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Abstract

The bounded storage model (BSM) bounds the storage space of an adversary rather than its
running time. It utilizes the public transmission of a long random string R of length r, and
relies on the assumption that an eavesdropper cannot possibly store all of this string. Encryption
schemes in this model achieve the appealing property of everlasting security. In short, this means
that an encrypted message remains secure even if the adversary eventually gains more storage
or gains knowledge of (original) secret keys that may have been used. However, if the honest
parties do not share any private information in advance, then achieving everlasting security
requires high storage capacity from the honest parties (storage of Ω(

√
r), as shown in [10]).

We consider the idea of a hybrid bounded storage model were computational limitations on
the eavesdropper are assumed up until the time that the transmission of R has ended. For
example, can the honest parties run a computationally secure key agreement protocol in order
to agree on a shared private key for the BSM, and thus achieve everlasting security with low
memory requirements? We study the possibility and impossibility of everlasting security in
the hybrid bounded storage model. We start by formally defining the model and everlasting
security for this model. We show the equivalence of two flavors of definitions: indistinguishability
of encryptions and semantic security.

On the negative side, we show that everlasting security with low storage requirements cannot
be achieved by black-box reductions in the hybrid BSM. This serves as a further indication to
the hardness of achieving low storage everlasting security, adding to previous results of this
nature [10, 18]. On the other hand, we show two augmentations of the model that allow for
low storage everlasting security. The first is by adding a random oracle to the model, while the
second bounds the accessibility of the adversary to the broadcast string R. Finally, we show
that in these two modified models, there also exist bounded storage oblivious transfer protocols
with low storage requirements.

1 Introduction

1.1 The bounded storage model

The bounded storage model, introduced by Maurer [21] postulates a bound on the space (memory
size) of dishonest players rather than their running time. The model makes use of a long random
string R of length r that is publicly transmitted and accessible to all parties. One can imagine that
R is broadcast at a very high rate by a trusted party or by some natural source or phenomena.
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Security in this model relies on the assumption that an adversary cannot possibly store all of the
string R in his memory. For instance, consider the case of honest parties Alice and Bob that want
to exchange secret messages in presence of an eavesdropper Charlie. Let the honest parties Alice
and Bob use storage of respective size sA and sB while an eavesdropper Charlie has a bound of sC

on his storage capacity. Typically we ask that security of the encryption holds in a setting where
sA, sB << sC < r. That is, the adversary is allowed to have storage space that is much larger
than that of the honest players, but still smaller than r. In addition there are no computational
restrictions on Charlie.

This model has enjoyed much success for the task of private key encryption. It has been
shown that Alice and Bob who share a short private key can exchange messages secretly using
only very small storage (a key of length O(log r + log 1

ε ) can be used with storage of size sA =
sB = O(` + log r + log 1

ε ) for an ` bit message and ε probability of error). On the other hand an
eavesdropper who can store up to a constant fraction of R (e.g. 1

2r bits) cannot learn anything
about the messages (this was shown initially in [2] and improved in [1, 9, 11, 20] and ultimately
in [27]). These encryption schemes have the important property called everlasting security (put
forward in [1, 9]), where once the broadcast is over and R is no longer accessible then the message
remains secure even if the private key is exposed and Charlie gains stronger storage capabilities.

In contrast, the situation is far from satisfiable when Alice and Bob do not share any secret
information in advance. Cachin and Maurer [4] suggest a method for a key agreement protocol in
the bounded storage model. However, this solution requires Alice and Bob to use storage of size at
least Ω(

√
r) which is quite high and renders this approach far less appealing (if not impractical).

Dziembowski and Maurer [10] subsequently proved that this is the best one can do.

1.2 Everlasting Security and The Hybrid Bounded Storage Model

The inability to achieve everlasting secure encryption in the bounded storage model with memory
requirements smaller than

√
r, has lead to the following appealing suggestion that we call the

hybrid BSM and is the focus of this paper. Let Alice and Bob agree on their secret key using a
computationally secure key agreement protocol (e.g. Diffie-Hellman [6]). The rationale being that
while an unbounded eavesdropper will eventually break the key, this is likely to happen only after
the broadcast had already occurred. In such a case, the knowledge of the shared key would be
useless by that time (this should be expected from the everlasting security property where getting
the shared key after the broadcast has ended is useless).

Somewhat surprisingly, Dziembowski and Maurer [10] showed that this rationale may fail. They
introduce a specific computationally secure key agreement protocol (containing a non-natural mod-
ification based on private information retrieval (PIR) protocols). If this key agreement protocol
is used in the hybrid BSM setting with a specific private key scheme, then the eavesdropper can
completely decrypt the encrypted message. However, their result does not rule out the possibility
that the hybrid idea will work with some other key agreement protocol. For instance, using the
plain Diffie Hellman key agreement may still work.

This hybrid model is very natural as we try to achieve everlasting security by adding limitations
on the adversary that have a strict time limit (expiration date). Assumptions of this sort are
generally very reasonable. For instance, in the key agreement example, all that we require is that
the computational protocol is not broken in the short time period between its execution and the
transmission of R. An assumption such as the Diffie Hellman key agreement [6] cannot be broken
within half an hour, can be made with far greater degree of trust than actually assuming the long
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term security of a computational key agreement protocol.

1.3 This Paper’s Contributions

This paper studies the possibility and impossibility of everlasting security in the hybrid bounded
storage model. Our contributions are as follows:

• We formally define the model and everlasting security for this model.

• On the negative side we show that everlasting security with low storage requirements cannot
be proved by a black-box reduction in the hybrid BSM.

• On the other hand, we show two augmentations of the model that allow for low storage
everlasting security. The first is by adding a random oracle to the model, while the second
bounds the accessibility of the adversary to the broadcast string R.

• Finally, we show that in these two modified models, there also exist oblivious transfer protocols
with low storage requirements.

We elaborate on each of these points:

Defining Everlasting Security in the Hybrid BSM: We give rigorous definitions of the type
of security we are pursuing. We first define what a hybrid BSM encryption scheme is and then
define everlasting security for such a scheme. Following the common practice (stemming from [17]),
we give security definitions by indistinguishability of encryptions and by semantic security. We
then prove that these two definitions are equivalent.

Regarding the Impossibility of Hybrid schemes: We have more than one indication that
proving everlasting security in the hybrid bounded storage model is hard. In fact, it seems quite
plausible that everlasting security is not achievable in this model at all. We survey two results (of
[10] and [18]) that contribute to this point of view and provide additional evidence in the form of
a black-box impossibility result for the general hybrid schemes.

We show a setting (or “world”) in which (general) hybrid schemes with everlasting security do
not exist. However, if computational key agreement protocols exist in the plain model, then they
also exist in this world (this property holds for any computationally secure protocol and not only
for key agreement). Thus, we deduce that there can be no black-box proof of everlasting security,
basing hybrid BSM schemes on the security of any computational primitive. In particular, this
claim rules out the use of computational key agreement protocols via a black-box proof.

Positive Results: We show two modifications of the model that allow for hybrid everlasting
security, with small memory requirements (much smaller than

√
r).

Everlasting Security in the presence of Random Oracles: Suppose that the parties are
given access to a random oracle. A random oracle is a different type of public random string than
the broadcast string R. It is exponentially long and due to its length an efficient algorithm can
only access a small fraction of it. This is unlike the broadcast string R that can be fully accessed
by an efficient algorithm. On the other hand the random oracle alone cannot assure everlasting
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security as it does not eventually disappear and may always be queried at a later stage. We show
that combining these two different types of public random strings (the random oracle and R) is
sufficient for achieving low storage everlasting security. Everlasting security in this setting means,
in particular, that encrypted messages remain secure even if the adversary queries all of the random
oracle entries after the broadcast is over.

There are several interpretations to the above result. If one can assemble a random oracle then
this presents a methodology for low storage everlasting security. For example, such an oracle may
be assembled using natural phenomena (if the broadcast string R can be implemented this way then
why not a random oracle) or using a distributed protocol with partially (and temporarily) trusted
parties, e.g. [23]. The emphasis being that such a random oracle need only be secure up until
the time of the broadcast. One can also view this result, somewhat optimistically, as a suggested
heuristic that achieves everlasting security “for all practical purposes” (when plugging some hash
function instead of the random oracle). On the other hand, in light of the negative results for
the general hybrid BSM model, one can view the above statement as a testament against relying
(blindly) on random oracles to determine whether a task is feasible at all. This is since it shows a
task (everlasting security with low storage requirements) that is achievable with a random oracle
but might be impossible altogether (or at least very hard to achieve) without it. This is a different
statement than previous results regarding random oracles (such as [5, 16, 22]) that show a specific
protocol (rather than a task) that becomes insecure if the random oracle is replaced by a function
with a small representation.

Bounded Accessibility: The Bounded Accessability Model assumes that the adversary cannot
actually read the whole broadcast string R. Rather, the adversary may choose (adaptively) γr
locations of R that he would like to read and access only these bits during the broadcast. This
model was considered by Maurer [21]. The bounded accessibility assumption can be justified, for
example, if the broadcast is at a very high rate, and all the adversary can do during a broadcast
is to read a bit and write it in his memory (that is of size γr). Another example is if the source
consists of a large number of simultaneous transmissions and one can only record a limited number
of sources.

We show that the basic hybrid scheme has everlasting security in this model with memory re-
quirements that are substantially smaller than

√
r. An important observation is that this protocol

would not have been successful in a plain bounded access model (without introducing the compu-
tational limitations on the adversary). This follows since the lower bound of

√
r [10] applies for

this model as well.

On Oblivious Transfer in the Hybrid BSM: We demonstrate that the hybrid BSM in the
two augmented models described above can also achieve oblivious transfer (OT) protocols with
everlasting security using only low storage. This is in contrast to OT in the standard BSM (see for
example [3, 7, 8]) that requires storage of at least Ω(

√
r) as the lower bound for key agreement [10]

applies also for OT. The hybrid scheme is based on the assumption that there exist computationally
secure OT protocols.

Paper Organization: In Section 2 we give rigorous definitions of the hybrid BSM and everlasting
security. The positive results are given in Section 3, while the negative results appear in Section 5.
Section 4 discusses the results for OT.

4



2 Hybrid BSM - Setting and Security Definitions

We consider the task of exchanging secret messages between two parties in the presence of an
eavesdropper. Following is a precise description of what a hybrid BSM encryption scheme consists
of. We consider the honest parties Alice and Bob (A and B) and an eavesdropper Charlie (C). The
parties have storage bounds sA, sB and sC respectively. Charlie is limited to run in polynomial
time up to the end of the broadcast, at which point he must store at most sC bits of information.
After this point, Charlie is not limited in any way. In the general hybrid scheme we do not restrict
Alice and Bob to a specific behavior, but rather allow them to communicate before and after the
broadcast. The first communication is not necessarily a key agreement, (as was suggested in the
introduction) but rather any protocol. The point is that this protocol should take advantage of the
assumption that at this time Charlie is restricted to being a polynomial time algorithm. After the
broadcast the parties may communicate again, though Charlie is no longer bounded.1

Formally, a hybrid scheme consists of the following:

1. Alice and Bob run an interactive protocol whose transcript is denoted by T1 (and is accessible
to Charlie). Alice’s view of this interaction is denoted TA

1 (may also include Alice’s private
coin flips and private data at this stage) and respectively Bob’s view is denoted TB

1 .

2. A long random string R of length r is transmitted.

3. Alice and Bob store information that is no longer than their respective storage bounds and
is efficiently computable from R and their view of T1. Denote their storage algorithms by
SA = SA(TA

1 ,R) and SB = SB(TB
1 ,R) respectively ( with |SA| ≤ sA and |SB| ≤ sB).

4. Alice and Bob run a second round of interaction, whose transcript is denoted T2. Alice’s view
of this interaction is denoted TA

2 (Bob’s view is denoted TB
2 ).

5. Alice has an efficient encryption algorithm E based on SA and TA
2 . The encryption of message

m is denoted by ESA,T A
2

(m). Bob has an efficient decryption algorithm E−1
SB ,T B

2
such that

E−1
SB ,T B

2
(ESA,T A

2
(m)) = m.

The eavesdropper Charlie’s storage capacity is usually taken to be a constant fraction of r, that
is, sC ≤ γ · r (e.g. half of the length of R). The eavesdropper’s behavior is divided into two parts:

• Up until and throughout the broadcast Charlie runs a polynomial time algorithm We call this
the compression algorithm.

• After the broadcast is over Charlie may run any (unbounded in space or time) procedure (the
decompression).

Note that Charlie is a passive adversary, in the sense that he may not intercept or alter the messages
being exchanged (an active adversary cannot be handled in the case that nothing is shared in
advance since man-in-the-middle attacks cannot be avoided).

1We note that this is a description of the most general hybrid scheme we consider, and is used for the impossibility
results in order to rule out as many potential solutions as possible. On the other hand, we would like actual protocols
to be much simpler and in particular, all of our positive results have schemes that have interaction only before the
broadcast.
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The above is a description of the most general hybrid scheme we consider, and is used for the
impossibility results in order to rule out as many potential solutions as possible. On the other
hand, we would like actual protocols to be much simpler and in particular to have interaction only
before the broadcast. In fact, all our positive results have schemes of the following form:

1. Alice and Bob run an interactive protocol whose transcript is denoted by T1.

2. Alice and Bob use their view of T1 to choose a small fraction of R that they want to access.

3. The long random string R is transmitted, and Alice and Bob use the bits they read from R
and their view of T1 in order to compute a key K.

4. Encryption of a message m is done by K ⊕m.

2.1 Everlasting Security of a Hybrid BSM Scheme

We now define everlasting security for general hybrid BSM schemes. We follow the lines of Gold-
wasser and Micali’s seminal paper [17] by giving two equivalent flavors of definitions: indistinguisha-
bility of encryptions and semantic security. We give our definitions with respect to an adversary
Charlie that is a non-uniform polynomial time algorithm throughout the broadcast and an un-
bounded algorithm after it. For consistency with the definitions of [17] (see also [13]), Charlie’s
polynomial time compression algorithm is modelled differently in the two definitions. In the in-
distinguishability definition the compression algorithm is modelled by an ensemble of polynomial
size circuits {Ck}k∈N, as opposed to the semantic security definition, where it is modelled as a
non-uniform polynomial-time TM (receiving non-uniform advice). We say that two distributions
P and Q over Ω are ε-close if for every A ⊆ Ω, |Prx←P (A)− Prx←Q(A)| ≤ ε.

Definition 2.1 (Everlasting Security - Indistinguishability) A hybrid BSM scheme is said
to have (γ, ε)-everlasting security if ∀ polynomial-size circuit family {Ck}, Ck : {0, 1}∗ × {0, 1}r →
{0, 1}γr for all sufficiently large k and for every two messages m0,m1 ∈ {0, 1}k, we have that
{Ck(T1,R), T2, ESA,T A

2
(m0)} is ε-close to {Ck(T1,R), T2, ESA,T A

2
(m1)}. Where the distribution is

taken over the randomness of A,B and the broadcast string R.

Note: Complexity is measured with respect to the security parameter k. Typically r is chosen
to be polynomially related to this parameter, ε is negligible in the security parameter, while γ is
taken to be some constant (e.g. 1

2).
We note that main difference between the above definition and the corresponding definition

in the computational setting of [17] is that here the two distributions are required to be statis-
tically indistinguishable while in the computational case they are required to be computationally
indistinguishable.

A different approach is semantic security, that bounds the ability of an unbounded “decompres-
sion” procedure D to learn anything about the encrypted message m. Charlie is modelled by a
pair of algorithms (C,D), where C is a polynomial time algorithm that receives the encryption of
a message M taken from a probability ensemble {Mk} of k bit messages, along with a non-uniform
polynomial size hint h. The output of C has length at most γr. The algorithm D is unbounded
in space or time and models Charlie after the broadcast is over. The definition states that what-
ever can be computed with the encryption, can be computed essentially as well without seeing the
encrypted message:
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Definition 2.2 (Everlasting Security - Semantic) A hybrid BSM scheme is said to have (γ, ε)-
everlasting security if ∀ boolean function f : {0, 1}k → {0, 1}, polynomial size hint h : {0, 1}k →
{0, 1}∗ and for every PPT C : {0, 1}∗×{0, 1}∗×{0, 1}r → {0, 1}γr and every unbounded procedure
D : {0, 1}γr × {0, 1}∗ → {0, 1} there exist a PPT C ′ : {0, 1}∗ × {0, 1}∗ × {0, 1}r → {0, 1}γr and
an unbounded procedure D′ : {0, 1}γr → {0, 1} such that for every probability ensemble {Mk} on
messages in {0, 1}k, and for all sufficiently large k we have that:

Pr
[
D(C(1k, T1,R, h(Mk)), T2, ESA,T A

2
(Mk)) = f(Mk)

]
< Pr

[
D′(C ′(1k, T1,R, h(Mk)), T2) = f(Mk)

]
+ ε

Where the probability is taken over Mk, the broadcast string R, and the randomness of Alice, Bob
and the algorithm C.

In the corresponding computational definition of [17] only a single efficient algorithm C is discussed,
unlike our definition that partitions the computation into its efficient computation C and unbounded
computation D.

2.2 Equivalence of the Security Definitions

Claim 2.3 A hybrid scheme has everlasting security by indistinguishability of encryptions (defini-
tion 2.1) if and only if it has everlasting semantic security (definition 2.2).

We will sketch the proof of this claim, which follows the path of the proof of equivalence of these
notions in the common setting of probabilistic encryption [17].
Proof Sketch:

Indistinguishability ⇒ Semantic security: The goal is to show that for every pair (C,D)
as in definition 2.2 there exist algorithms (C ′, D′) that do essentially as well without getting the
encrypted message. This is achieved by replacing the algorithm D with an algorithm D′ that first
generates an encryption of the dummy string 1k (this is done by simulating a whole conversation
between Alice and Bob including a fresh broadcast string and encrypting 1k accordingly). Then
D′ executes (C,D) on this dummy encryption (using the hint of the original message from Mk).

Next claim that D′ succeeds in computing f(Mk) as well as D does. To prove this assume
towards a contradiction, that for infinitely many k, the algorithm D performs better than D′ with
a polynomial advantage. For each such k, use an averaging argument over the messages in Mk to
single out one message mk ∈ Mk for which we have the following:

|Pr
[
D(C(1k, T1,R, h(mk)), T2, ESA,T A

2
(mk)) = f(mk)

]
−

Pr
[
D(C(1k, T1,R, h(mk)), T2, ESA,T A

2
(1k)) = f(mk)

]
| > ε

Now define the polynomial-size circuit family {Ck} such that for each k the circuit Ck executes C
with fixed hint h(mk) (this is the non-uniform advice of the circuit). We get that there exists a D,
and family {Ck}, such that for infinitely many k, there exists a message mk such that

|Pr
[
D(Ck(T1,R), T2, ESA,T A

2
(mk)) = 1

]
− Pr

[
D(Ck(T1,R), T2, ESA,T A

2
(1k)) = 1

]
| > ε

contradicting the indistinguishability assumption that {Ck(T1,R), T2, ESA,T A
2

(mk)} is ε-close to
{Ck(T1,R), T2, ESA,T A

2
(1k)}.

7



Semantic security ⇒ Indistinguishability: Suppose for contradiction that there exists a
polynomial-size circuit family {Ck} such that for infinitely many k there exist pairs m0,m1 ∈ {0, 1}k

such that, {Ck(T1,R), T2, ESA,T A
2

(m0)} and {Ck(T1,R), T2, ESA,T A
2

(m1)} are ε-far. This means that
for each such k these probability ensembles may be distinguished with probability at least ε by
some all powerful distinguisher that we denote by D. Define the probability ensemble {Mk} so that
for each k, Mk is uniformly distributed over the two messages {m0,m1}. Define the target function
f to be such that for every k f(m) = 1 iff m = m0. Define the hint h(m) for every m ∈ {0, 1}k to
be the description of the circuit Ck. The algorithm C reads the hint and computes the output of
the circuit Ck. Putting it all together we get that there exist f,h,C and D such that for infinitely
many k:

Pr
[
D((C(T1,R, h(Mk), T2, ESA,T A

2
(Mk)) = f(Mk)

]
>

1
2

+ ε

But since the hint contains no information about Mk (other than the length k), then the input
for any possible C ′, D′ is information theoretically independent from f(Mk) and cannot predict
f(Mk) with probability better than 1

2 . Thus C,D do significantly better than any C ′, D′ which
contradicts the assumption. 2

3 Positive Results

Due to the negative results of Section 5 it seems that proving everlasting security with low storage
requirements is out of our reach at this time (or not possible altogether). We next try to modify
the model itself in ways that will allow for positive results. We provide two modifications of
the standard hybrid model, and prove that under this modifications we can achieve low storage
everlasting security.

3.1 Everlasting Security with a Random Oracle

We show a simple scheme that achieves hybrid everlasting security when given access to a random
oracle. We view a random oracle RO as an exponentially long list of entries that is publicly available
and allows random access. Each entry in the list contains a (relatively short) string of bits. We
start by showing a feasibility result that produces just a one bit key and then describe how this
can be generalized to give an efficient scheme that outputs a longer key. Protocol EncryptRO:

1. Alice and Bob run any computational key agreement (KA) protocol and agree on a key CK
of length k.

2. Alice and Bob access the random oracle at the location CK, the output SK = RO(CK)
consists of k · log r bits. We view these bits as a list of k indices i1, . . . , ik where each ij ∈ [r].2

3. For each j ∈ [k] Alice and bob store the bit R(ij).

4. The output bit K =
⊕

j∈[k]R(ij).

5. The key K is the final key and the encryption of the message m is m⊕K.
2We consider the random oracle RO(·) as an exponentially long array broken into cells where each cell contains

k · log r bits.
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Theorem 3.1 The protocol EncryptRO has (γ, neg(·))-everlasting security.

Proof Sketch: (of Theorem 3.1) First observe that with overwhelming probability the eavesdrop-
per does not query the random oracle at cell CK before the broadcast.

Lemma 3.2 With probability 1− neg(k) the eavesdropper does not query RO at point CK before
the broadcast is over.

Proof: Suppose that the eavesdropper runs an efficient procedure C that queries RO(CK) with
probability 1

p(k) for some polynomial p(·). Then using C one can predict CK with a polynomial
success probability, simply by outputting a random index that C queries in RO. Since C queries
RO at most q(k) times (for some polynomial q(·)), this will succeed with probability 1

p(k)q(k) which
contradicts the security of the key agrement KA. 2

Thus we get that with probability 1 − neg(k) the eavesdropper has no information on which t
locations where stored. In [2] (Theorem 1), it was shown that such an eavesdropper has probability
of at most 1

2 + neg(k) in predicting the key. 2

The above simple scheme demonstrates that everlasting security can be achieved by when a
random oracle is available. However, it is not efficient in the sense that the number of bits read
from the random oracle is far larger than the actual key. This may be greatly improved by using
one of the known schemes for private key encryption in the regular (non-hybrid) bounded storage
model, such as the scheme in [20, 27]. The ensuing hybrid scheme that is described next achieves
comparable parameters to the scheme of [27]. Namely, the storage requirement of Alice and Bob is
only O(k + log 1

ε ).
Loosely speaking, a locally computable strong extractor [27] is a strong randomness extractor

3 with the additional property that the extractor computes its output while reading only a small
number of bits from the source. A construction of such an extractor is shown in [27] with seed
length O(log r + log 1

ε ) that reads only O(k + log 1
ε ) bits of the source.

In the efficient scheme, Alice and Bob use the key SK as a seed to a locally computable strong
extractor Ext. Thus the overall scheme is:

1. Alice and Bob run any computational key agreement (KA) protocol and agree on a key CK
of length k.

2. Alice and Bob access the random oracle at the location CK, the output SK = RO(CK)
consists of O(log r + log 1

ε ) bits.

3. When the long random string R is broadcast, Alice and Bob run a locally computable strong
extractor Ext on the string R with seed SK and store the encryption key K = Ext(R, SK).

The proof of security of the efficient scheme follows by choosing ε to be negligible (for example
ε(k) = k− log k) and combining Lemma 3.2 with the following proposition:

Proposition 3.3 (Implicit in [27]) Let Ext be a locally computable strong extractor as above
and let C be any (even an unbounded) algorithm C : {0, 1}r → {0, 1}γr with constant γ that
does not have information on the secret key SK. Then {C(R), Ext(R, SK), SK} is ε-close to
{C(R), Uk, SK}.

3roughly speaking, a strong extractor is an efficiently computable function Ext(·, ·) such that for a source x with
sufficient min-entropy, and a truly random seed y the pair (Ext(x, y), y) is statistically close to uniform. See, for
example, [26] for background on the standard notion of extractors.
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3.2 Bounded Accessability and Hybrid Everlasting Security

The crux in the use of the random oracle is that the adversary does not read some information.
Thus making assumptions on the ability of the adversary to read all of the bits (rather than store
them) seems helpful and indeed we show that it is. The Bounded Accessability Model (considered
already in the original paper of Maurer [21]) assumes that the adversary cannot actually read the
whole of the broadcast string R but rather just a chosen γ fraction of it. That is, the adversary
chooses γ · r bits that he wishes to read from the string R and may then store all of these bits.4

Such an assumption can be justified, for example, if the broadcast is at a very high rate, allowing
the parties to read and store just a small fraction that they prepare for in advance. The definitions
of everlasting security are the same as in Section 2 only that in the underlying model, the efficient
part of Charlie can only decide on γ · r locations in R and store these actual bits from R.

We show that hybrid everlasting security is achievable in this model with memory requirements
that are much smaller than

√
r. An important note is that the lower bound of Ω(

√
r) [10] applies

for this model as well. Therefore the hybrid with computational assumptions is essential.
We present a basic hybrid encryption scheme and prove its security. We note that the following

example is aimed at showing the feasibility of such a scheme and does not try to optimize the
parameters. The output of the scheme is a one bit key, that should be pseudorandom. We discuss
how to achieve better parameters towards the end of this section.

Protocol EncryptBAM :

1. Alice and Bob run a computational key agreement protocol KA with the security parameter
k. They agree on a key ī = (i1, . . . ik) where for each j ∈ [k] the jth entry is an index
ij ∈ {0, 1}log r (the transcript of KA is denoted by TKA).

2. For each j ∈ [k] Alice and Bob store the bit R(ij).

3. The final key is K =
⊕

j∈[k]R(ij) and a message m is encrypted by m⊕K.

Theorem 3.4 The protocol EncryptBAM has (γ, neg(·))-everlasting security.

Proof: (of Theorem 3.4) Intuitively, for all of the j ∈ [k] the efficient adversary learns nothing about
ij and therefore his chance of choosing to store R(ij) is essentially γ. Therefore the probability that
he chose to store all of the bits participating in the XOR is approximately γk which is exponentially
small. In any other case the bit K is uniformly distributed since it contains a XOR with an unknown
bit.

The proof is therefore concluded by the following lemma:

Lemma 3.5 For all polynomial-size circuit family {Ck} with bounded accessability γ, for any poly-
nomial p(·), for all sufficiently large k and for every fixing of R we have that

Pr [ for all j ∈ [k], Ck stores the bit R(ij)] <
1

p(k)
4Note that we allow the choice of locations to store to be an adaptive choice (rely on the answers of the first bits

that where read to determine what to read next).
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Proof: (of Lemma 3.5) Suppose that there exists a polynomial-size circuit family {Ck} with
bounded accessability γ, and a polynomial p(·) such that for infinitely many k we have a fixing of
R:

Pr [ for all j ∈ [k], Ck stores the bit R(ij)] >
1

p(k)

Then we can use {Ck} to give a polynomial-size circuit family {C ′k} that breaks the security of the
key agreement protocol (see definition in Appendix A).

Our goal is to break the computational key agreement scheme and this is done by constructing
a circuit that distinguishes between the agreed key and a uniform string. That is, we construct a
circuit that distinguishes between the distributions {TKA, ī} and {TKA, U`} (where ` = k · log r is
the length of ī). The circuit C ′k takes as input a transcript tKA of KA and a potential key ī (such
a key is list of indices ī = (i1, . . . , ik)). The transcript tKA is set as the KA part in the transcript
of the hybrid BSM scheme. The second part being the fixed string R from the assumption above.
This fixing of R can be given as a non-uniform hint to circuit C ′k. The circuit C ′k executes Ck on
the whole transcript, with the exception that it also records the list of indices of all the places that
Ck queried in R. Note that this is no longer a bounded storage process, since the indices may take
more space than R. However, this is allowed since the key agreement is supposed to also withstand
attacks from adversaries with no storage bound. By the assumption above, the list calculated in
C ′k contains all the indices i1, ·, ik with probability at least 1

p(k) .
Finally, given a pair (tKA, ī) output 1 if all indices in ī have been stored by Ck. Otherwise

output 0. If ī is indeed the output of the transcript tKA then the output of C ′k is 1 with probability
at least 1

p(k) . On the other hand, if ī contains a list of random locations, then the probability of
outputting 1 is at most γ′k which is exponentially small. Thus C ′k has a noticeable advantage in
distinguishing between {TKA, ī} and {TKA, Uk}, contradicting the security of the key agreement
protocol. 2

2

As in the case of the random oracle protocol, an efficient protocol can be achieved by using the
computational key agreement to agree on a key CK of O(log r + log 1

ε ) bits, that will serve as the
private key for a regular BSM scheme of [27].

4 On Hybrid Everlasting Security for Oblivious Transfer

Oblivious transfer (OT) (originally defined by Rabin [24] and presented here using the definition
of [12]) is a protocol between Alice holding two secrets s0 and s1, and Bob holding a choice bit
c. At the end of the protocol Bob should learn the secret of his choice (i.e., sc) but learn nothing
about the other secret. Alice, on the other hand, should learn nothing about Bob’s choice c.
Oblivious transfer is an important building block for construction of secure computation. (e.g.,
[28, 14, 15, 19]). Cachin, Crepeau and Marcil [3] showed an implementation of OT in the Bounded
Storage model with everlasting security in the sense that once the broadcast is over, no party can
learn additional information about the secrets, even if the party has gained more power (or storage
space) since. This protocol was subsequently improved in [7] and ultimately in [8]. We refer the
reader to [8] for rigorous definitions of OT in the bounded storage model.

The main drawback of all bounded storage OT schemes is that the honest parties are required
to use storage of

√
r bits. This requirement is tight since the lower bound of [10] holds also for OT

(as OT implies key agreement). We next show that the idea of the hybrid BSM may be useful for
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implementing OT with low storage requirements. More precisely, we show such schemes under the
two modified models discussed for the case of encryption. That is, if random oracles are allowed
and in the bounded accessability model.

The idea, in both cases, is to run a computational string OT between Alice and Bob. At the
end of this protocol Bob will have learnt one of the two strings that Alice holds. Alice then uses
the two strings as secret keys in a classical BSM private key encryption scheme (e.g., as seeds to a
locally computable strong extractor in the scheme of [20, 27]). Alice encrypts her two secrets using
the two respective keys. Bob can decrypt one (as he received one of the keys) but not the other.
For example, in the bounded accessibility model, the protocol is as follows:

Protocol OTBAM (s0, s1; c):

1. Alice chooses two random strings r0 and r1 of length O(log r + log 1
ε ) bits.

2. Alice and Bob run a computational OT protocol with Alice inputs r0, r1 and Bob’s choice bit
c.

3. When the long random string R is broadcast, Alice sends Bob the two encryptions s0 ⊕
Ext(R, r0) and s1 ⊕ Ext(R, r1) (where Ext is a locally computable strong extractor).

4. Bob uses his knowledge of rc to decrypt the secret sc.

The OT protocol when using a random oracle is similar except that it uses the value RO(ri) as the
seed for the extractor. The proofs of security in the two models follow the respective proofs for the
case of encryption.

It is interesting that this protocol does not follow the path of the oblivious transfer in the
bounded storage model. Oblivious transfer is inherently an asymmetric protocol, and in the above
protocol the asymmetry follows only from the computational protocol. Thus not utilizing the
mechanism designed for this task in the bounded storage model.

5 Negative Results

We have more than one indication that proving everlasting security in the hybrid bounded storage
model is hard. In fact, it seems quite plausible that everlasting security is not achievable in this
model at all. In this section we survey two results contributing to this point of view and provide
additional evidence in the form of a black-box impossibility result for the general hybrid schemes.

The [DM04] Example: Dziembowski and Maurer [10] show an example that proves that basic
hybrid schemes cannot be blindly trusted. The example takes any combination of a computational
key agreement protocol and a private key BSM encryption scheme, and replaces the key agreement
with a non-natural, yet secure key agreement protocol, that renders the overall scheme insecure.
The new key agreement consists of the old one, and an additional “hint” as to what an adversary
should store from the string R. This hint is based on private information retrieval (PIR) protocols,
and does not give the computationally bounded adversary any information on the underlying key.
It does allow him to store a function of R that contains the necessary information about what the
honest players stored. This information can be extracted at a later stage once the adversary is no
longer bounded.

12



This result can be viewed as saying such a basic hybrid scheme cannot work in a black-box
manner, taking any key agreement with any private key BSM scheme. It falls short though of
saying that hybrid schemes using specific protocols are insecure. Neither does it rule out a black-
box general hybrid scheme (we show such an impossibility result in Section 5.1).

On Compression of NP instances and Hybrid Schemes: In [18] we define the following
problem regarding the compression of NP instances: Consider NP problems that have long in-
stances but relatively short witnesses. The question is, can one efficiently compress an instance
and store a shorter representation that maintains the information of whether the original input is
in the language or not. For example, the compression of the language SAT is formulated as follows:
A compression for SAT is an efficient algorithm and a polynomial p(·, ·) such that the algorithm
takes as input a CNF formula Φ with m clauses over n variables (where m >> n). The output
should be a formula Ψ of size p(n, log m) such that Ψ is satisfiable if and only if Φ is satisfiable.

In [18], a family of NP languages is defined that includes, for example, the languages SAT and
Clique. It is shown that if there exists a compression algorithm for any language in this family, then
the hybrid BSM is no more powerful (with respect to everlasting security) than the standard BSM.
Conversely, in order to prove everlasting security in the hybrid model with low storage requirements,
one must prove (or assume) that certain languages are incompressible.

5.1 Black-Box Impossibility

We next show that there exists no black-box proof of everlasting security of a hybrid encryption
scheme, based on the security of a computational primitive. This forms a wider black-box impos-
sibility than that of the [10] result, as it captures any general hybrid scheme (rather than just a
combination of a key agreement and BSM encryption scheme).

We prove the result by introducing a setting (or “world”) containing a specialized oracle where
any hybrid scheme with low storage requirements (that does not use the oracle) may be broken, but
otherwise computational primitives are left unaffected. As a corollary we get that there can be no
black-box proof of everlasting security of a hybrid scheme based on a computational protocol (such
as key agreement, but also others, e.g., oblivious transfer). The reason is that a security proof is
a reduction showing that if the hybrid BSM can be broken then so can the computational scheme.
Such a black-box proof would also apply in a world as described above and would thus prove the
insecurity of the computational scheme. Therefore, if there existed such a black-box proof based on
key agreement (for example) then it would serve as a proof that there exists no computational key
agreement protocols altogether. In particular this means that there is no fully black-box reduction
(in the terminology of [25]).

We note though that this result rules out an even wider family of reductions (that was not named
in [25]). In a fully black-box reduction both the construction itself and the proof are required to
be black-box. In contrast, our statement asserts that there can be no black-box proof of security,
even if the construction itself is allowed to do anything. In particular this holds for non-black-box
constructions and even for constructions based on specific assumptions.

To specify the world mentioned above we define an oracle Z. Loosely speaking, the oracle Z
takes as input an NP relation L and a (presumed) instance x of L, and generates several random
witnesses to the fact that x ∈ L (assuming such witnesses exist). However, the oracle does not
actually output these witnesses. Instead it returns some form of encryption of them. The point is
that a polynomial time adversary essentially gains nothing from the presence of the oracle Z. Thus
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any primitive that is secure against a polynomial time adversary remains secure even when the
adversary is given access to the oracle Z. But a hybrid BSM encryption cannot have everlasting
security since a polynomial time adversary with access to Z can save encrypted information for
future use.

The Oracle Z: For every ` ∈ N let π` : {0, 1}` → {0, 1}` be a random permutations. For every
`, k ∈ N, let R`,k be a 2`×2k matrix of entries in {0, 1}`. The entries of the matrix R`,k are random
strings subject to the sole restriction that

⊕
i∈[2k] R`,k[y, i] = π−1

` (y) (where y ∈ {0, 1}` is also
viewed as an index y ∈ [2`] and the XOR is performed bit by bit).

1. The oracle takes an input (L, x, n, k) where L is the description of an NP relation L(·, ·), x
is a string (presumably in L), n is a parameter and k is a limit on witness length. If there
is witness w of size at most k such that L(x,w) = 1, then the oracle computes n witnesses
w1, ..., wn that are randomly chosen under the restriction that L(x,wi) = 1 for all 1 ≤ i ≤ n
(suppose w.l.o.g. that each of the witnesses is of length exactly k). The output of the oracle
is y = πnk(w1, . . . , wn). In case there is no witness of size k for x, then the output is simply
a random string y.

2. On input (y, i) where y ∈ {0, 1}nk and i ∈ [2k], the output is Rnk,k[y, i].

Thus the oracle Z is defined by the ensemble of permutations π` and matrices R`,k as well as the
randomness used to sample the witnesses.

Theorem 5.1 In a world containing the Oracle Z (and no other oracle) we have:

• Any cryptographic primitive that is computationally secure in the plain model is secure in
this world as well. More precisely, for any polynomial time adversary A with access to Z,
there exists a polynomial time adversary A′ in the plain model (without access to Z) so that
any polynomial time environment interacting with the adversary without access to Z, cannot
distinguish between A and A′.

• Any hybrid BSM encryption scheme in which (i) Alice and Bob require storage of size at most
o(
√

r), and (ii) Alice and Bob make no calls to Z, cannot have everlasting security.

The proof idea: For a computationally bounded adversary, the oracle Z is indistinguishable
from a random oracle. This is because unless a whole row of R is read, then all of the outputs of
Z are truly random strings. Thus, the oracle is of no use to a computationally bounded adversary
as such an adversary can simulate the random oracle on his own, simply by tossing random coins
whenever it queries the oracle.

On the other hand, the oracle is very handy in breaking any hybrid scheme. This is shown
by designing a specific NP relation L and invoking a Lemma of Dziembowski and Maurer [10],
that essentially states that a large enough number of random witnesses to L are sufficient to break
a bounded storage scheme with low memory requirements. The adversary Charlie in the hybrid
model can query for these witnesses from Z, but gets only an encrypted version via πnk which is
useless at the point. However, after the broadcast is over, Charlie may use his unbounded powers
to extract the required information from the oracle Z, by decrypting πnk using Rnk,k, and break
the scheme. The actual proof follows:
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Proof: (of Theorem 5.1) The first property follows from the fact that any computationally bounded
adversary cannot distinguish between Z and a random oracle. The oracle Z receives two types of
queries. On input (L, x, n, k) it answers a random string y ∈ {0, 1}nk, which is exactly the behavior
of a random oracle. What differs Z from a random oracle is that on input (y, i) it returns values
that are related to the inverse of y. However, these values are truely random when viewing anything
short of a full row of Rnk,k. Therefore, for a computationally bounded adversary all of the answers
of Z are truely random, since a whole row of Rnk,k cannot be queried in polynomial time (requires
2k queries). Finally, any adversary A with access to Z, can simulate the answers of Z on his own.
An adversary A′ simply runs A and whenever a new query to Z is required, A′ simply chooses a
random answer (by flipping coins locally) and stores this answer (in case the same query is repeated
twice). Since A cannot distinguish Z from a random oracle, then A′ behaves exactly as A does. In
particular, any environment that queries A or A′ (the environment has no access to Z) cannot tell
the two apart.

To see the second property, we make use of the proof of the lower bound in [10], starting with
some notations: Let K(T1,R, T2) denote the encryption key that is agreed on when the protocol is
run with transcripts T1, T2 and randomness R. Because agreement is guaranteed then this key must
be well defined (for simplicity we assume w.l.o.g. that the agreement in the protocol is perfect).
Denote by AT1 the set of all possible randomness rA of Alice that are consistent with the transcript
T1. Let S = SA(T1,R, rA) denote the bits that Alice stores at the end of the broadcast when
running with randomness rA, transcript T1 and broadcast string R. Finally, denote by SA(T1,R)
the random variable that takes the value SA(T1,R, rA) for a uniform choice of rA ∈ AT1 . That is,
SA(T1,R) is randomly chosen from all possible S that Alice might have stored when running with
transcript T1 and broadcast string R.

Lemma 5.2 ([10]) Let SA(T1,R) and K(T1,R, T2) be defined as above. For any R and T1 Let
SC(T1,R) denote the random variables that takes sB independent samples of SA(T1,R). Then:

H(K(T1,R, T2)|SC(T1,R)) ≤ sAsB/r.

In other words, as long as sA and sB are significantly smaller than r, then a strategy for an
eavesdropper is to store sB independent samples of the random variable SA(T1,R). This strategy
guarantees that the eavesdropper will have stored (with high probability) enough information on
the encryption key K.

An attack on any hybrid BSM protocol is given by the following strategy: Define the NP
relation L, where the instance consists of a transcript T1 and a broadcast string R and a witness
consists of a string s and a string rA. L is defined by L((T1,R); (s, rA)) = 1 if and only if rA ∈ AT1

and also s = SA(T1,R, rA). That is, the first part of a random witness to (T1,R) ∈ L coincides
exactly with the output of the random variable SA(T1,R).

The attack of Charlie is thus to query the oracle Z with L, (T1,R), sB and receive πnk(w1, . . . , wn).
By Lemma 5.2, the witnesses w1, . . . , wn contain sufficient information to break the scheme. Charlie
stores only y = π(w1, . . . , wn), and once the broadcast is over, uses his unbounded running time to
extract the values (w1, . . . , wn) = π−1(y) from the oracle Z, thus breaking the scheme. 2

6 Open Problems

The obvious open problem is to settle the possibility or impossibility of low storage everlasting
security in the general hybrid model. This would likely entail resolving the existence or in-existence
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of relevant compression algorithms (following the formulation of [18]). Another problem is to come
up with additional (reasonable) models where the notion of everlasting security may be achieved.

Finally, our solution for oblivious transfer (OT) requires the use of computationally secure
oblivious transfer protocols. An interesting question is can one achieve low storage everlasting
security OT protocols based on weaker assumptions than computational OT such as key agreement,
for instance. It is tempting to think such a protocol exists since bounded storage OT may be
achieved with no computational assumption at all (albeit, with high storage requirements).
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[3] C. Cachin, C. Crépeau, and J. Marcil. Oblivious transfer with a memory-bound receiver. In 39th IEEE
Symposium on Foundations of Computer Science, pages 493–502, 1998.

[4] C. Cachin and U. Maurer. Unconditional security against memory-bound adversaries. In Advances in
Cryptology – CRYPTO ’97, Lecture Notes in Computer Science, volume 1294, pages 292–306. Springer,
1997.

[5] R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology, revisited. Journal of the
ACM, 51(4):557–594, 2004.

[6] W. Diffie and M.E. Hellman. New directions in cryptography. IEEE Transaction on Information Theory,
22:644–654, 1976.

[7] Y.Z. Ding. Oblivious transfer in the bounded storage model. In Advances in Cryptology - CRYPTO
’01, Lecture Notes in Computer Science, volume 2139, pages 155–170. Springer, 2001.

[8] Y.Z. Ding, D. Harnik, A. Rosen, and R. Shaltiel. Constant round oblivious transfer in the bounded
storage model. In The 1st Theory of Cryptography Conference – (TCC ’04), volume 2951 of Lecture
Notes in Computer Science, pages 446–472, 2004.

[9] Y.Z. Ding and M.O. Rabin. Hyper-encryption and everlasting security. In Annual Symposium on
Theoretical Aspects of Computer Science (STACS), pages 1–26, 2002.

[10] S. Dziembowski and U. Maurer. On generating the initial key in the bounded-storage model. In Advances
in Cryptology – EUROCRYPT ’ 2004, Lecture Notes in Computer Science, volume 3027, pages 126–137.
Springer, 2004.

[11] S. Dziembowski and U. Maurer. Optimal randomizer efficiency in the bounded-storage model. Journal
of Cryptology, 17(1):5–26, 2004.

[12] S. Even, O. Goldreich, and A. Lempel. A randomized protocol for signing contracts. Communications
of the ACM, 28(6):637–647, 1985.

[13] O. Goldreich. Foundations of Cryptography - Volume 2. Cambridge University Press, 2004.

[14] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game - a completeness theorem for
protocols with honest majority. In 19th ACM Symposium on the Theory of Computing, pages 218–229,
1987.

16



[15] O. Goldreich and R. Vainish. How to solve any protocol problem - an efficiency improvement. In
Advances in Cryptology - CRYPTO ’87, Lecture Notes in Computer Science, volume 293, pages 73–86.
Springer-Verlag, 1987.

[16] S. Goldwasser and Y. Tauman Kalai. On the (in)security of the fiat-shamir paradigm. In 44th IEEE
Symposium on Foundations of Computer Science, pages 102–111, 2003.

[17] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of the ACM, 28(4):270–299, 1984.

[18] D. Harnik and M. Naor. On the compressibility of NP instances and cryptographic applications. In
Electronic Colloquium on Computational Complexity (ECCC), TR06-022, 2006.

[19] J. Kilian. Founding cryptography on oblivious transfer. In 20th ACM Symposium on the Theory of
Computing, pages 20–31, 1988.

[20] C. Lu. Encryption against space-bounded adversaries from on-line strong extractors. Journal of Cryp-
tology, 17(1):27–42, 2004.

[21] U. Maurer. Conditionally-perfect secrecy and a provably-secure randomized cipher. Journal of Cryp-
tology, 5(1):53–66, 1992.

[22] U. Maurer, R. Renner, and C. Holenstein. Indifferentiability, impossibility results on reductions, and
applications to the random oracle methodology. In The 1st Theory of Cryptography Conference – (TCC
’04), volume 2951 of Lecture Notes in Computer Science, pages 21–39, 2004.

[23] M. Naor, B. Pinkas, and O. Reingold:. Distributed pseudo-random functions and kdcs. In Advances
in Cryptology - EUROCRYPT ’99, Lecture Notes in Computer Science, volume 1592, pages 327–346.
Springer, 1999.

[24] M. O. Rabin. How to exchange secrets by oblivious transfer. TR-81, Harvard, 1981.

[25] O. Reingold, L. Trevisan, and S. Vadhan. Notions of reducibility between cryptographic primitives. In
The 1st Theory of Cryptography Conference – (TCC ’04), volume 2951 of Lecture Notes in Computer
Science, pages 1–20, 2004.

[26] R. Shaltiel. Recent developments in explicit constructions of extractors. Bulletin of the EATCS, 77:67–
95, 2002.

[27] S.P. Vadhan. Constructing locally computable extractors and cryptosystems in the bounded storage
model. Journal of Cryptology, 17(1):43–77, 2004.

[28] A. C. Yao. How to generate and exchange secrets. In 27th IEEE Symposium on Foundations of Computer
Science, pages 162–167, 1986.

A Definition: Computational Key Agreement

For completeness we provide a definition of a computationally secure key agreement protocol that
is secure against non-uniform polynomial-time adversaries.

Definition A.1 (Computational Key Agreement) A protocol KA between Alice and Bob with
transcript TKA is a Key Agreement protocol if it takes as input a security parameter k and each of
the two parties computes an output key (w.l.o.g. this is a key of length k).

1. At the end of the protocol Alice and Bob agree on the same key K(TKA).

2. ∀ polynomial-size circuit family {Ck}, Ck : {0, 1}∗ → {0, 1}∗ for all sufficiently large k,
we have that the distributions {Ck(TKA)),K(TKA} and {Ck(TKA), Uk} are computationally
indistinguishable.
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