
Anti-persisten
e: History Independent Data Stru
tures

�

Moni Naor

y

Vanessa Teague

z

Dept. of Computer S
ien
e and Applied Math Dept. of Computer S
ien
e

Weizmann Institute Stanford University

naor�wisdom.weizmann.a
.il vteague�
s.stanford.edu

August 9, 2001

Abstra
t

Many data stru
tures give away mu
h more information than they were intended to. Whenever

priva
y is important, we need to be
on
erned that it might be possible to infer information from the

memory representation of a data stru
ture that is not available through its \legitimate" interfa
e. Word

pro
essors that quietly maintain old versions of a do
ument are merely the most egregious example of a

general problem.

We deal with data stru
tures whose
urrent memory representation does not reveal their history.

We fo
us on di
tionaries, where this means revealing nothing about the order of insertions or deletions.

Our �rst algorithm is a hash table based on open addressing, allowing O(1) insertion and sear
h. We

also present a history independent dynami
 perfe
t hash table that uses spa
e linear in the number of

elements inserted and has expe
ted amortized insertion and deletion time O(1). To solve the dynami

perfe
t hashing problem we devise a general s
heme for history independent memory allo
ation. For

�xed-size re
ords this is quite eÆ
ient, with insertion and deletion both linear in the size of the re
ord.

Our variable-size re
ord s
heme is eÆ
ient enough for dynami
 perfe
t hashing but not for general use.

The main open problem we leave is whether it is possible to implement a variable-size re
ord s
heme

with low overhead.

1 Introdu
tion

Computer folklore is rife with stories about �les
ontaining information that their
reators assumed had been

erased only to be revealed in embarrassing
ir
umstan
es. In general, if prote
ting priva
y is an issue, then if

some pie
e of information
annot be retrieved via the legitimate interfa
e of a system, then it should not be

retrieveable even when there is full a

ess to the system. For instan
e, if the order of insertion of elements to

a system is not part of the interfa
e, then the system should prote
t this information in the data's internal

representation, in
ase this representation be
omes available (e.g. by losing the laptop, sending a �le or some

other pro
ess gaining information about the allo
ation in main memory or disk).

This work deals with data stru
tures that are history independent, i.e. it is impossible to dedu
e from the

memory representation of the data stru
ture any information not revealed by its
urrent state. This problem

was �rst expli
itly
onsidered by Mi

ian
io [13℄ who showed a variant of 2-3 trees with this property. We

onsider hash tables where the
ost of ea
h operation is O(1). Our model of history independen
e is stronger

�

A preliminary version of this paper appears in STOC '01, July 6{8, 2001, Hersonissos, Crete, Gree
e

y

This work was
ompleted while the author was visiting the IBM Almaden Center and Stanford University. Partially

supported by DoD MURI \Semanti
 Consisten
y in Information Ex
hange," ONR Grant N00014-97-1-0505, and DARPA

Contra
t N66001-00-C-8015

z

Partially supported by DoD MURI \Semanti
 Consisten
y in Information Ex
hange," ONR Grant N00014-97-1-0505, and

DARPA Contra
t N66001-00-C-8015

1

than the one in [13℄ in that we
onsider the memory representation of the di
tionary and not just the \shape"

of the data stru
ture

1

.

We fo
us on di
tionaries, i.e. data stru
tures that support insert, lookup and delete from a set. Here the

only history not
ontained in the
urrent state is the order of insertions and deletions that led to it. There

are many situations where it is important to keep this se
ret. For example, if we are maintaining a list of

people invited to some event (su
h as invited speakers at a
onferen
e, guests at a wedding or members of

a football team), then it might be useful to publish the data but it would be very embarrassing if people

dis
overed that another speaker had been invited before them but de
lined, or that they were the last to be

added to the wedding guest list.

1.1 Summary of Results

We provide de�nitions of history independent data stru
ture (Se
tion 2). These de�nitions are appli
able to

any abstra
t data stru
ture. We deal mostly with �nding history independent implementations of di
tionaries

where the goal is to obtain O(1) performan
e per operation for any sequen
e of operations. We provide two

types of su
h tables | with and without pointers. For the �rst, in se
tion 3, we develop a framework

for hashing s
hemes based on open addressing (no pointers). We give a suÆ
ient
ondition for a s
heme

in our framework to be history independent (that the priority fun
tion indu
es a total order in ea
h
ell).

We suggest a parti
ular s
heme with good performan
e: the expe
ted amortized
ost of insertion and the

expe
ted
ost of sear
h are O(1). The big advantage of this s
heme is spa
e utilization - the spa
e wasted
an

be as small as we want. The s
heme uses only pair-wise independent fun
tions (whereas all previous s
hemes

of this type had to resort to logn-wise independen
e) and requires only O(log n) of them. The disadvantage

is that it does not support deletions. We then move to data stru
tures with pointers (Se
tion 4). Here we

must �rst resolve the issue of memory management. We show s
hemes for memory allo
ation; these work in

O(1) time per allo
ation or deletion for �xed re
ord size, but are more expensive for variable sized re
ords

(Se
tions 4.1 and 4.2). In Se
tion 4.3 we have a history independent dynami
 perfe
t hashing s
heme where

lookup takes O(1) and insert and delete take expe
ted amortized O(1) steps. Finally we address the famous

union �nd problem and show a history independent s
heme where �nd always takes O(1) operation and

union takes O(log n) amortized work (Appendix A)

1.2 Related Work

As mentioned above, Mi

ian
io [13℄ was the �rst to have dealt with history independen
e expli
itly, in the

ontext of sear
h trees; the issue
ame up impli
itly in investigations regarding data stru
tures with unique

representation (see [2℄). In the
ontext of lookup tables, the ordered hashing algorithm of Amble and Knuth

([1℄) has this uniqueness property. Ordered hashing falls into the open addressing framework we develop in

Se
tion 3.

There is a large body of literature trying to make data stru
tures persistent, i.e. to make it possible to

re
onstru
t previous states of the data stru
ture from the
urrent one ([6℄). We are aiming for the opposite,

that no information whatsoever
an be dedu
ed about the past, hen
e an alternative name
ould have been

anti-persisten
e.

There is
onsiderable resear
h on methods for prote
ting memories. Oblivious RAM [8℄ makes the address

pattern of a program independent of the a
tual sequen
e; it in
urs a
ost of polylog n. Note however that it

does not provide history independen
e sin
e it assumes that the CPU stores some se
ret information; this is

an inappropriate model for
ases where the adversary gains
omplete
ontrol.

The di
tionary problem is one of the most widely studied problems in
omputer s
ien
e. Open addressing

hashing s
hemes are
overed in detail in Knuth [10℄. More re
ent analysis showed that double hashing where

the hash fun
tions are logn-wise independent is good [9, 12, 14, 17℄. However, getting su
h fun
tions requires

either investing logn work per evaluation or using large amounts of randomness and storage (but not more

than linear in the table size) to des
ribe the fun
tion [16, 4℄.

1

However, our performan
e guarantee is slightly weaker | we prove our results with respe
t to any (worst-
ase) sequen
e

of operations
hosen without knowing the internal
oin
ips of the data stru
ture, whereas [13℄ assumed that the adversary

hoosing the sequen
e had a

ess to those
hoi
es. Note that for this type of adversary no O(1) di
tionary is known, even

without the history independen
e requirement.

2

A di�erent approa
h for a
hieving O(1) performan
e is via perfe
t hashing s
hemes. Here we rely on

Dietzfelbinger et al.'s ([5℄) dynamization of the FKS s
heme [7℄.

2 Preliminaries and De�nitions

An abstra
t data stru
ture (ADS) is de�ned by a list of operations. Any operation returns a result (whi
h

may be null) and the spe
i�
ation de�nes the results of a sequen
e of operations. We say that two sequen
es

S

1

and S

2

of operations on an ADS yield the same
ontent

2

if for all suÆxes T , the results returned by T

when the pre�x is S

1

are the same as those returned when the pre�x is S

2

. In a di
tionary, two sequen
es

have the same
ontent i� the set they de�ne is the same.

An implementation of a data stru
ture maps the sequen
e of operations to a memory representation, i.e.

an assignment to the
ontent of the memory. The goal of a history independent implementation is to make

this assignment depend only on the
ontent of the data stru
ture and not on the path that led to this
ontent.

That is, we imagine that there is a period of a
tivity in the data stru
ture (e.g. insertions, deletions and

sear
h in the di
tionary example). At some point the adversary gains
ontrol of the data stru
ture, i.e. sees

exa
tly what is in the memory representing it. There are no se
rets left. The adversary should not be able

to dedu
e any more about the sequen
e of operations that led to the
ontent than the
ontent itself yields.

Sin
e we use randomization in our implementation (both for eÆ
ien
y and to a
hieve history independen
e),

for a given implementation ea
h sequen
e of operations indu
es a distribution on the assignments to the

memory. Therefore the de�nition of history independen
e is:

De�nition 2.1 A data stru
ture implementation is history independent if any two sequen
es S

1

and S

2

that

yield the same
ontent indu
e the same distribution on the memory representation.

Stronger de�nition: Note that the above de�nition assumed that the adversary gaining
ontrol is a

one-time event (e.g. losing a laptop). However, in some
ir
umstan
es it may be that the adversary gains

periodi

ontrol and at several points along the sequen
e of operations it obtains a \memory dump" i.e. the

ontents of the memory at given points. The requirement is that for any two sequen
es of operations and

two lists of points that yield the same
ontent for all the
orresponding points when the memory dumps are

made, the distributions on the memory are identi
al.

De�nition 2.2 Let S

1

and S

2

be sequen
es of operations and let P

1

= fi

1

1

; i

1

2

; : : : i

1

`

g and P

2

= fi

2

1

; i

2

2

; : : : i

2

`

g

be two lists of points su
h that for all b 2 f1; 2g and 1 � j � ` we have that 1 � i

b

j

� jS

b

j and the

ontent of data stru
ture following the i

1

j

pre�x of S

1

and the i

2

j

pre�x of S

2

are identi
al. A data stru
ture

implementation is strongly history independent if for any su
h sequen
es the distributions of the memory

representations at the points of P

1

and the
orresponding points of P

2

are identi
al.

A large
lass of data stru
tures
an have a history independent implementation and even one satisfying

De�nition 2.2: if it is possible to de
ide the lexi
ographi
ally �rst sequen
e that yields the same
ontent as

the
urrent one, then we
an simply store that �rst sequen
e in the implementation. This may of
ourse

be rather time
onsuming, so the questions explored in this paper are whi
h data stru
tures have eÆ
ient

history independent implementations.

There are various ways in whi
h the above de�nitions
an be extended and relaxed. One is to make

the two distributions
omputationally indistinguishable, rather than identi
al.

3

Another is to allow some

information to be leaked. For example we
ould
all a data stru
ture n-history independent if, for any two

sequen
es S

1

and S

2

, if S

1

and S

2

yield the same
ontent and their last n operations are identi
al, then the

distributions on their assignments to memory are identi
al. In this work we do not resort to these relaxations.

The de�nition of history independen
e
an also be extended to underde�ned abstra
t data stru
tures

(UADSs), that is data stru
tures where the same query after the same sequen
e of operations is permitted

several di�erent responses (for example, a priority queue allowing any one of the �n top elements to be

2

We will use the term
ontent to denote the
ontent of the data stru
ture as opposed to memory representation or assignment.

3

This de�nition
ould be utilized in erasing. We
ould say that a �le is erased whenever the blo
ks allo
ated for it are

omputationally indistinguishable from randomness. This would allow us, for instan
e, to delete an en
rypted �le by deleting

its key.

3

returned). In this
ase we need only to rethink the de�nition of
ontent. We say that two sequen
es S

1

and S

2

of operations on a UADS yield the same
ontent if there is no suÆx T where the set of sequen
es

of results permitted to be returned by T when the pre�x is S

1

is di�erent from the set permitted when the

pre�x is S

2

.

Di
tionaries: The main data stru
ture that we deal with is the di
tionary:

De�nition 2.3 A di
tionary over a universe U = f0; 1; : : : ; U � 1g is a partial fun
tion S from U to some

set I. The operations Lookup(x); Insert(x); and Delete(x) are available on a di
tionary S; Lookup(x) returns

i = S(x) if x is in the domain of S, Insert(x) adds x to the domain of S and sets the value of S(x), and

Delete(x) removes x from the domain of S.

Strategies for produ
ing history independen
e: There are two pra
ti
al ways to make a data stru
ture

history independent. One is to ensure that the representation of the stru
ture is determined by its
urrent

ontent | for example, an array of elements
an be kept in a history independent way by sorting the

elements and always pla
ing them as
lose to the 0-th
ell as possible. Then the array's
ontents are exa
tly

the
urrent elements in sorted order, arranged at the beginning of the table, regardless of their insertion (or

deletion) order. The se
ond way is to introdu
e se
ret randomness into the data stru
ture in su
h a way that

an observer who does not know the random
hoi
es
annot infer anything about the history. An example of

this is storing elements in an array in some order whi
h is a random permutation of their insertion order,

where the permutation is se
ret and never stored expli
itly.

In Se
tion 3 we apply the �rst idea to
onstru
t a history independent hash table. We
hoose hash

fun
tions at the beginning of the operation and at any point the
urrent
ontent of the table and the

hash fun
tions uniquely determine the memory representation. The advantage of the approa
h is that it

yields strong history independen
e. In Se
tion 4.1 we use the randomization idea to show how to implement

history independent memory allo
ation of �xed-size re
ords. In Se
tion 4.2 we use a
ombination of the two

te
hniques to implement history independent memory allo
ation for re
ords of variable size, whi
h we use

in Se
tion 4.3 to obtain dynami
 perfe
t hashing.

3 Data Stru
tures without Pointers: open addressing

In this se
tion we des
ribe a history independent di
tionary (without deletion) based upon an open addressing

hash table. In open addressing, every element is stored within the table, so there is no need for pointers.

The main advantage is that it
an be very spa
e eÆ
ient. In the traditional version, if there is a
lash

between two elements, the se
ond one to arrive at the
ell is moved to elsewhere a

ording to its sequen
e of

possible positions. Our version also resolves
lashes by inserting one element and moving the other, but we

don't ne
essarily move the se
ond element to arrive. Our table has a �xed size of N entries. Its performan
e

depends on the load, whi
h we denote by �, so the di
tionary
ontains �N elements (and the waste is

(1� �)N). The performan
e will be given as a fun
tion of �.

De�ne the
on�guration of a hash table to be the set of (index; value) pairs stored in the table.

De�nition 3.1 Let P = h

1

; h

2

; : : : be a sequen
e of probe fun
tions su
h that h

j

: U ! f0; : : : ; N � 1g. Then

we say that P de�nes the probe sequen
e of an element x as the sequen
e (h

1

(x); h

2

(x); : : :).

If the hash table
on�guration is uniquely determined on
e we have �xed P for a given set of input values

fx

1

; x

2

; : : : ; x

n

g, then the hash table is history independent (in fa
t, it is strongly history independent), sin
e

in parti
ular, it is independent of the order of insertion of the fx

1

; x

2

; : : : ; x

n

g.

3.1 Des
ription of the hash table algorithm

Unlike traditional hash tables, where an element is inserted into the �rst empty
ell in its probe sequen
e

and never moved unless deleted, we allow elements to be shifted after they have been pla
ed in a
ell (as

in [1, 3℄). When element x is being inserted and the next
ell probed is already o

upied by element x

0

, we

either move x to the next
ell in its probe sequen
e, or pla
e x in this
ell and move x

0

. We use a \priority

fun
tion" whi
h, for any
ell and for any pair of elements, determines whi
h of the two elements has higher

4

priority at that
ell. If two elements hash to the same
ell during insertion, the element with higher priority

is pla
ed there while the other is moved, regardless of whi
h was inserted �rst. The lower-priority element is

pla
ed in the next
ell in its probe sequen
e that is empty or
ontains an element of lower priority than it.

De�nition 3.2 Let p(i; x; y) : f0; : : : ; N � 1g�U �U ! fTrue;Falseg. We say that p is a priority fun
tion

if for all i, the relation f(x; y) : p(i; x; y) = Trueg is a total order. We write p

i

for p(i;

q

;

q

).

We say that x has a higher priority than y at
ell i if p(i; x; y) is true. A spe
ial
ase is a global priority

fun
tion, i.e. one where for all
ells i the fun
tion p

i

is the same. (This is the
ase with ordered hashing,

[1℄.)

Note that priority fun
tions
an be
hosen so that at a parti
ular
ell, elements further along in their

probe sequen
e have a lower priority than those not so far along.

The spa
e our algorithm requires in
ludes that dire
tly used for the table, that used to des
ribe the hash

fun
tions h

1

; h

2

; : : : and that used to des
ribe the priority fun
tions p

1

; p

2

; : : :. The only randomness o

urs

in the
hoi
es of hash fun
tions h

i

for i = 1; 2; : : : and possibly of priority fun
tions, (if a probabilisti
 priority

fun
tion is being used) | given these, the rest of the
omputation is deterministi
.

The insertion algorithm, insert-A is as follows: Given an element x to insert into table t, probe the
ells

in x's probe sequen
e until rea
hing either an empty
ell or a
ell i
ontaining element y where p

i

(x; y) is

true (i.e. the
urrent item has lower priority than x). If the
ell is empty, pla
e x there and halt. If it

is o

upied by a lower-priority element y, pla
e x there and re
ursively apply the insertion algorithm to y,

using y's probe sequen
e from i onwards. Pseudo-
ode for insert-A is in
luded in the Appendix.

Sear
hing in our hash table is identi
al to doing so in an ordinary hash table, but there is an optimization

for unsu

essful sear
h:

Claim 3.1 When sear
hing for an element x, it is safe to stop as soon as we �nd an element y of lower

priority than x.

This follows from history independen
e (whi
h we prove in the next se
tion). We may assume that if

x were in the table then it would have been the last element inserted and therefore would have bumped y

(or, by transitivity, any element o

upying that
ell before y) and taken its pla
e. It then
ould have been

bumped only by a higher-priority element during rearrangements
aused by re
ursive appli
ations of insert-A.

3.2 Proof of history independen
e

We des
ribe a table-
onstru
tion algorithm, insert-B, that is stati
 and
learly history independent, then

show that the table's
on�guration after applying insert-B to fx

1

; x

2

; : : : ; x

n

g is identi
al to that obtained

by repeatedly applying insert-A to the elements of that set, in any order.

insert-B deals with sets of elements at a time. Denote the initial set of elements to be inserted by B

0

and the set of unpla
ed elements at the end of the i-th pass by B

i

. The i-th pass of insert-B, for i � 1,

begins by �nding the next
ell in the probe sequen
e for ea
h element in B

i�1

and provisionally pla
ing the

element there, then
hoosing the highest-priority element at ea
h
ell (inl
uding possibly one pla
ed there in

a previous pass) and a
tually pla
ing it there. There must be a unique highest-priority element at ea
h
ell

be
ause B

i

is �nite and the p

i

de�nes a total order (by de�nition 3.2). Let B

i

be the set of all elements that

were not a
tually pla
ed, or were removed (be
ause a higher-priority element
lashed at the same lo
ation).

This is the end of pass i. This is repeated for i = 1; 2; : : : until all elements have been pla
ed in the table

(i.e. until jB

i

j = 0). We keep a re
ord of how far along its probe sequen
e ea
h element has rea
hed, so that

an element that is pla
ed for a few passes and then moved again
an be moved
orre
tly into the next
ell

in its probe sequen
e.

Be
ause an element may be pla
ed in one pass of insert-B and then pushed out later, it may be that the

elements in B

i

have not all rea
hed the same distan
e along their probe sequen
es. However, for one priority

fun
tion des
ribed later, an element on
e pla
ed is never moved again and all elements in B

i

are up to the

i+ 1-th element of their probe sequen
e.

Theorem 1 Given a set of n input values B

0

= fx

1

; x

2

; : : : ; x

n

g and a
orresponding set of probe fun
tions

P = fh

1

; h

2

; : : : g, the hash table
on�guration of insert-B(B

0

) is equal to the
on�guration that results from

using insert-A to insert the same n elements in any order.

5

Proof: For any element x

i

2 B

0

, x

i

is moved no further along its probe sequen
e by algorithm insert-B than

it is by the n appli
ations of insert-A. The proof is by indu
tion on the rounds of insert-B. Any element x

in B

k

must, in the k-th round, have
lashed at some
ell j with a higher-priority element y. By indu
tion

x and y must both rea
h
ell j during repeated exe
ution of insert-A, so x will be moved another step by

insert-A also.

Conversely, any element x

i

2 B

0

is moved no further along its probe sequen
e by the n appli
ations of

insert-A than it is by insert-B. Proof by indu
tion: let x be the �rst element whi
h, during insert-A, is moved

further along its probe sequen
e than it was during insert-B. Suppose at the end of insert-B, x is lo
ated in

ell h

i

(x) and
onsider when it is moved to h

i+1

(x) in insert-A. Then there must be some element y in
ell

h

i

(x) with higher priority there than x. But sin
e x rea
hed h

i

(x) during insert-B and remained there, y

must not have rea
hed this
ell during insert-B|if it had, it would have
aused x to move or been repla
ed

by a higher-priority element z whi
h, by transitivity of p

h

i

(x)

, would have moved x also. Therefore x is not

the �rst element to be moved further along its probe sequen
e than it was during insert-B.

Therefore every element in B

0

rea
hes the same
ell at the end of insert-B as it does after the n
alls to

insert-A. }

Corollary 2 For any
hoi
e of priority fun
tion (satisfying de�nition 3.2), the hash table
on�guration

produ
ed after using insert-A is independent of the order of insertion of the elements. The s
heme is strongly

history independent.

3.3 Choi
e of priorities and hash fun
tions

In order to
ompletely spe
ify a s
heme in our framework we must des
ribe (i) how the fun
tions h

1

; h

2

; : : :

for the probe sequen
e are
hosen (ii) What priority rules are used.

The following de�nition is slightly non standard in that it emphasizes the properties we need

De�nition 3.3 A family H = fh : U 7! f0 : : :N � 1gg of hash fun
tions is �-almost pairwise independent

if (i) for all x 2 U and random h 2

R

H we have that h(x) is uniformly distributed in f0 : : :N � 1g (ii) for

all x

1

; x

2

2 U su
h that x

1

6= x

2

and for a random h 2

R

H we have Pr[h(x

1

) = h(x

2

)℄ � 1=N + �.

In order to get good run time analysis we propose
hoosing ea
h h

i

independently from the previous

h

1

; h

2

; : : : h

i�1

and from an �-almost pair-wise independent family. In more detail, use hash fun
tions of the

form: h

i

(x) = (a

i

x mod U + b

i

) mod N , where a

i

2

R

U and b

i

2

R

f0; : : : ; N � 1g are randomly
hosen and

U is a prime. This produ
es an �-almost pair-wise independent family with � � N=U .

There is nothing in the
hoi
e of hash fun
tions that guarantees that we will not
y
le on a given

element. However we employ the following strategy: we
hoose O(log n) hash fun
tions and then resort to

linear probing. For all Æ > 0, the probability of an element needing more than O(log

n

Æ

) probes is less than

Æ (see se
tion 3.4), so we use linear probing with negligible probability.

We now present some examples of priority fun
tions. Our analysis in Se
tion 3.4 is based upon youth-

rules.

global A single priority fun
tion independent of
ell. For all
ells i, let p(i; x; y) = p

0

(x; y) for some p

0

produ
ing a total order. We re
ommend
hoosing p

0

from a pairwise independent family.

youth-rules Call an element \younger" if it has moved less far along its probe sequen
e and give \younger"

elements higher priority. Assume some total order �

t

for breaking ties. More pre
isely, let age(i; x) =

minfjjh

j

(x) = ig and

p(i; x; y) =

8

>

>

<

>

>

:

True if age(i; x) < age(i; y)

True if age(i; x) = age(i; y)

and x �

t

y

False otherwise

age-rules The opposite of youth-rules.

random Choose a random order of the elements at ea
h node. Equivalently,
hoose a random winner in

the
ase of ea
h
lash, subje
t to the total order
onstraints.

6

One advantage of global is that it
an be used to manipulate the sear
h times of elements | elements

with higher priority are likely to travel less far along their probe sequen
es and hen
e have a shorter su

essful

sear
h time than those with lower priority. It is shown in [1℄ to be very eÆ
ient. If we use age-rules then

most elements are likely to be about the same distan
e along their probe sequen
e, and
onsequently take

about the same time to sear
h for. By
ontrast, youth-rules tends to in
rease the spread of probe distan
es.

In the next se
tion we will analyze insertion and sear
h times for youth-rules.

3.4 Running time analysis

If we had a set of independent and random hash fun
tions then our algorithm would perform during the

insertions as well as \traditional" uniform hashing: we analyze algorithm insert-B (see below); there it is
lear

that ea
h hash fun
tion is evaluated on a given point only on
e and hen
e does not \loose" its randomness.

In
ontrast to the
omplete independen
e of ea
h hash fun
tion needed for this argument, we require only

almost pairwise independen
e from ea
h of the hash fun
tions in the following analysis.

Let h

1

; h

2

; : : : be
hosen from an �-almost pairwise independent family where � � 1=N(N �1) and let the

priority fun
tion be youth-rules. We now show that the amortized per operation expe
ted running time

for any sequen
e of insertion, su

essful sear
h and unsu

essful sear
h is at most

1

1��

. The expe
tations

are over the
hoi
e of the hash fun
tions. We
al
ulate the expe
ted running time of insert-A by analyzing

insert-B. Our analysis relies on the following observation about the relationship between them:

Remark 3.1 Every time an element x is unpla
ed at the beginning of a pass in insert-B
orresponds to

x making one move along its probe sequen
e at some time during insert-A. (This move may be during the

insertion of x or during the insertion of some other element that displa
es it.) Hen
e the total number of

steps taken by all elements during insert-A is equal to

P

1

i=0

jB

i

j.

To analyze insert-B, let �

i

= jB

i

j=N , so �

i

N is the number of unpla
ed elements at the end of pass i in

insert-B. Sin
e jB

0

j = n, we have �

0

= �. Then the average number of steps for ea
h insertion of one element

is

1

n

P

1

i=0

�

i

N . The signi�
an
e of using youth-rules is that all elements in B

i

are up to the (i + 1)-th

element in their probe sequen
e. We will show that in this
ase �

i

de
reases qui
kly as a fun
tion of i, so

that

P

1

i=0

�

i

is O(1).

Lemma 3 For all i � 0, if �

i

N is the number of unpla
ed elements at the end of pass i in insert-B, then

E(�

i+1

) � ��

i

.

Proof: The advantage of using youth-rules is that all members of B

i

are applying the same fun
tion h

i+1

at this stage and this fun
tion is independent of B

i

and the lo
ations that have been settled so far. We

will
ompute a lower bound on the expe
ted number of members of B

i

that are pla
ed into empty
ells in

the table during pass i+ 1. For ea
h
ell j in the table that is uno

upied at the beginning of the i+ 1-th

pass, the probability that it is o

upied at the end of the pass is Pr[[

x2B

i

A

x;j

℄ where A

x;j

is the event that

h

i+1

(x) = j. By the in
lusion-ex
lusion prin
iple and the pair-wise independen
e of h

i+1

, this is at least

X

x2B

i

Pr[A

x;j

℄�

X

x; x

0

2 B

i

x < x

0

Pr[A

x;j

^A

x

0

;j

℄

�

�

i

N

N

�

�

�

i

N

2

�

1

N

(

1

N

+ �)

� �

i

� �

2

i

=2 whenever � � 1=N(N � 1)

Sin
e there are (1� �+ �

i

)N su
h empty
ells j, the total
ontribution is at least

(1� �+ �

i

)(�

i

� �

2

i

=2)N

= [(1� �)�

i

+ �

i

(�

i

� �

2

i

=2)� (1� �)�

2

i

=2℄N

� [(1� �)�

i

+ �

i

(�

i

� �

2

i

=2� �

i

=2)℄N

� (1� �)�

i

N

and we
on
lude that E[�

i

� �

i+1

℄ � (1� �)�

i

}

7

Corollary 4 The expe
ted number of unsettled elements �

i

N de
reases exponentially in i. More pre
isely,

E(�

i

) = �

i+1

Proof: We know that �

0

= � and that E[�

i+1

j�

i

=
℄ � �
. Therefore E[�

i+1

℄ � �E[�

i

℄ and the
orollary

follows by indu
tion. }

De�nition 3.4 De�ne the probe-time of an algorithm to be the number of probes required by that algorithm.

Note that in many appli
ations the probe time dominates other
omputation su
h as the hash fun
tions,

but to implement youth-rules it is ne
essary when
onsidering displa
ing element x from
ell j to �nd the

least i su
h that h

i

(x) = j. It is possible to show that the additional work required is also a
onstant.

Theorem 5 For any sequen
e of insertions the expe
ted amortized insertion probe-time for an element is

1

1��

Proof: This follows from
orollary 4 and remark 3.1, whi
h implies that the amortized insertion probe-time

is

1

n

P

1

i=0

�

i

. }

Theorem 6 For any element x 2 U and any set S, the expe
ted probe-time for su

essful or unsu

essful

sear
h is

1

1��

.

Proof: The
ases x 2 S and x 62 S are identi
al. Assuming the sear
h rea
hes step i, it stops at that step

if h

i

(x) does not
lash with any of the settled lo
ations or any of the elements in B

i

in pass i of insert-B.

(This is not an only if
ondition.) The �rst happens with probability � � �

i

, the se
ond with probability

at most �

i

, so one of the two happens with probability at most �. Therefore the
han
es of stopping are at

least 1� � and from the independen
e of the hash fun
tions from ea
h other the pro
ess is dominated by a

geometri
 distribution and the expe
ted time to stop is at most 1=(1� �). }

The number of hash fun
tions required: There is a neglibible probability of needing more than

O(log n) hash fun
tions sin
e the probability that any parti
ular element will need more is negligible. To

see this, let E

i

x

be the event that element x is still unpla
ed at the end of round i of insert-B. Then for all

x;Pr[E

i

x

jE

i�1

x

℄ � � be
ause when
ondu
ting round i, at most �N
ells may be o

upied by other elements.

Hen
e for all x 2 B

0

and i � 0, Pr[E

i

x

℄ � �

i

, so the probability that there is an element requiring more than

i hash fun
tions is:

Pr[9x 2 B

0

; E

i

x

℄ = Pr[

[

x2B

0

E

i

x

℄ �

X

x2B

0

Pr[E

i

x

℄ � n�

i

For any real Æ > 0, the probability of needing more than log

1=�

n

Æ

is less than Æ, be
ause if l > log

1=�

n

Æ

then

Pr[9x 2 B

0

; E

l

x

℄ < n�

log

1=�

n

Æ

= Æ

In general our analysis in this se
tion was pessimisti
 and it is probably possible to show better dependen
y

on �. See for example Yao's bound on retrieval time for open addressing s
hemes ([18℄). We have

implemented our hash table using a variety of di�erent priority fun
tions and found that the performan
e

varies with di�erent priority fun
tions, but that most give an average insertion and sear
h time of O(log

1

1��

).

4 Memory management

Data stru
tures
ontaining pointers are more diÆ
ult to make history independent than those without

pointers, sin
e the way in whi
h memory was allo
ated to the data stru
ture's parts may reveal something

about the order in whi
h they were
reated.

In this se
tion we des
ribe an algorithm that will make the memory allo
ation of parts of a data stru
ture

history independent. This is ne
essary be
ause memory allo
ation of a data stru
ture's parts may reveal

information about its history, even if the data stru
ture is
arefully designed so that the stru
ture itself

(in
luding pointers, array orders et
.) is history independent apart from memory allo
ation. If the data

8

stru
ture is history independent when ignoring memory allo
ation and regarding it as a dire
ted graph

where two nodes are
onne
ted if one has a pointer to the other, then the same data stru
ture using our

memory allo
ation algorithm will be history independent. We require only that the data stru
ture has

bounded indegree. This is ne
essary be
ause the algorithm sometimes moves previously stored re
ords, so

it is ne
essary to update all pointers pointing to a parti
ular re
ord.

We �rst dis
uss a simple memory allo
ation algorithm for �xed size re
ords. Making the algorithm history

independent at most doubles the time for insertion and deletion of re
ords. We then generalize this algorithm

to re
ords of any size and prove that the worst-
ase
ost is O(s log s) per deletion and insertion, where s

is the size of the re
ord being inserted or deleted. The generalized form allows us to implement history

independent dynami
 perfe
t hashing, relying upon 4-wise independen
e of the hash fun
tions involved. In

this
ase, the expe
ted amortized
ost is O(1) per deletion or insertion and the probe-
ost of sear
h is always

2.

We view memory as a large one-dimensional array whi
h may be extended (by allo
ation) at one end

only.

4.1 Fixed size re
ords

Suppose we re
eive a sequen
e of requests, ea
h of whi
h is a request either to allo
ate new storage or to free

a spa
e previously allo
ated. It is not known a priori how many re
ords will be required, though we do have

an upper bound, sin
e there is only a �xed maximum amount of memory available. History independen
e

requires that, given a \dump" of the memory at any point after an insertion or deletion, it is impossible for

an adversary to determine anything about the order the elements were inserted in or whether any have been

deleted.

Let t be the table in whi
h the re
ords are allo
ated and let k be the number of re
ords
urrently allo
ated,

i.e. the number inserted but not deleted. Whenever an update is not in progress, all k elements are stored

in the �rst k
ells of t and their order is random. All other memory is set to zero. Insertion and deletion are

arried out as follows:

Insert: To insert re
ord r

1

,
hoose a number l 2

R

f0; : : : ; kg at random. If l = k then insert r

1

at t[k℄.

If l < k, insert r

1

at t[l℄ and move the element previously lo
ated at t[l℄ to t[k℄. In
rement k by one.

Delete: To delete the re
ord at lo
ation t[i℄, overwrite t[i℄ with the re
ord in t[k℄, zero t[k℄ and de
rement

k by one.

History independen
e relies on the following lemmas:

Lemma 7 (Insertion preserves randomness) If � is a random permutation of f0, 1,. . . ,k-2g, then the

permutation �

0

obtained by
hoosing l 2 f0; : : : ; k � 1g uniformly at random and taking

�

0

(i) =

8

<

:

k � 1 if i = l

�(l) if i = k � 1 > l

�(i) otherwise

for i 2 f0; : : : ; k � 1g, is a random permutation of f0; 1; : : : ; k � 1g.

Lemma 8 (Deletion preserves randomness) If �

2

is a random permutation of f0, 1,. . . ,k-1g, then the

permutation �

00

obtained by
hoosing any l

0

2 0; : : : ; k � 1 and taking

�

00

(i) =

�

�

2

(k � 1) if i = l

0

� k � 2

�

2

(i) otherwise

for i 2 f0; : : : ; k � 2g, is a random permutation of f0; 1; : : : ; k � 2g.

Theorem 9 After any sequen
e of insert or delete operations, the memory representation is history inde-

pendent and the spa
e used is equal to the total size of re
ords
urrently allo
ated.

Proof: To prove history independen
e, it suÆ
es to show that after any sequen
e of insert or delete requests,

the order of re
ords in memory is a random permutation of their insertion order. This follows by indu
tion

from lemmas 7 and 8. }

9

Making pointer-based data stru
tures history-independent: Using this method, we
an make

the memory map of any bounded-indegree, �xed-size re
ord data stru
ture history independent, provided

that the shape of the original data stru
ture is history independent. This is the
ase with Mi

ian
io's trees

[13℄ as well as with treaps [15℄ (as was noted in [15℄, on
e the priority fun
tion is �xed and di�erent for all

values then the treap of a set of values is unique). The only deli
ate part is to ensure that when a re
ord is

moved (during the insertion or deletion of another re
ord), all pointers pointing to that re
ord are updated.

Under the assumption of bounded indegree, this update takes
onstant time. It
an easily be implemented

using doubly-linked pointers. Also, during insertion or deletion, at most one other element (whi
h has the

same size) is moved. Hen
e the insertion or deletion of any element takes time O(s) where s is its size. When

the original stru
ture is a tree we
an skip the doubly linked pointers, sin
e there is only one node leading

to any given node and we have a

ess to it via the sear
h.

4.2 Variable Re
ord Size

Most data stru
tures use re
ords of a variety of di�erent sizes. The algorithm des
ribed above does not

work for re
ords of variable sizes be
ause we
an no longer guarantee that insertion or deletion runs in time

proportional to the re
ord's size.

The main idea of this se
tion is to use a separate table for ea
h range of re
ord sizes, ea
h of whi
h

behaves like the �xed-size re
ord tables des
ribed above. Inserting or deleting elements into or from one

table may require rearranging other tables. In the worst
ase, insertion into or deletion from this stru
ture

an take O(s log s) where s is the size of the re
ord being inserted or deleted.

The master table t is
omposed of a number of smaller tables t

n

; t

n�1

; : : : ; t

0

, stored
ontiguously in that

order. Table t

i

stores re
ords with size greater than b2

i�1

 and less than or equal to 2

i

, with ea
h re
ord

padded up to size 2

i

. We assume that we
an allo
ate new memory after the end of t

0

, but not before the

beginning of t

n

. If we need to insert an element into a table t

i

with no spare spa
e, we �rst rearrange the

other tables so as to add one more spa
e of size 2

i

to t

i

, then do �xed-size insertion; for deletion we �rst do

�xed-size deletion then rearrange the other tables. The rearrangement works as follows:

adding spa
e pre-insertion: Let jt

i

j denote the total size of t

i

, i.e. jt

i

j = 2

i

�(number of re
ords in t

i

)

and s the size of the re
ord to be inserted. Then we need to make spa
e of size s

0

= 2

dlog

2

se

in table t

dlog

2

se

.

Begin by allo
ating spa
e of size s

0

immediately after t

0

. Working from t

0

to t

dlog

2

se�1

, (\right" to \left"),

do the following: for ea
h table t

i

, if jt

i

j � s

0

, move all of t

i

into the rightmost blo
ks in the
urrent spa
e.

If jt

i

j > s

0

, move the �rst s

0

=2

i

re
ords in t

i

into the
urrent spa
e, whi
h they exa
tly �ll.

removing spa
e post-deletion: This is very similar to adding spa
e, ex
ept that we shift blo
ks to

the left, working from table t

dlog

2

se�1

to table t

0

.

Theorem 10 The running time for insertion or deletion is at most s

0

log

2

s

0

= O(s log s) where s is the size

of the element to be inserted or deleted. The memory used is at most 2s.

To prove history independen
e taking into a

ount the rearrangement of tables, we use the following

lemma.

Lemma 11 (Rearrangement preserves randomness) If �

3

is a random permutation of f0, 1,. . . ,k-1g,

then the permutation �

000

m

obtained by letting

�

000

m

(i) =

�

�

3

(i+m) if i � k �m� 1

�

3

(i� k +m) otherwise

for i 2 f0; : : : ; k � 1g, is a random permutation of f0, 1,. . . ,k-1g.

Theorem 12 At any time after an insert or delete operation, the order of re
ords in memory is history

independent.

10

4.3 Appli
ation: Dynami
 Perfe
t Hashing

In this se
tion we use history independent memory allo
ation to
onstru
t an eÆ
ient method for dynami

perfe
t hash fun
tions. Re
all that for a set S � f1; : : : ;mg a perfe
t hash fun
tion is a mapping of f1; : : : ;mg

onto f1; : : : ; ng whi
h is 1-1 on S. We are given a set of n elements out of f1; : : : ;mg and the goal is to build a

perfe
t hash fun
tion from f1; : : : ;mg to a range whi
h is O(n) with the properties of su

in
t representation,

eÆ
ient evaluation and eÆ
ient
onstru
tion.

Current implementations of dynami
 perfe
t hashing are not history independent be
ause they use non

history independent memory allo
ation, whi
h we repla
e with our s
heme from se
tion 4.2. They also do

not erase elements as soon as they are deleted, instead tagging them and only erasing during rehashing.

There is another, more subtle, way in whi
h
urrent implementations of dynami
 perfe
t hashing violate

history independen
e. To see the problem in the abstra
t, suppose we have a set of states �, a set of obje
ts

H and a fun
tion G : ��H ! f0; 1g. For ea
h � 2 �, we
hoose an obje
t h

�

in H

�

= fh 2 H jG(�; h) = 1g.

In our hashing s
heme, � will be the set of possible
ontents of the hash table, H a set of hash fun
tions, and

G a predi
ate that de
ides whether a given h 2 H is \good" for a given � 2 �. Suppose that when moving

from state � to state �

0

we only
hange h when ne
essary. That is, we
he
k whether G(�

0

; h

�

) = 1 and, if

it is, assign h

�

0

to h

�

and otherwise
hoose h

�

0

uniformly at random from H

�

0

. Then the data stru
ture will

not in general be history independent sin
e h

�

0

is biased towards H

�

\H

�

0

and so h

�

0

and �

0

together yield

information about �. We will refer to this as the interse
tion-bias problem.

Outline of the FKS s
heme: Our s
heme has the same stru
ture as the famed Fredman, Koml�os and

Szemer�edi [7℄ s
heme whi
h we now review: The FKS s
heme
onsists of two levels. The top-level fun
tion,

denoted by h, maps the elements of f1; : : : ;mg into a range of size O(n); all the elements that were sent to

the same lo
ation i are further hashed using a lower-level hash fun
tion h

i

. The lower-level hash fun
tion h

i

should be 1-1 on the subset that was hashed to lo
ation i by h. For every i in the range of h we allo
ate as

mu
h spa
e as the range of h

i

whi
h we denote by r

i

. The perfe
t hash fun
tion is now de�ned as follows:

if x 2 f1; : : : ;mg is mapped to i by h, then the s
heme maps x to h

i

(x) +

X

1�j<i

r

j

. The size of the range is

therefore

P

i

r

i

.

Let S

i

(h) = fxjx 2 S and h(x) = ig and s

i

(h) = jS

i

(h)j, i.e. s

i

= s

i

(h) denotes the number of elements

mapped to i. The property we require h to satisfy is that

P

n

i=1

�

s

i

(h)

2

�

should be O(n). The size of the range

of h

i

will be O(

�

s

i

2

�

). The fun
tions suggested by [7℄ for both levels were of the form (k � x mod p) mod r

where p is an appropriate prime, r is n for the top level and s

2

i

for the lower level.

The FKS s
heme was made dynami
 in [5℄ who showed that
hoosing the �rst level hash fun
tion as

well as the se
ond level ones
an be done \on the
y" and in the
ase that they are not appropriate (i.e.

P

n

i=1

�

s

i

(h)

2

�

is not O(n) or h

i

is not 1-1 on s

i

(h)) then new ones are
hosen and rehashing is done. The

amortized work is O(1) per operation (sear
h is always O(1) in the worst
ase).

Des
ription of the new s
heme: Our s
heme is very similar to that des
ribed in [5℄; the main di�eren
es

are:

Top-level hash fun
tions: We use a 4-wise independent fun
tion for the top level hash fun
tion h (rather

than a pair-wise one). This
an be realized using a random degree 3 polynomial mod p.

Memory allo
ation: When we allo
ate spa
e for the range of h

j

, we do so using the memory allo
ation

algorithm des
ribed in se
tion 4.2. Ea
h spa
e of size s

2

j

is regarded as one re
ord in table t

dlog

2

s

2

j

e

. If the

re
ord be
omes too big or too small to be in this table, it is deleted and a
orresponding re
ord is inserted

into the appropriate table. We will show that most s

i

are small, so only O(jSj) spa
e is used even though

the size of ea
h bu
ket is squared. We keep a top-level table with one entry for ea
h element in the range of

h,
ontaining a pointer from that element to the re
ord in the master table. This is used for insertion and

sear
h for elements of S, and is updated when re
ords are deleted and re-inserted elsewhere.

Erase upon deletion: When a new hash fun
tion h

i

is
hosen then all mappings done by the previous h

i

are erased. Whenever an element is deleted it is erased.

Low-level interse
tion bias: We
hoose a new h

i

every time an element x with h(x) = i is deleted.

This defeats the interse
tion-bias problem for the low-level hash fun
tions. If an element x is inserted then

fh

i

jh

i

perfe
t on S

i

g � fh

i

jh

i

perfe
t on S

i

[fxgg, so the bias does not
ause a problem | we always use

an h

i

in the interse
tion of the two sets.

11

Top-level interse
tion-bias: Solving the interse
tion-bias problem for the top-level hash fun
tion h is more

ompli
ated be
ause it is too expensive to rehash upon every deletion. At the beginning of the algorithm

we generate two di�erent possible top-level hash fun
tions �

1

and �

2

. We
all a top-level hash fun
tion

h \good" for set S if

P

jSj

i=1

�

s

i

(h)

2

�

< 2jSj. We will maintain the
ondition that the
urrent top-level hash

fun
tion is

h = �

^

j

where

^

j = minfjj�

j

is \good" for Sg (1)

If h = �

1

then this is
learly satis�ed. If h = �

2

then for �

1

we still maintain an \alternative" top-level

table with one entry for ea
h element in the range of �

1

. The i-th entry
ontains the number s

i

(�

1

). This

is updated every time an insertion or deletion is performed. Every time an element is deleted, we use this

top-level table to
he
k whether �

1

is \good" for S. If it is, we set h to �

1

(thus satisfying
ondition 1),

otherwise we retain the
urrent h, whi
h must still satisfy the
ondition. We will ensure that the size of ea
h

top-level table is O(jSj). When we insert, if h = �

1

and is no longer \good" but �

2

is, we assign h to �

2

and rehash. If neither �

1

nor �

2

is \good" for S, we sele
t a new h at every deletion until we rea
h an S for

whi
h either �

1

or �

2

is \good". This is very expensive, so we wish to ensure that it happens with very low

probability.

Top-level rehashes due to size: As S grows and shrinks, it will probably be
ome ne
essary to re-
hoose

the top-level hash fun
tion, h, so that the size o

upied by the master tables and the top-level tables remains

O(jSj). One way to do this would be to rehash as jSj rea
hes powers of two, be
ause then on random

insertions and deletions we would expe
t to have to do only O(1) work per operation to rehash. However,

this is sus
eptible to an adversary inserting 2

i

elements, then deleting and reinserting one repeatedly,
ausing

us to rehash on every operation. Our solution is to
hoose a se
ret random number �

i

in ea
h interval

l

i

= f2

i

; : : : ; 2

i+1

� 1g (for i larger than some arbitrary starting value) to use as the rehashing point.

Whenever jSj rea
hes �

i

via an insertion, or rea
hes �

i+1

� 1 via a deletion, we rehash, re
reating all the

top-level tables and giving them size �

i+1

. Ea
h �

i

is independent of the others. If n
urrently falls in the

interval l

i

then we store �

i�1

; �

i

and �

i+1

. In parti
ular we erase any �

k

for k > i + 1 be
ause this would

reveal that n has previously attained a higher value and so would violate history independen
e. This s
heme

defeats the deleting and reinserting atta
k be
ause an adversary who does not know the �

i

is unlikely to be

able to guess them.

4

Theorem 13 This hash table is history independent

Proof: The hash table's state is determined by S, the top-level hash fun
tions, the low-level hash fun
tions,

the se
ret random numbers f�

1

; : : :g and the arrangement of the S

i

in memory, so it suÆ
es to show that

these are history independent.

No information is revealed by f�

1

; : : :g be
ause they are
hosen uniformily from a �xed range and �

i

is

erased as soon as jSj be
omes small enough that its existen
e would reveal anything.

Consider the top-level hash fun
tions. At any time we have two fun
tions �

1

and �

2

hosen at random

in a way independent of S, and possibly a third fun
tion h
hosen uniformly at random from the set of

fun
tions \good" for S. Likewise, ea
h low-level hash fun
tion h

i

is
hosen uniformly at random from the

set of fun
tions perfe
t on S

i

.

The method of memory allo
ation does not a�e
t the other variables, and we maintain no information

in the hash table that reveals previous memory allo
ations. Hen
e by theorem 12, the order of re
ords is

history independent. }

We will prove that the expe
ted (over the
hoi
e of hash fun
tions)
ost of an insertion or deletion of an

element in this s
heme is O(1) and that the spa
e o

upied by the table is O(jSj).

Lemma 14 The total spa
e required for the hash table is O(jSj). Sear
h, su

essful or not, is always O(1).

Lemma 15 The expe
ted time required for ea
h top-level rehash is O(jSj).

4

However, an adversary with a

ess to timing information
an still perform this atta
k, by waiting until it �nds an insertion

that takes a long time|see [11℄ for a des
ription of related atta
ks.

12

Proof: If ne
essary, a new h satisfying

P

jSj

i=1

�

s

i

2

�

< k

1

jSj
an be found in O(jSj) time as in [5℄.

Choosing h

i

takes expe
ted time s

i

be
ause ea
h has a range of s

2

i

, so there is a
onstant probability over

hoi
es of h

i

that there will be no
ollisions.

Erasing the old hash table takes time O(jSj) be
ause the total spa
e o

upied by it is O(jSj). }

Lemma 16 For any S, the probability that a randomly
hosen top-level hash fun
tion h is \good" for S is

at least 1� 1=jSj.

Proof: Let S = fx

1

; : : : x

n

g and letX

(i;j)

be the event that h(x

i

) = h(x

j

). Then

P

jSj

i=1

�

s

i

(h)

2

�

=

X

(i;j):i<j

X

(i;j)

sin
e both
ount the total number of
ollisions. The

�

n

2

�

random variables X

(i;j)

are pairwise indpendent

be
ause h is 4-wise independent. Ea
h X

(i;j)

has probability 1=n. Hen
e the expe
tation and varian
e of

X

(i;j):i<j

X

(i;j)

are linear in n and so by Cheby
he�'s inequality we
an show that

Pr

2

4

jSj

X

i=1

�

s

i

(h)

2

�

< 2jSj

3

5

� 1=n

}

Lemma 17 Performing a top-level rehash whenever h = �

1

is no longer \good" for the
urrent set jSj takes

expe
ted amortized time O(1) per insertion or deletion.

Lemma 18 Performing a top-level rehash at every operation in the
ase that neither �

1

nor �

2

is \good"

for S
osts expe
ted amortized time O(1) per insertion or deletion.

Lemma 19 The expe
ted amortized time spent on top-level rehashing due to jSj rea
hing any of the �

i

from

below (or
rossing from above) is O(1) per insertion and deletion.

Proof:

We will prove that for a given sequen
e of insertions and deletions f

1

; : : : ;

^

j

g, the total expe
ted work

(over
hoi
es of the �

i

) is O(

^

j).

For ea
h j �

^

j, let n

j

be the size of S after exe
uting operation

j

. Let L

i

= f

j

j

j

is an insertion and n

j

2

l

i

g [f

j

j

j

is a deletion and n

j

2 (l

i

[f2

i

� 1g) n f2

i+1

� 1gg. These are all the operations that
ould
ause

a top-level rehash due to �

i

. Sin
e the probability of �

i

taking any parti
ular value in the interval l

i

is 1=2

i

and sin
e by lemma 15, one top-level rehash by an operation in this set takes time at most O(2

i+1

), the

expe
ted total work due to top-level rehashing
aused by operations in L

i

is O(L

i

). Sin
e the �

i

are
hosen

independently, we
an sum over i to prove the lemma. }

One di�eren
e between our s
heme and that in [5℄ is that when s

i

grows and is allo
ated a larger blo
k

we need to perform more work to assure history independen
e. In order to prove that this results in expe
ted

O(1) work per operation we need the following:

Lemma 20 For any set S � f1; : : :mg of n elements and any element x 2 S, if h is 4-wise independent

and
 = s

h(x)

is the number of elements
olliding at h(x) we have that E[

2

log
℄ is O(1).

Proof: We know that for any S and x 2 S and fun
tion h we have

2

log
 �

3

� 2 � 3! �

�

3

�

+O(1)

� 2 � 3! �

X

x

1

; x

2

; x

3

2 S

jfx; x

1

; x

2

; x

3

gj = 4

Æ(h(x); h(x

1

); h(x

2

); h(x

3

)) +O(1)

13

where Æ(h(x); h(x

1

); h(x

2

); h(x

3

)) = 1 i� all 4 values are equal and 0 otherwise and where the O(1) term is

to handle the
ase that
 is smaller than 3. Letting p = Pr[h(x) = h(x

1

) = h(x

2

) = h(x

3

)℄, it follows that

E[

2

log
℄ � 2 � 3! �

X

x

1

; x

2

; x

3

2 S

jfx; x

1

; x

2

; x

3

gj = 4

p+O(1) = 2 � 3!

�

n

3

�

n

3

+O(1)

whi
h is O(1). The equality follows from the 4-wise independen
e of h. }

Theorem 21 The amortized expe
ted time taken to insert or delete an element is O(1).

Proof: We have already
onsidered top-level rehashing in lemmas 17{19. We now prove the result for an

operation that does not
ause a top-level rehash.

Consider inserting x where h(x) = j. If h

j

is no longer perfe
t on S

j

then we
an re
hoose it and

rehash that re
ord in time O(s

2

j

). If there is not enough room to insert x in the
urrent re
ord, (i.e. if

(s

j

+1)

2

> 2

dlog

2

s

2

j

e

), then that re
ord must be deleted and a new one of size s

0

= 2

dlog

2

(s

j

+1)

2

e

inserted into

table t

dlog

2

(s

j

+1)

2

e

. By Theorem 10, this takes time at most 2s

0

log s

0

so the total work is O(s

2

j

log s

j

) whi
h

by Lemma 20 has expe
ted value O(1). A similar argument holds for deletion, ex
ept that then we always

re
hoose h

j

. Note that moving re
ords happens rarely though the result still holds even if it happens every

time. }

Re
hoosing randomness: Re
hoosing �

1

; �

2

and �

1

; : : : at ea
h step with probability O(1=jSj) would

not violate history independen
e, sin
e their distribution is independent of S. This would be advantageous

be
ause, although it would not signi�
antly
hange the amortized expe
ted work per operation, it would

redu
e the varian
e by breaking the sequen
e of operations up into several independent sequen
es. This

also gives us something somewhat similar to strong history independen
e|as long as the adversary's many

queries are all from periods with di�erent randomness, no information about history is leaked.

5 Open Problems

One of the major problems we have left open is whether it is possible to get a memory allo
ation s
heme (of

variable size) with a low overhead, in parti
ular one that takes advantage of the eÆ
ien
y of storing a �le in

a large blo
k. This may be signi�
ant for �le systems, where even if the �les are en
rypted the positions of

the �les in the disk might leak undesirable information.

Another issue that we have not addressed is that of
lo
king or timing atta
ks | for instan
e if the

adversary knows the time it takes the system to respond to the queries it might dedu
e some information.

This point was raised for performan
e purposes in [4℄ and [11℄. However it is not
lear how to make the

te
hniques history independent.

One interesting theoreti
al question is whether there is a separation between strong and weak history

independen
e. For example, for queues there is an easy implementation with weak history independen
e

|
hoose a random starting point in the array and grow the queue from there using the usual algorithm.

However, we have not been able to devise an equally fast, strongly history independent version. It is

interesting to note that all the strongly history independent data stru
tures we have found have the property

that ea
h data stru
ture
ontent (in the sense de�ned in se
tion 2) has a unique representation. We would

be interested to know whether unique representation is ne
essary for strong history independen
e. It would

also be interesting to �nd a problem for whi
h there is a separation between the standard version and the

history independent one.

Various weakenings of the de�nition of history independen
e may be useful for parti
ular appli
ations.

For example, when
onsidering a
a
he system it is ne
essary to expose some information about the frequen
y

of the di�erent requests (otherwise the
a
he would be
ompletely ine�e
tive). However, we
ould require

that only frequen
y-related information would be released.

It would also be interesting to know whether persisten
e and (
omputational) anti-persisten
e
ould exist

in the same data stru
ture|in this
ase it should be impossible to retrieve any history information ex
ept

with a se
ret key, though ordinary operations
ould be performed without it.

14

Finally there are many data stru
tures for whi
h the issue of history independen
e may be relevant. In

Appendix A we dis
uss union-�nd. The interesting question is whether history independen
e
ontradi
ts

good performan
e for
ertain problems. We have seen that it does not for hashing.

6 A
knowledgements

We would like to thank Ilya Mironov, John Mit
hell and Rasmus Pagh for interesting dis
ussions and useful

feedba
k on our paper.

Referen
es

[1℄ O. Amble and D. Knuth. Ordered hash tables. The Computer Journal, 17(2):135{142, 1974. Reprinted in: D. E.

Knuth, Sele
ted Papers on Analysis of Algorithms, Center for the Study of Language and Information Le
ture

Notes, no. 102, Stanford, 2000.

[2℄ A. Andersson and T. Ottmann. Faster uniquely represented di
tionaries. In Pro
. 32nd IEEE Symp. on Foun-

dations of Computer S
ien
e, pages 642{649, 1991.

[3℄ R. P. Brent. Redu
ing the retrieval time of s
atter storage te
hniques. Comm. of the ACM, 16:105{109, 1973.

[4℄ M. Dietzfelbinger and F. Meyer auf der Heide. A new universal
lass of hash fun
tions and dynami
 hashing in

real time. In International Colloquium on Automata, Languages, and Programming (ICALP), pages 6{19, 1990.

[5℄ M. Dietzfelbinger, A. R. Karlin, K. Mehlhorn, F. M. auf der Heide, H. Rohnert, and R. E. Tarjan. Dynami

perfe
t hashing: Upper and lower bounds. SIAM J. Comput. , 23(4):738{761, 1994.

[6℄ J. R. Dris
oll, N. Sarnak, D. D. Sleator, and R. E. Tarjan. Making data stru
tures persistent. Journal of

Computer and System S
ien
es, 38(1):86{124, 1989.

[7℄ M. L. Fredman, J. Koml�os, and E. Szemer�edi. Storing a sparse table with o(1) worst
ase a

ess time. Journal

of the ACM, 31:538{544, 1984.

[8℄ O. Goldrei
h and R. Ostrovsky. Software prote
tion and simulation on oblivious rams. Journal of the ACM,

43(3):431{473, 1996.

[9℄ L. J. Guibas and E. Szemer�edi. The analysis of double hashing. Journal of Computer and System S
ien
es,

16:226{274, 1978.

[10℄ D. E. Knuth. Sorting and Sear
hing, Volume 3 of The Art of Computer Programming. Addison-Wesley, Reading,

Massa
husetts, se
ond edition, 1998. First edition 1973.

[11℄ R. J. Lipton and J. F. Naughton. Clo
ked adversaries for hashing. Algorithmi
a, 9(3):239{252, 1993.

[12℄ G. S. Lueker and M. Molodowit
h. More analysis of double hashing. Combinatori
a, 13(1):83{96, 1993.

[13℄ D. Mi

ian
io. Oblivious data stru
tures: Appli
ations to
ryptography. In Pro
. 29th ACM Symp. on Theory

of Computing, pages 456{464, 1997.

[14℄ J. P. S
hmidt and A. Siegel. On aspe
ts of universality and performan
e for
losed hashing. In Pro
. 21st ACM

Symp. on Theory of Computing, pages 355{366, 1989.

[15℄ R. Seidel and C. Aragon. Randomized sear
h trees. Algorithmi
a, 16:464{497, 1996.

[16℄ A. Siegel. On universal
lasses of fast high performan
e hash fun
tions, their time-spa
e tradeo�, and their

appli
ations. In Pro
. 30th IEEE Symp. on Foundations of Computer S
ien
e, pages 20{25, 1989.

[17℄ A. Siegel and J. S
hmidt. The analysis of
losed hashing under limited randomness. In Pro
. 22nd ACM Symp.

on Theory of Computing, pages 224{234, 1990.

[18℄ A. C. Yao. Uniform hashing is optimal. Journal of the ACM, 32(3):687{693, 1985.

A History Independent Union-Find

The Union-Find problem requires maintaining a data stru
ture representing a
olle
tion of disjoint dynami

sets. Ea
h set is represented by one of its members. The data stru
ture must support the
reation of a

new set (
ontaining only a spe
i�ed element), the uniting of two sets (Union) and �nding the set
ontaining

15

pro
edure insertA(x; t)

begin

k := 0; /* Index into its probe sequen
e */

/* of the
urrent element */

urr elt := x; /* Element we are
urrently moving */

�nished := false

while(not �nished) do

if t[h

k

(
urr elt)℄ is empty /* Probed
ell is empty. */

/* pla
e x here and halt */

t[h

k

(
urr elt)℄ :=
urr elt;

�nished := true;

else if p(h

k

(
urr elt); t[h

k

(
urr elt)℄;
urr elt)

/* Cell is o

upied by a higher-priority */

/* element, so keep moving x. */

k := k + 1;

else /* Cell is o

upied by a lower-priority element. */

/* Put x here and move the other element*/

swap(t[h

k

(
urr elt)℄;
urr elt)

Find the least k

0

so that h

k

0

(
urr elt) = i.

k := k

0

+ 1;

done

end

Figure 1: Pseudo-
ode for insertA

a spe
i�ed element (Find), where a set is identi�ed by one of its elements. In order to make this history-

independent, we need to ensure that the answers returned are independent of the order in whi
h sets were

reated and united and elements were sear
hed for.

When de�ning Union-Find we must be
areful about the name of the subset returned from the Find, sin
e

we do not want to leak information through this
hannel. We therefore make two proposals. One is to return

the name of the smallest element in the subset. The other is to make Find a query of the form, \Are x and

y in the same subset?"

We now sket
h a history independent implementation of Union-Find at the
ost of O(1) per Find and

expe
ted amortized O(log n)
omputations per Union. The idea is to use two global lookup tables whi
h will

be maintained in a history independent manner, as des
ribed above. In one table for ea
h element x a re
ord

(x; s) is stored, where s is the (
urrent) set to whi
h x belongs. The re
ord is sear
hable by x. (Having

a \sophisti
ated" data stru
ture for this table is redundant, in
ase the set of elements is �xed as 1::n.)

The se
ond table has for ea
h set s and index i � jsj a re
ord (s; i; x) sear
hable by (s; i). The mapping of

members of s to indi
es is random. There is also an entry (s; 0; jsj) to indi
ate how many elements are in s.

The Find operation is trivial: simply look it up in the �rst table. The Union of two sets s

1

and s

2

is done

by taking the smaller set s

1

, �nding all its elements x via the se
ond table and
hanging their entry in the

�rst table to (x; s

2

), then
hanging in the se
ond table the entries of the form (s

1

; i; x) to (s

2

; js

2

j+ i; x) and

then
hoosing for ea
h i a random element j between 1 and js

2

j + i and
ipping the j-th element and the

js

2

j+ i-th element.

The number of modi�
ations in the table is proportional to the size of the smaller set and therefore the

\
lassi
al" analysis yields a total work of O(n logn) insertions and deletions from the lookup table for any

number of Union operations, using the s
heme of se
tion 4.3.

16

