), so that no node of R has more than �=2 neighbors in S

0

. (A

random set will have this property almost surely). This will be the set of spare nodes ofM . The

set of mappings H required in Theorem 3.1 is now simply chosen as a set of ` random bijections.

For every �xed set S of k nodes, Theorem 4.1 implies that if a mapping h maps this set to a

set of nodes of R that does not contain more than �=2 neighbors of any node of R, then h is

good for S in the sense discussed in the previous section. It is easy to see that the probability

that a random h is not good for a given �xed set S is at most O(n2

�

(k=n)

�=2

) < 1=n, where the

last inequality holds if the constant c is chosen appropriately. Thus, the probability that there

exists some set S for which no h 2 H is good is at most

O(

 

n + k

k

!

(n(4k=n)

�=2

)

`

);

which is less than 1 for ` = c

0

k log(n=k)= logn for an appropriate c

0

. Combining this with the

general procedure summarized in Theorem 3.1 and Theorem 2.2 the desired result follows. 2

Proof of Lemma 5.1: Let A

1

; : : : ; A

q

; B

1

; : : : ; B

q

be 2q pairwise disjoint sets of nodes, each

of cardinality m. The graph G on the set of nodes

V = A

1

[ : : :[ A

q

[B

1

[ : : :[ B

q

is the random graph obtained by choosing, for each i, 1 � i � q and for each a 2 A

i

and b 2 B

i

,

randomly and independently, the pair ab to be an edge with probability �. The obtained graph

obviously satis�es (i). To complete the proof we show that with positive probability it satis�es

(ii), (iii) and (iv) as well.

The conditions (ii) and (iii) are very simple. The degree of every �xed node of G is a binomial

random variable with expectation �m and variance �(1� �)m. By the well known tail estimates

for binomial distributions (see, e.g., [2]), the probability that the degree of a �xed node is not

between

1

2

�m and 2�m is at most e

�0:01�m

(where the constant 0:01 can be easily improved). As

14



there are 2mq nodes the probability that (ii) fails is at most

2mqe

�0:01�m

: (6)

The condition (iii) is similar. Two nodes can have common neighbors only if they both lie in

the same set A

i

or in the same set B

i

. There are precisely 2q

�

m

2

�

such pairs of nodes. For a �xed

pair, the number of their common neighbors is a binomial random variable with expectation

�

2

m and variance �

2

(1� �

2

)m. Therefore, by the known estimates for binomial distributions we

conclude that the probability that (iii) fails is at most

2q

 

m

2

!

e

�0:01�

2

m

: (7)

It remains to estimate the probability that condition (iv) does not hold. Fix i and j, 1 � i �

j � q and �x two disjoint subsets B � B

i

and B

0

� B

j

. (Since B

i

and B

j

are disjoint for i < j

the assumption that B and B

0

are disjoint is informative only for i = j.) If a copy of some graph

appears in G[B[A

i

] and in G[B

0

[A

j

] then there is a bijection f : B[A

i

7! B

0

[A

j

which maps

the copy in G[B [A

i

] to that in G[B

0

[A

j

]. Fix a bijection f as above. The maximum number

of edges of G in a graph that is mapped into a copy of itself by this mapping is precisely the

number of edges uv in G[B[A

i

] for which f(u)f(v) is an edge in G[B

0

[A

j

]. For a �xed pair uv

the probability that both uv and f(u)f(v) are edges is �

2

, as these two pairs are distinct since

B \B

0

= ;. Moreover, the events corresponding to distinct pairs uv are mutually independent,

as no edge of G is examined twice in considering all pairs

fuv : u 2 B; v 2 A

i

g [ ff(u)f(v) : u 2 B; v 2 A

i

g:

It follows that the number of edges in a maximum common subgraph mapped to a copy of

itself by f is a binomial random variable with expectation �

2

jBjm = �

3

m

2

=4 and variance

�

2

(1� �

2

)jBjm. Therefore, the probability it exceeds �

3

m

2

=2 is at most e

�0:001�

3

m

2

. The number

of choices of B and B

0

is less than q

2

2

2m

, and the number of choices of the bijection f is less

than (2m)! Therefore, the probability that (iv) does not hold is at most

q

2

2

2m

(2m)!e

�0:001�

3

m

2

:

Combining the last inequality with inequalities (6) and (7) and with the assumption (5) we

conclude that with positive probability all the conditions (i)-(iv) hold, completing the proof. 2

Proof of Lemma 5.2: Let T = (U;D) be a k-fault tolerant version of G. For every node v 2 V

let S(v) denote the set of all nodes u of T so that there is a copy ofG in T in which u plays the role

of v. Clearly jS(v)j> k for all v (since T�S(v) contains no copy of G). De�ne A = A

1

[ : : :[A

q

,

B = B

1

[ : : : [ B

q

and consider the set of all ordered pairs f(v; u) : v 2 A; u 2 S(v)g. The
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cardinality of this set is clearly more than jAjk and hence there is some u 2 U so that

jfv 2 A : u 2 S(v)gj �

jAjk

n+ k

�

k

4

:

Put l = k=4 and let A

0

be a set of l distinct nodes in A so that u 2 S(a) for a 2 A

0

. Since G

satis�es conditions (ii) and (iii), each a 2 A

0

has at least

1

2

�m � (l� 1)2m�

2

>

1

4

�m

neighbors which are not adjacent to any other member of A

0

. Fix, for each a 2 A

0

, a set

B(a) � B of �m=4 neighbors of a which are not adjacent to any other member of A

0

. The sets

fB(a) : a 2 A

0

g are clearly pairwise disjoint. Let, also A(a) denote the set A

i

where i is the

unique index for which a 2 A

i

.

Let C � U be the set of all neighbors of u in T , and let jCj = x be the degree of u in T .

For each a 2 A

0

, let G(a) be a copy of G in T in which u plays the role of a. Also, let G

0

(a) be

the copy of G[B(a)[A(a)] in G(a). Observe that by condition (ii), the number of edges of each

G

0

(a) is at least

1

2

�mjB(a)j. The crucial point now is that condition (iv) implies that there are

no two distinct members of the set fG

0

(a) : a 2 A

0

g that share more than 2�

2

jB(a)jm common

edges. Therefore, each G

0

(a) has at least

1

2

�mjB(a)j � (l� 1)2�

2

mjB(a)j �

�m

4

jB(a)j =

�

2

m

2

16

edges that do not belong to any other G

0

(a

0

). Hence, the total number of edges in the union of

all the subgraphs fG

0

(a) : a 2 A

0

g of T is at least

l

�

2

m

2

16

=

1

64

�

2

m

2

k:

However, all these edges are incident with the set C of the x neighbors of u in T . It follows that

the maximum degree of a node of T is at least the maximum between x and

�

2

m

2

k

64x

, which is at

least the geometric mean of these two quantities. This shows that the maximum degree is at

least

1

8

�m

p

k �

1

16

d

p

k;

where the last inequality follows from the fact that G satis�es condition (ii). Since T was an

arbitrary k-fault tolerant version of G this shows that g(G; k)�

1

8

d

p

k and completes the proof

of the lemma. 2

Proof of Theorem 5.1 Let b be a large absolute constant. If d � bn

2=3

(logn)

1=3

de�ne

m = n=2, � = d=2m and q = 1, and check that these satisfy the assumptions of Lemma 5.2 (for

appropriate c

1

and b). Otherwise, let m be the largest integer so that d � bm

2=3

(logm)

1=3

and

de�ne � = d=2m and q = n=2m. Again, one can check that these satisfy the assumptions of

Lemma 5.2. We omit the detailed computation. 2.
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