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The Hardness of Decoding Linear Codes 
with Preprocessing 

JEHOSHUA BRUCK AND MONI NAOR 

Absfract -The problem of maximum likelihood decoding of linear 
block codes is known to be hard [3]. It is shown that the problem 
remains hard even if the code is known in advance, and can be 
preprocessed for as long as desired in order to devise a decoding 
algorithm. The hardness is based on the fact that existence of a 
polynomial time algorithm implies that the polynomial hierarchy col- 
lapses. Namely, some linear block codes probably do not have an 
efficient decoder. The proof is based on results in complexity theory that 
relate uniform and nonuniform complexity classes. 

I. INTRODUCTION 

ONSIDER an [ n, k ]  linear error-correcting block C code. The code can be defined by a parity check 
matrix (basis of the null space) H .  When we assume that 
the code is used on a binary symmetric channel, the 
maximum likelihood decoding (MLD) of a corrupted word 
y is equivalent to finding the closest (in Hamming dis- 
tance sense) codeword to y [12]. 

The complexity of MLD was investigated by Berlekamp 
et al., [3], who considered the following minimization 
problem. 

Given an ( n  - k ) x  n parity check matrix H and a 
binary vector y of length n,  find a solution of minimum 
weight to the equation Hx = s, where s = Hy. The associ- 
ated decision problem follows. 

A. Maximum Likelihood Decoding (MLD) 

Input: A binary matrix H ,  a binary vector s and a 
nonnegative integer w. 

Question: Is there a vector x of Hamming weight 5 w 
such that Hx = s? 

It is proved in [3] that MLD is NP-complete. Namely, 
it is unlikely that there is a general MLD algorithm for 
linear block codes whose time complexity is a polynomial 
in the size of the input. The result in [31 seems discourag- 
ing to anyone who is looking for a general MLD algo- 
rithm for linear codes. 

However, this formulation might not be the relevant 
one. Although H could define any linear code, it should 
not be treated as part of the input, since in practice the 
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code to be used is known in advance. Namely, it can be 
assumed that there is an unbounded amount of time to 
preprocess the code and come up with an efficient decod- 
ing procedure. 

There has been some progress in devising decoding 
algorithms using preprocessing. An example is the zero- 
neighbors (ZN) algorithm [ l l l  that uses a precomputed 
set of codewords (set of zero-neighbors). In every itera- 
tion of the ZN algorithm, the distance between the re- 
ceived word and the set of ZN is computed. The algo- 
rithm performs at most n iterations of this kind until it 
converges to the right solution. It is indicated in [113 that 
this set is in general of exponential size. Hence, it is 
natural to ask whether for every linear code there exists a 
small (polynomial size) set of codewords such that the 
MLD problem can be solved by computing the distance of 
the received word to this set. We can ask a more general 
question: does every linear code have an efficient de- 
coder? We can also consider circuits as a nonuniform 
model for computation and ask: does every linear code 
have a small circuit for maximum likelihood decoding? If 
an efficient decoder exists, then with sufficient prepro- 
cessing it would be found. To formulate the general 
question more precisely, consider the following search 
problem: 

Given a binary vector y of length n ,  find a solution of 
minimum weight to the equation Hx = s, where s = Hy. 
The associated decision problem follows. 

B. Maximum Likelihood Decoding with Preprocessing 
(MLDP) 

Input: A binary vector s and a nonnegative integer w. 
Question: Is there a vector x of Hamming weight I w 

such that Hx = s? 
Notice that MLDP is the same as MLD with H not 

being part of the input. The question is whether there 
exists a polynomial p such that, for any code defined by 
H ,  there exists a circuit of size bounded by p ( l H J )  that 
answers MLDP. 

The main contribution of this paper is showing that a 
positive answer to the foregoing question is unlikely to be 
true, since this would imply that the polynomial time 
hierarchy of [13], [141 collapses. One of the conclusions of 
this result is that decoding schemes like the ZN algorithm 
[l l]  are likely to be exponential. 
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1 0 0 0 0 1 0 1  
D , = O  1 0  1 0  1 1  0 .  

The proof uses results from complexity theory that 
relate uniform and nonuniform complexity classes [ 101. 
We reduce the MLD problem to the problem of finding 
the minimum cut (MC) in a graph with edge weights 
E { - 1, l} by considering the so called graph-theoretic 
codes [9]. The result is then proved by showing that, for 
every size n ,  there exists a graph that can encode by the 
weights on its edges any simple maximum cut (SMC) 
problem [SI related to a graph with n nodes. Thus, the 
MC problem is intractable even when preprocessing is 
allowed. 

The rest of the paper is organized as follows: In Section 
I1 we show the reduction of MLDP to a problem in graph 
theory by using the concept of graph-theoretic codes. In 
Section 111 we give some necessary background in com- 
plexity theory, and in Section IV we formulate and prove 
the main result. 

( 2 )  

that G does not contain a cut with less than three edges 
(besides the empty cut); thus, the code C, has minimum 
distance 3 and can correct one error. 

Given a graph G, we show how to formulate the MLD 
problem of the code C ,  in a graph-theoretic language. 

Lemma I :  Let G = (V ,  E )  be a connected graph. Let 
C, be the code associated with G.  Let y be a vector over 
{071}'E'. Construct a new graph, to be denoted by Cy,  by 
assigning weights to the edges of G as follows: 

11. GRAPH-THEORETIC CODES 

The main goal in this section is to formulate the MLD 
problem in graph-theoretic language. We do so by consid- 
ering the family of graph-theoretic codes [9] and prove 
that the MLD problem of these codes can be reduced to 
the problem of finding the minimum cut in a graph. This 
result was established in [5]; we present it here for the 
sake of the completeness of presentation. 

Definition: Let G = (V ,  E )  be an undirected graph. Let W, = ( - l ) y l .  (3 )  
VI c V ,  and let V2 = V -  '1. The set Of edges each Of W, is the weight associated with edge i in G. 
which is incident at a node in VI and at a node in V2 is 
called a cut in G. The weight of a cut is the sum of its 
edge weights. A minimum cut of a graph is a cut with 

Then MLD of with respect to cc is equivalent to 
finding a minimum cut in 

I - - -  
minimum weight. 

A subset of the set of edges of a graph G = ( V ,  E )  can 
be represented by a characteristic vector of length /El, 
with edge e, corresponding to the ith entry of the charac- 

a vector to be denoted by l,, such that: 

Proofi Let us assume that y contains a 1's. Let M be 
an arbitrary codeword in C,. Let N' .J  denote the number 
of positions in which M contains an i E IO, 1) and y 
contains a j E {0,1}. Clearly, 

Thus, 
teristic vector. That is, every S c E can be represented by a = NO.' + " , I .  

if ei E S 
1,( i) = { otherwise. 

Definition: The incident matrix of a graph G = (V ,  E ) ,  
to be denoted by D,, is a lVlx [El matrix in which row i 
is the characteristic vector of the set of edges incident 
upon node i E V. 

The following facts from graph theory [4] are the basis 
for the definition of the family of graph theoretic codes. 
(For more details see [9].) 

Fact 1: The set of characteristic vectors that corre- 
spond to the cuts in a connected graph G = (V,  E )  forms 
a linear vector space over GF(2), with dimension ([VI-  1). 
The linear vector space that corresponds to the cuts of a 
graph G is called the cut space of G. 

Fact 2: Given a connected graph G = (V ,  E ) ,  the inci- 
dent matrix of G has rank (IVl- 1). Every row in D, is a 
characteristic vector of a cut, and every ( 1  VI - 1) rows of 
D, form a basis for the cut space of G. 

a + N 1 - " .  (4) - NI. '  + N1.0 = NO,' - 

Minimizing the right-hand side in (4) over all M E C, is 
equivalent to finding a codeword that is the closest to y .  
On the other hand, minimizing the left-hand side is 

0 

Using the previous relation we present another proof 
that the decision problem MLD is NP-complete by trans- 

equivalent to finding the minimum cut in Cy.  

Fig. 1. Graph that corresponds to (8,4) code. 



BRUCK AND NAOR:  T H E  IIARDNESS OF DECODING I INEAR C'0DT.S WITII PKEPKO<'ESSING 383 

formation from the SMC problem [8]. (This result is 
proved in [3] by using a different transformation.) 

A. Simple Max Cut (SMC) 

Input: Graph G = ( V ,  E )  and a nonnegative integer w. 
Question: Is there a cut in G of weight at least w? 
Proposition I: MLD is NP-complete. 

Proofi Observe that the SMC problem in a graph can 
be solved by MLD of the all-1 vector with respect to the 

0 

This result is presented as a warm-up for the real 
result. Here, we are interested in showing that MLDP is 
also hard. Again we will show that it is hard for graph- 
theoretic codes by considering the following related min 
cut problem. 

code defined by the graph. 

B. Min Cut with Preprocessing (MCP) 

Input: A vector of length /El of 1's and -1's that 
defines the weights in a graph G = ( E ,  V )  that is known in 
advance. A nonnegative integer w. 

Question: Is there a cut in the graph G with weight no 
more than w? 

Notice that the graph G is known in advance (it is not 
part of the input), and only the weights of the edges are 
part of the input. Clearly by Lemma 1, showing that MCP 
is hard will imply that MLDP is hard. 

In Section IV we prove the main result by showing that 
it is unlikely that there exists a polynomial time algorithm 
for MCP. Before that, we give in the next section some 
necessary background in complexity theory. 

111. BACKGROUND FROM COMPLEXITY THEORY 

A, The Polynomial Time Hierarchy, 

In [13], [14] Meyer and Stockmeyer introduced the 
polynomial-time hierarchy. The formulation we give here 
is from [6]. An alternating Turing machine is a nondeter- 
ministic Turing machine in which the states are labeled 
with A ,  V ,  accept and reject. The execution of an alter- 
nating Turing machine on an input yields a computation 
tree (of all possible nondeterministic choices). This tree 
can be interpreted as a formula, where each state is 
considered as an A or as an V according to its label, and 
a leaf is true or false depending on whether it is an 
accepting state or a rejecting state. We say that the 
alternating Turing machine accepts the input if the corre- 
sponding formula is true. An alternating Turing machine 
is a C, machine if, along any path in the computation 
tree, the number of times the label alternates from an V 
to A is at most i, assuming the initial state is an V .  A 
language is in the class E! if there is a C, machine that 
accepts the language and whose run time is bounded by a 
polynomial in the input size. It should be clear from the 
foregoing definition that NP = Cf. The polynomial time 
hierarchy, PH, is defined to be U, ,Cp. It is a widely 
held conjecture that all the levels of the polynomial 

hierarchy are distinct, i.e., Cf # E:+ I. This conjecture is 
supported by the oracle separation results of 111, [21, [7], 
[ 151. Note that if Cy = Cy+ I then Cy = PH. 

Nonuniform Complexity: Turing machines that take ad- 
vice were introduced by Karp and Lipton [lo] in order to 
study nonuniform complexity. An advice is a function 
h: N c, {O, l}* where N is the set of natural numbers. An 
advice is polynomial if Ih(f)l is bounded by some polyno- 
mial in 1. Note that the polynomial refers only to the 
length of the advice h; there are no restrictions on the 
complexity of computing h. 

Definition: A language L is in P/poly ( P  with polyno- 
mial advice) if there is a polynomial advice h and a 
polynomial time Turing machine M such that, if M is 
given an input x followed by h(lxl), M accepts x if and 
only if x E L. 

Note that the advice depends only on the length of x .  
An important observation is that L E P/poly if and only 
if the size of the circuits that accept L grows polynomi- 
ally. It is not known whether NP c P/poly, nor it is 
known whether containment implies P = NP. However, 
Karp and Lipton [lo] were able to prove the following 
result that relates between uniform and nonuniform com- 
plexity classes: 

Karp and Lipton (KL) Theorem: If NP c P/poly then 
the Polynomial-Time Hierarchy collapses to the second 
level, i.e., PH = Cp. (Karp and Lipton showed it collapses 
to the 3rd level, and that was improved by Sipser who 
showed it collapses to the 2nd level.) Thus, it seems 
unlikely that polynomial size circuits exist for any NP- 
Complete problem. 

IV. THE MAIN RESULT 

The next theorem states the main result of the paper. 

Theorem: If polynomial size circuits for the MLDP 
problem exist, then the polynomial hierarchy collapses in 
the early stage: C$' = PH. 

Proofi Clearly by Lemma 1 it is enough to prove the 
result for MCP. We show that the existence of polynomial 
size circuits for MCP implies that SMC is in P/poly 
(Lemma 2). Since SMC is NP-complete the result follows 
from the KL Theorem in Section 111. 0 

Lemma 2: The existence of a polynomial size circuit for 
MCP implies that SMC E P/poly. 

Prooj:; The key in the proof is to construct for every n 
a graph K ,  with the property that every SMC problem in 
an arbitrary graph with n nodes can be transformed to ,an 
instance (weights of the edges) of an MCP problem in K,. 
Hence, for every n ,  we have a circuit for SMC that under 
the hypothesis is of polynomial size and the result follows. 

We use the complete graph of n nodes K,, and con- 
struct the graph K,, by adding a node and two edges in 
parallel to every edge in K,,. For example, Fig. 2 de- 
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a1,2 p c1,2 

Fig. 2. Graph d , .  

scribes k,. Hence, I?, has n + (:) nodes and 3( ’I) edges. 

The set of nodes in kl, consists of the n nodes of K,, ,  
labeled vi, 1 I i I n ,  and ( i )  nodes each of which 
corresponds to an edge (i, j )  in K ,  and is labeled vi,j. 
The set of edges in k,, consists of the (:) edges of 
K ,  labeled u l ,  j ,  1 I i < j I n,  and 2 additional edges 
for every edge in K,:  edge b,,, connects node vi with 
node and edge c ; , ~  connects node v, with node 

Now we want to show that every instance of the SMC 
pJoblem can be transformed to an instance of MCP in 
K , .  Let the graph G = ( V ,  E )  with n nodes be an instance 
of the SMC problem. We transform it to an instance of 
the MCP problem in K,, as follows. 

If edge (i, j )  E E ,  then = - 1, bl,, = 1 and ci,, = 

I f e d g e ( i , j ) P E , t h e n  ~ ~ , , = - l , b ~ , ~ = l  and ~ ; , ~ = 1  

We claim that finding the simple maximum cut in G can 
b: done by finding the minimum cut in the corresponding 
K,,. The first direction is to show that there exists a cut in 
K ,  with weight - 2  times the weight of the max cut in G. 
We do it by considering the edges of G = (V ,  E ) .  

V i .  j ’  

- 1 in K,, .  

in K , .  

If edge ( i ,  j )  E E ,  then 
1) If edge ( i , j )  is in the max cut in G we can include 
both edge ai , j  and edge ci,, (and not bi , j )  in the rnin 
cut in 8,; this adds - 2  to the rnin cut. 
2) If edge ( i , j )  is not in the max cut in G, we can 
include both edge b;,, and edge ci,, (and not in 
the rnin cut in k,,; this adds 0 to the rnin cut. 

In either case we get that the weight of the cut in 
k,, is - 2  times the weight of the max cut in G. 
If edge ( i ,  j )  P E ,  then 
(1) If nodes vi and v, are on the same side of the max 
cut in G, we pyt node also to be on the same side 
of the cut in K, , .  
(2) If nodes vi and vi are on opposite sides of the m,ax 
cut in G, we put node vi,, on any of the sides in K l l .  

In either case we get thatAthere is no contribution 
to the weight of the cut in K, , .  

The other direction is to show that there is a cut in G 
with weight -0.5 t i m a  the weight of the minimum cut in 
the corresponding K , .  The proof is similar to the first 
direnction and is done again by considering the edges 
of Kl , .  0 

To summarize, we describe the idea in the proof of the 
main result. We have shown that for a particular family of 
linear block codes (graph theoretic codes obtained from 
I?,): the problem of maximum likelihood decoding with 
preprocessing (MLDP) is hard (assuming the polynomial 
hjerarchy does not collapse). If we could solve MLDP in 
K ,  with a nonuniform (depending on n )  family of polyno- 
mial size circuits, then we could solve minimnum cut with 
preprocessing (MCP) on the same graph- K,, -with the 
input being a vector of weights from { l ,  - l}, again using a 
nonuniform family of polynomial size circuits. Then we 
could solve simple max cut (SMC) on arbitrary n node 
graphs using a family of polynomial size circuits that 
depend only on n. Since the SMC problem is NP-com- 
plete, the Karp-Lipton theorem would imply the collapse 
of the polynomial-time hierarchy, which is considered 
doubtful by complexity theorists. 

V. CONCLUSION 

We proved that some linear block codes do not have a 
polynomial time algorithm for MLD (the existence of one 
implies that the polynomial hierarchy collapses) even when 
we allow preprocessing. Namely, knowledge of the code 
does not help in general in designing an efficient decoder 
simply because there exist codes that probably do not 
have an efficient decoder. 

We know that some families of codes do have an 
efficient MLD algorithm in the uniform sense. Namely, 
the algorithm is the same for all codes in the family. On 
the other hand, the result in [31 indicates that there is no 
general MLD efficient algorithm for all linear block codes 
(unless P = NP).  It is interesting to consider an interme- 
diate case, namely, a family of codes that does not have a 
uniform decoding algorithm but has a nonuniform decod- 
ing algorithm. An open problem is to exhibit (or prove the 
existence of) such a family of codes. 
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