
Evaluation may be easier than generation

(Extended Abstract)

Moni Naor

�

Abstract

Kearns et al. [18] de�ned two notions for learning

a distribution D. The �rst is with generator, where

the learner presents a generator that outputs a distri-

bution identical or close to D. The other is with an

evaluator, where the learner presents a procedure that

on input x evaluates correctly (or approximates) the

probability that x is generated by D. They showed an

example where e�cient learning by a generator is pos-

sible, but learning by an evaluator is computationally

infeasible.

Though it may seem that generation is, in general,

easier than evaluation, in this paper we show that the

converse may be true: we provide a class of distri-

butions where e�cient learning with an evaluator is

possible, but coming up with a generator that approx-

imates the given distribution is infeasible.

We also show that some distributions may be

learned (with either a generator or an evaluator) to

within any � > 0, but the learned hypothesis must

be of size proportional to 1=�. This is in contrast to

the distribution-free PAC model where the size of the

hypothesis can always be proportional to log1=�.

�

Incumbent of the Morris and Rose Goldman Career Devel-

opment Chair, Dept. of Applied Mathematics and Computer

Science, Weizmann Institute of Science, Rehovot 76100, Is-

rael. Research supported by grants from the Israel Science

Foundation administered by the Israeli Academy of Sciences

and by a US-Israel Binational Science Foundation. E-mail:

naor@wisdom.weizmann.ac.il.

1 Introduction

The problem of learning a distribution D from sev-

eral independent samples fromD occupies a large part

of Statistics and Pattern Recognition. However, only

recently did Kearns et al. [18] put it in a computational

setting. They distinguished between two notions of

learning - evaluation and generation. In evaluation

the goal of the learner is to be able to evaluate (or

approximate) D[y] - the probability that D generates

y, given y. In generation the goal of the learner is to

construct a distribution D

0

(i.e. a machine or a circuit

whose output distribution is D

0

on uniformly random

inputs) such that D

0

is as close as possible to D.

In the setting of [18] there is a class of distribu-

tions D

n

over f0; 1g

n

. Members of D

n

are generated

by polynomial sized circuits. Such a class may be

learned e�ciently with a generator (with con�dence

� and approximation �): assuming that D 2 D

n

but is

unknown, then given enough samples there is an (e�-

cient) learner that can construct (with probability at

least 1��) a distribution D

0

that is close to D (within

� under some notion of distance). The class may be

e�ciently learnable with an evaluator if, given enough

samples, there is a learner that can successfully (with

probability at least 1 � �) construct for D 2 D

n

an

evaluator that is good for D (within � under some no-

tion of distance).

We therefore can speak of classes of distributions

that are e�ciently learnable with a generator and

those that are e�ciently learnable with an evaluator.

Note that e�cient learnability with evaluation is im-

portant for such tasks such as maximum likelihood

computation. Kearns et al. [18] showed that genera-

tion may be easier than evaluation: there are classes

that can be learned e�ciently with a generator, but

cannot be learned e�ciently with an evaluator (unless

#P has small circuits).

It might seem that in general generation is an easier

task than evaluation. However, The goal of this paper

is to show the converse: there are classes of distribu-



tions that are e�ciently learnable with an evaluator,

but which are not e�ciently learnable with a genera-

tor.

Our construction of the class of distributions follows

a line in computational learning theory of using Cryp-

tography to derive hardness results [1, 5, 6, 17, 19, 28].

We construct an irreproducible distribution which sam-

ples uniformly at random from a sparse set S

n

�

f0; 1g

n

with the following property: given points

x

1

; x

2

; : : :x

m

one cannot �nd an additional point

x

m+1

2 S

n

such that x

m+1

62 fx

1

; x

2

; : : :x

m

g, but

given a point x one can determine e�ciently whether

x 2 S

n

1

. For such a distribution evaluation is easy:

given x, check whether x 2 S

n

; if it is, assign probabil-

ity 1=jS

n

j (assume that jS

n

j is known) and otherwise

assign 0. Learning with a generator is hard by as-

sumption, as long as jS

n

j is not too small.

To see an intuition as to why one may suspect that

we can come up with such distributions, consider the

following example of a class of distributions: each

distribution D 2 D is de�ned by a pair of trapdoor

permutations

2

(f

1

; f

2

) on f0; 1g

n

: for r 2 f0; 1g

n

pro-

duce (f

�1

1

(r); f

�1

2

(r)). Note that given the trapdoor

information D can be generated e�ciently. However,

it seems reasonable to assume that without this infor-

mation it is hard to generate D, even if many exam-

ples have been given, since \the only way to generate

D is by inverting f

1

and f

2

at random points" which is

hard. On the other hand, D has an e�cient evaluator:

given a pair (y

1

; y

2

) check whether f

1

(y

1

) = f

2

(y

2

); if

they are equal assign probability of 2

�n

; otherwise as-

sign probability 0.

Unfortunately, we do not know how to show for

any family of trapdoor permutations that it is indeed

hard to generate D (without access to the trapdoor

information). Therefore we will explore a more com-

plicated construction.

The next section describes the intuition of our con-

struction and is intended to be self contained. Sec-

tion 3 contains the de�nitions of the new notion we

propose: irreproducible distributions and countable

non-interactive zero-knowledge proofs and shows how

they imply the existence of hard to generate but easy

to evaluate distributions. It also describes the crypto-

1

This is slightly stronger than what we actually need and

do. In our case we will distinguish the x

i

's by their pre�x and

the assumption is that you cannot generate an x

m+1

with a

di�erent pre�x.

2

A trapdoor permutation is a function that can be com-

puted e�ciently in one direction, but given y �nding x such

that f(x) = y is computationally hard; however, there exist

a secret key (the trapdoor information) so that with it inver-

sion can be performed e�ciently. The best known example of

trapdoor permutation is the RSA function [27].

graphic tools we need to build such distributions. Sec-

tion 4 shows how to convert a construction of [7] into

a countable one, yielding the desired result. Both Sec-

tions 3 and 4 assume knowledge of the papers [7, 18].

We also address another problem from [18]:

whether there are classes of distributions that are

learnable but not \compressible", in the sense that

essentially all the samples given are stored. Kearns et

al [18] conjectured that this is indeed the case and we

provide a simple construction that has this property.

This is described in Section 5.

2 Intuition

A natural tool to apply for constructing irrepro-

ducible distributions are existentially unforgeable sig-

nature schemes, de�ned by Goldwasser, Micali and

Rivest [16]. A signature scheme is existentially un-

forgeable if, given any polynomial (in the security pa-

rameter) number of pairs

(m

1

; S(m

1

)); (m

2

; S(m

2

)); : : : (m

k

; S(m

k

))

where S(m) denotes the signature on the mes-

sage m, it is computationally infeasible to generate

a pair (m

k+1

; S(m

k+1

)) for any message m

k+1

=2

fm

1

; : : :m

k

g. Suppose that each distribution D 2 D

n

corresponds to an instance of the signature scheme

(i.e. to a pair of (public-key, private-key) ). The dis-

tribution is produced by signing a random message of

length n (concatenated with the public-key). The cor-

respondence between the hardness of generating the

distribution and the hardness of creating additional

signed messages seems reasonable, and the e�cient

veri�cation property that signature schemes posses

seems to imply the ease of evaluation. Unfortunately,

things are more complicated than they seem and for

most existentially unforgeable signature schemes we

do not know how to implement this intuition.

One problem is that many of these signature

schemes have many possible signatures for each mes-

sage. Another problem is that they are history de-

pendent, i.e. the signature on message m

i

is a func-

tion of the message m

1

;m

2

: : : :. These problems can

be avoided, as shown by Goldreich [14], by applying

a pseudo-random function as de�ned and constructed

in [15]. However, there may still be a di�culty in the

evaluation procedure. It is true that given a message

one can verify that it is legitimate, i.e. was created by

someone who has access to the private key; however

a problem that does not exist in signature schemes

suddenly arises: what if the signature was created by



someone who has access to the private key but who

did not follow the protocol and created what seems

like legitimate message, but would never be generated

by a signer following the protocol. There can be many

such \pseudo-signatures". The evaluator assigns such

messages a non-zero probability, whereas it should be

zero. Getting around this problem is the main techni-

cal content of this paper and we outline how this can

be done now.

Almost all the known existentially unforgeable sig-

nature schemes are \tree-based" [4, 9, 10, 16, 25] and

all those scheme su�er from the problem of inconsis-

tency. The signer is supposed to assign random (or

pseudo-random) values to each node in a large tree.

Each message then corresponds to a path from the

root to a leaf and the values along the path are ex-

posed. However, there is no guarantee that the signer

is consistent, i.e. that the same node receives the same

value each time it appears in a path. Again, this is a

problem not encountered when proving the security

of a signature scheme, since such a behavior is not

bene�cial to any side in the cryptographic setting.

We did �nd a way to bypass the above problems in

one signature scheme, the Bellare-Goldwasser scheme

[3]. It can be described roughly as follows: The public

key contains a commitment to a pseudo-random func-

tion F

k

: f0; 1g

n

7! f0; 1g

n

(i.e. to k, the key of the

pseudo-random function). To sign a message m, the

signer computes z

m

= F

k

(m); the signature is z

m

to-

gether with a proof that z

m

= F

k

(m). This last part

is done via a non-interactive zero-knowledge proof. A

non-interactive proof system for a language L allows

one party P to prove membership in L to another

party V for any x 2 L. P and V share a random string

U of length polynomial in the security parameter n.

To prove membership of a string x in L

n

= L\f0; 1g

n

,

P sends a message p as a proof of membership. V de-

cides whether to accept or to reject the proof. To ap-

ply them in the context of signature scheme, the ran-

dom string is part of the public-key, and the language

L in which membership is proven is that of the triples

L = f(c;m; z

m

)j(c is a commitment to k & z

m

=

F

k

(m)g.

The usage of non-interactive zero-knowledge proofs

introduces many of the problems described above:

1. There may be many proofs to each statement x 2

L

2. Even if the number of proofs can be computed

or approximated e�ciently, there may be many

strings that look like a proof, yet would never be

generated by a legitimate prover.

Non-interactive zero knowledge (NIZK) proof systems

were introduced by Blum et al. in [7] who based their

schemes on the hardness of distinguishing squares

from non-squares modulo a composite (the quadratic

residuosity assumption). There are more general and

more e�cient constructions [11, 20, 21], yet we do

not know how to convert those proofs for our pur-

pose (though it is conceivable that it can be done)

and make them what we call countable. We are able

to use only the scheme described in [7]. (we do employ

however the method of [11] for converting single-proof

system to many-proofs systems).

Non-interactive zero-knowledge has been used to

construct public key cryptosystems secure against cho-

sen ciphertext attacks in [26] which was used by An-

gluin and Kharitonov [1] in order to show hardness of

learning under membership queries.

What we need to do in order to convert a non-

interactive zero knowledge proof system for our pur-

poses is to be able to count the number of proofs that

the veri�er declares as legitimate. We call such sys-

tem countable and discuss how this can be done with

the scheme of [7] in Section 4. This is done by using

the proof system itself to show that the prover did not

deviate from the correct protocol. The reason that

this new proof does not introduce further possibilities

of cheating is that we will be applying parts already

used previously.

To summarize, the construction of a class of dis-

tributions that is easy to evaluate but hard to gen-

erate is as follows: each member D of the class is

de�ned by a pseudo-random function F

k

and ran-

dom string U (to be used for a countable NIZK proof

system). Such a distribution D outputs quintuples

(m; z

m

; p; U; c) where m is a uniformly random string,

z

m

= F

k

(m), p is a proof with common string U that

z

m

= F

k

(m) given c, the commitment to k (i.e. that

(m; z

m

; c) 2 L). Note that c and U are the same for

every string D outputs.

3 Tools, De�nitions and Constructions

3.1 De�nitions

We �rst propose a new concept and then de�ne

some of the tools we need for our construction. We em-

brace the notions of Kearns et al. [18] of e�cient learn-

ing of distributions with generators and with evalua-

tors. They considered the Kullback-Leibler divergence

as the distance between distributions D

1

and D

2

, say



the original one and the one that the learner produces

3

(either with a generator or an evaluator). Our results

are applicable to other notions of distance such as the

L

1

distance.

For a string x 2 f0; 1g

n

and for m � n let the

m-pre�x(x) be the pre�x of length m of x. For a

distribution D let S

D

be its support.

De�nition 3.1 Let D

n

be a class of distributions over

f0; 1g

n

and let m(n) � n. We say that D

n

is irrepro-

ducible if

1. For any D 2 D

n

there exists a polynomial time

generator G

D

that on random input its output is

distributed according to D.

2. There exist an e�cient key generation algorithm

that can creates G

D

for a D 2

R

D

n

.

3. For any polynomial `(n) and any polynomial sized

family of circuits C = fC

n

jn � 1g such that on in-

put x

1

; x

2

; : : :x

`(n)

2

R

D the circuit C

n

attempts

to create x

`(n)+1

2 S

D

with

m(n)�pre�x(x

`(n)+1

) 62 fm(n)�pre�x(x

1

);

m(n)�pre�x(x

2

); : : :m(n)�pre�x(x

`(n)

)g

has probability of success smaller than 1=poly(n).

4. If x

1

and x

2

are drawn independently from D,

then

Prob[m(n)�pre�x(x

1

) = m(n)�pre�x(x

2

)]

is smaller than 1=poly(n).

From the de�nition the following is quite evident (it

can be shown following proof of Theorem 17 of [18]):

Theorem 3.1 An irreproducible class of distributions

cannot be learned with a generator.

Theorem 3.2 Let D

n

be an irreproducible class of

distributions such that for any D 2 D

n

1. The distribution induced on the m(n)-pre�x on

x 2 D is uniform on f0; 1g

m(n)

.

2. There exists an e�cient procedure A(x) such that

given several samples from D can approximate,

on input x, Prob

D

[xjm(n)�pre�x(x)] to within

relative error �(n) where �(n) is smaller than

1=poly(n).

3

The Kullback-Leibler distance between two distributions is

de�ned to be KL(D

1

jjD

2

) =

P

x2f0;1g

n

D

1

(x) log

D

1

(x)

D

2

(x)

. For

more information see Cover and Thomas [8].

3. There exists an e�cient procedure B(x) such

that given several samples from D can determine

whether x 2 S

D

.

Then D

n

can be learned e�ciently by an evaluator.

Proof. First execute procedures A and B on the num-

ber of samples they require. Then apply B(x) to test

whether x 2 S

D

and then run the approximator to get

a = A(x). The evaluation on the probability for gen-

erating x is

a

2

m(n)

. This means that for every x 2 S

D

a

2

m(n)

is within relative error of �(n) from Prob

D

[x].

Therefore the Kullback-Leibler divergence of the esti-

mation and the true distribution is bounded by �(n).

2

From these two theorems it is clear that if we man-

age to construct a class of irreproducible distributions

satisfying the conditions of Theorem 3.2 then we have

achieved our goal.

3.2 Tools

We now describe some of the existing cryptographic

tools which we use. We do not describe most of them

formally, since we do not need to alter those de�ni-

tions. The only modi�cation we need to make is in

the de�nition of NIZK.

A pseudo-random function, as de�ned by Goldre-

ich, Goldwasser and Micali [15], is a function that is

indistinguishable from a truly random function to a

(probabilistic polynomial-time bounded) observer who

can access the function as a black-box i.e. can provide

inputs of his choice and inspects the value of the func-

tion on these inputs. We need a family of functions

F = fF

k

: f0; 1g

m(n)

7! f0; 1g

m(n)

j k 2 f0; 1g

k(n)

g

where k(n) and m(n) are polynomials in n. Pseudo-

random functions can easily yield irreproducible dis-

tributions: a distributionD is determined by k and on

input m 2

R

f0; 1g

m(n)

it produces (m;F

k

(m)). How-

ever, this distribution does not satisfy the conditions

of Theorem 3.2. (In fact, it was used in Theorem 17 of

[18] to demonstrate the existence of distributions that

are hard to learn by generators and by evaluators).

A bit commitment protocol is a basic component

of many cryptographic protocols. The committer, P ,

commits to a secret bit b to be revealed later to the

receiver, Q. The commitment is such that once it is

completed, but before the value is revealed, b is (com-

putationally) unknown to Q; however, when the value

b is revealed, the receiver Q will be able to determine

that the correct value has been revealed { i.e. there



has been no switch. A good analogy is that P writes

the bit and puts it in a locked box to which only she

has the key. She gives the box to Q (this is the com-

mit stage) and, when the time is ripe, she gives the

key to Q. The receiver Q can be certain that the con-

tents were not tampered with, since the box was in its

possession. For our purposes we require that in the

bit commitment protocol, the commit stage consists

of a single message (sent by the committer of course)

and that the reveal stage is also a single message (also

sent by the committer). Furthermore, we need that in

the reveal stage there will be exactly one string that

the committer can send and it will be accepted by the

receiver (this does not refer to the value being commit-

ted, which in all bit commitment protocols is unique,

but to the actual communication in the reveal stage).

The protocol of [23] can have these properties, pro-

vided that it is based on a one-way permutation (and

not on any one-way function).

The following is the de�nition of non-interactive

proof systems of [7], which was modi�ed in order to

incorporate the tractability of the prover P and to

which we add the new countability requirements.

De�nition 3.2 A triple (P;V;U), where P is a prob-

abilistic machine, V is a polynomial time machine,

and U is a polynomial time sampleable probability dis-

tribution is a non-interactive zero-knowledge proof

system for the language L 2 NP with witness set

WL(x) for every x 2 L if:

1. Completeness (if x 2 L then P generates a proof

that V accepts): For all x 2 L

n

, for all z 2

WL(x), with overwhelming probability for U 2

R

U(n) and p 2

R

P(x; z; U ), p 2 ACCEPT (U; x).

The probability is over the choice of the shared

string U and the internal coin 
ips of P.

2. Soundness (if y 62 L then no prover can gener-

ate a proof that V accepts): For all y 62 L

n

with

overwhelming probability over U 2

R

U(n) for all

p 2 f0; 1g

�

, p 2 REJECT (U; y). The probability

is over the choices of the shared string U .

3. Zero-knowledge (there is a probabilistic polyno-

mial time machine Sim which is a simulator for

the system): For all probabilistic polynomial time

machines C, if C generates x 2 L and z 2WL(x)

then,

j Prob[C(w) = 1jw 2

R

Sim(x)]�

Prob[C(w) = 1jw 2

R

CONV (x; z)]j <

1

p(n)

for all polynomials p and su�ciently large n.

The new property we need is countability: given

an x 2 L and a proof p 2 ACCEPT (U; x), there is an

e�cient procedure for estimating

Pr[p is generated by P(x; z; U )]:

A scheme which satis�es the 4th condition as well is

called countable. In section 4 we describe how to con-

vert the scheme of [7] into a countable one, where one

can estimate jACCEPT (U; x)j and p 2

R

P(x; z; U ) is

close to uniform in ACCEPT (U; x).

3.3 The construction

We now de�ne the class of distributions D

n

which is

easy to evaluate but hard to generate given the above

tools. Each member D of the class D

n

is determined

by

1. A pseudo-random function

F

k

: f0; 1g

m(n)

7! f0; 1g

m(n)

speci�ed by the key k.

2. A commitment c to k according to the protocol

above.

3. A string U 2 U

good

which is to be used for a

countable NIZK proof system and where

U

good

= fU j 6 9x 62 L & p s. t.

p 2 ACCEPT (x; U )g:

Note that by assumption on the NIZK proof sys-

tem almost all strings are good and we can easily

sample from U

good

.

Such a distribution D de�ned by (k; c; U ) outputs

quintuples (m; z

m

; p; U; c) where m 2 f0; 1g

m(n)

is cho-

sen uniformlyat random, z

m

= F

k

(m), and p is a proof

with common string U that z

m

= F

k

(m) given c, the

commitment to k (i.e. that (m; z

m

; c) 2 L). Note

that c and U are the same for every string D outputs.

We choose m(n) so that the length of the quintuple

(m; z

m

; p; U; c) is n.

The evaluator for D needs only one sample from

D in order to get U and c. From this point on,

given a quintuple (m; z

m

; p; U

0

; c

0

), to evaluate its

probability check whether U

0

= U and c

0

= c and

whether p is indeed a proof that (m; z

m

; c) 2 L (i.e.

that p 2 ACCEPT (U; (m; z

m

; c))). Estimate a =

Pr[p is generated by P((m; z

m

; c); reveal(k); U )]

where reveal(k) is the string used to reveal that k is

the committed string. Output a=2

m(n)

.



Theorem 3.3 D

n

cannot be learned by a generator,

but can be learned by an evaluator.

Proof. (Sketch) We show that the conditions of Def-

inition 3.1 and Theorem 3.2 are satis�ed and hence

we get the desired result from Theorems 3.1 and 3.2.

Properties (1) and (2) of De�nition 3.1 are satis�ed

since all the tools used have e�cient key generators:

the pseudo-random functions, the bit-commitment

schemes and U

good

. Property (3) follows from the

security of the pseudo-random function F

k

and the

non-interactive zero-knowledge proof system. It can

be shown, as in [3], that if this property is not sat-

is�ed, then either the pseudo-random F

k

can be dis-

tinguished from a truly random function or that there

is no simulator for the NIZK proof system. Property

(4) is satis�ed simply by choosing m(n) to be large

enough.

Condition (1) of Theorem 3.2 is satis�ed since m

is chosen at random from f0; 1g

m(n)

. The existence

of procedure A and B follows, since given one sam-

ple from D the learner may obtain U and c. The

soundness of the NIZK proof system yields B. As

for A, make A(x) to be the inverse of the estimate of

Pr[p is generated by P(x; z; U )]. 2

4 A countable non-interactive zero-

knowledge proof system

Our goal in this section is to describe a non-

interactive zero-knowledge proof system with the

countability property, i.e. that it is possible to de-

rive a good estimate on the number of proofs a given

statement has. It is heavily dependent on [7] and we

assume familiarity with that paper. The description

is, however, rather informal.

We are interested in proving membership in the lan-

guage

L = f(c;m; z

m

)j(c = commitment to k & z

m

= F

k

(m)g

de�ned above. We can convert the proof system for

3-SAT into a proof for L (from the NP-Completeness

of 3-SAT). There are several thing to note before we

start: L is a circuit satis�ability problem that either

has one satisfying assignment or none. This follows

from the property we required from the bit commit-

ment protocol: the receiver should accept only one

string as the committer message at the reveal stage.

Given that the circuit satis�ability problem has either

a unique assignment or none, the reduction to 3-SAT

preserves this property. (Note that without this prop-

erty we should have applied tools from [32, 22] which

would have introduced some non-negligible error.)

The NIZK proof system for 3-SAT of [7] contains

the following parts:

1. Select a Blum integer N = PQ where P andQ are

primes of length at most n bits and y a quadratic

non-residue such that y 2 J

+

N

(has Jacobi symbol

1), We require that P and Q will have at least,

say 2=3n bits.

2. Prove using one part of the public string U that

N is indeed a Blum integer and y a quadratic

non-residue.

3. Prove the satis�ability of the formula using this

N and the second part of U .

We claim that once N has been �xed, counting the

number of legitimate proofs that choose N is easy,

at least within a good approximation. For the part

of proving that N is a Blum integer the prover has

to provide a square-root for a sequence of numbers

(determining which numbers should get a square root

is easy - it depends on the Jacobi symbol). There

are 4 possibilities for the square-root, so enumerating

this part is easy. As for the number of possible y's,

it is �(N )=4. The veri�er does not know �(N ) (it

would yield the factorization of N ), however it can be

approximated to within �. Furthermore, since N =

P �Q we know that �(N )=N � (1� 1=

p

N ).

As for the second part, the prover has to select

1. A random square modulo N for each variable.

This can be estimated quite accurately, as de-

scribed above, by taking N=4. Furthermore we

can modify the protocol slightly and make the

prover chose a number that is not necessarily rel-

atively prime to N , in which case we can calcu-

late the probability exactly. This does not hurt

the zero-knowledge property of the protocol since

it is a rare event.

2. 7 triples (�

i

; �

i

; 


i

) for each clause (of the 3-SAT

formula) where each one is selected by choosing a

random square and multiplyingby the non-square

y as needed. This implies choosing 21 squares and

a permutation on six elements. This is, again,

simple to count.

3. A square-root for a sequence of numbers a square

root (4 possibilities).

Given N and a proof p 2 ACCEPT (U; x) all the

above estimates are multiplied. Since each on of the



estimates is very good (to within relative error of

1=2

n=3

), the relative error of their product is also

small. Therefore we see that given N the number

of possible proofs of a member of L can be approx-

imated e�ciently to within relative error of � = 1=2

n

�

for some � > 0. .

The remaining problem is calculating the proba-

bility that N is selected. Here the problem is that

N should be a product of two primes of equal length

n. Estimating the number of N 's of this form can be

done either analytically or \empirically", generating

random pre-factored numbers (according to Bach's al-

gorithm [2]) and testing which fraction has the proper

form.

The catch, however, is that the proof that N is a

Blum integer only shows that it has two distinct prime

divisors (and is not a perfect square), it does not nec-

essarily imply that these primes are of length n. This

has no e�ect of the soundness of the proof, so it was

not a problem considered in [7]. However, here we

should estimate the number of valid proofs and it be-

comes signi�cant. Note that allowingN to have a very

large and a very small factor might make it factorable,

in which case the zero-knowledge property of the proof

system is destroyed. Furthermore, suppose we change

the distribution of selecting N from selecting P and

Q as n bit primes and forming N = P �Q to generat-

ing a sequence of random pre-factored numbers until

one which is a product of two primes is encountered.

This allows a non-negligible probability of having a

very small factor, which does not guarantee the zero-

knowledge property. We thus should �nd a way of

proving that N was formed properly.

We now come to the punch-line and major modi�-

cation of the scheme of [7] which we apply. We do not

know of any direct way of demonstrating that all the

divisors of a number have at most n bits, and there-

fore we will employ the general 3-SAT protocol of [7].

This seems to reintroduce the problem of estimating

this number of proofs, since the prover has to select an

N

0

(which, again should be a product of two primes

etc.) for that purpose and we are back to square one.

However, we solve this by makingN

0

= N and adding

a third part to the common random string U

0

with

which the fact that N is of the right form is proved

using the 3-SAT protocol. This might seem similar to

the grave sin of cryptography: encrypting a key using

the same key. However, we can show that the result-

ing scheme is still secure. This follows from the way

the zero-knowledge simulator of [7] was constructed.

It works just as well even if N is �xed and known be-

fore the theorem whose proof will be simulated using

N is selected. This implies that theorem may depend

on N and therefore the zero-knowledge property is not

altered

4

.

Therefore it is possible to estimate the probability

that a given proof p is generated by the prover P to

within relative error � = 1=2

n

�

and we can conclude

with the following theorem:

Theorem 4.1 The modi�ed proof system for L is a

countable non-interactive zero-knowledge.

5 Learning distributions may require a

lot of storage

In this section we address another problem raised in

[18]: whether there are classes of distributions that are

learnable but not "compressible", in the sense that es-

sentially all the samples given must be stored. Kearns

et al. [18] suggested a family of distributions for which

they conjectured that this is indeed the case, i.e. that

in order to learn a member of this family to within �,

one needs a generator of size proportional to polyno-

mial in 1=�. We do not know how to prove this con-

jecture, but we provide an alternative construction for

which we can prove the desired property.

We show that assuming pseudo-random generators

exist, then there exists a family of distributions D

such that any D 2 D is learnable with a generator

to within error �, for any � > 0, but the learned gener-

ator must be of size at least 
(1=�). This is in contrast

to the distribution-free PAC model, where the results

of Schapire and Freund [30, 12] on precision boosting

imply that the size of the hypothesis can always be

be much smaller than the number of samples, and be

only polynomial in log 1=�.

The family D

n

we construct may be based on any

pseudo-random generator. A member of D

n

is de-

�ned by a seed s to a pseudo-random sequence de-

noted by X

s

. (It is better to think of X

s

as a pseudo-

random sequence with random-access, i.e. a pseudo-

random function; the two assumptions are equiva-

lent [15].) Once s is �xed, the distribution D

s

out-

puts (i;X

s

[i]) where 1 � i � 2

n�1

is chosen so that

Prob[i > k] = 1=k by making Prob[i = k] =

1

k(k�1)

for k � 2. (Since we chop the sequence at 2

n�1

, let

Prob[i = 2

n�1

] =

1

2

n�1

. It can be easily veri�ed that

4

The reason the simulator can publish N before getting the

element whose membership should be proven is that the sim-

ulated U consists only of quadratic residues modulo N (and

numbers whose Jacobi symbol is �1) and does not depend at

all on the element.



any D

s

2 D

n

can be generated by a polynomial size

circuit.

In order to learn with a generator such a distribu-

tion to within � (in the L

1

norm sense, you can get a

similar result for the Kullback-Leibler distance), sam-

ple the distribution until you have seen all i � 1=�

(this should not take more than �

�2

log 1=� samples).

Record the ith value of the sequence in X[i]. Follow-

ing the learning stage, simulate the distribution in the

natural way, by choosing i according to the above dis-

tribution. If i � 1=�, output (i;X[i]); if it is larger,

output (i; b) for random b 2 f0; 1g. The distance be-

tween the generated distribution and the true one is

bounded by � since this is the bound of the probability

that i > 1=�.

The following is the key observation: given a black

box whose output distribution D

0

supposedly approx-

imates D

s

2 D to within �, we can extract the �rst

p

1=� bits of X

s

without errors and the �rst 1=� bits

of X

s

with at most �� errors for some � < 1=3. This

is done by samplingD

0

many times, say �

�2

k for some

k > 1. For each i � 1=� record the number of time

(i; 0) and the (i; 1) were output (the distribution D

0

is

not necessarily consistent on i). Take X[i] to be the

majority of the (i; �)'s. If jD

0

[(i; 0)]�D

0

[(i; 1)]j > 1=3,

then with high probability

5

over the samples from

D

0

X[i] is the larger of the two, i.e. D

0

[(i;X[i])] >

D

0

[(i; 1�X[i])].

If X[i] 6= X

s

[i] or jD

0

[(i; 0)] � D

0

[(i; 1)]j � 1=3 for

some i �

p

1=�, then the distance between D

0

and D

s

is larger than �. Regarding i � 1=�, suppose that for

more than �=� of them either jD

0

[(i; 0)]�D

0

[(i; 1)]j �

1=3 or D

0

and D \disagree on i. (In both cases

jD

0

[(i; 0)] � D[(i; 0)]j + jD

0

[(i; 0)] � D[(i; 0)]j � 2=3.)

The closest D

0

can be to D is when the disagreement

occurs at the �=� largest i's. But the distance in this

case is 2=3 � �(1=�� 1) � �.

To see why this observation implies that that there

are no succinct representations for the learner of D,

consider the family D

�

of distributions whose mem-

bers D

rs

are de�ned by a truly random sequence r

of length 1=�, continued with the pseudo-random se-

quence determined by s for larger i's. The family of

distributions D

�

is indistinguishable from the original

one D

n

. Suppose we apply the learning algorithm for

D

n

on aD

rs

2 D

�

and get a circuit whose output isD

0

.

By the above argument we can fully reconstruct the

�rst

p

1=� bits of r from the circuit forD

0

, except with

some probability 1��

0

where �

0

is a bound on probabil-

5

this probability is exponentially in k close to 1, so we assume

that for all 1 � i � 1=� this event did not happen andX records

faithfully all those i's such that jD

0

[(i;0)]�D

0

[(i; 1)]j> 1=3.

ity of distinguishing a pseudo-random sequence from

a truly random one and may be sub-polynomial (if

it is not the case, then we have a distinguisher for

the pseudo-random generator.) Therefore, by a count-

ing argument the size of the circuit must be at least

(1� �

0

) �

p

1=�. Furthermore, we can reconstruct cor-

rectly at least 2=3 of the bits of r, and again by a

counting argument (based on Coding Theory) it must

be the case the size of the circuit is 
(1=�).

A similar argument works for learning with an eval-

uator. We therefore conclude

Theorem 5.1 Assuming X

s

is a pseudo-random gen-

erator, then the family of distributions D is such that

any D 2 D is learnable with a generator (or evaluator)

to within error �, for any � > 0, but the the length of

the description of the learned generator (or evaluator)

must be of size 
(1=�) with high probability for most

D 2 D.

6 Open questions and further work

Non-interactive zero-knowledge proof systems are

quite ine�cient (though still of polynomial size), so a

reasonable question is whether they are really neces-

sary for constructing irreproducible distributions sat-

isfying the conditions of Theorem 3.2. This question

is not so relevant to the problem considered in this pa-

per, of demonstrating that evaluation may sometimes

be easier than generation, since e�ciency is not a ma-

jor consideration here. However, we can show the fol-

lowing: given an irreproducible distribution that has

an e�cient procedure for membership in the support

(procedure B(x) in the condition of Theorem 3.2) and

a trapdoor permutation, we can construct an existen-

tially unforgeable signature schemes. The interesting

property of this scheme is that it is not tree based,

which has as least the potential of being e�cient.

A di�erent problem in learning distributions where

cryptographic tools may be applicable is that of learn-

ing �nite automata. In [18] the problem of learning �-

nite automata with an evaluator is related to the noisy

parity problem, but it is not clear whether hardness

based on standard cryptographic assumptions can be

shown or what is the status of learning such distri-

butions with a generator. The recent construction of

synthesizers in NC

1

[24] seems related, but we have

not been able to use it.



Acknowledgments

I would like to thank Ronitt Rubinfeld for intro-

ducing me to this area and Oded Goldreich and Dan

Roth for several useful discussions and suggestions.

References

[1] D. Angluin and M. Kharitonov, When won't

membership queries help, Proc. 23rd ACM An-

nual Symposium on the Theory of Computing,

1991, pp. 444{454.

[2] E. Bach, How to generate factored random num-

bers, SIAM J. Computing 17, 1988, 179{193.

[3] Bellare, M. and S. Goldwasser, New paradigms

for digital signatures and message authentication

based on non-interactive zero knowledge proofs,

Advances in Cryptology - CRYPTO 89, Lecture

Notes in Computer Science, vol. 435, Springer-

Verlag, 1990, pp. 194{211.

[4] M. Bellare and S. Micali, How to Sign Given

Any Trapdoor Function, Proc. 20th ACM Annual

Symposium on the Theory of Computing, 1988,

pp. 32{42.

[5] A.

Blum, Separating distribution-free and mistake-

bound learning models over the Boolean domain,

Proc. 31st IEEE Symposium on Foundations of

Computer Science, 1990, pp. 211{218.

[6] A. Blum, M. Furst, M. Kearns, and R. Lip-

ton. Cryptographic Primitives Based on Hard

Learning Problems. Advances in Cryptology |

CRYPTO 93, Lecture Notes in Computer Science

773, , Springer-Verlag, 1994, pp. 278{291.

[7] M. Blum, A. De Santis, S. Micali and , G. Per-

siano, Non-Interactive Zero-Knowledge, SIAM J.

Computing, 1991, pp. 1084{1118.

[8] T. M. Cover and J. A. Thomas, Elements of

Information Theory, Wiley, 1991.

[9] C. Dwork and M. Naor, An E�cient Existentially

Unforgeable Signature Scheme and its Applica-

tions, Advances in Cryptology { CRYPTO '94,

Springer Verlag, 1994, pp. 234{246.

[10] S. Even, O. Goldreich, and S. Micali, On-

line/O�-line Digital Signatures, Advances in

Cryptology { CRYPTO '89, Lecture Notes in

Computer Science, vol. 435, Springer-Verlag,

1990, pp. 263{275.

[11] U. Feige, D. Lapidot and A. Shamir, Multiple

Non-Interactive Zero-Knowledge Proofs Based on

a Single Random String, Proc. of 31st Sympo-

sium on Foundations of Computer Science, 1990,

pp. 308{317.

[12] Y. Freund, An improved boosting algorithm and

its implication on learning complexity, Proc.

5th ACM Workshop on Computational Learning

Theory, 1992, pp. 391{398.

[13] Goldreich, O., Foundations of Cryptog-

raphy (Fragments of a Book) 1995. Avail-

able in the Electronic Colloquium on Com-

putational Complexity: http://www.eccc.uni-

trier.de/eccc/info/ECCC-Books/eccc-

books.html.

[14] O. Goldreich, Two remarks concerning the

Goldwasser-Micali-Rivest signature scheme, Ad-

vances in Cryptology - CRYPTO' 86, Lecture

Notes in Computer Science, vol. 263, Springer-

Verlag, 1987, pp. 104{110.

[15] O. Goldreich, S. Goldwasser and S. Micali, How

to construct random functions, J. of the ACM.

33 (1986) 792{807.

[16] S. Goldwasser, S. Micali and R. Rivest A secure

digital signature scheme, SIAM J. on Computing

17, 1988, pp. 281{308.

[17] M. Kearns and L. Valiant, Cryptographic limita-

tions on learning Boolean formulae and �nite au-

tomata, J. of the ACM. 41(1) (Jan, 1994) 67{95.

[18] M. Kearns, Yishai Mansour, Dana Ron, Ronitt

Rubinfeld, Robert E. Schapire and Linda Sellie,

On the learnability of discrete distributions, Proc.

26th ACM Annual Symposium on the Theory of

Computing, 1994, pp. 273{282.

[19] M. Kharitonov, Cryptographic hardness of

distribution-speci�c learning, Proc. 25th ACM

Symposium on Theory of Computing, (1993)

372{381.

[20] J. Kilian, On the complexity of bounded-

interaction and non-interactive zero-knowledge

proofs, Proc. of the 35th IEEE Symposium on

the Foundation of Computer Science, 1994.



[21] J. Kilian and E. Petrank,

An e�cient non-interactive zero-knowledge proof

system for NP with general assumptions, Elec-

tronic Colloquium on Computational Complex-

ity TR95-038. Available: http://www.eccc.uni-

trier.de/eccc/info/ECCC.

[22] K. Mulmuley, U. V. Vazirani and V. V. Vazirani

Matching is as easy as matrix inversion, Combi-

natorica 7, 1987, 105{113.

[23] M. Naor, Bit commitment

using pseudo-randomness, Journal of Cryptology,

vol 4, 1991, pp. 151{158.

[24] M. Naor and O. Reingold, Synthesizers and their

applications Proc. 36th IEEE Symposium on

Foundations of Computer Science, 1995, pp. 170{

181.

[25] M. Naor and M. Yung, Universal one-Way hash

functions and their cryptographic applications,

Proc. 21st ACM Annual Symposium on the The-

ory of Computing, 1989, pp. 33{43.

[26] M. Naor and M. Yung, Public key cryptosystems

provably secure against chosen ciphertext attacks,

Proc. 22nd ACM Annual Symposiumon the The-

ory of Computing, 1990, pp. 427{437.

[27] Rivest, R.L., A. Shamir, and L.M. Adleman, A

method for obtaining digital signature and public

key cryptosystems, Comm. ACM 21 (1978) 120{

126.

[28] Rivest, R.L., Cryptography and Machine Learn-

ing, Proc. ASIACRYPT'91, Springer Verlag,

1993, pp. 427{439.

[29] J. Rompel, One-way Function are Necessary and

Su�cient for Signatures, Proc. 22nd ACM An-

nual Symposium on the Theory of Computing,

1990, pp. 387{394.

[30] R. E. Schapire, The strength of weak learnability,

Machine Learning 5, 1990, pp. 197{227.

[31] A.Sinclair and M. Jerrum, Approximate Count-

ing, Uniform Generation, and Rapidly Mixing

Markov Chains, Information and Computation,

82:93{133, 1989.

[32] L. G. Valiant and V. V. Vazirani, NP is as easy as

detecting unique solutions, Theoretical Computer

Science 47, 1986, pp. 85{93.


