
A Minimal Model for Secure Computation∗

Uri Feige† Joe Kilian‡ Moni Naor§

Abstract

We consider a minimal scenario for secure computation: Parties A and B have private inputs
x and y and a shared random string r. A and B are each allowed to send a single message to a
third party C, from which C is to learn the value of f(x, y) for some function f , but nothing else.
We show that this model is surprisingly powerful: every function f can be securely computed in
this fashion. If the messages are required to be of polynomial size, then we exhibit an efficient
protocol for any function f computable in nondeterministic logspace. Using a computational
notion of security, we exhibit efficient protocols for any polynomial-time computable function
f , assuming the existence of one-way functions. The above results generalize to the case where
there are more than two parties with private inputs.

The minimalistic nature of our model makes it easy to transform positive results achieved
in our model to other more general models of secure computation. It also gives hope for lower-
bound proofs. We give an alternative characterization of our model in terms of graph embed-
dings, and use this to show that for most Boolean functions on {0, 1}n × {0, 1}n, the need to
hide just one of the input bits from C requires a communication overhead of n bits.

1 Introduction

Suppose that two parties, Alice with input x and Bob with input y, wish to jointly compute
a function f(x, y) of their inputs without revealing more information about their inputs than
necessary (i.e the value of f(x, y)). As stated this is an impossible task for any “interesting” function
f . For instance, Chor and Kushilevitz [8] showed that the only Boolean functions computable in
this way are those of the form f(x, y) = fa(x)⊕fb(y). Furthermore, even if one is willing to rely on
cryptographic assumptions, then Kilian [14] has shown that securely computing any function with
the “imbedded or” property1 yields the ability to perform Oblivious Transfer (OT). Note that OT
is a stronger (in the sense of [12]) assumption than the existence of one-way functions.

In this paper we investigate a “minimal” extension of the two party scenario: we add a trusted
party Carol who should do the computation. The communication pattern is minimal: Alice and
Bob agree on (or are given) a secret random string; they each send Carol a single message which is
a function of their input and the random string. Based on the two messages Carol computes and
announces the result. We would like Carol to be completely in the dark as to the inputs of Alice
and Bob.

∗This is a slightly revised version of the STOC 1994 paper.
†Dept. of Applied Math. and Computer Science, Weizmann Institute, Rehovot 76100, Israel. E-mail:

feige@wisdom.weizmann.ac.il.
‡NEC Research Institute, Princeton, NJ 08540, USA. joe@research.nj.nec.com.
§Dept. of Applied Math. and Computer Science, Weizmann Institute, Rehovot 76100, Israel. E-mail:

naor@wisdom.weizmann.ac.il. Research supported by an Alon Fellowship.
1A function f(x, y) possesses an imbedded or if there are x0, y0, x1, y1, v0, v1 such that for i, j ∈ {0, 1}i, f(xi, yj) =

vi∨j

1

Additional motivation for our model comes from the problem of encrypting audio conference
calls [19, 6, 11]. Heiman [11] studied a method where the bridge (i.e. the apparatus connecting the
callers) is not to be trusted with the secret information, but nevertheless should determine which
participant is “talking the loudest” and transmit his or her encrypted voice to the others. Carol
(the bridge) should therefore compute the max function. Such a scenario is captured by our model.
The appendix further discusses this specific problem, and offers an elegant protocol for it.

In this paper we outline general principles for computing arbitrary functions in our model. We
obtain the following results:

• Any function f can be computed securely. The amount of communication may however be
exponential.

• Every function computable in non-deterministic logspace has an efficient secure protocol;
the amount of communication, number of random bits and the internal computations are all
polynomially bounded.

• Assuming one-way functions exist there is an efficient computationally secure protocol for
any function in P .

We also show a lower bound on the complexity of securely computing random Boolean functions:
for most Boolean functions on {0, 1}n × {0, 1}n, the parties must send n extra bits, even if they
only want to hide one of the input bits from Carol.

In the rest of this section we survey related work, and provide precise definition of our model
and security requirements. Sect. 2 shows the construction of secure protocols for general func-
tions. Sect. 3 shows our efficient construction of secure protocols for non-deterministic logspace
computable functions. Sect. 4 provides the computationally secure solutions based on one-way
functions and Sect. 5 proves our lower bound. The appendix contains some elegant protocols for
special functions.

1.1 Related work

In some respects, our model of secure computation resembles that of instance hiding [1]. In the
instance hiding scenario, a computationally limited party A that holds input x uses a computa-
tionally unlimited party C in order to compute f(x), without C learning anything about x (except
for its length, and the value of f(x)). Thus in both models, party C must not learn the input.
However, in each model C is used for a different reason. In our secure computation model, parties
A and B each have the power to compute f , but they need C because neither one of them holds
the whole input. Our model is most interesting and has potential cryptographic applications if f is
an easily computable function. In the instance hiding model, party A holds the input, and cannot
compute f(x) because of lack of computational power. Hence [1] analyse their model in cases that
f is not known to be computable in polynomial time. Their main result is that NP-hard problems,
such as SAT, do not have instance hiding schemes unless the polynomial hierarchy collapses. The
same result holds for our secure computation model, if we restrict A and B to random polynomial
time computations.

The instance hiding scenario has been extended to the multiple-oracle scenario, with the sur-
prising result that any function has an instance hiding scheme with polynomially many oracles [4].
The main open question regarding instance hiding is whether a constant number of oracles suffice.
It is interesting to note that the secure computation model relates to this question. If in our model,
all functions (within a given complexity class) can be securely computed with polynomially many

2

shared random bits and polynomial message size (and no restriction on the computational power of
A and B), then all functions have a 3-oracle 2-round instance hiding protocol. (The verifier splits
its input into the sum of two random inputs. In the first round, one oracle gets to compute MA

and another gets to compute MB. In the second round, the third oracle computes the function,
based on the messages MA and MB.)

Our model is also related to the problem of fault tolerant distributed computing [5, 7]. Most
notably, our efficient protocol for computing any NLOGSPACE function can be used in order to
extend the result of [3], that any function in (algebraic) NC1 can be computed efficiently in a fault
tolerant manner in a constant number of rounds. (Details are omitted from the current abstract.)

There are several natural extensions to our model. In one of them, the input is distributed
among k players, who want Carol to compute f for them. Our results extend to the multiparty
case. This issue is touched upon in the appendix.

Another extension is to the case that parties are dishonest, and try to deviate from their
protocol. In our minimalistic communication scenario, parties have very little opportunity of doing
so, and it is relatively simple to make our protocols fault tolerant (see appendix).

1.2 Definitions

Let f be a function A×B 7→ D where A,B and D are finite domains. A protocol for evaluating f
securely consists of R, the collection of random strings, MA and MB, two messages domains and
three function fA, fB and fC where fA : A×R 7→MA, fB : B×R 7→MB and fC : MA×MB 7→ D.

For the protocol to be perfectly secure it must obey the following two conditions :

• Correctness - for all a ∈ A, b ∈ B and r ∈ R: f(a, b) = fC(fA(a, r), fB(b, r)).

• Privacy - for all pairs of input (a1, b1) and (a2, b2) such that f(a1, b1) = f(a2, b2) we have
that the distribution of messages (fA(a1, r), fB(b1, r)) where r is chosen at random from R
is identical to the distribution of messages (fA(a1, r), fB(b2, r)) where r is chosen at random
from R.

Our notion of privacy is information theoretic. A relaxed computational notion of privacy is
presented and used in Sect. 4.

2 Securely computing any function

We show how to securely compute any Boolean function f : {0, 1}n × {0, 1}n −→ {0, 1}. This
trivially extends to k valued functions, since each of the log k output bits represents a Boolean
function.

Alice holds input a, Bob holds input b, and Carol needs to compute f(a, b). Represent f(x, y)
as a bi-partite graph Gf , x’s on the left, y’s on the right, and edge between x and y iff f(x, y) = 1.
Using a shared random string of length 2n + n, Alice and Bob modify Gf as follows. With each
right hand side vertex y, they associate a random bit ry. If ry = 1, they complement the edges
entering y (edges become nonedges, and nonedges become edges). The leftover n random shared
bits, denoted by π ∈ {0, 1}n, are used in order to choose a cyclic permutation on the right hand
side vertices.

• Bob sends the location of b in the cyclic permutation (n bits). That is, MB = b−π (mod 2n).
]item Alice sends the permuted edge pattern going out of a (2n bits). That is, Alice sends

3

the following list of bits:

MA = f(a, π)⊕ rπ , f(a, π + 1)⊕ rπ+1 , . . . , f(a, π − 2)⊕ rπ−2 , f(a, π − 1)⊕ rπ−1

where addition and subtraction are done mod 2n.

• In addition, Bob sends the one bit Mb = rb.

In order to compute f(a, b), Carol looks up the MBth entry in the list MA, and complements it iff
Mb = 1.
Correctness: the effect of Alice sending the values f(a, y) in permuted order is undone by Bob
sending b− π. The effect of Alice xoring the values f(a, b) with rb is undone by Bob sending Mb.
Privacy: for any a, b, there is a one-to-one correspondence between the random bits π and the
message Mb, and for each a, b, π, there is a one-to-one correspondence between the random bits
ry and the message MA. Hence the distribution of the messages MA and MB is uniform, and
completely independent of the values of a and b. The value of message Mb is then determined
uniquely by the values of MA, MB, and f(a, b). Hence the distribution of messages of Alice and
Bob depends only on f(a, b), as desired.

The complexity of the protocol: Alice sends 2n bits, Bob sends n + 1 bits, and they both share
2n + n random bits. We therefore have:

Theorem 1 For any function f there exists a perfectly secure evaluation protocol.

3 Efficient solutions for subclass of functions

The solution given above for general functions f requires exponential-sized messages in the worst
case. We do not know of any protocol that requires only polynomial-sized messages for all functions
f , and conjecture that no such protocol exists. Using the information-theoretic notion of privacy,
we exhibit a communication-efficient protocol for any f “computable” in nondeterministic logspace.
By computable in nondeterministic logspace, we mean that the language

{(i, x, y)|the ith bit f(x, y) is 1}

is in nondeterministic logspace.

3.1 Securely computing group products

A useful subclass of functions are those that compute products over finite groups. For this class,
we have a simple solution based on randomizing group products, which serves as the basis for our
more complicated protocols. First, we review the randomizing technique of [13]. Let G be a finite,
possibly noncommutative group, let x = (g1, . . . , gn) and y = (gn+1, . . . , g2n), where g1, . . . , g2n ∈ G,
and let

f(x, y) = gi1gi2 · · · gim ,

for some sequence i1, . . . , im. We transform the sequence gi1 . . . gim into a random sequence g′1, . . . , g
′
m

that has the same product.
Let r1, . . . , rm−1 ∈ G be uniformly distributed. Define r0 and rm to be the identity element of

G, and for 1 ≤ j ≤ m define
g′j = r−1

j−1gijrj .

4

When we take the product of the g′j ’s, the rj terms cancel out, yielding g′1 · · · g′m = gi1 · · · gim . By
an inductive argument, one can show that for any sequence g′1, . . . , g

′
m and any sequence gi1 , . . . , gim

such that g′1 · · · g′m = gi1 · · · gim , there exists exactly one consistent setting for r1, . . . , rm−1. Thus,
g′1, . . . , g

′
m will be uniformly distributed over all sequences with the same product as gi1 , . . . , gim .

From a knowledge perspective, g′1, . . . , g
′
m reveals f(x, y) and nothing else.

Given their common random bit sequence r, Alice and Bob uniformly generate r1, . . . , rm−1 in
some canonical, deterministic fashion. Alice and Bob’s messages to Carol are given by

MA = {(j, g′j)|ij ∈ {1, . . . , n}} and
MB = {(j, g′j)|ij ∈ {n + 1, . . . , 2n}}.

Note that MA depends only on x and r and MB depends only on y and r. Furthermore, for all j,
g′j is present in either MA or MB. On input (MA,MB), Carol computes

g′1 · · · g′m = gi1 · · · gim = f(x, y)

3.2 The General Construction.

Let f(x, y) be “computable” in nondeterministic logspace as defined above. Without loss of gen-
erality we assume that f(x, y) is boolean; otherwise we compute each bit independently. We first
reduce computing f(x, y) to computing s− t reachability on G1∪G2 where G1 is a digraph that de-
pends only on x and G2 is a digraph that depends only on y. We perform a two-step reduction from
this problem to computing a product of nonsingular matrices over a sufficiently large finite field.
This product will reveal whether t is reachable from s, but will also yield other information that
would destroy the privacy of our protocol. We then perform some additional matrix multiplications
to eliminate this extra information.

It is well known that any language in nondeterministic logspace can be reduced to s− t reach-
ability in a directed graph. Thus, given a function f and inputs x and y, we can construct (in
logspace) a digraph and nodes s and t such that t is reachable from s iff f(x, y) = 1. By inspection
of the standard reduction, we note that the instance (G, s, t) produced can be made to have the
following properties,

1. Nodes s and t are independent of (x, y), and can be relabeled as desired.

2. For each i and j, the presence of directed edge (i, j) in G is either independent of x and y,
depends solely on x or depends solely on y.

We define G1 as having all the edges of G that are either independent of x and y or depend solely on
x, and define G2 as having all the edges of G that depend solely on y. Thus G1 can be computed by
Alice, G2 can be computed by Bob, (s, t) can be computed by both Alice and Bob, and f(x, y) = 1
iff t is reachable from s in the graph G = G1 ∪G2.

3.2.1 Converting the graph problem to a matrix product

For convenience, we assume that G1 and G2 have n nodes and edge (i, i) is included in G1 and
G2 (each node has a directed edge to itself). Then if Ai is the adjacency matrix of Gi, the matrix
(A1A2)n provides all the reachability information about G: t is reachable from s iff the (s, t) entry
of (A1A2)n is nonzero. Instead of performing these matrix multiplications over the integers, we
treat our entries as elements of GF [p] for p large enough to not involve any “overflows.”

5

A1 and A2 are not entirely suitable for our purposes, since for instance they might be singular,
so we alter them slightly. Assume without loss of generality that t = n. First, we add dummy
nodes n + 1, . . . , 2n− 1 and edges

{(1, n + 1), (n + 1, 1), (2, n + 2), (n + 2, 2), . . . , (n− 1, 2n− 1), (2n− 1, n− 1)}

to G1 and G2. Note that we do not add edges of the form (n + i, n + i). We then delete all edges
of the form (t = n, i) for t 6= i, but leave in (t, t). Finally, for convenience we canonically relabel
the nodes of G1 and G2 so that s = 1 and t = N = 2n− 1. Denote the new graphs obtained by G′

1

and G′
2, their adjacency graphs by A′

1 and A′
2, set prime p > NN , and define H = (A′

1A
′
2)

N , where
all operation are over GF [p]. For the rest of our discussion, we will use the following facts about
these matrices, and suppress all other details.

1. There is a path from s to t iff H[1, N] is nonzero. This is true since the dummy nodes do not
change the reachability structure of the original nodes.

2. A′
1 and A′

2 are nonsingular. This is true since their rows can be rearranged so as to make
them lower triangular, with 1’s along the diagonal.

3. Row N of H is all 0 except for H[N,N], which is 1. This can be shown by induction, and
comes from the fact that node t = N is only able to reach itself.

4. H is nonsingular, since it is the product of nonsingular matrices. The N−1×N−1 upper-left
submatrix of H is also nonsingular, which follows by the special nature of row N .

3.2.2 Removing information from the matrix product

Knowing H, one can reconstruct f(x, y), but one might also obtain more information. We therefore
multiply H by two other randomly generated matrices that will obliterate all information but
whether H[1, N] = 0. Let Q′ be generated as follows:

1. For 1 ≤ i ≤ N , choose Q′[i, i] uniformly from GF [p]− 0,

2. For 2 ≤ i ≤ N − 1 choose Q′[i, N] uniformly from GF [p], and

3. Set all other entries of Q′ to 0.

Let Q′′ be generated as follows:

1. Choose the N − 1×N − 1 upper-left submatrix of Q′′ uniformly from the set of nonsingular
matrices.

2. For 1 ≤ i ≤ N − 1 set Q′′[i,N] = Q′′[N, i] = 0.

3. Set Q′′[N,N] = 1.

One can verify that Q′ and Q′′ are nonsingular. The following lemma shows that Q′HQ′′ yields
exactly the desired information.

Lemma 1 Let Q′, Q′′ and H be defined as above, and let H∗ = Q′HQ′′. Then H∗ is distributed
as follows:

6

1. The upper-left N − 1×N − 1 submatrix of H∗ is distributed uniformly over all nonsingular
matrices.

2. If H[1, N] = 0 then H∗[1, N] = 0, and if H[1, N] 6= 0 then H∗[1, N] is distributed uniformly
and independently over GF [p]− 0.

3. For 1 ≤ i ≤ N − 1, H∗[N, i] = 0.

4. H∗[N,N] is distributed uniformly and independently over GF [p]− 0.

5. For 2 ≤ i ≤ N − 1, H∗[i,N] is distributed uniformly and independently over GF [p].

Lemma 1 implies that one can easily reconstruct f(x, y) from H∗ but obtain no other information
about (x, y).
Proof: (Sketch) Let H ′ = HQ′′. The N − 1 × N − 1 upper-left submatrix of H ′ is equal to
the N − 1 × N − 1 upper-left submatrix of H, which is nonsingular, multiplied on the right by
a uniformly distributed nonsingular matrix, and hence is also a uniformly distributed nonsingular
matrix. The Nth column of H ′ is equal to the Nth column of H. Finally, for 1 ≤ i ≤ N − 1,
H ′[N, i] = 0.

Now consider H∗ = Q′H ′. The first row of H∗ is equal to the first row of H ′ multiplied by
Q′[1, 1], a random element of GF [p]−0. The last row of H∗ is equal to the last row of H ′ multiplied
by Q′[N,N], a random element of GF [p]− 0. The remaining rows 2 ≤ i ≤ N − 1 of H∗ are equal
to the corresponding row of H ′ multiplied by Q′[i, i] (a random element of GF [p]− 0) plus the last
row of H ′ multiplied by Q′[i,N], a random element of GF [p].

Therefore we can conclude that: (i) The N − 1 × N − 1 upper-left submatrix of H∗ is a
random nonsingular matrix over GF [p] (ii) H∗[1, N] is 0 if H ′[1, N] = H[1, N] = 0 and a random
element from GF [p]−0, independent of the rest of the matrix, otherwise. (iii) By a straightforward
calculation, H∗[N, i] = 0 for 1 ≤ i ≤ N−1. (iv) H∗[N,N] is equal to H ′[N,N](= 1) times Q′[N,N],
a uniformly distributed element of GF [p]− 0, and will thus be a uniformly distributed element of
GF [p] − 0. (v) For 2 ≤ i ≤ N − 1, H∗[i,N] = H ′[i, N] + H[N,N] · Q′[i,N] = H ′[i, N] + Q′[i,N].
this is the only entry influenced by Q′[i, N] and will therefore a uniformly distributed element of
GF [p] independent of the rest of the matrix.

3.2.3 The final protocol

Given the above discussion, the protocol for Alice, Bob and Carol is straightforward. Using their
common randomness r, Alice and Bob generate Q′ and Q′′ as discussed above. They then uniformly
sample matrices R0, . . . , R2N+1 from the set of N ×N nonsingular matrices over GF [p]. On input
x, Alice computes A′

1 and constructs her message

MA =
(
(Q′R−1

0), (R0A
′
1R

−1
1), . . . , (R2N−1A

′
1R

−1
2N)

)
.

On input y, Bob computes A′
2 and constructs his message

MB =
(
(R1A

′
2R

−1
2), . . . , (R2NA′

2R
−1
2N+1), (R2N+1Q

′′)
)

.

Finally, Carol computes H∗ = Q′(A1A2)NQ′′ and outputs 1 iff H∗[1, N] 6= 0. By our previous
argument, Carol learns nothing aside from the actual product H∗, which by Lemma 1 reveals
nothing but f(x, y). Therefore we have

7

Theorem 2 For every function f(x, y) computable in nondeterministic logspace there is an efficient
perfectly secure protocol. In general, if a function f is computable in NSPACE(s) and s is Ω(log n),
then there is a perfectly secure protocol for evaluating f where the length of the messages is 2O(s)).

4 A computationally secure protocol.

Under a computational notion of privacy, we exhibit a communication-efficient protocol for any f
computable in polynomial time. Due to space limitations, we give only a high level discussion of
our protocol, and omit the proof of correctness. We restrict our discussion to the case where the
parties are honest. We show a general method for obtaining resiliency in the appendix.

Definition 1 Let D be a nonuniform polynomial time algorithm (i.e., a circuit family). We say
that D is a distinguisher for an infinite family of input pairs ((x1, y1), (x2, y2)) if for some c,

|Pr
r

(D (fA(x1, r), fB(y1, r)) = 1)− Pr
r

(A (fA(x2, r), fB(y2, r)) = 1) | > 1
nc

,

where n is the size of x1, y1, x2, y2.

Definition 2 A protocol is computationally private if there is no D and infinite family of input
pairs ((x1, y1), (x2, y2)) with f(x1, y1) = f(x2, y2), such that D is a distinguisher for the family.

Remark: Another approach to defining computationally private protocols includes a unary security
parameter k, and allows one to avoid considering infinite families of inputs. One can embed such a
notion in the one we present by a padding argument: given a function f(x, y), consider the function
f ′(x01k, y01k) = f(x, y). Privately computing f ′ on the infinite family of inputs {(x01k, y01k)} is
analogous to computing f(x, y) with an infinite family of security parameters {k}.

We now outline a computationally private protocol based on one-way functions in which A
and B run in time polynomial in n. The protocol is based on the “garbled circuit” construction
introduced by Yao [21]. This construction is based on the existence of cryptographically secure
pseudo-random generators, which in turn can be based on the existence of one-way functions [10].
We will use this construction as a black-box, and summarize it as follows.

Let {Cn(X, Y)} be a circuit family of size mn that computes function Fn : {0, 1}n × {0, 1}n →
{0, 1}, and let f be a one-way function. Assuming the existence of a one-way function (against
nonuniform adversaries), there exist random polynomial time algorithms called scramble(Cn, r),
simulate(Cn, r) and evaluate(Ĉn, X̂, Ŷ) with the following properties:

1. Given random string r, scramble(Cn, r) randomly computes a garbled circuit Ĉn and garbled
input pairs ((Q0, Q1), (R0, R1)), where

Qb = Q1,b, . . . , Qn,b and
Rb = R1,b, . . . , Rn,b

for b ∈ {0, 1}. For X = (x1, . . . , xn) ∈ {0, 1}n and Y = (y1, . . . , yn) ∈ {0, 1}n we define

QX = Q1,x1 , . . . , Qn,xn and
RY = R1,y1 , . . . , Rn,yn .

8

2. evaluate(Ĉn, QX , RY) = Cn(X, Y).

3. Given random string r, simulate(Cn, b, r) randomly computes a simulated garbled circuit C∗
n

and simulated garbled inputs Q∗
b , R

∗
b . If Cn(X, Y) = b then the distributions (Ĉn, QX , RY)

and (C∗
n, Q∗

b , R
∗
b) are computationally indistinguishable to nonuniform adversaries. Here we

implicitly assume that we have an infinite family of circuits and inputs (Cn, X, Y).

A detailed, rigorous discussion of Yao’s garbled circuit technique can be found in [18].
Given the above abstraction, we define (MA,MB)[Cn, X, Y] as follows. Given circuit Cn and

shared random string r, A and B compute

scramble(Cn, r) = Ĉn, ((Q0, Q1), (R0, R1)).

Then MA and MB are defined by

MA = Ĉn, Q1,x1 , . . . , Qn,xn and
MB = R1,y1 , . . . , Rn,yn .

On input MA,MB, C writes MA = Ĉn, QX and MB = RY and computes

Cn(X, Y) = evaluate(Ĉn, QX , RY).

We omit the analysis of this protocol. Roughly, correctness of the protocol follows from the
definition of evaluate. The privacy of the protocol follows from the existence of the simulate
protocol. (MA,MB) is equivalent to (Ĉn, QX , RY). If Cn(X1, Y1) = Cn(X2, Y2) = b then

(Ĉn, QX1 , RY1) and (Ĉn, QX2 , RY2)

will both be indistinguishable from the output of simulate(Cn, b, r), where r is uniformly dis-
tributed. Hence, they will be indistinguishable from each other.

5 The lower bound

We lower bound the communication cost, c = maxx,y,r[|fA(x, r)| + |fB(y, r)|], for perfectly secure
computation. Note that without privacy requirements, ∀f, c ≤ 2n, and with privacy, ∀f, c ≤
2n + n + 1 (see Sect. 2). We prove a modest lower bound of c ≥ 3n− 4, which holds for almost any
function f . This lower bound only requires the following minimal privacy assumption, that the last
bit of x remains private.

Minimal privacy: If f(x, y) = f(x̄, y), where x̄ denotes x with its last bit flipped, then for any
messages z and w,

Prr[(fA(x, r) = z) and (fB(y, r) = w)]
= Prr[(fA(x̄, r) = z) and (fB(y, r) = w)]

5.1 Fair embeddings

Represent the function f by a bipartite graph Gf . The 2n left-hand side vertices of Gf each
represents a single possible input x, and the 2n right-hand side vertices of Gf each represents a
single possible input y. Vertices x and y are connected by a white edge if f(x, y) = 1, and by a
black edge if f(x, y) = 1. Represent player C by a bipartite graph GC . The left-hand side vertices

9

of GC each represents a single possible message z, and the right-hand side vertices of GC each
represents a single possible message w. If fC(z, w) = 1 then (z, w) is a black edge in GC , and if
fC(z, w) = 0 then (z, w) is a white edge EGC

(and if fC(z, w) is undefined then (z, w) is not an
edge at all).

To simplify notation, we treat each shared random string r as a function in the following
sense: r(x) denotes fA(x, r), and r(y) denotes fB(y, r). From the completeness property it follows
that each r induces an embedding of Gf in GC . That is, (x, y) is a white (black) edge in Gf iff
(r(x), r(y)) is a white (black, respectively) edge in GC . Observe that for almost all functions f ,
any corresponding embedding r must be one-to-one, as it is unlikely that there exist x1, x2 such
that for all y, f(x1, y) = f(x2, y).

All the random strings r collectively induce a family of embeddings. From the privacy property
of the protocol, it follows that the family is fair. That is, for any white edge e ∈ GC , and for any
white edges e1, e2 ∈ Gf , |{r|r(e1) = e}| = |{r|r(e1) = e}|, and similarly for black edges. We shall
use the term fair embedding as abbreviation for the term “fair family of embeddings”.

Thus we transformed our original question on secure computation to the following problem
in extremal graph theory: what is the minimal size of GC so that bipartite graph Gf has a fair
embedding into GC?

5.2 Universal graphs

We start by analyzing the case that C does not know f . That is, GC is a universal graph that
depends on n alone but not on Gf . In Sect. 2 we showed that c ≤ 2n + n + 1 suffices in order to
compute any function, and that x, y, and f , are kept private by this computation. It is not hard
to show that if C does not know f in advance, the above bound on communication is nearly tight,
even without any privacy requirements.

Claim 1 Player A receives x and f , player B receives y and f , and they want C to compute f(x, y)
(even without hiding f , x, and y). Then c ≥ 2n, assuming fixed length encoding of messages.

Proof: Since no privacy is required, the optimal protocol for the players is deterministic. Let
N = 2n. For any f , the graph Gf is embedded in GC . There are 2N2

possible graphs Gf . Let U be
the number of vertices on the left side of GC , and let V be the number of vertices on its right side.
To address vertices of GC , A needs to send log U bits, and B needs to send log V bits (we assume
fixed length encoding of messages). There are UNV N possible ways of mapping the vertices of Gf

to the vertices of GC . It follows that (UV)N ≥ 2N2
, or log U + log V ≥ N = 2n.

5.3 Hiding a single bit

We return to the question of embeddings when GC depends on Gf , for Gf a random bipartite
graph. We prove our lower bound on the number of communication bits under the minimal privacy
assumption: that C does not learn the least significant bit of x. C is allowed to learn all other bits
of x, and all bits of y (and A, B, and C, know f in advance).

Definition 3 For vertex x, let x̄ denote the complement vertex obtained by flipping the least
significant bit of x. A colored edge (x, y) is dangerous if it is of the same color as its complement
edge (x̄, y).

10

Observe that for a random function f , about half the edges of Gf are dangerous.

Definition 4 Gf has a family R = {ri} of embeddings into GC . Consider two embeddings ri and
rj , and a dangerous edge (x, y) ∈ Gf . A trivial match of ri and rj on (x, y) occurs if ri(x, y) =
rj(x, y). A nontrivial match occurs if ri(x, y) = rj(x̄, y).

Lemma 2 For most bipartite graphs Gf on 2N vertices, for any two embeddings ri and rj , the
number of nontrivial matches is at most 2N .

Proof: As noted earlier, we can assume that both ri and rj are one-to-one. The nontrivial
matches are formed by ri and rj agreeing on where in GC to map a subset Y ∈ Gf of y vertices,
and by agreeing where in GC to map a subset X ∈ Gf of x vertices (where ri maps X and rj maps
the complement of X). There are 2N possible ways of choosing X, and 2N ways of choosing Y .
Observe that to have 2N nontrivial matches, |X| · |Y | ≥ 2N . Now we use a probabilistic argument.
Decide on a random truth table for f . Each nontrivial match has probability 1/2, independently, of
being dangerous. If it is not dangerous, then either ri or rj do not form a legal embedding. Hence
the probability that any particular choice of X and Y is legal is at most 2−2N .

Lemma 3 For any k ≤ |R|, there exists R′ ⊂ R of size |R′| = k, such that the total number of
trivial matches induced by members of R′ is smaller than the total number of nontrivial matches
induced by members of R′.

Proof: Consider an arbitrary colored edge e ∈ GC , and an arbitrary dangerous edge (x, y) ∈ Cf .
By the minimal privacy property, if there are t members of R that map (x, y) onto e, then there
are t members of R that map (x̄, y) onto e. Now select R′ at random, and for any x, y, e compute
the expectation E [δ], where δ is the number of nontrivial matches induced by (x, y) and (x̄, y) on
e, minus the number of trivial matches induced by either (x, y) or (x̄, y) on e. It is not hard to
see that as each new member of R′ is chosen, the expectation E [δ] increases. Then, by linearity of
expectation

ER′ [
∑
x,y,e

δ] ≥ 0

and hence for some choice of R′ the lemma holds.

Lemma 4 The number of colored edges in GC is at least N3/16.

Proof: We bound |EC | by using the fact that embeddings have small nontrivial intersections
(Lemma 2), and even smaller trivial intersections (Lemma 3).

Clearly, |R| ≥ 1. Pick at random r1. Since every edge of GC that is an image of a dangerous
edge of Gf has to contain a nontrivial match, and since any ri contributes at most 2N nontrivial
matches, it follows that |R| ≥ N/4 (by the assumption that Gf has N2/2 dangerous edges).

Consider R′ embeddings chosen from R, where |R′| = N/8. By lemmas 2 and 3, and using the
first two terms of the inclusion-exclusion formula, we lower-bound E′

C , the number of edges in GC

that are images of dangerous edges of Gf under an embedding rj ∈ R′. |E′
C | ≥ N2|R′|/2−2N |R′|2 ≥

N3/16.
Remark: If x and y are required to be hidden from C, then the argument can be extended to

show that the number of random bits shared by A and B is at least (3n − 5), since each colored
edge of GC must be covered N2/2 times.

11

References

[1] M. Abadi, J. Feigenbaum, J. Kilian, On Hiding information From an Oracle, JCSS 39 (1989),
21–50.

[2] D. A. Barrington, Bounded-width polynomial-sized branching programs recognize exactly those
languages in NC1, J. of Computer and Systems Sciences, Vol 38, 1988, pp. 150–164.

[3] J. Bar Ilan, D. Beaver, Non-Cryptographic Fault-Tolerant Computing in a Constant Number
of Rounds of Interaction.

[4] D. Beaver, J. Feigenbaum, Hiding Instances in Multi-Oracle Queries, Proc. of 7th STACS, pp.
37–48, Lecture Notes in Computer Science, Vol. 415, 1990.

[5] M. Ben-Or, S. Goldwasser, and A. Wigderson, Completeness Theorems for Non-Cryptographic
Fault-Tolerant Distributed Computation, Proc. 20th Symp. on Theory of Computing, 1988, pp.
1–10.

[6] E. Brickell, P.J. Lee and Y. Yacobi, Secure Audio Teleconference, Advances in Cryptology -
Crypto 87 Proceedings, Springer Verlag, 1987, pp. 418–426.

[7] D. Chaum, C. Crépeau, and I. Damg̊ard, Multiparty Unconditionally Secure Protocols, Proc.
20th Symp. on Theory of Computing, 1988, pp. 11–19.

[8] B. Chor and E. Kushilevitz, A zero-one law for Boolean privacy, Proc. 21st ACM Symp. on
Theory of Computing, 1989, pp. 61–72.

[9] O. Goldreich, M. Micali, A. Wigderson, How to play any mental game, Proc. 19th ACM Symp.
on Theory of Computing, 1987, pp. 218–229.

[10] J. Hastad, R. Impagliazzo, L. Levin, M. Luby. Pseudo-random Generation from Oneway Func-
tions, SIAM J. Computing 28(4), 1999, pp. 1364–1396.

[11] R. Heiman, Secure Audio Teleconferencing: A Practical Solution, Advances in Cryptology -
EUROCRYPT ’92 Proceedings, Lecture Notes in Computer Science 658, Springer, 1993, pp.
437–448.

[12] R. Impagliazzo and S. Rudich, Limits on the provable consequence of one-way permutations,
Proc. 21st ACM Symp. on Theory of Computing, 1989, pp. 44–61.

[13] J. Kilian, Use of Randomness in Algorithms and Protocols, MIT Press, Cambridge,
Massachusetts, 1990.

[14] J. Kilian, A general completeness theorem for two-party games, Proc. 23rd ACM Symp. on
Theory of Computing, 1991, pp. 553–560.

[15] E. Kushilevitz, Privacy and communication complexity, Proc. of the 30th IEEE Symp. on
Foundations of Computer Science, 1989, pp. 416–421.

[16] A. Shamir, R. Rivest and L. Adleman, Mental Poker, in The Mathematical Gardner,
edited by David Klarner, Wadsworth International, Belmont, 1981, pp. 37–43.

[17] T. Rabin and M. Ben-Or. Verifiable Secret Sharing and Multiparty Protocols with Honest
Majority, Proc. 21st ACM Symp. on Theory of Computing, 1989,

12

[18] P. Rogaway. Phd. Thesis. MIT.

[19] D.G. Steer, L. Strawscynski, W. Diffie and M. Wiener, A Secure Audio Teleconference System,
Advances in Cryptology - Crypto 88 Proceedings, Springer Verlag, 1988, pp. 520–528.

[20] A. C. Yao, Protocols for Secure Computations, Proc. of the 23rd IEEE Symp. on Foundations
of Computer Science, 1982, pp. 160–164.

[21] A. C. Yao, How to Generate and Exchange Secrets, Proc. of the 27th IEEE Symp. on Foun-
dations of Computer Science, 1986, pp. 162–167.

A Securely computing the maximum of two numbers

The problem of securely computing the maximum of two numbers arises in the context of secure
audio teleconferencing. Heiman [11] studied a method where the bridge (i.e. the apparatus connect-
ing the callers) is not to be trusted with the secret information, but nevertheless should determine
which participant is “talking the loudest” and transmit his or her encrypted voice to the others.
Carol (the bridge) should therefore compute the max function. It is clear that in this problem it
is very important to keep the communication pattern as simple as possible and also to minimize
the amount of bits each participant must send. To this end Heiman adopts a solution of [6], which
is efficient, but does reveal partial information (the difference between the two voice signals) to
Carol. Heiman asks if there is a more secure method of comparing encrypted numbers. We present
an elegant (though not necessarily practical) solution.

The inputs to players A and B are xA, xB ∈ {0, 1, 2} and they want to determine which of the
two numbers is larger. Consider the comparison function:

COMP (xA, xB) =


1 if xA > xB

−1 if xA < xB.
0 if xA = xB.

The random string that A and B agree on consists of (r1, r2) where 0 ≤ r1 < 7 and r2 ∈ {1, 2, 4}.
Player A computes and sends MA = r1 + r2 · xA (mod 7) and player B commutes and sends
MB = r1 + r2 · xB (mod 7). Carol determines the result according to the following:

COMP (xA, xB) =
0 if MA −MB = 0
1 if MA −MB mod 7 ∈ {1, 2, 4}
−1 if MA −MB mod 7 ∈ {3, 5, 6}

Correctness follows by noting that MA−MB = r2(xA−xB) mod 7. The quadratic residues mod 7
are {1, 2, 4}. Hence r2(xA − xB) mod 7 is a quadratic residue iff xA − xB is a quadratic residue
mod 7. Incidently2 this happens precisely when xA > xB. Security follows by noting that for

every xA 6= xB and every pair of messages MA,MB yielding the right result there is a unique r1, r2

that maps xA and xB to MA and MB.

2This is not true in general of course, however if we want to compare two elements from a domain of size k, then
by Weil’s Theorem for a sufficiently large prime p we will have a stretch of k quadratic non-residues followed by k
quadratic residues mod p and thus we can run an algorithm similar to the one described here.

13

B Securely computing the logical and of k bits

This problem arises when we extend our model to k parties who want to securely compute a k
input function. The players agree of a prime p > k, on r, 0 < r < p, and on r1, ... , rk, such that∑

i ri = 0 (mod p). Each player sends mi = r(1− xi) + ri (mod p). C decides 0 iff
∑

mi = 0 (mod
p).

(Proof of correctness and privacy omitted.)
This can be used in order to securely compute any k-input function, by reduction to the two

party protocol of Sect. 2. One player plays the role of A, and the other k−1 players jointly comprise
player B, who needs to compute a pointer MB. This is done by not representing the pointer as a
binary string, but as an indicator function (one 1-entry among a long list of 0-entries, indication
the location to which the pointer points). Computing each entry reduces to computing logical and
of k − 1 bits, where each bit specifies if the input of the corresponding player allows this entry to
be the correct one. The bit Mb can be computed as by taking bitwise and of the indicator vector
with a vector of the yb.

C Achieving resilience against malicious adversaries:

We address here the two party case. In this case, nothing can be done if two of the players form a
coalition in order to cheat. Hence we remain with two possible forms of cheating.

As our model is stated, C cannot actively violate the protocol since she is not supposed to send
any messages. However, in a natural extension of the protocol, we may require C to announce the
result. We would like to make it impossible for C to announce a wrong result. This can achieved by
having A and B secretly agree on some random authentication code for the output, and requesting
C to compute the function f composed with the function representing the authentication code.
Observe that in all our constructions, C does not learn which function she is computing, and hence
the authentication code remains secret. The is negligible probability that C would guess a valid
codeword (other than the true output) to announce as the result.

Neither A nor B can unfairly receive any information, since they do not receive any messages.
However, either A or B can control the value of f(x, y) computed by C by giving a value of MA or
MB that does not correspond to a legal input. Note that C cannot determine this by herself, since
she does not know A and B’s shared random string.

First, we note that by a simple rearrangement of the bits in MA and MB, all of our protocols
can be put into the following form:

1. Based on random string r, both A and B can compute strings

(A0
1,A1

1), . . . , (A0
n,A1

n) and
(B0

1,B1
1), . . . , (B0

n,B1
n).

2. If X = x1, . . . , xn and Y = y1, . . . , yn, then

MA = Ax1
1 , . . . ,Axn

n and
MB = By1

1 , . . . ,Byn
n .

Thus, for example A knows that B should send either B0
i or B1

i , and wants C to abort if he receives
some other string. However, A doesn’t want C to obtain any information about the value of the

14

string that B did not send. Given a security parameter k, we show how A (B) can ensure that
B (A) will be discovered with probability 1 − 2−k if he sends an incorrect message. The value of
k must be decided on ahead of time, and causes a poly(k) overhead in the message sizes of our
protocols.

We use a “fingerprinting” technique reminiscent of [17] and very similar to that in [13]. To
represent a bit b, randomly construct a sequence of pairs ~b = ((b0

1, b
1
1), . . . , (b

0
k, b

1
k)) such that

b = b0
i ⊕ b1

i for 1 ≤ i ≤ k. Given a bit sequence c = (c1, . . . , ck) ∈ {0, 1}k, define the fingerprint
fc(~b) as the sequence bc1

1 , . . . , bck
k . By a straightforward probability argument, if ~b and c are chosen

uniformly, and one does not know c, if one generates a legal representation ~b′ for 1 − b, then
fc(~b) 6= fc(~b′) with probability 1−2−k. By legal, we mean the each pair in ~b′ sums to the same value
mod 2. We represent a string B = b1, . . . , bm by choosing ~bi as before and setting ~B = ~b1, . . . ,~bk.
We define fc(~B) = fc(~b1), . . . , fc(~bm).

Using their shared randomness, A and B compute

(~A0
1,

~A1
1), . . . , (~A0

n, ~A1
n) and (~B0

1,
~B1
1), . . . , (~B0

n, ~B1
n).

A chooses ca ∈ {0, 1}k and sa,1, . . . , sa,m ∈ {0, 1} using private coins (not known by B). Similarly,
B uses private coins to choose cb ∈ {0, 1}k and sb,1, . . . , sb,m ∈ {0, 1}. We now define our messages
by

MA = ~Ax1
1 , . . . , ~Axn

n , (fca(~Bsa,1

1), fca(~B1−sa,1

1)), . . . ,
(fca(~Bsa,1

n), fca(~B1−sa,n
n)), ca

MB = ~By1
1 , . . . , ~Byn

n , (fcb
(~Asb,1

1), fcb
(~A1−sb,1

1)), . . . ,

(fcb
(~Asb,1

n), fcb
(~A1−sb,n

n)), cb.

C tests each message purporting to be ~Axi
i by first checking that it is a legal encoding for a string

and then computing fcb
(~Axi

i) and checking to see that it is equal to either fcb
(~Asb,i

i) or fcb
(~A1−sb,i

i).
If it passes this check, then C computes Axi

i . C processes ~Byi
i analogously.

With the above modification, neither party can send C an invalid string without being caught
with probability 1 − 2−k. However, A (symmetrically B) can give incorrect fingerprints that will
cause C to improperly abort the protocol with a probability that depends on B’s input. This may
indirectly allow A to learn information about B’s input (if C publicizes his decision to abort) and
can be used to unfairly influence the output of the protocol. For example if C is to compute x⊕ y,
then A can make C abort iff x ⊕ y = 1. However, there is an easy trick for dealing with this
problem (cf. [13]). Given a function f(x1, . . . , xn) (we don’t distinguish between each party’s input
bit), consider the function

fk((x1,1, . . . , x1,k), . . . , (xn,1, . . . , xn,k))

that computes xi = xi,1⊕xi,k and then computes f(x1, . . . , xn). Each party randomly and privately
expands each of their input bits into an exclusive-or of k bits, and then securely evaluates fk. One
can show that no matter what strategy a malicious player uses, the probability that C will abort
will vary by an amount O(n2−k) regardless of each party’s original input.

15

