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Abstract One of them is the fail-stop model in which a faulty
node is deleted from the system. Another is a spam
We introduce a distributed hash table (DHT) with |ng’generating model in which a faulty node may pro-
rithmic degree and logarithmic dilation. We show tweyce arbitrary false versions of the data item requested.
lookup algorithms. The first has a message complexjgythird model is the Byzantine model in which there
of logn and is robust under random deletion of nodegre no restrictions over the behavior of faulty nodes.
The second has parallel time ofg » and message com- In the random fault model, if we want that all
plexity of log® n. It is robust under spam induced by §odes can access all data items, then it is necessary
random subset of the nodes. We then show a constructiggt the degree be at leds;n and that every data
which is fault tolerant against random deletions and hg&m is stored by at leagbgn nodes. Otherwise

an optimal degree-dilation tradeoff. The construction hggth non-negligible probability there would be nodes
improved parameters when compared to other DHT's. H&connected from the system.

main merits are its simplicity, its flexibility and the fresh

ideas introduced in its. d.esign. It is very easy to modif_)(_.l Related Work

and to add more sophisticated protocols, such as dynamic

caching and erasure correcting codes. Several peer-to-peer systems are known to be robust
under random deletions ([10], [8], [6]). Stoieh al
prove that the Chord system [8] is resilient against
random faults in the fail-stop model. It does not seem
%ely that Chord can be made spam resistant without
| significant change in its design. Fiat and Saia [7]
roposed a content addressable network that is ro-

1 Introduction

We propose a very simple and easy to implemeI
distributed hash table. Our construction offers lo
arithmic linkage, load and dilation. It can operate i
a highly dynamic environment and is robust again%&J . .
random deletions and random spam generating no ?O’ when an adversary can choose which nodes

in the sense that with high probabiligfi nodes can tz" ' C'efr.'ly O'I” tho'ls mOdel' dsgmg Smi‘j" ffrac“on of
locateall data items. € non-railled nodes wou e aenied rom access-

There are two commonly used methods for motf.d SOMe of the data items. While their solution han-

elling the occurrenceof faults. The first is the ran- les a more difficult model then ours, It has several

dom fault model, in which every node becomes faulg)llsadvantageg(j) Itis .n_ot clear whether_ the system

with some probability and independently from othe N preserve its qualities when nodes jomn ‘?‘”d leave
Hnamlcally. (I the message complexity is large

nodes. The other is the worst case model in whi¢h ', : ,
an adversary which knows the state of the syst }ﬂg n) and so S the Imkage n_eedeldgf n). MOSt
jportantly their construction is very complicated.

chooses the faulty subset of nodes. There are sevgp I ructi 4 algorithms i h
models that describe theehaviorof faulty nodes. . ompliex constructions and algoriihms Increase the
likelihood of errors in implementation and offer eas-
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oo(a) =a

o x/2 X @a-x)2  2x 1 (Ut.O)(a) = E(O’t(a))

, P S , In other wordso;(a) is the point reached by a
° 509 ! walk that starts at: and proceeds according to

. _ . whenO0 represent$ and1 represents. The follow-
Flgu're 1 The upper figure shows the gdges O%ing claim justifies the name ‘Distance Halving’:

a point inG.. The lower shows a mapping of|a
Segment into two Sma”er ones. C|a|m 2.1 (distance haIVing property). For a" a, be

I and for all binary stringss it holds that:

solve the first problem yet they do not describe a  d(r(a),7(b)) = d(¢(a), £(b)) = 3d(a,b) (3)

spam resistant lookup. d(o¢(a),o¢(b)) = 27" d(a,b) 4
The construction presented here is designed us-

. . I hich . e

ing design rules which we cadontinuous - discrete and a point’ such thab (') = a. The stringo;

These design rules are defined and analyzed in |‘C§g Id b i lculated f din fact it
where their power is demonstrated by the sugges-u © easlly calcuiated fromand in fact It con-

tion of several distributed dynamic data structuress'StS of the first bits from the binary representation
Among them is aconstant degre®HT. The only of a.

previously known constant degree DHT is Viceroglaim 2.2. Leta,b € [0,1) and leto be the binary
[4] which is rather involved. The DHT describedepresentation ofi. For all ¢ it holds that

in [5] enjoys an optimal tradeoff between the degree .

and the dilation. A degree dbg n results with a di- d(a,0¢(b)) < 2

lation of O(;—2™_) which is an improvement overproof. Let o’ be such that(a/) = a; i.e. a walk

For every point € [0, 1) andt there is a string

loglogn
previous constructions. that starts at’ and follows the binary representation
. of the prefix of lengtht of a, reaches:. We have
2 The Overlapping DHT d(a,04(b)) = d(ov(a’), 5(b)). By Claim 2.1 it holds
thatd(oy(a’), 04(b)) = 27td(a’,b) < 27, O

We describe the construction as a discretization of a

con_tinuous graph denote.d 165 The vertex §et of ','he Discrete graphG:  We show how to construct
G, is denoted by and defined to be the real mtervathe discrete grapk. Each node (1 < i < n)

[0,1). The edge set af.. is defined by the following : _ _ def
functions: in the graph is associated withsegments(i) =

[i,yi]. These segments should have the following

ta) % (1) properties:
defa 1 Property | - The set of pointsf = z1,x9,...,2,
r(a) = 3+5 (2) is evenly distributed alongd. Specifically we
desire that every interval of length&= con-
wherea € I, ¢ abbreviates ‘left’ and- abbreviates tainsO(log n) points from. The pointz; is
‘right’. Note that the out-degree of each point2s fixed and would not change as longis in

while the in-degree i$. Sometimes we may enhance the network.
the notation and write, £([a, b]) meaning the image Property Il - The pointy; is chosen such that the

of the intervalla, b] underr, £. length of each segment B('%"). It is im-
Properties of G.: We set some useful notations. portant to notice that for # j, s(i) ands(y)

For any two points, b € I defined(a,b) to be|a — may overlap The pointy; would be updated

b|. Let o denote a sequence of binary digits, and as nodes join and leave the system. The pre-
denote its prefix of length. For every pointa € [ cise manner in whichy; is chosen and updated
defineo;(a) in the following manner: would be described in the next section.



The edge set of; is defined as follows. A pair ofin [4] that with high probability

verticesi, j is an edge irG if s(i) ands(j) are con- 1

nected inG. or if s(i) ands(j) overlap. The edgeslogn —loglogn — 1 < log <d(x)> < 3logn

of G are anti-parallel. It is convenient to think 6f ©d

as an undirected graph. A poiatc I is said to be Conclude that nodéecan easily estimateg n within

coveredby i if a € s(i). We observe the following: a multiplicative factor. Call this estimatiofiog n);.
1. Each point in/ is covered byd(log n) nodes A multiplicative estimation ofog n implies apoly-

of G. This means that each data item is storé@mial estimation ofn, therefore an additional idea
at©(log n) processors. should be used. Lef; be such that in the interval

2. Each node i has degre® (log n). [xil, z; + ¢;] there areexactly (logn); different x-
values.

Join and Leave: Our goal in designing the JoinLemma 2.4. With high probability the numbey; es-
and Leave operations is to make sure that propertigsates’?Z within a multiplicative factor.

n

LIl remain valid. When nodé wishes to join the The proof follows directly from lemma 2.3. Each

system it does the following: 5 node in the system updates itvalue and holds an
1. ltchooses at random € [0,1) =. accurate estimation of2” at all times. Therefore

2. It calculatesy; which is an estimation o@. property Il holds at all times.

3. Itsetsy; = x; + ¢; mod 1. Mapping the data items to nodes: The mapping
4. Itupdates all the appropriate neighbors accorsf-data items to nodes is done in the same manner as
ing to the definition of the construction. other constructions of distributed hash tables (such

5. The neighbors may decide to update their egs Chord [8], Viceroy [4] and CAN [6]). First data
timation of IOEL" and therefore change thejr items are mapped into the intervalusing a hash
value. function. Node; should hold all data items mapped

_ ~topointsins(i). The use of consistent hashing [3] is
When nodei wishes to leave the system (or is desyggested in Chord [8]. Note that all nodes holding
tected as down) all its neighbors should update thg{e same data item are connected to one another so
routing tables and check whether their estimation ﬂ’fey form a clique. If a node storing a data item is
%% should change. If so they should change theifigcated, then other nodes storing the same data item
value accordingly. The following lemma is straigh{re quickly located as well. This means that access-
forward: ing different copies of the same data item in parallel

Lemma 2.3. If n points are chosen randomly, unican be simple and efficient. It suggests storing the

formly and independently from the interyél 1] then dhatadl'JStinlgfan erasure correctiggbcode, (forl instance
with probability1— L each interval of lengtip( ez  the digital fountains suggested by Byassal [1])

would contain® (log 1) points. and thus avoid the need for replication. The da_lta

stored by any small subset of the nodes would suffice

If each node chooses itsvalue uniformly at ran- to reconstruct the date item. Weatherspoon and Ku-

dom from I then property-l holds. Observe that ibiatowicz [9] suggest that an erasure correcting code

each node’s estimation d?%” is accurate within a may improve significantly the bandwidth and storage
multiplicative factor then property 1l holds as wellused by the system.

The procedure for calculating is very simple. As- 3 The Lookup Operation
sumez; is the predecessor of along!. Itis proven

%It may be thatr; is chosen by hashing some i.d.iofn this The lookup procedure emulates a walk in the contin-

case it is important that the hash function distributesthalues UOUS graplty.. Assume that processowishes to lo-
evenly.

3The term ‘with high probability’ (w.h.p) means with proba-
bility 1 —n™°



cate data iten¥ and letv = h(V') whereh is a hash ‘ ‘
function, i.e. data itenV is stored by every proces+ // //
sor which covers the point Letz; = ¥ and let ‘ ‘
o be the binary representation gf Claim 2.2 states
thato;(v) is within the interval/z; — 27, z; + 271]. _ _
Conclude that when = logn — loglogn + O(1) it | Figure 2: The message 1S sent throughthe
holds thais (v) € s(i). Lett to be the minimum in- | Nodes covering the canonical path.
teger for whicho;(v) € s(i). Call the path between
Ut@ "’?”d” t'he canonical patrbetweery apds(z). Proof. Assume for simplicity that; < 2o < -+ <
This gives rise to a natural lookup algorithm. The . . .
) L L Z,,. Each point in an intervdk;, x; 1] is covered by

canonical path exists i&., yet by the definition of :

. . : . ) the sameset of© (log n) nodes. Call this sef;. We
G, if (a,b) is an edge irG,, a is covered by andb have
is covered byj then the edgéi, j) exists inG. This _
means that the canonical path carebeulatecby G. Pr[ All nodes inS; were deleted = p©(°s™

Therefore for sufficiently smalb this probability is
smaller thann=2. Applying the union bound over
all i yields that with probability greater than— 1

Simple Lookup:  Every point inI is covered by
©(log n) nodes. This means that when nadeishes

to pass a message to a node covering poimat 1 N .
. . . every point in/ is covered by at least one node. Itis
it has©(logn) differentneighbors that covet. In . : :
. . important to notice that for an arbitrary valueoit
the Simple Lookup it chooseme of these nodes at. ) . :
. is possible to adjust the values, so that each point
random and sends the message to it. S g
in I is covered by sufficiently many nodes, and the
Theorem 3.1.Simple Lookup has the following propelaim follows. O
erties:
1. Thelength of each lookup pathis at mogtn+  For every edgéa, b) in G, there exists at least

O(1). The message complexityiig n+O(1). ©one edge inG whose nodes cover and b, there-
fore the canonical path could be emulatedirand

2. Ifiis chosen at random from the set of nodgge simple lookup succeeds. We stress that after the
and v is chosen at random fronh, then the deletions the lookup still takesg » time andlogn
probability a given processor participates ifmessages. Furthermore the average load induced on
the lookup i® (log”>. each node does not increase significantly. O

n

Proof Sketch:The proof of statementl) is imme-
diate. To show the correctness of statem@ntwe
prove the following: Fix a processer The proba-
bility processori participates in thé*" step of the
routing1 < k < logn is ©(%). Summing up ovek
yields the result. This statement is proved by indu
tion onk.

Spam Resistant Lookup: Assume that a faulty
node may generate arbitrarily false data items. We
wish to show that every node can find abrrect
data items w.h.p. Just as in the simple lookup, the
gpam resistant lookup betweéandv emulates the
canonical path betwees(i) andv. The main dif-
ference is that now when nodewishes to pass a
Theorem 3.2. If each node is faulty independentlynessage to a node covering poinit will pass the
with fixed probabilityp, then for sufficiently lowp message tall ©(logn) nodes covering. At each
(which depends entirely on the parameters chostme step each node receiv@$log n) messages, one
when constructingy), with high probability each sur-from each node covering the previous point of the
viving node can locate every data-item. path. The node sends on a message only if it were
sent to it by amajority of nodes in the previous step.

) ) Theorem 3.4. The spam resistant lookup has the fol-
Clz?um_ 33 If p is small enough, then w.h.p eVerYywing properties:

point in I is covered by at least one node.

Proof. We prove the following claim:



1. With high probability all surviving nodes carsame analysis of Theorem 3.1 shows that for each

obtain all correct data items. choice of¢, the probability a processor participates
2. The lookup takes (parallel) time bfg n. in a lookup is©(*%&="),
3. The lookup require® (log? n) messages in to-

Optimizing the Degree-Dilation Tradeoff: We
show how to achieve a dilation &¥( —2£"_) while

loglogn

Proof. Statementé2, 3) follow directly from the def- Maintaining a degree @ (log n), thus improving the
initions of the spam resistant lookup. Statem@nt lookup and congestion while maintaining the same
follows from the following: degrees as Chord. First set= logn. The previous

_ o - construction yields a graph with the desired dilation
Claim 35 If each node fal!s with probablllty, then yet with a degree 0B(log? n). The reduction of the
for sufficiently smallp (which depends eptlrely ONdegree is achieved by connecting each processor to
the parameters chosen when constructif)gt holds  oniy one other processor for each projection of its
that with high probability every point i is covered segment. More formally, for eadh < j < logn
by a majority of non-failed processors. the length off;([z;, y]) is ©(%), therefore it iscov-

The proof of claim 3.5 is similar to that of claimeredby ©(log n) different processors. processas
3.3. Now the proof of theorem 3.4 is straight forconnected t@xactly oneandomly chosen processor
ward. It follows by induction on the length of thevhose segment cover§([z;, y;]). As before there
length of the path. Every point of the canonical @Xists a link between processoand all processors
covered by a majority of good nodes, therefore evef§th segments that overlag(i). Lookup is done in
node along the path would receive a majority of tHBe same manner as Simple Lookup; i.e. the route
authentic message. It follows that with high prob& message takes emulates the canonical path of the
bility all nodes can findll true data items. ] continuous graph. Clearly the maximum degree of

The easy proofs of theorems 3.2 and 3.4 demdp€ construction i (c + logn) = O(logn) and

. . . logn
strate the advantage of designing the algorithmsv}’rj?enthere are no faults the dilation is oy )-

loglogn
G. and then migrating them tG.

tal.

It Is left to show that this construction remains fault
tolerant under random deletions of processors and
4 Reducing the Dilation connections. _
As before we assume that each processor fails
We now show how to decrease the lookup length afgth some fixed probability. Assume that proces-
the congestion by increasing the degree. For any ¥y ; tries to move the message from point s(i)
tegerc > 2 construct a continuous gragh. with to point f(a). Processoi should do the following

edges defined by the following functions: 1. If the processor which is connected itand

fily) =YL+L(i=0,1,...,c—1) coversf(a) is alive theni moves the message
toit.
The equivalent of Claim 2.1 is 2. If i fails moving the message tf(a) then it
d(fi(y), fi(z)) = %d(y, z) picks at random a processor coveriagand

moves the message to it.
and the equivalent of Claim 2.2y, o4(2)) < ¢t J

Therefore: We need to bound the number of times Stepoc-
Theorem 4.1. A discretization ofG, would result €urs, i.e. the number of hops in which the message

with a graph of degre®(clogn) and with dilation remains in the same spot on the continuous graph.

log. . Lemma 4.2. W.h.p the number of hops a message

Two interesting options are setting= logn or Stays in pointa in G, (before moving tof (a)), is
¢ = n° (for some constar), as the first results withdominated by a geometric random variable with a
a lookup length ofloloign, and the second with aconstant success probability.
lookup length ofO(lﬁ. It is worth noting that the

5



Proof Sketch:For sake of simplicity assume that firsb
each processor fails with probabilipyand then pro-
cessors randomly choose their links. Ldde a pro-
cessor which coverg € s(i). There ared(logn)
processors which covefgs(i)) (and therefore cover
f(a)) out of which: chooses at random one. W.h.
out of the®(logn) processors which covefi(s(7))
a constant fraction survived. Therefore the prob
bility 7 is connected to a live processor that covefs,
f(a) is at least a constant and is independent frg
the choices of other processors. Conclude that élﬂ
number of hops a message remaing is dominated
by a geometric random variable

Theorem 4.3. The expected dilation of a messad@e

Future Work

The main challenge ahead is to prove robustness against
a worst case scenario, where an adversary chooses
which nodes fail. We believe that a slight variation
of the construction might be able to route messages
Buccessfully in the worst case model as well.

None of the known constructions (including [2],[7])
&n handle the case in which an adversary controls

nodeprior to their insertion This means that an

versary may control the actual construction of the
&work, and thus cause faults that otherwise would
have been beyond its capability. It seems likely that
robustness against such an adversary would require

use of cryptographic means.

after faults iSO ("), The actual dilation is at
1 (foeogn) ) References
ogn i ili — mn  eloglogn
mOSt@(log 10gﬂ) with probabllltyl " s [1] J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege. A digital

Proof Sketch:The expectation of a geometric ran-
dom variable is constant. Lemma 4.2 and the Iin-2
earity of expectation implies that even after randorf’
faults the expected dilation of a messag@(%g"l%n). _
The total number of hops a message remains jg
the same spot is at most the sum@ﬁlolgoﬁ)’g"‘n) in-
dependent geometric variables. Standard use of tail
bounds for hypergeometric distributions yields the

second assertion. -

5 Extensions

Dynamic Caching: The simplicity of the construc-
tion implies that it is easy to modify and add pro-.
tocols. In [5] we show a simple protocol that per-
forms dynamic caching of a popular data items, thus
relieving hot spots in the system. The protocol car
provably prevent the existence of hot spots in the
network. The protocol was designed for a constant
degree non overlapping DHT. It is rather straightfor[S]
ward to modify it for the overlapping DHT.

(5]

Expander Graphs: It is shown in [5] that similar
techniques could be used to build a graph that is guas;
anteed to be and expander. The idea is to use the
Gabber Galil continuous expander o¥@&r1) x [0, 1)

and then compose it into cells using a Voronoi diz[al-0
gram.
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