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Abstract

Constructions ofk-wise almost independent permutations have been receiving a growing
amount of attention in recent years. However, unlike the cagenfe independent functions,
the size of previously constructed families of such permutations is far from optimal. This pa-
per gives a new method for reducing the size of families given by previous constructions. Our
method relies on pseudorandom generators for space-bounded computations. In fact, all we
need is a generator, that produces “pseudorandom walks” on undirected graphs with a consis-
tent labelling. One such generator is implied by Reingold’s log-space algorithm for undirected
connectivity [35, 36]. We obtain families éfwise almost independent permutations, with an
optimal description length, up to a constant factor. More precisely, if the distance from uni-
form for anyk tuple should be at most, then the size of the description of a permutation in
the family isO(kn + log §).

1 Introduction

In explicit constructions of pseudorandom objects, we are interested in simulating a large random
object using a succinct one and would like to capture some essential properties of the former. A
natural way to phrase such a requirement is via limited access. Suppose the object that we are
interested in simulating is a random functign {0, 1}" — {0, 1} and we want to come up with

a small family of functiong~ that simulates it. Thé-wise independence requirement in this case

is that a functiory chosen at random fro@ be completelyindistinguishablegrom a function f

chosen at random from the set of all functions, for any process that receives the value of either

or g at anyk points of its choice. We can also relax the requirement and talk aboaisti-wise
independence by requiring that the advantage of a distinguisher be limited byysome
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Families of functions that ark-wise independent (or almost independent) were constructed
and applied extensively in the computer science literature (see [3, 25]). There is a rather natural
construction that is optimal in terms of size: Btconsist of all polynomials of degree — 1
over GF[2"]. Then the description of eache F is kn-bit long. It is easy to see that this is the
minimum number of bits needed.

Suppose now that the object we are interested in constructingpesrautation i.e. a 1-1
functiong : {0,1}" — {0,1}", which is indistinguishable from a random permutation for a
process that examines at mdspoints (a variant also allows examining the inverse). In other
words, we are interested in families of permutations such that restrictethputs their output is
identical (or statistically close, up to distan€g to that of a random permutation. For= 2 the
set of linear permutations{ + b wherea # 0) over GF'[2"] constitutes such a family. Similarly,
there is an algebraic trick when= 3 (we learned it from Schulman, private communication in
[26], see also [40, 44]). Fdr > 3 no explicit (non-trivial) construction is known farwiseexactly
independent permutations.

Once we settle ok-wise almostindependent permutations, with error paramétethen we
can hope for permutations with description lengttkn + log(§)) *, this is what a random (non-
explicit) construction gives (see Section 3.2). There are a number of proposals in the literature of
constructingk-wise almost independent permutations (see Section 4), but the description length
they obtain is in general significantly higher than this asymptotically optimal value. This paper
obtains the first construction @fwise almost independent permutations, with description length
O(kn + log(3)), for everyvalue ofk.

Motivation: given the simplicity of the question, and given how fundamehtalise indepen-

dent functions are, we feel that it is well motivated in its own right. Indéedjse independent
permutations have been receiving a growing amount of attention with various motivations and
applications in mind. One motivation for this study is the relation betweense independent
permutations and block ciphers [14, 26].

In block-ciphers, modelled by pseudorandom permutations, the distinguisher is not limited
by thenumber of callgo the permutations but rather by its computational power. Still, the two
notions are related. On one hand, some constructions of pseudorandom permutations, and most
notably the Luby-Rackoff construction [20], imply explicit constructionstefise almost inde-
pendent permutations [26] (see references therein). On the other hand, Hoory et al. [14] study a
construction in terms of-wise independence, partially with the motivation of understanding the
way “cryptographic” pseudorandomness may be obtained. Furthermevise independence is
sometimes sufficient for cryptographic applications, and may be easier to obtain (e.g. Pinkas [33]).
Below, we illustrate one such case (partially related to a motivating example given by Black and
Rogaway [6]).

Suppose that you want to permute the set of all credit card numbers to reduce fraud. You would
like to construct a permutation on the set of credit card numbers (of size rotjhlgnoring the
first 4 digits). Only trusted servers will have access to the permutation. The goal is that an adversary

*The lower bound ofn trivially follows as in the case of functions (simply since the output of a random permuta-
tion onk fixed inputs has entropy closeta). If for no other reasoripg(5) bits are needed to reduce roundoff errors.
This lower bound also follows for more significant reasons, untegsse exactlyindependent permutations can be
constructed.



who sees a limited number of permuted credit card numbers and the original numbers (say its own
cards) would not be able to obtain information on any other card for which it sees only the permuted
value. Furthermore, we would like to spread the permutation among the trusted servers at low cost
(to save communication). This means, that the permutation should be represented by a small
number of bits. Note that for this range even under cryptographic assumptions there is no ready
made solution. For instance, DES is a permutatior@rvalues that is presumed pseudorandom,

at least for sufficiently weak machines. However, it is not clear how to use it in order to construct a
permutation or2?” values. This example may also point out practical values for which an efficient
solution is needed. While our main interest is description length, we discuss time efficiency in
Section 6.

Our Technique and Main Results: we give a method for “derandomizing” essentially all pre-
vious constructions ok-wise almost independent permutations. It is most effective, and easiest
to describe for permutation families obtained by composition of simpler permutations. As most
previous constructions fall into this category, this is a rather general method. In particular, based
on any one of a few previous constructions, we obfainise almost independent permutations
with optimal description length, up to a constant factor.

Consider a family of permutationsg, with rather small description length We denote byF*
the family of permutations obtained by composing evepgrmutationsfy, fo, ..., f; in F. Now
assume thaf" is a family of k-wise almost independent permutations. The description length of
Flist - s as we need to descriiendependent permutations frof. We will argue that such
constructions can be derandomized in the senseitthgtsufficient to consider a subset of the
t-tuples ofF functions This will naturally reduce the overall description length.

Our first idea uses generators that fool bounded space computations for the task of choosing
the subset ofF’ , as we describe below. Pseudorandomness for space-bounded computation has
been a very productive area, see [27, 28]. Such pseudorandomness has been used before in the
context of combinatorial constructions where space is nabgticit issue by Indyk [15] and by
Sivakumar [43].

Let g be the composition of uniformly and independently selectgd, f5, ..., f; in F. Let
us also considey’ which is the composition of permutationsf;, f;,..., f{ in F, selected in
some other manner. Assume that the distributionyois not k-wise almost independent. This
means that there akteinputsz,, xs, . . . x; such that the distributiogf (x1), ¢'(z2), . . . ¢’ (xx) in not
close enough to uniform. That is, there exists a feghat distinguisheg’(z1), ... ¢'(zx) from
uniform. On the other hand, by our assumptigf;, ), . .. g(xx) is close to uniform, thereforg@
also distinguisheg'(x1), . .. ¢'(xx) fromg(z1), ... g(zx). This translates to a test that distinguishes
the distribution offy, f;, ..., f; from uniform. The key observation is that the distinguisher uses
only spacekn as a branching program (i.e., it is of wid#i"). Therefore, iff{, f},..., f/ are
selected by a generator that fools spaeesomputations then no such distinguisher exists @&nd
is k-wise almost independent, with a shorter description length#han

To complete this argument let us describe the small space distinguisher for the distribution
fi, f5, ..., fl. Consider a protocol for parties, where partyreceivesh; as input and altogether
the parties want to distinguish the case that/itie are uniformly distributed from the case that
they are distributed according to the distributigp f5, ..., f/. Partyi will only be allowed to
sendnk bits to party: + 1. Such communication network is equivalent to a branching program of



spacenk and the known pseudorandom generators for space bounded computations work against
distinguishers in this model. The distinguisher operates as follows. The first party appt@s
x1,...x, and sends) = (hy(z1),... hi(zg)). Atits turn, party: > 1 impliesh; to the sequence
Z;_1 received from party — 1 to obtainz; that it sends to party+ 1. At the end, party evaluates
z; and output¥ (Z;). We note the following facts: (1) Eachis kn-bit long and thus this is indeed
a spacekn distinguisher. (2) If ther;'s are uniformly distributed thes; is distributed accord-
ing to g(x1), ...g(x;). Otherwise it is distributed according t0(z1), ... ¢ (zx). As 7 behaves
differently on these two distributions, we obtain the correctness of our small space distinguisher.
Given an “ideal” generator the fools space bounded computations and has optimal parame-
ters we could expect the method above to divweise almost independent permutations with de-
scription lengthO(nk + log(§) + s + logt). Based on previous constructions/efvise almost
independent permutations this implies description ler@thk + log(%)) as desired. However,
applying this derandomization method with currently known generators (which are not optimal)
implies description lengttv.k + log()) times poly-logarithmic factors
This leads us to our second idea: to obtain families with description lefgth + log(5))
we revise the above method to use a more restricted derandomization tool: pgeus®random
generators for walks on undirected labelled graphkat is walks which are indistinguishable from
a random walk for any ‘consistently labelled graph’ and sufficient length. Such generators with
sufficiently good parameters are implied by the proof that undirected connectivity is in logspace of
Reingold [35], and made explicit by Reingold, Trevisan and Vadhan [36].

Adaptive vs. Static Distinguishers: Consider a distinguisher, trying to guess whether the per-
mutation it has is random or from the family. Assume further, that the distinguisher is allowed

to makek queries to the permutation. A natural issue, is whether these queries are chosen ahead of
time (statically) or adaptively, as a function of the responses the process receives. When consider-
ing perfectk-wise independent permutation there is no difference between the two cases, but when
considering almost-wise independent permutations there could be a large differeNoamethe-

less, here we shall consider the static case. This is in general enough, for at least two reasons.
First, static indistinguishability up to distané@—"* implies adaptive indistinguishability up to
distance’. Second, a result of Maurer and Pietrzak [22] shows that composing two independently
choserk-wise almost independent permutations in the static case givese almost independent
permutations with adaptive queries with similar paraméters

Related Work: There are several lines of constructions that are of particular relevance to our

work. We describe them in more detail in Section 4. The information is summarized in Table 1.
Another notion which has been studied quite extensively in recent years is thahafise

independencéntroduced by Broder et al. [7]. Informally, a permutation family isrestricted

min-wise independent (or simply min-wise independenit,# n), if for every distinctk elements,

each element is mapped to the minimum among the images of the elements, with equal probability.

The motivation for this notion stems from studying resemblance between documents on the Web

tOne of our favorite examples is involutions (permutations where the cycle length is a2)nastandom involu-
tion is almost pairwise for the static case witk= O(1/2™), but for the adaptive cage= 1 — O(1/2").

!Note that this is a case whekewise independence is different from cryptographic pseudorandomness, as was
demonstrated in recent papers by Myers and Pietrzak [23, 32].
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Table 1: Summary of Results and Previous Workienise §-dependent Permutations.

Family Description Length Range of Queries
Feistel (Luby Rackoff) nk + O(n) k<2500 5= 1
O(nk - log %) k< 23790 any§, 5, = 2’%

Simple3-Bit Permutations [9, 13, 14] O(n’k(nk + lg(3))1g(n)) E<2m—2
Thorp Shuffle [24, 26, 39] O(n*klog(3)) k<2r
Non-Explicit Constructions:

Probabilistic (Thm. 3.4) O(nk + log(3)) k<2n

Sample space existence (Thm. 3.5) O(nk) kE<2m
This Work (Theorens.9) O(nk +log(3)) E<2n

(see Broder et al. [8, 7]). This notion is weaker thkawise independence. Another definitian,
rankwise independence [16], demands thatitleéements are mapped to any order with the same
probability. k-rankwise independence is stronger tharestricted min-wise independence, but
weaker thark-wise independence. The best lower boundifaestricted min-wise independence
is from [17] and is roughly.*/2. For a more extensive treatment we refer the reader to [7, 16, 17].

Organization

In Section 2 we provide notation and some basic information regarding random walks and the
spectral gap of graphs. In Section 3 we defin@ise /-dependent permutation, argue the (non-
constructive) existence of small families of such permutations and study the composition of such
permutations. In Section 4 we discuss some known families of permutations. Section 5 describes
our general construction of a permutation family, and proves our main result. In Section 6 we
describe possible extensions for future research.

2 Preliminaries and Notation

Let P, be the set of all permutations ovg, 1}". We will useN = 2™.

Letz andy be two bit strings of equal length, therb y denotes their bit-by-bit exclusive-or.

Foranyf, g € P, denote byf o g their composition (i.e.f o g(z) = f(g(x))).

For a set?, denote by, the uniform distribution on the elementsff

Denote by{V,] the set of allt-tuples ofdistinctr-bit strings.

$The first row is based on 4 rounds with the first and last being pair-wise independent [26].  Analysis of related
constructions [22, 30, 31] approachies= 2"/, but does not go beyond. It is possible to obtain &hy J by the
composition of independent permutations (which adhlg%i, multiplicative factor.)



2.1 Random Walks

A random walk on a graph starting at a verieis a sequence of vertices;, uy, ... whereuy = v

and fori > 0 the vertexu; is obtained by selecting an edge_1, u;), uniformly from the edges
leavingu;_;. Undirected graphs that are connected, regular, and have self-loops in each vertex,
have the property that a random walk on the graph (starting at an arbitrary vertex) converges to the
uniform distribution on the vertices. The rate of convergence is governed by the second largest (in
absolute value) eigenvalue of the graph. Below we formalize these notions.

Definition 2.1 (Spectral Gap) LetG = (V, E) be a connectedi-regular undirected graph on
vertices. Thenormalizedadjacency matrix of is its adjacency matrix divided by Denote this
matrix by M € M, (R). Denote byl = \; > X\, > ... > )\, its eigenvalues. We denote b{G)
the second eigenvalue in absolute value. Nam€l§)= max{|\s|, |\,|}. Thespectral gapf G,
is defined byjap(G)=1 — A\(G).

Definition 2.2 (Mixing Time) Let G = (V, E) be a connected, regular, undirected graph with
self-loops, om vertices. LetM € M, (R) be the normalized adjacency matrix@f A random
walk on this graph is arergodic Markov chainwhose transition matrix is\/. Its stationary
distribution 7 is the uniform distribution on the vertices. Far € V, define themixing time

of the walk starting fromx, by 7,(¢) = min{nl|||M"1, — || < €}, wherel, is the distribution
concentrated on:. The mixing time of the walk is defined b)) = max,cy 7. (¢).

We have the following theorems, relating the mixing time of a walk with the spectral gap of
the graph.

Theorem 2.3 [41] Let G = (V, E), M, 7 be as in Definition 2.2. Let> 0. Let\ be the second
largest eigenvalue aff. Then
1 A 1 1 \4
———In(—) < < ——1In(—).
2T g s s 3 ()

Usually, such a claim is used to bound the mixing time. However, we will be using construc-
tions with a proven mixing time. The construction itself may also provide a bound on the spectral
gap. In case it does not, we will be able to use Theorem 2.3 in order to bound the gap of the graph
from below. A simple calculation using Theorem 2.3 shows that

In(3)
o)

The following theorem will be useful for us. It shows, that the distance of a distribution induced
by a random walk, from its stationary distribution, is a sub-multiplicative function of the time. We
will use this result to obtain a composition theorem for families of permutations (Theorem 3.8).
Namely, if selecting one permutation from a family of permutations induces a distribution which
is 6-close to uniform, then composing two such permutations yields a distribution whidfp3-
close to uniform.

€

gap(G) = Q

Theorem 2.4 ([2] Chapter 2, Lemma20) LetG = (V, E), M, = be as in Definition 2.2. Define
d(t) = max,ey |M'1, — «||. Thenforalls,t > 0, d(s +t) < 2d(s)d(t).
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3 The Existence oft-Wise j-Dependent Permutations

In this section we defing-wise §-dependent permutations, discuss their existence, and show that
the distance parametéris reduced by the composition of such permutations. Most of this paper
concentrates on permutations over bit strings and we consider more general domains in Section 6.2

3.1 Definitions

The output of ak-wise almost independent permutation on aninputs isé-close to random,
where “closeness” is measured by statistical variation distance between distributions.

Definition 3.1 (Statistical Distance)Let D,, D, be distributions over a finite s€t. The variation
distance betweeD; and D, is

1

1Dy = Dsf| = 5 > IDi(w) = Day(w)] -
we

We say thaiD, and D, are o-close if||D; — Dy|| < 4.

Remark 3.2 Note that if two distributions aré-close then there is no distinguisher (not even an
inefficient one) that can distinguish the distributions with advantage bettepthan

Definition 3.3 Letn,k € N, and letF C P, be a family of permutations (we allow repeti-
tions). Leté > 0. The familyF is k-wise j-dependenif for every k-tuple of distinct elements
(1,...,2x) € [Ng], the distribution(f(x1), f(z2),..., f(zx)), for f € F chosen uniformly at
random isj-close toUyy,;. We refer to ak-wise 0-dependent family of permutations kswvise
independent.

We are mostly interested explicit families of permutations, meaning that both sampling uni-
formly at random fromF and evaluating permutations froffi can be done in polynomial time.
The parameters we will be interested in analyzing are the following:

Description Length The description length of a famil§ is the number of random bits, used by
the algorithm for sampling permutations uniformly at random fréim Alternatively, we
may consider thsizeof F, which is the number of permutationsif denotedF|. In all of
our applications, the description length of a famfyequalsO(log(|F|)). By allowing F to
be a multi-set we can assume without loss of generality that the description length is exactly
log(|71).

Time Complexity The time complexity of a familyF is the running time of the algorithm for
evaluating permutations froth.

Our main goal would be to reduce thescription lengtlof constructions ok-wised-dependent
permutations. Still, we would take care to keep the permutation efficient in terms of time complex-
ity. See additional discussion in Section 6.



3.2 Non-Explicit Constructions

We show the existence abn-explicittamilies of permutations that akewise almost independent.

Our goal in the other sections would be to obtain families of size which is as close as possible to that
obtained by the non-explicit arguments below. The first idea for showing the existence of families
of k-wise j-dependent is simply to consider a probabilistic construction, i.e. a random collection
of permutations of a certain size. The following theorem follows by the approximation method of
Azar, Motwani and Naor [4]. They provide ([4] Theorem 3.1) a general way to approximate an
arbitrary distribution over a finite s&t Their point is that the weighted average of tatifferent
weights can be approximated to withirsimultaneously by a sample space of s@(é‘;if) and
uniform distribution over the support. Consider the sample spammsisting of all permutations
and D is the uniform distribution. To specify the requirementsteiise 6-dependency we need
forall (z1,...,z%), (v1,...,yx) € [Ng] an approximation that should be withiri|[N,]|. We get

the following:

Theorem 3.4 Letn € N. Forall 1 < k£ < 2"andé > 0 there exists a family of permutatiotfs

that is k-wised-dependent and is of sité(”’“?—j"k).

The existence (even with a non-explicit constructiongrdctk-wise family of permutations
is unknown. Nonetheless, we show that there exist a distribution on permutations, wtiaisis
independent and has a small support. The construction follows a result by Koller and Megiddo
[19], which we briefly describe below.

Their idea for constructing a small sample space for a given object was to consider the set of
constraints it induces in terms of values of subsets. Then argue that if a sample space satisfying
these constraints exists, then there exists an assignment where the number of non-zero points is no
larger than the number of constraints.

In the case ok-wise independent permutations, we are defining a probability distribution over
permutationsr, i.e. for each permutation we want to assign a probability For every twok-
tuplesz = (1, x9,...x1) € [Ng] @andy = (y1,v2, ... yx) € [IVx] we have the constraint that the
probability that the chosen permutatiersatisfiesy; = n(z;) for 1 <i < kis exactlyl/ (],f ). Let
Czy = {mly; = m(x;) V1 < i < k}. One can write for each, y € [N,] this requirement as a
linear constraint in the,’s: .

Pr = Tve-
2

T€Cz g

These(f,f )2 constraints plus the constraidf _p, = 1 completely characterize-wise indepen-
dence. We know that there is an assignment satisfying all these constraints: simply make all
p= = 1/N!. As Koller and Megiddo [19] argue, this means that there is also a non-negative as-
signment, where the number of non-zero values is at most the number of constraints; since it is
non-negative it defines a probability distribution. Unfortunately, we do not know how to construct
this distribution, or to sample from it in time polynomialinandk. By the above discussion, we

have the following:

Theorem 3.5 (Existence ok-wise Independent Distribution) There exists a distribution on per-
mutations which ig-wise independent (i.e. for arkypoints the value of the chosen permutation
is uniform in[V,]) and the size of the support of the distribution is at na3st.
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3.3 Composition of Permutations

Some of the permutations families we will inspect require several compositions to get a distribution
close to uniform. In fact, as we argue below, composing permutations is an effective method for
reducing the distance parametefThis motivates the following definition.

Definition 3.6 Let ¥ C P,. Thet power of 7, denoted byF* C P,, is{fio...of; |
fi,.., fr € F}.

Remark 3.7 Let F C P,. Observe thatF’| = |F|* and that the time complexity of" is essen-
tially ¢ times the time complexity of.

As Theorem 3.6 will show, starting with a famil§ which isé-dependent results i which is
only (O(6))!-dependent. Therefore, increasing the description length and time complexity linearly,
pays off in an exponential decay of the error. We now state our composition theorem.

Theorem 3.8 Let F be ak-wised-dependent family. Thetk? is a k-wise22-dependent family.
Furthermore, for every € N, F* is ak-wise(1(20))-dependent family.

The proof of Theorem 3.8 uses a certain type of graph which is associated with a permutation
family 7. The graph, which we call eompanion graphhas a vertex for eack-tuple of [IV,].
For every twok-tuplesz = (zy,x9,...x,) € [Ng] andy = (y1,y2,...yx) € [IVx] and every
permutationo € F such thaty, = o(x;) for 1 < i < k we have an edge in the companion graph
betweenz andy. This edge is labelled by. More formally:

Definition 3.9 (Companion Graph) LetF C P, be a family of permutations. Fdr € N, define
the companion (multi-)graph of, Gz, = (V, E) by:

o £E={(i,0(i)) | i€ [Ng],0 € F}.
e Each edgédi,o(i)) € Eis labelled byo.

Remark 3.10 For an element = (zy,...,xx) € [Ng], and a permutation € F, we abbreviate
o(z)for (o(z1),...,0(xy)).

Observe, that a step on the companion graph is equivalent to evaluating a permutatign from
on the elements of thie-tuple.

Proof: (of Theorem 3.6) LetF be ak-wise j-dependent family. This means, that after taking
one random step on its companion graph, the distance from a uniform distributiot.é d(t)

be as in Theorem 2.4. Thet{l) = 4, and since by Theorem 2.4(2) < 2d(1)* = 262, we
conclude thatF? is a k-wise 262-dependent family. Applying Theorem 2.4 inductively we have
thatd(t) < (3(26)"). Therefore,F* is ak-wise (5(26)")-dependent family. O



4 Short Survey of Explicit Constructions

As mentioned in the Introduction, far = 2 the set of linear permutations is a good construction
(see also [26]), and fok = 3 using sharply 3-transitive permutation grotigas suggested by
Leonard Schulman (private communication)) is a good construction. Unfortunately, from the clas-
sification of finite simple groups it follows that fér > 6 there are nd-transitive groups ovelrn|

other than the symmetric grou) and the alternating groug,, and there are only few such groups

for k = 4 andk = 5 (see [10, 37]). To conclude, far> 4 any small family ofk-wise independent
permutations isiota permutation group (i.e. is not closed under composition and inverse). This is
a major hurdle in providing efficient algebraic constructiong-efise independent permutations,

for £ > 4. Note also that from Theorem 3.8 (Composition Theorem) we can also conclude that
a (non-trivial) permutation group cannot even/bwise /-dependent for any < 1/2: since the

error can be reduced sufficiently to implytransitivity and if the set of permutations is a group,
then it is preserved under composition.

There are no known-wise exactlyindependent permutations, whether algebraic or not. The
rest of our discussion will therefore focus érwise almostindependent permutations. We now
survey some known constructions yieldihgvise almost independent permutations with reason-
able parameters.

4.1 Feistel Based Constructions

In their famed work, Luby and Rackoff [20] showed how to construct pseudorandom permutations
from pseudorandom functions. The construction is based orfralstel Permutation For any
function f € {0,1}"/2 — {0, 1}"/? the Feistel Permutation is defined @, R) — (R, L& f(R)),
where|L| = |R| = n/2. The construction uses a composition of several such permutations.

Naor and Reingold [26] construct a family éfwise §-dependent permutations, where the
description of each permutation/is + O(n) bits with 6 = k?/2"/2 (note that the size is optimal
up to the additiveD(n) term). The analysis is useless wheis larger thar2™/*.

There are Feistel constructions/efvise §-dependent permutations, foup to2"/? (see Naor
and Reingold [26], Patarin [29, 30, 31], and Maurer and Pietrzak [21]).

The Feistel permutations approach yields succineise §-dependent permutation as long as
k is not too large and is not too small, and is probably the method of choice for this range. To
reduce the parametérone can use Theorem 3.8 and obtain a permutation with description length
O(knlog(1/0) (or evenO(klog(1/0)) for certain ranges of andd). The Feistel method is not
known to be useful fok larger thar™/2.

*A permutation group over the sgV] = {1,2,..., N} is a subgroup of the symmetric grodf. A permutation
groupG over|n] is k-transitive if for every twdc-tuples{z, ...,z } and{yi, .. ., yx } of distinct elements df:| there
exist a permutatiom € G such thatvl < i < k, w(x;) = y;. A permutation grou- over[n] is sharplyk-transitive
if for every two such tuples there exists exactly one permutatienG such thaw'l < i < k, m(x;) = y;. A sharply
k-transitive permutation group is in particuleiwise independent. Indeed fér= 2, the linear permutations form a
sharply 2-transitive permutation group. For= 3, there are known constructions of sharply 3-transitive permutation
groups.

10



4.2 Card Shuffling

Consider a process for shuffling cards. Each round (shuffle) in such a procedure selects a permuta-
tion on the locations of th&” cards of a deck (selected from some collection of basic permutations).
Starting at an arbitrary ordering of the cards, we are interested at the number of rounds it takes to
get the deck into a (close to) random ordering. In other words, a card shuffling defines a Markov
chain on the state of the deck, and the goal is to bound its mixing time.

The riffle shuffle models one of the most common “real life” shuffling techniques. Loosely,
in each shuffle, the deck is split roughly in the middle, into two sides. Then, cards are dropped
sequentially, from both sides, and form a new deck. (The mathematical model for this shuffle is
due to Gilbert, Shannon and Reeds.) Aldous and Diaconis [1] provide a convenient implementation
which we shall now describe. Let us view the deck of cards as the sebifstrings, where each
card is a string in{0, 1}". One round of the shuffle consists of two stages: assign and reorder.
In the assign stage, each of thé = 2" cards is assigned a random bibr 1. In the reorder
stage, the cards assigned witlare placed at the top, while preserving their internal order. After
O(log N) = O(n) such rounds, the deck is close to uniform, see [1].

The random bits cost of this procedure is quite high. We would gédsits per round, total of
O(n2") bits. Observe, that this is of the order of the number of bits needed to select a permutation,
uniformly at random (and certainly much more than desiredfaise independent permutations).

An even more troubling difficulty with using this shuffle, is that it is not “oblivious” in the sense
that the location of each card is determined by looking at many random bits. For instance, if the
ith card is assigned a value @fit can still be in any of the first position after the reorder stage,
depending on how many of the first- 1 cards are also assigned aAs we shall see below, this
does not completely preclude the applicability of such a process for genekatirsg independent
permutations, but a more straightforward idea is to use an oblivious shuffle.

Oblivious Card Shuffling: Call a shuffleobliviousif the location of a card, after each round, is
easy to trace and is determined by only a few random bitsOgay. An excellent example is the
Thorp Shufflg45]. Here the deck is divided into two halves, and these two halves are interleaved
in a more local manner than in the riffle shuffle. In the Thorp shuffle, each time we pick one card
from each half. With equal probability, the card from the first half is dropped first, and otherwise
the card from the second half is dropped first. This means, that the location of a card, after one
round, depends on a single bit. It is therefore oblivious, in the sense described above. It was
conjectured in [1] that the mixing time of the Thorp ShuffleCién?), but the problem remained

open for many years. Recently Morris [24] provided the fikgt/(n) bound on its mixing time.

More formally

Definition 4.1 (Thorp Shuffle) Letn € N. Given a deck o™ cards, one stage of the shuffle is
determined by2"~! bits that we will view as a random functian: {0,1}"~' — {0,1}. View
the location of each card as anbit string according to the lexical order. Card at locatidn, )
whereo € {0,1} andz € {0,1}"~! moves to locatiotiz, ¢ & g(z)).

Theorem 4.2 [24] The mixing time for the Thorp shuffle @(n*).

An “old” proposal by the second author [39, page 17], [26] for the constructidnvaie al-
most independent permutations was to utilize oblivious card shuffling procedure. The idea is the
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following: when using such a card shuffle to construétwaise almost independent permutation,
all we care for is the final locations @f cards. If we replace the random functigrby a k-wise
independent function, then this will not change the distribution orktfieal locations. There-
fore, the obliviousness of card shuffles is useful when construétingse almost independent
permutation, in terms of both the description length and time complexity.

Implementing permutations via the riffle shuffle:  Even though the riffle shuffle isotoblivious

there is a way of using it to construgtwise almost independent permutations. The idea is to
generate the choices for each position irmage-summablenanner: there should be an efficient
way to determine the number of '1's in a given range (for a givehz < N how many '1’ where
chosen for the cards in . . . z]). We need the choices and random variables of the range-sum to be
k-wise independent. Once this property exists, then the result is indistinguishable from a random
riffle for any process that examines the location of at nhosrds.

There is a construction satisfying these properties based on a 'divide-and-conquer’ tree. This is
described in [11] (due to Naor and Reingold) and [12]. The advantage of this construction over the
Thorp shuffle is the lower round complexity(n?) vs. O(n*?). Both are amenable to the random
walk derandomization.

4.3 Simple3-Bit Permutations

A very intriguing method for generating-wise 6-dependent permutation was explored first by
Gowers [13] and then (with some variation) by Hoory et al. [14] and Brodsky and Hoory [9]. The
idea is to pick a few bit positions, three to be concrete, which are the only bits the permutation is
going to change. The three bits that are changed define a small sub-cube (with eight elements).
To completely define the permutation, select a random permutation on this small subThibe.

is reminiscent of a shuffle, but here we invest only a few bits in each round. Therefore, the shuf-
fle cannot converge quickly to a random permutation. What this line of research shows is that a
composition of not too many simple permutations still yields\aise almost independent permu-
tation. This approach is treated more formally in the Section 5.4 and it works very well with the
derandomized walk approach, since the underlying set of permutations considered is the simplest
and hence the description length of simple permutations is quite short.

5 Main Results

In this section we give a method for reducing the description length of previous constructions of
k-wise 0-dependent permutations. As discussed in the introduction, this method is particularly
suited to constructions based on composition of permutations. We apply this method to the simple
3-bit permutations of [9, 13, 14] to obtainwised-dependent permutations with description length
O(nk +log(3)).

tIn the Hoory et al. variation the permutation is selected in a more restricted manner: Only a single bit is changed
as a random function of the other bits.

12



5.1 Permutation Families and Random Walks on Graphs

Recall from Section 3.3 that we associate with a fardilyof permutations aompanion graph

(Def. 3.9) by connecting &-tuples toz to o(z) for o € F. All of the families of permutations

of Section 4 are closed under taking an inverse of a permutation and always include the identity
permutation. We summarize the properties of the companion graph that we need in the following
proposition:

Proposition 5.1 Let F C P, be a family of permutations, which is closed under taking an inverse
and contains the identity permutation. Liete N. Then, the companion gragh , is an undi-
rected, | F|-regular, with self-loops. Furthermore, the companion graph is consistently labelled
graph, in the sense that for every verteyxevery two incoming edges iniohave distinct labels.

Assume thatF is such thatF* is a family of k-wise §-dependent permutations. We claim that
the distribution over the vertices we reach by taking a walk of lemg#tarting at any vertex of
Gr.1, is-close to uniform. Simply, traversing an edge labeltefilom the vertexz is the same as
applying the permutation on z (i.e., it reaches vertex(z)). Takingt random edges is the same
as applying the composition efrandomly chosen permutations. If there is any starting point
that does not yield an end-point thabiglose to uniform, then this is a witness to the nokrwise
d-dependency of-".

Derandomizing the family=* will mean that instead of composing independently chosen per-
mutations fromF, we will select the permutations with some dependencies. Equivalently, we will
take a pseudorandom walk instead of a random one. The seed of the pseudorandom generator will
be required to be sufficiently small and the number of labels the generator outputs will not be too
large. Such a generator was given by Reingold, Trevisan and Vadhan [35, 36].

5.2 Pseudorandom Walk Generators

We now discuss generators for pseudorandom walks on graphs. We will refer to graphs with the
following parameters:

Definition 5.2 (Parameters for a Graph) LetG = (V, E') be a connected, undirecteregular
graph, onm vertices. Ther7 is an(m, d, A)-graph if A\ < A(G).

Definition 5.3 (Pseudorandom Walk) LetG = (V, E') be ad-regular graph where for each node
its d outgoing edges take distinct labels|if). Let.A be a distribution over

a=ayay,...a € [d.

We say that4 is §-pseudorandom fo€, if for everyu € V, the distribution on the possible end
vertices of a walk iz, which starts fromu, and follows the edge labels inis ¢-close to uniform
whend is distributed according tod.

Note that ifG is an(m, d, \) graph,\ is sufficiently smaller than and the walk is sufficiently
long, then we expect a (truly) random walk to end in vertex that is close to being uniformly dis-
tributed no matter where the walk started. We are now ready to state the parameters of a previously
known construction of pseudorandom walk generators.
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Theorem 5.4 [35, 36][Pseudorandom Walk Generator] For evety,d € N, d,¢ > 0, there is a
pseudorandom walk generat6tRG = PRG,, 5. : {0,1}" — [d]*, with the following parame-
ters:

e Seed lengtht = O(log(md/ed)).
e Walk length? = poly(1/e¢) - log(md/J).
e Computable in spac@(log(md/ed)) and timepoly(1/e, log(md/d)).

such that for every consistently labellédh, d,1 — ¢)-graph G, the output of PRG(U,) is -
pseudorandom fof7, whereU, is the uniform distribution 040, 1}".

Remark 5.5 The generator of Reingold, Trevisan and Vadhan [36] is more general as it also ap-
plies to reguladirectedgraphs (where the in-degree and out-degree of each vertex equals some
fixed d). Here, only undirected regular graphs are relevant. Furthermore, the time-complexity of
the generator is only implicit in [36].

5.3 Derandomizing Compositions of Permutation Families

We now describe our main construction which consists of applying the pseudorandom walk gen-
erators for the companion graph of a family of permutatidn®ur starting point is any family of
permutationsF whereF* (for ¢ not too large) isk-wise almost independent. By Proposition 5.1,
the companion graply'~ x, is regular and consistently labelled. As argued following Proposi-
tion 5.1, if 7 is k-wise almost independent then the random walkigr, has small mixing time.
By Theorem 2.3, this implies a bound on the eigenvaluesgapG £ . Therefore, Theorem 5.4
gives us a pseudorandom walk generatoder, (PRG = PRG,, 45 With m = |[N]i|, d = |F|,
e comes from the analysis ¢f andd from how close to uniform we want the result to be). We
now use each seede {0, 1}" of the pseudorandom generaf®RG to define a new permutation
os, Which is the composition of the permutations frofithat PRG(s) generates. The set of all
possible seeds defines our new fani#lyy Theorem 5.6 formalizes this approach:
An advantage we have, which affects the parameters of our results (especially the description
length), is that the efficiency of the generator of [36] depends on the spectral gap inititile
graph Since we are using families of permutations for which the companion graph is known to be
of good expansion, we manage to achieve non-trivial parameters in the families we construct.
The following theorem describes the family of permutations we achieve.

Theorem 5.6 LetF C P, be a family of size = |F|, andG £, be its companion graph. Suppose
that gap(G£ ) = €, wheree may be a function of and k. Then, there exist§” C P,, such that
F'is ak-wisej-dependent family, with the following properties.

e The description length of” is O(nk + log(%)).

e If the time complexity of any permutationis bounded by (n, k), then the time complex-
ity of 7/ is poly(1/e,n, k,log(4)) - £(n, k).
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Proof: We apply Theorem 5.4 on the companion graphFof Following Proposition 5.1 we
know thatG 5, fits the requirements of Theorem 5.4. ket O(log(¥5?)) and{ = poly(1/e) -

€

log(Lf‘d) be as in Theorem 5.4. For a strirge {0,1}", we defines, € P, as follows. Let
W = PRGyui g5.(s) € [d'. Thenw = 7, 7,...,7, Wwhere foralll <i < /{, 7, € F. We let
Og =TpO...0Ty.

Next define a permutation famil§’ C P, by

F'={os|s€{0,1}" }.

We now show tha#’ is ak-wised-dependent family. By Theorem 5.4, for any starting vertex
u € V(Gry), the pseudorandom walk startingwatind following the labels o RGynr 45 (U;)
reaches a vertex that ésclose to uniform. Observe that picking a randeme F’ and applying
it to any valueA € V(Gx ) = [IVi] is exactly as taking a random walk 6%, according to the
output of PRGynr 4 5. With a random seed. Therefore, the output of a uniform, on any such
A € [Ng], is d-close to uniform. We can conclude thatis k-wise §-dependent.

The description length af” is || = O(log(25%)) = O(nk + log(£)). The time complexity
of 7' depends on the time complexity of running the generator, and of running permutations from
F. This can be bounded byly(1/e, n, k,log(4)) - £(n, k). O

For simplicity, we assumed in the above theorem that the beuonl the eigenvalue gap is
given, rather than deducing it by Theorem 2.3 (as in the discussion before the theorem). But
in principal what this theorem tells us is that instead of taking truly independent choi@sitin
alwaysmakes sense (from description length point of view) to dg&~ to define the permutations
that are composed.

5.4 Particular Derandomization —3-bit Permutations

We now provide a formal definition and analysis of simpibit permutations, mentioned in Sec-
tion 4.3.

Definition 5.7 (Simple Permutations) [14] Let w < n. Fori € [n|,J = {j1,...,Juw} C [n]
{i}, and a functionf € {0,1}" — {0, 1}, denote by, ; ; the permutation

Oigf(@, . xn)=(2, . T, 1 B f(zyy, . Ty), Ty -, T)
The following simple permutation famiy,, is defined by
Fuw=Aoiyli € [n], ] C [n]~Ai}, [J| = w, f€{0,1}" - {0,1}}.
We denote byF, the simple permutations famil,, for w = 2.

Theorem 5.8 [9] Forall 2 < k < 2"—2, ' is k-wised-dependent, for = O(n?k(nk+log(3))).
Furthermore,gap(Gr ) = Q=57 ).

Evaluatingo; ;; € F» takesO(n) time. The size ofF; is O(n®), and the size ofF,' is
O(n?)t = nOt*kink+log(3)) It follows that ' has description lengt (n2k(nk-+log (1)) log(n)),
and time complexityD (n*k(nk + log(3))).

Combining Theorems 5.8 and 5.6 we obtain the main result of this paper:
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Theorem 5.9 There existsF C P,, such thatF is k-wisej-dependentF has description length
O(nk +log(3)), and time complexityoly(n, k,log(3)).

Proof: Consider the permutations famif,. The size ofF, is d = O(n?), and the spectral gap
of its companion graph is= Q(ﬁ). Applying Theorem 5.6 otF;,, we get a permutations family
F', whose description length 8(nk + log(4)) = O(nk + log(3)).

Since the time complexity of any permutation/s is O(n), it follows that the time complexity
of ' is poly(n, k,log(3)). O

6 Discussion and Further Work

6.1 Time Complexity of the Construction

The focus of this paper is the description lengttkaefise almost independent permutations. Still
our derandomization preserves the time-complexity of the permutations up to factors that are poly-
nomial in the original time complexity and in the description length ¢ log(5)). One disad-
vantage of the approach of using a pseudorandom walk generator for derandomization is that we
replace a permutation composed/afimple permutations with another permutation composed of
¢ > ( simple permutations (this disadvantage is somewhat less extreme when using the more
efficient pseudorandom walk generator recently given in [38]). In this respect it is better to deran-
domize using generators against general space-bounded computations (such as the Nisan genera-
tor [27]) as explained in the introduction. While this approach is slightly sub optimal in terms of
description length (using currently known generators) it is quite efficient in terms of time complex-
ity.

A more subtle concern in terms of time complexity is the following: Can we hawvese almost
independent permutations where the time complexity is independérfasfthe description length
is larger thamk this only makes sense if we allow direct access to this description). Note that even
for k-wise independent functions this issue is not completely resolved; the basic construction based
on polynomials is expensive and more efficient constructions have longer descriptions (some lower
and upper bounds are given by Siegel [42]). Assume now that we are starting with a construction
of k-wise almost independent permutations that has this strong efficiency requirement. When
derandomizing with a generator against space bounded computations, the only additional cost is the
evaluation of the generator. In order for our derandomization to preserve such strong efficiency we
need a pseudorandom generator with ‘random access’ properties. In such a generator, evaluating
theith bit of its output, does not entail computing all bits upitdVore specifically, it should be
possible to compute each bit in time that is independerit ahd only depends on. Also note
that since the only additional costs are in the evaluation of the pseudorandom generator, one can
first “decompress” the succinct description of the derandomized permutations in order to speed
up future computations (this may be useful in case storage is not expensive but randomness and
communication are).
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6.2 Permutations over Other Domains

An issue that we did not explore so far, is constructingise independent permutations over
domains that are not powers f This problem was raised by Bar-Noy and S. Naor inspired by
the needs of [5]. As was pointed out by Black and Rogaway [6], the credit card problem described
in the introduction is in fact one on a domain size thatosa power of2. Black and Rogaway [6]
suggested several methods, for obtaining a pseudo-random permutation on doméain thiaeis
not a power o, from a pseudo-random permutation on domain $Vzehat is a power of (say
N = 2[lsMTy The most relevant method for our purposes is the ‘cycle walking’ one, where the
idea is to construct a permutation p¥f| elements by iterating a permutation [o¥i] until it lands
in the firstM values of[ N]. In more details, let’ : [N] — [N]. Thenr : [M] — [M] is defined
for x € [M] by 7(z) = 7' (z) wherei > 1 is the smallest value such that? () € [M].

When one translates this constructionktavise almost independent permutations, then the
requirement on the underlying permutatiohis, that it should b&’-wise ¢’-dependent for some
k' > k (we will see the requirement a'i momentarily), since some of the evaluationsrabquire
more than a single call to’. Note also that this mapping requires thabe immune to adaptive
attacks. In general, consider the ‘bad’ case fértaplez,, x, . ..z, in [M]: the evaluation ofr
onzy, xq, . ..z requires more thak' calls tor’. If M /N > 1/2, then the probability that this bad
case happens, is proportional to an exponential in 2k, by a Chernoff bound. Conditioned on
the event that the bad case diot happen, then the distribution afonzq, zo, . .. ;. is §’-far from
uniform on[M,]. Hence, the resulting set of permutationsiwise /-dependent fos that is larger
thand’ by an additive factor, which is exponentialkis— 2k.

This analysis means, that for larget is relatively easy to get a small error, by takikcto be,
say, 2k, without significantly increasing the family size. However, witeis small, the resulting
error is too large. In this case, as before, the derandomized walk method is applicable for reducing
the error, since Theorem6 does not require the domain size to be a powe. of

6.3 Further Questions

One interesting question is whether it is possible to ‘scale down’ a constructiénvi@e inde-
pendent permutations onbits to one om’ < n bits. Whenn' is very close ta: then some of the
techniques described in the previous section (such as cycle walking) are relevant, but they become
inefficient whenn — »’ is larger than logarithmic. This is most relevant in the computational pseu-
dorandomness setting: is it possible to obtain from a block-cipher on large blocks (e.g. 128 bits) a
block-cipher on small blocks (e.g. 40 bits), while maintaining the security of the former.

Finally, there is no strong reason to suppose that explicit small families (or distributions) of
exactk-wise independent permutation do not exist and Thead¥eénhints to their existence. So
how about finding them?
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