
Local Computations on Static and Dynamic Graphs

�

Alain Mayer

y

Moni Naor

z

Larry Stockmeyer

x

Abstract. The purpose of this paper is a study of computation that can be done locally in

a dynamic distributed network. By locally we mean within time (or distance) independent

of the size of the network and by dynamic we mean that the underlying graph is not stable

and links continuously fail and come-up. One of the main contributions of this work is a

de�nition of robustness, which captures the nature of an algorithm performing well in such

an environment.

The second important contribution is the happy coloring & orientation tool and abstrac-

tion and its application to robust and local solutions to the weak coloring and (d;m)-dining

philosophers problems of Naor and Stockmeyer [28]. The latter problem is similar to the

usual dining philosophers problem, except that each philosopher has access to d forks but

needs only m of them to eat. We give a robust local solution if m � dd=2e (necessity of this

inequality for any local solution was known previously).

In the same environment we also investigate (1) the amount of initial symmetry-breaking

needed to solve certain problems locally (for example, our algorithms need considerably less

symmetry-breaking than having a unique ID on each node), and (2) the single-step color

reduction problem: given a coloring with c colors of the nodes of a graph, what is the

smallest number of colors c

0

such that every node can recolor itself with one of c

0

colors as

a function of its immediate neighborhood only.

Key words. distributed computation, local computation, graph labeling problem, resource

allocation, dining philosophers problem

AMS subject classi�cations. 68M10, 68Q20, 68Q22, 68R05, 68R10

�

Preliminary version appeared in Proc. 3rd Israeli Symp. on Theory of Computing and Systems, 1995,

pp. 268{278.

y

Dept. of Computer Science, Columbia University, New York, NY 10027, USA. E-mail:

mayer@cs.columbia.edu. Part of this work was done while the author was visiting the IBM T. J. Watson

Research Center. Partially supported by NSF grant CCR-93-16209 and CISE Institutional Infrastructure

Grant CDA-90-24735

z

Incumbent of the Morris and Rose Goldman Career Development Chair, Dept. of Applied Mathematics

and Computer Science, Weizmann Institute, Rehovot 76100, Israel. E-mail: naor@wisdom.weizmann.ac.il.

Part of this work was done while at the IBM Almaden Research Center. Research supported by BSF Grant

94-00032/1 and by an Israel-France grant.

x

IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, CA 95120, USA. E-mail:

stock@almaden.ibm.com.



1 Introduction

Locality is an important feature of a distributed system. Each processor is directly connected

to at most some �xed number of others. In such an environment it is easy to see that in

t time-units, a processor can only learn about the situation at processors which are within

distance at most t from itself. However, typical problems arising in a distributed system

require that the values computed at di�erent processors must �t together in some global

way. This observation gives rise to numerous questions of how much time (and hence how

much a processor needs to know of its neighborhood) is required to solve a given problem.

Unreliability is an inherent problem of a distributed system. Connections between pro-

cessors can fail (and later recover) and processors might crash. Hence a desirable feature of

a computation in a distributed system is fault-tolerance. Up to now most of the work for

changing (dynamic) networks used the assumption that the sequence of topological changes

is �nite. This assumption is called eventual quiescence (see, for instance, the fundamental

work of Afek et al. in [1]). It has been recognized that eventual quiescence is a strong

assumption for large networks and di�cult to ensure in practical systems (see the work of

Awerbuch et al. in [8]).

It should come as no surprise that local algorithms can be made fault-tolerant under

a weaker assumption than eventual quiescence. While it has been recognized that locality

is a useful tool for fault-tolerance (see Section 1.1), there has been no formal quanti�able

de�nition of locality, on which fault-tolerant algorithms can be built. An important con-

tribution of this work is the introduction of a new, quanti�able assumption, weaker than

eventual quiescence, on the condition of allowable topological changes in the network and

a corresponding de�nition for what it means for an algorithm to be correct. This new

de�nition, which we call robustness, is needed, since our assumption allows, from a global

perspective, perpetual changes in the network.

Informally, an algorithm is robust if, for every node v, it operates correctly at v provided

that a su�ciently large neighborhood around v remains stable for a su�ciently long time.

We are especially interested in the case that the radius of the neighborhood and the required

stability time are constant independent of the size of the network.

Given a particular computational model, certain problems are more basic than others

as tools for the solution of other problems. Our second important contribution, presented

in Section 3, is the happy coloring & orientation tool and abstraction. This labeling is

a weakened version of a happy partition (see [21]). We show a robust local algorithm to

compute it. The algorithm is then used in later sections as a basic building block.

The problem of an ever changing network is even more severe in reactive problems, i.e.,

problems which run \forever" and the input at every processor/node changes in time, such

as mutual exclusion, dining philosophers, etc. In Section 4, we present a local algorithm

to the (d;m)-Dining Philosophers Problem ((d;m)-DPP) introduced in [28], a variant of

the well-known dining philosophers problem (see, e.g., [11, 23, 31]), where a processor has

access to d forks, but only needs m of them in order to eat. Based on a happy coloring &

orientation of the conict graph, we show how to solve the problem locally and robustly for

m � dd=2e. (It has been shown in [28], that for m > dd=2e, there is no local algorithm for

(d;m)-DPP. Moreover, this holds even when the network and conict graph are static.) Our

algorithm employs the \doorway algorithm" from Choy and Singh [12]. Given our discussion

1



about fault-tolerance, we can show that we need only a constant-size neighborhood around

a node to be stable for a constant period of time in order for that node to progress, i.e.,

if it was hungry at the start of the period, it will obtain enough forks to begin eating by

the end of the period. The results about (d;m)-DPP described above concern the case that

each resource (fork) is shared by two processors. In Section 5 the results are extended to

the case where each resource can be shared by up to r processors. In this case, a necessary

and su�cient condition for a local solution is m � dd=re in both the static and dynamic

case.

We continue (Section 6) by showing that a happy coloring & orientation can be used to

give a simpler local algorithm than in [28] to obtain a weak coloring (a coloring in which every

node has at least one neighbor colored di�erently). In Section 7 we consider the question

of how much initial symmetry breaking in the network is needed to solve certain problems

locally. For the results mentioned above, we need only that each node have a local ordering

of its incident links and that each link have an initial orientation. (In the case of DPP

with resource sharing greater than 2, the algorithm needs an \orientation" of each resource,

i.e., a total order on the processors that share the resource.) This is weaker than the usual

assumption of unique ID's on the nodes. We show, however, that the weaker symmetry-

breaking assumption cannot be used in place of unique ID's in general. Finally, in Section

8 we investigate the color reduction problem: starting with a legal coloring with c colors

what is the smallest number of colors c

0

such that every vertex can recolor itself legally with

one of c

0

colors as a function of its immediate neighborhood only. In particular for graphs

with degree bounded by some constant, the best known bound on c

0

is c

0

= O(log log c),

obtained by a nonconstructive solution of Szegedy and Vishwanathan [32]. By applying

a construction of certain set systems in [25, 27], we obtain a constructive color reduction

method, closely related to the one of [32], also having c

0

= O(log log c). (The solutions are

not restricted to constant-degree graphs. In Section 8 we discuss how c

0

depends on both c

and the degree.)

1.1 Related work

We now survey several lines of research that are related to the issue of locality and its use

in fault-tolerance:

� Quality of Local Decisions in a Dynamic Network: An early treatment can be found in

Awerbuch and Even [7]: they introduce the notion of eventual connectivity (roughly, no

edge-cut persists inde�nitely) and notice that the di�culty of designing a routing al-

gorithm under this assumption is that completely local decisions are either insu�cient

to ensure correctness or lead to ine�ciency. Similar considerations for the problem of

end-to-end communication are made in Afek and Gafni [2] and many other papers on

this subject.

� Self-Stabilization: Both in our model and in the model of self-stabilization (see Schnei-

der [30] for a survey) the goal is to reach a legal state when started in an unknown

state and to try to regain a legal state when a change (e.g., failure) occurs. E.g.,

the problem might be, starting from an arbitrary node coloring, to �nd a legal node

coloring. The works of Afek, Kutten, and Yung [3] and Awerbuch, Patt-Shamir, and

2



Varghese [9] introduce the notion of locally checkable problems. These are problems

whose legal states can be expressed as a conjunction of local (node-)predicates. How-

ever, to compute a locally checkable problem (to bring it to a legal state) might still

need time (convergence-time) which depends on the size of the network. Finally, a

self-stabilizing algorithm must overcome even maliciously chosen initial states (e.g.,

arbitrary messages in transit).

� Local-Global Phenomena: Linial [21] surveys many aspects of the question of which

global graph parameters are determined by local properties. In particular, Linial et

al. [22] considered the problem of inferring the average of a non-negative function

de�ned on the nodes of a graph. They showed that if there is a lower bound � on the

value of the function in all neighborhoods of distances up to r then the average of the

function value must be at least �n

�O(1= log r)

and that this result is tight.

� Local Mending: Recently Kutten and Peleg [18, 19] considered the notion of fault-

local mending. This is a way to measure the complexity of algorithms for labeling

problems (e.g., they consider \maximal independent set") where the algorithm should

be e�cient as a function of the number of faults (and not the size of the network).

In comparison with our approach, the faults are a one-time event, i.e. they assume

global quiescence. On the other hand, any labeling problem that has a local robust

solution in our scenario can be locally mended.

2 De�nitions

We �rst give some (informal) de�nitions concerning graphs. All graphs in this paper are

simple and undirected. Part of the structure of a graph is a port labeling , i.e., a labeling

of the vertex-edge incidences with labels from some �nite totally-ordered set, such that the

incidences at a given vertex receive distinct labels. Thus, for example, after receiving a

message on link e, the algorithm may send a message back on link e. We consider only

networks of bounded degree. We assume that initially each link is oriented and that both

endpoints agree on this orientation. This is obviously a weaker assumption than the usual

assumption of unique ID's. It turns out that this assumption is su�cient for our purposes

and it is well suited since a new node joining the network only needs to arrange itself with

its immediate neighbors rather than with all other nodes in the network. For a graph

G = (V;E) and vertices v; w 2 V , let dist

G

(v; w) be the distance (length of a shortest path)

in G from v to w. For a vertex v and a nonnegative integer r, let B

G

(v; r) denote the ball

around vertex v of radius r, i.e., the set of vertices w such that dist

G

(v; w) � r. A centered

graph is a pair (H; s) where H is a graph and s is a vertex of H. The radius of (H; s) is the

maximum distance from s to any vertex or edge of H.

In a network of dynamic topology (see e.g., [1]), each link may fail and recover an

unbounded number of times. Nodes do not fail, but we can model a node failure by failure

of all its incident links. Link failure is simply the loss of the connection between two

endpoints which may result in a loss of a message. Nodes can detect failure and recovery of

an incident link. For resource-allocation problems, there is a given conict graph where each

node represents a processor and each edge represents a resource (a \fork") which is shared

3



by the two endpoints. We assume that the conict graph is a subgraph of the network (as

is usually done, see, e.g., [6]). Hence a link failure equals loss of that particular resource.

As opposed to the network-graph, node failures here are separate and represent failures of

processors.

We now recall the notion of a \locally checkable labeling" (LCL) from [28], slightly

modi�ed for our purposes. An LCL L consists of a positive integer r (called the radius of

L), a �nite set � of input labels, a �nite set � of output labels, and a �nite set C of locally

consistent labelings. Each element of C is a centered graph of radius at most r where each

vertex is labeled with a member of �. Given a graph G = (V;E) and a labeling � : V ! �,

the labeling � is L-legal if, for every v 2 V , there is a (H; s) 2 C and an isomorphism �

mapping B

G

(v; r) to H such that �(v) = s and such that � respects the port labeling and

the vertex labeling �. Essentially, the set C gives a \truth table" of all locally consistent

labelings. For the labeling problems considered in this paper, the legality of the output

labeling does not depend on the input labeling. However, the input labeling can be used

by an algorithm to help it �nd an output labeling (e.g., for \symmetry breaking"). Since

a graph is supplied with a port labeling, an edge labeling (e.g., an edge orientation) can

be encoded in vertex labels. The correctness of an algorithm for the particular reactive

problem (d;m)-DPP is discussed at the beginning of Section 4.

The above de�nition was given for a static graph G, i.e., the topology of G remains �xed

over time. But note that L-legality is essentially one big conjunction of predicates over local

neighborhoods of radius r. Thus changes in the topology of G only a�ect the legality of

labelings within distance r of that change. Hence we can de�ne legality in a dynamic graph

as follows. We say that a ball B(v; r) is stable (for a time t) if there are no topological

changes in B(v; r) (for time t) and the input labeling in B(v; r) does not change (for time

t).

De�nition 2.1 We say that a labeling algorithm is (r; t)-robust if (1) it produces a legal

(according to LCL) output labeling on vertex v whenever B(v; r) is stable for time t, and

(2) it does not change this legal labeling on vertex v as long as B(v; r) is stable thereafter.

For reactive algorithms we use the following de�nition:

De�nition 2.2 We say that a reactive algorithm is (r; t)-robust if it (1) produces progress

on vertex v whenever B(v; r) is stable for time t, and (2) maintains safety properties at all

times regardless of changes in topology or input labeling.

For example, in the case of resource allocation problems, such as the dining philosophers

problem and the variant (d;m)-DPP, progress means that if v becomes hungry and if B(v; r)

is stable for time t, then v will obtain enough resources to start eating within time t. Safety

means that two processors never own the same resource at the same time. In our solution

safety is achieved by having each process restart its DPP algorithm upon detection of

instability.

The composition P

1

� P

2

of two programs is formed by running P

1

and P

2

in parallel,

with the output labeling of P

1

used as the input labeling of P

2

. For the compositions in

this paper, P

1

is always a labeling algorithm; P

2

is either a labeling algorithm or a resource

allocation algorithm.

4



Theorem 2.1 If P

1

is a (r

1

; t

1

)-robust algorithm and P

2

is a (r

2

; t

2

)-robust algorithm, then

the composition P

1

� P

2

is a (r

1

+ r

2

; t

1

+ t

2

)-robust algorithm.

Proof. Note that for each vertex w in B(v; r

2

) (including v itself), B(w; r

1

) is stable for

time t

1

, and hence P

1

produces a correct output on w. Now stability of each such B(w; r

1

)

is guaranteed for an additional time t

2

, and hence P

1

maintains a stable output in B(v; r

2

),

so P

2

is guaranteed to produce a correct output (or behavior) on v. 2

For particular algorithms P

1

and P

2

, it might be possible to obtain better bounds on

the robustness of their composition than the general bound given in this theorem.

Since the focus of our investigation is \constant-time" algorithms, we say that an algo-

rithm is \local" if it is (r; t)-robust for both r; t being constants independent of the size of

the network. Note that a (r; t)-robust solution to the (d;m)-DPP implies that the response

time is bounded by t and that the maximum length of a waiting chain is r. Lynch [23]

was the �rst to explicitly consider the response time for the dining philosophers problem.

The goal of successive works was to make the response time of a node to depend only on

its local neighborhood in the conict-graph (see, e.g., [12] and [10]). The importance of

short waiting chains has been pointed out in [12], [28], and [6] (where this property is called

r-wait-freedom).

Our computational model is an asynchronous message passing system with an upper

bound � on the time for a message to traverse a single link, and � also includes the time

for local computation at a processor. Thus, time bounds are given as functions of �.

3 Happy Coloring & Orientation

In this section we �rst de�ne a happy coloring & orientation of a graph and then show a

one-step local algorithm to compute it.

The problem of �nding happy partitions is well known: A partition of the vertex set

of a graph V = A

:

S

B is called happy if every x 2 A has at least half of its neighbors

in B, and vice versa. Such partitions always exist and a sequential algorithm for �nding

such a partition can be obtained by considering local improvements: if a there is a node

that is unhappy, ip its part; the number of edges between A and B only increases by the

process. However, the problem cannot be solved locally, and furthermore, Linial and Saks

conjecture a 
(

p

n) time lower bound for any distributed algorithm (see [21] and see [29]

for the parallel complexity of the problem). Therefore we turn now to a weaker form of a

partition: We are given a graph which has an arbitrary initial orientation on its edges and

an arbitrary initial coloring of its vertices with two colors (say a and b). A happy coloring

& orientation is a 2-coloring (i.e., a partition) and an orientation of the given graph with

the following properties at each vertex v, where d

v

is the degree of v, and \indegree

v

from

c" is the number of neighbors w of v such that w is colored c and the edge (w; v) is directed

towards v:

� (color

v

= a) ) (indegree

v

from a + neighbors with b) � dd

v

=2e

� (color

v

= b) ) (indegree

v

from b + neighbors with a) � dd

v

=2e

5



REPEAT FOREVER

IF (color

v

= b) AND ((indegree

v

from b + neighbors with a) < dd

v

=2e)

reverse all incoming edges;

color

v

:= a;

send \my color changed to a" to all neighbors;

ELSIF (color

v

= a) AND ((indegree

v

from a + neighbors with b) < dd

v

=2e)

reverse all incoming edges;

color

v

:= b;

send \my color changed to b" to all neighbors;

END

Figure 1: Happy coloring & orientation

In analogy to a happy partition we can describe the above as follows: A partition of

the vertex set of a graph V = A

:

S

B and an orientation of the edges is called a happy

coloring & orientation if every x 2 A has at least half of its neighbors either in B or pointing

towards x, and vice versa. Figure 1 shows an algorithm to compute a happy coloring &

orientation. In addition, whenever a new link incident to v comes up (including the start

of the algorithm when all links come up), v sends its current color to the vertex at the

other end of the link. Whenever a new link comes up, both endpoints are given the initial

orientation of the link. Recall that the orientation of each edge is encoded in the vertex

labels of the endpoints of the edge; one of the requirements for a labeling to be legal is that

the endpoints agree on the orientation.

Theorem 3.1 The algorithm in Figure 1 is a (2; 2�)-robust algorithm for a happy coloring

& orientation.

Proof. First note that a vertex which has a legal happy coloring & orientation does not have

to change its color as a result of a color change by a neighbor. This is because a changing

neighbor reverses all its incoming edges and thus contributes to the indegree of any of its

neighbors. Suppose that B(v; 2) is stable for time 2�, starting at time t

0

. By time t

0

+ �, v

will learn, for each of its neighbors w, a color c

w

that w had at some time t

w

� t

0

. Suppose

for the moment that no w changes this color c

w

. Now v changes its color from b to a only if

its outdegree to b-colored vertices is at least dd

v

=2e. The new color a is legal because v has

at least dd

v

=2e neighbors colored b. If on the other hand any of these neighbors changes

from b to a then, as noted above, they will contribute to the indegree of v and thus the

new color a is legal as well. A neighbor changes color no later than time t

0

+ �, so v learns

of any changed orientations no later than time t

0

+ 2�. The case of v changing from a to

b is symmetric. Furthermore, topological changes at a distance 3 from a vertex v will not

cause any neighbor of v to change color, so such changes cannot a�ect the color of v or the

orientation of any of its links. 2

6



4 (d;m)-Dining Philosophers Problem

Recall the de�nition of the (d;m)-Dining Philosophers Problem: There is a given conict

graph of minimum degree d where each vertex represents a processor and each edge rep-

resents a resource (a \fork") which is shared by the two endpoints. We assume that the

conict graph is a subgraph of the network (as is usually done, see, e.g., [6]). Hence a link

failure equals loss of that particular resource. Vertex failures are separate and represent

failures of processors.

At any time, a fork can be \owned" by at most one of the processors which share it.

Each processor can be in one of three states: resting, hungry, or eating. A resting processor

can become hungry at any time. In order to eat, a processor must obtain at least m forks.

A processor eats for at most a bounded time (denoted �), after which it returns to the

resting state. A processor p can attempt to \grab" a certain fork, and to release an owned

fork. The grab operation will fail if the fork is currently owned by the other processor q; if

this occurs, p may decide to wait for q to release the fork. Communication is via message-

passing, where we assume � to be an upper bound for message propagation between any two

adjacent vertices. We require a \local" solution, i.e., (r; t)-robust, where r; t are independent

of the size of the network. Such a solution implies that any initial coloring algorithm used

must also be (r; t)-robust, that the response time is bounded by t, and that the maximum

length of a waiting chain which can develop is bounded by r. As pointed out by Choy and

Singh [12], a di�culty with long waiting chains is that if a processor p fails while holding a

fork, the failure will a�ect every processor behind p in the waiting chain.

We now turn to the design of a local algorithm that solves the (d;m)-DPP problem for

any bounded-degree conict graph with m � dd=2e. (As already noted, this inequality is

necessary for any local solution [28].) The basic idea of the algorithm is to use a happy

coloring & orientation algorithm to reduce the problem to a standard dining philosophers

problem on a subgraph of the conict graph. The coloring and subgraph have the property

that if two vertices conict (i.e., are contesting for the same resource in the subgraph) then

they are colored di�erently. We can then use an algorithm described by Choy and Singh

[12], which is local provided that such a coloring is given. (It is well-known that such

colorings cannot be found locally if we have to use the entire conict graph rather than a

subgraph of it [20]).

We make use of the happy coloring & orientation as follows. Forks on monochrome edges

are statically allocated according to the orientation. I.e., if edge e = (u; v) is oriented from

u to v and both u and v are colored with the same color, then v gets e \permanently" (as

long as the happy coloring & orientation does not change as a result of topological updates).

Thus if we delete these edges from our conict graph we obtain a bipartite graph. The edges

in this bipartite graph represent the forks that are contested. Note that since any vertex v

needs exactly m forks, it only needs to consider m�(number of statically allocated forks to

v) in this bipartite graph. So for analysis purposes we might just as well assume that the

degree of the bipartite graph is bounded by m. We say that two vertices are competitors if

they are connected by an edge in this bipartite graph. By construction, if two vertices are

competitors then they are colored di�erently.

If a vertex becomes hungry it will run the following two-phase algorithm on this bipartite

graph: In the �rst phase the vertex tries to enter a single doorway and in the second phase

7



Phase 1: To enter a doorway

Send(req-doorway) to all competitors;

Wait(ack-doorway) from all competitors;

On receiving req-doorway from vertex w:

Wait(outside-doorway);

Send(ack-doorway) to w;

Phase 2: To gather forks inside a doorway

Send(req-fork) to any competitor w with have-fork

v

(w) = 0;

If receive ack-fork from w, set have-fork

v

(w) := 1;

Wait have-fork

v

(w) = 1 for all competitors w;

On receiving a req-fork from vertex w:

Wait(not-eating);

Wait(outside-doorway or w has better color);

Wait(have-fork

v

(w) = 1);

Send(ack-fork) to w and set have-fork

v

(w) := 0;

If inside a doorway, Send(req-fork) to w;

Figure 2: The doorway algorithm at vertex v

the vertex collects forks in a preemptive manner from all its competitors. Priority is given

according to the colors. This doorway algorithm is from Choy and Singh [12].

A single doorway works as follows: To enter the doorway, a processor signals all its

competitors and waits for acknowledgements. On receiving all the acknowledgements, the

processor enters the doorway. A processor which has not entered the doorway will ac-

knowledge its competitors when it receives the signals. But processors that have entered

the doorway do not acknowledge until they have �nished eating. As soon as a processor

is in the doorway it starts to gather the forks as follows: It requests the forks from all

its competitors and waits for them. On receiving all forks, the processor starts eating. A

processor will send the fork to a requesting competitor if it is not eating and if it either

has a lower-priority color or if it is outside the doorway. A more formal description can be

found in Figure 2. In this description, each vertex v has a variable have-fork

v

(w) for each

competitor w, which is 1 if v has the fork it shares with w, or 0 if v does not have the

fork. When the edge (v; w) �rst appears, exactly one of have-fork

v

(w) and have-fork

w

(v)

is 1 (depending, say, on the initial orientation of the edge). The algorithm maintains the

safety property that, at any time, at most one of have-fork

v

(w) and have-fork

w

(v) is 1.

We assume that there is an underlying mechanism to detect topological changes. The

algorithm running at vertex v is restarted whenever the underlying happy coloring & ori-

entation changes in B(v; 1) (as a result of a topological change). We get the following:

Theorem 4.1 For m � dd=2e the composition of the algorithm in Figure 1 with the algo-

rithm in Figure 2 is a (5; (2m+ 2)� + (3m+ 8)�)-robust algorithm for (d;m)-DPP.

Proof. We �rst prove the response time to be (2m + 2)� + (3m + 6)�. Let T

c;p

denote the

8



upper bound on the time it takes for a vertex with color c (c 2 fa; bg) to �nish phase p

(p 2 f1; 2g). Assume that color a has priority over color b. First, T

a;2

= � + 2�: a vertex

with higher priority simply grabs the forks from all its non-eating competitors. Second,

T

b;2

= m(T

a;2

+ � + �) + 2�. The worst case for this bound occurs at a vertex v colored b

that has m competitors all colored a. Suppose that v begins Phase 2 (enters the doorway)

at time t. Note that after time t, each competitor can enter the doorway at most once

before v gathers enough forks to start eating. This is true because v will not acknowledge

any new requests for the doorway until after it eats. Moreover, v will receive an ack-fork

from competitor w within time � = T

a;2

+ � + � after w enters the doorway. Therefore,

the time for v to gather all its forks is at most m delays of � plus the initial round-trip

time of 2� for v's �rst req-fork messages (sent at time t) to be delivered and any ack-fork

messages to be returned to v. (This upper bound can occur in the case that, at the same

time that v receives an ack-fork from one competitor w, another competitor w

0

enters the

doorway and sends a req-fork to v which arrives quickly (delay 0). Even though w

0

got v's

ack-doorway before v entered the doorway, it could happen that w

0

just \now" got all its

ack-doorway's and hence enters the doorway.) For Phase 1 we have T

a;1

= T

b;2

+ � + 2�

and T

b;1

= T

a;2

+ � + 2�: a vertex outside the doorway gets inside once all competitors (of

opposite color) have �nished gathering their forks and eating. Adding the bounds for both

phases yields (2m+ 2)� + (3m+ 6)� for each color.

Note that the length of the longest waiting chain inside the doorway is at most two (by

priority among colors). Thus adding one on account of waiting to get into the doorway

yields 3.

The above together with Theorem 3.1 and Theorem 2.1 yields the result. 2

5 Resource Sharing Greater than 2

By the result in the previous section and a result in [28], (d;m)-DPP can be solved locally

i� m � dd=2e, in the case that each resource is shared by two processors. In this section

we extend these results to allow each resource to be shared by up to r processors, for some

constant r. For the standard dining philosophers problem, where a processor needs all

incident resources to eat, the case r > 2 easily reduces to the case r = 2: if a set N of

processors all share some resource, then the conict graph contains a clique on N . It is not

clear how to make this reduction work for (d;m)-DPP. In fact, we �nd that the condition

under which a local solution is possible depends on r: the condition is m � dd=re. The

algorithm follows the same outline as the algorithm in the previous section. We �rst �nd a

coloring, and then use this coloring to solve a standard dining philosophers problem using the

doorway algorithm. As before, the combined algorithm is robust in a dynamic environment

(although with a larger response time and longer waiting chains). The algorithm needs only

local symmetry-breaking information. The proof of impossibility for m > dd=re is similar

to the proof in [28] for the case r = 2. As in [28], the impossibility result holds even in a

static synchronous system, and even with unique ID's on the processors.

9



REPEAT FOREVER

R(v; j) = f � j v is jth in the ordering at resource � g;

color (v) = smallest j such that jR(v; j)j � m ;

mark 1 on m of the edges to resources in R(v; color (v));

mark 0 on the other edges incident on v;

inform all neighbors of this edge marking;

END

Figure 3: Happy coloring & marking at vertex v

5.1 The algorithm

It is useful to view the processor-resource incidence information as a bipartite graph, with

the processors on one side, the resources on the other, and an edge between processor v

and resource � if v is one of the processors that share �. So each processor has degree

at least d and each resource has degree at most r in this graph. (This graph should not

be confused with the bipartite graph used in the doorway algorithm in Section 4.) For

symmetry breaking, we assume that each processor has a total order on the resources to

which it is connected, and each resource has a total order on the processors to which it is

connected. As before, these orderings are purely local; they do not have to be consistent

with one another. For the purposes of robustness bounds, two processors that share a

resource are considered to be at distance one apart. This bipartite graph need not be

physically present; it is enough that each processor have a local view of it.

We now de�ne a particular labeling problem on the bipartite graph, called happy coloring

& marking. Each processor is labeled with a color from f1; 2; : : : ; rg and a competitor set

C, and each edge is labeled with a marking from f0; 1g. Given such a labeling, we say that

processors v and w are competitors if there is a resource � such that the edges (v; �) and

(w; �) are both marked 1. A labeling is legal if:

1. each processor has at least m incident edges marked 1,

2. if processors v and w are competitors, then v and w are colored di�erently, and

3. the competitor set at v contains v's local names of the processors that are competitors

with v.

The idea is that each v will compete for the resources connected to it by edges marked 1.

Assuming that m � dd=re, an algorithm for happy coloring & marking is shown in

Figure 3.

Theorem 5.1 The algorithm in Figure 3 is a (2; �)-robust algorithm for happy coloring &

marking.

Proof. Assume that B(v; 2) is stable for time �. Note that a j in the computation of color (v)

exists because m � dd=re. Two competitors cannot receive the same color j, because then

10



they would both be the jth processor in the ordering at some resource. The computation

of color (v) and the marking of edges incident on v requires no communication with other

processors. In time �, processors exchange marking information, so the competitor sets can

be found. If B(v; 2) remains stable, no neighbor of v changes the marking of its incident

edges, so the label of v is stable. 2

Given this coloring, we can now use the doorway algorithm of Figure 2. The only

di�erence is that now the processors are r-colored, and the conict graph is r-partite. An

upper bound on the response time can be shown to be O(rm

r�1

(� + �)). As in the proof

of Theorem 4.1, let T

c;p

be the upper bound on the time for a processor with color c to

complete phase p. Say that color i has priority over color j if i < j. By the same reasoning

as in Theorem 4.1:

T

1;2

= � + 2�

T

c;2

= m(max

i<c

T

i;2

+ � + �) + 2� for c > 1

T

c;1

= max

i 6=c

T

i;2

+ � + 2�:

This gives an upper bound O(rm

r�1

(� + �)) on response time. The maximum length of a

waiting chain is now r + 1.

Using Theorem 2.1, this gives the following.

Theorem 5.2 For m � dd=re, the composition of the algorithm in Figure 3 and the algo-

rithm in Figure 2 is a (r+3; O(rm

r�1

(� +�)))-robust algorithm for (d;m)-DPP in the case

that each resource is shared by up to r processors.

5.2 The impossibility result

Since we are proving impossibility in this section, there is no harm in assuming a strong

computational model: The processors operate in lock-step synchrony with all messages

taking one time unit to be delivered; the network and the connections of processors to

resources does not change; each processor and resource has a unique numerical ID; and the

eating time � is one time unit.

As in [28], a local algorithm with time bound t for an LCL problem operates in parallel

at every vertex v; the algorithm at vertex v collects information about the structure of the

network and ID's in B(v; t) and, based on that information, assigns an output label to v.

A useful tool for proving impossibility of local solution is order invariance. Intuitively,

a local algorithm is order-invariant if the output label it produces does not depend on the

actual value of the ID's in B(v; t), but only on the relative ordering of these ID's. More

formally, if � and �

0

are two ID labelings of the vertices of some B(v; t), and if for every two

vertices v and w, �(v) < �(w) i� �

0

(v) < �

0

(w), then the algorithm assigns the same label

to v when given B(v; t) labeled by either � or �

0

. By a Ramsey theory argument, building

on similar applications of Ramsey theory as in, e.g., [15, 24, 33], Naor and Stockmeyer [28]

show that if an LCL can be solved by a local algorithm in time t, then it can be solved by

an order-invariant local algorithm in time t. This result is used in proving the impossibility

result, stated next. The proof is similar to the proof for the case r = 2 in [28].

11



Theorem 5.3 For m > dd=re and � = � = 1, there is no algorithm with constant response

time for (d;m)-DPP if each resource is shared by r processors. This holds even in a static

synchronous system with unique ID's on the processors and the resources.

Proof. Fix some r and m. Since d is a lower bound on the number of resources connected to

each processor, it su�ces to do the proof with d as large as possible, that is, d = r(m� 1).

Imagine that the processors are placed at the vertices of a k = (m � 1)-dimensional

torus graph, and that the vertices are \named" by k-tuples, (i

1

; : : : ; i

k

) where 0 � i

j

< n

for each j and for some large n. For each (i

1

; i

2

; : : : ; i

k

) and each j with 1 � j � k,

the r processors at the vertices (i

1

; : : : ; i

j�1

; i; i

j+1

; : : : ; i

k

) for i

j

+ 1 � i � i

j

+ r share a

resource, where elements of a k-tuple are reduced modulo n. So each processor is connected

to rk = d resources, as required. We say that two processors are \neighbors" if the L

1

distance between their k-tuple names is 1.

We �rst show that a solution to the (d;m)-dining philosophers problem with constant

response time would give a local solution to the following LCL problem, for some constant

c depending only on m and r (a value for c is determined below):

1. Each vertex is labeled either 1 or 2;

2. Each k-dimensional c�c�� � ��c submeshM contains some vertex labeled 1 and some

vertex labeled 2.

Given an arbitrary ID-numbered torus, run the assumed (d;m)-dining philosophers algo-

rithm starting in the con�guration where all vertices are initially hungry. Recall that the

vertices operate in lock-step synchrony and that each message delay is one time unit. When

a vertex enters the eating state, it remains in the eating state for one time unit, and re-

mains in the resting state thereafter. The following rules are used to determine the label

of vertex v. Let s be the step at which v enters the eating state. If v has not received the

message \eating" from one of its neighbors at step s or earlier, then v chooses the label 1,

and sends the message \eating" to all of its neighbors at step s (in addition to any messages

that the (d;m)-dining philosophers algorithm sends at this step); the \eating" message is

received by v's neighbors at the next step s+1. Otherwise (v received an \eating" message

at step s or earlier), then v chooses the label 2 and does not send an \eating" message.

The labeling algorithm runs in constant time since the assumed (d;m)-DPP algorithm has

constant response time. It remains to show that condition 2 above holds for a large enough

c. Assume that c � 3. If there is a c�� � �� c submesh M with all vertices labeled 2,

then there would be some v such that v and all of its neighbors are labeled 2. But this is

impossible since, if all the neighbors of v are labeled 2, they do not send \eating" to v, so v

will be labeled 1 at the step when it eats. If there is a c�� � ��c submeshM with all vertices

labeled 1, then all vertices of M enter the eating state at the same step s. This gives a

contradiction as follows. The number of resources connected to vertices of M is at most

kc

k

+ O(rkc

k�1

) = (m � 1)c

k

+ O(rkc

k�1

). But in order for each vertex of M to own at

least m of these resources, there must be at least mc

k

of them. We obtain a contradiction

by choosing c large enough.

It is now easy to prove that this LCL cannot be solved locally. Suppose that it can be

solved locally. By the order-invariance result mentioned above, there would be an order-

invariant local algorithm A for the LCL, running in some constant time t. Assign unique

12



REPEAT FOREVER

Find a 1-1 assignment indexedge : towards(v) 7! f1; : : : ; indegree(v)g;

IF there exists a neighbor w s.t. color (v) 6= color (w) THEN

weakcolor (v) := color (v);

ELSE

weakcolor (v) := smallest x 62 f indexedge(e) j e 2 from(v) g;

END

Figure 4: Weak coloring at vertex v

numerical ID's to the vertices according to the lexicographic order of their k-tuple names.

Each resource can now be \named" by a unique set of r vertex ID's. Assign numerical ID's

to the resources according to the lexicographic order of these sets. For n large enough, there

will be some c�c�� � ��c submeshM such that B(v; t) looks the same to the order-invariant

A for every vertex v in M . So A assigns the same output label to every vertex of M , which

contradicts the de�nition of the LCL. 2

6 Weak Coloring from Happy Coloring & Orientation

In this section we give another application of happy coloring & orientation, this time to the

weak coloring problem of [28]. This problem is interesting since it was, to our knowledge,

the �rst example of a nontrivial labeling problem that can be solved locally, i.e., by looking

only at neighborhoods of constant radius. Using happy coloring & orientation has two

advantages over the algorithm of [28]: �rst, the new algorithm is simpler; and second, the

algorithm is robust in a dynamic network (whereas [28] considered only the static case). A

weak c-coloring of a graph G = (V;E) is an assignment weakcolor : V 7! f1 : : : cg such that

for every vertex v 2 V there is a neighbor w 2 V such that weakcolor (v) 6= weakcolor (w).

Naor and Stockmeyer [28] have shown a local algorithm for �nding a weak 2-coloring of

graphs in which the degree of every vertex is odd. We now show that happy coloring &

orientation is useful for �nding a weak coloring. Given a happy coloring & orientation of a

graph of maximum degree d, our algorithm �nds a weak (dd=2e + 2)-coloring in one step;

v is legally weakly colored (has a neighbor colored di�erently) if v has odd degree. (It is

known that there is no local solution to weak coloring if graphs can have vertices of even

degree [28].) This in turn can be reduced to a weak 2-coloring in log

�

d + O(1) additional

steps, given the methods in [28].

We assume some happy coloring & orientation on G. Let color (v) denote the color

given to v by the happy coloring & orientation, and let indegree(v) denote the indegree of

v, towards (v) denote the set of edges oriented towards v, and from(v) denote the set of

edges oriented from v in the happy coloring & orientation. The algorithm below assigns

a function weakcolor (v) to a vertex v. The algorithm also assigns indexedge(e) for all the

edges e incoming to v. A description of the algorithm can be found in Figure 4.

Theorem 6.1 The composition of the algorithm in Figure 1 with the algorithm in Figure 4

13



is a (4; 3�)-robust algorithm for a weak (dd=2e + 2)-coloring on the vertices of odd degree.

Proof. We show that the algorithm in Figure 4 is (2; �)-robust, given a happy coloring &

orientation. The result then follows from Theorem 3.1 and Theorem 2.1.

Assume that B(v; 2) remains stable for time � with a correct happy coloring & ori-

entation. Within time �, all vertices in B(v; 1) will have a common view of their col-

ors and the value of indexedge(e) for all edges incident on v. If v has a neighbor w s.t.

color (v) 6= color (w), then weakcolor (v) 6= weakcolor (w), since one gets `a' and the other `b'.

Suppose then that all of v's neighbors are colored with color (v). If the degree of v is odd,

indegree(v) � dd

v

=2e > outdegree(v)

and hence there exists an 1 � x � dd

v

=2e such that x is not assigned as indexedge(e)

to any e 2 from(v). Consider the vertex w such that edge (w; v) 2 towards(v) and

indexedge((w; v)) = x. It cannot be the case that weakcolor (w) = x, since x is not missing

among the assignments to from(w). Hence v is weakly colored properly.

As long as B(2; v) remains stable, all neighbors w of v have stable color (w) and no

neighbor will change the value of indexedge(e) for any e 2 from(v). 2

7 ID's vs. Orientation

All the algorithms presented so far relied on an initial (arbitrary) edge orientation and did

not need the stronger assumption that each node has a unique ID. In this section we show

an example where an initial orientation is not su�cient (even for static networks).

Consider the following variation on weak-coloring: All nodes v should receive a color in

f1; : : : ; cg such that if the number of nodes of distance exactly 2 from v is odd, then at least

one of them is colored di�erently than v.

First note that with unique ID's assigned to every node the problem is solvable locally.

All nodes simulate the local weak 2-coloring algorithm, substituting for edges paths of length

exactly 2. The orientation of the virtual edge is determined by the ID's of its endpoints (or

alternatively we can use the algorithm of [28]).

On the other hand, a labeling with the above properties cannot be found if the only

means of breaking symmetry is an initial edge orientation (and port labeling). To see this,

assume that there is a t-step algorithm for �nding such a labeling, for some t � 1. We

construct a graph G

0

where this algorithm necessarily fails. In describing G

0

we should

provide the topology, the initial edge orientation and the port labeling at the nodes.

Start with the graph G = (V;E) which is an unrooted tree of degree 3 at every internal

node and has radius at least t+2. Label the ports at every node with fa; b; cg in a consistent

manner. I.e. if edge (u; v) is considered port a at u, then it is port a at v as well. Note

that given such a labeling, all nodes of distance at least t from the leaves \see" the same

t-neighborhood.

Transform G to G

0

= (V

0

; E

0

) by the following rules: for every edge (u; v) 2 E generate

two new nodes u

0

and v

0

; add nodes u; v; u

0

and v

0

to V

0

and the edges (u; u

0

); (u; v

0

); (v; u

0

)

and (v; v

0

) to E

0

. Orient the edges u 7! u

0

; u

0

7! v; v 7! v

0

; v

0

7! u. As for the port labeling,

use labels from fa

1

; a

2

; b

1

; b

2

; c

1

; c

2

g. At nodes u 2 V , each edge in E was replaced by one

14



incoming edge and one outgoing edge. At these nodes, for the port labeled a in G label the

port of the incoming edge with a

1

and the port of the outgoing edge with a

2

. Similarly for

the ports labeled b and c. As for the new nodes, label the port of the incoming edge with

a

1

and that of the outgoing edge with a

2

.

Note that for the nodes u 2 V , the number of nodes of distance exactly 2 in G

0

is 3, i.e.

the constraint on weak coloring applies to them. Also, it is still the case that in the graph

G

0

all the nodes u 2 V of distance at least t from the leaves \see" the same t-neighborhood

(with respect to orientation and port labeling). Thus there is no way to assign colors so

that such a node has at least one node of distance exactly 2 which receives a di�erent color.

We do not know what is the \weakest" assumption about symmetry that su�ces for

all local algorithms? Consider the following assumption: there is a hyper-edge orientation

for all su�ciently large subsets. We suspect that all problems that can be solved locally

assuming unique ID's can be solved under this assumption.

8 The Color Reduction Problem

In this section we investigate the following problem: starting with a legal coloring with c

colors of the vertices of a graph (i.e. no two neighboring vertices receive the same color),

what is the smallest number of colors c

0

such that every vertex can recolor itself legally with

one of c

0

colors as a function of its immediate neighborhood only. The new coloring size

is a function of c, the original number of colors, and d, the degree of the graph. I.e., the

locality conditions we impose on the algorithm is more severe than in previous sections and

we consider only single-step algorithms.

Cole and Vishkin [13] and Goldberg and Plotkin [16] suggested a method that yields

a single-step color reduction from c colors to (log c)

d

colors. Linial [20] showed a method,

described below, that reduces c colors to d

2

log c colors. Szegedy and Vishwanathan [32]

show non-constructively that the number of colors can be reduced to O(d2

d

log log c) colors.

We show how to make their method constructive. Our method follows theirs closely and is

made constructive by the application of (n; d)-universal sets or d-intersection independent

sets (see de�nition below). The constructive solution has the same double-logarithmic

dependence on c, although a slightly worse dependence on d, using the currently best known

constructions of d-intersection independent sets.

8.1 Set systems and recoloring

Linial [20] suggested a recoloring method based on intersection properties of subsets. To

recolor a graph, originally colored with c colors and with max degree d, we need a collection

of c subsets S

1

; S

2

; : : : ; S

c

of some ground set B of size k. The desired property is that for

any i

0

; i

1

; : : : ; i

d

2 f1 : : : cg, such that i

0

6= i

j

for 1 � j � d, we have that

S

i

0

6�

d

[

j=1

S

i

j

(1)

Such a set system allows us to recolor with k = jBj colors: the recoloring at vertex v,

initially colored i

0

and with neighbors colored i

1

; : : : ; i

d

, is done by choosing an x 2 S

i

0

15



not in

S

d

j=1

S

i

j

. From the property (1) we are guaranteed that such an x exists. Any two

neighbors v and w colored with i

v

and i

w

choose distinct colors: v selects from a subset of

S

i

v

� S

i

w

and w selects from a subset of S

i

w

� S

i

v

.

Since the number of new colors is the size of the ground set B, we would like to �nd a

construction with B as small as possible. From [14] it follows that the smallest such k is

of size d

2

log c. Szegedy and Vishwanathan [32] suggested that a di�erent property of set

systems is relevant to the color reduction problem and can yield a more e�cient (for some

values of c and d) recoloring. What we show below is that this property of set systems can

be replaced by d-intersection independence. Rather than describe the method of [32] and

how it is related to d-intersection independence, it is simpler to describe the color reduction

method directly in terms of d-intersection independence.

8.2 Intersection independence

For a ground set B and subset S � B let S

0

denote the complement of S, i.e. B � S, and

let S

1

denote S itself. A collection of sets S

1

; S

2

; : : : ; S

m

� B is d-intersection independent

if: For all 1 � i

1

< i

2

< � � � < i

d

� m and b

1

; b

2

; : : : ; b

d

2 f0; 1g

d

\

j=1

S

b

j

i

j

6= �

Kleitman and Spencer [17] showed that the smallest k, for which there exists a set system

of m subsets of a ground set B of size k which is d-intersection independent, is 2

�(d)

logm.

The upper bound is based on a probabilistic construction which, as noted in [25], can be

made constructive using small-bias probability spaces which we now describe.

Small bias probability spaces: Let 
 be a probability space with m random variables

X

1

;X

2

; : : : ;X

m

. 
 is a d-wise �-bias probability space if for any subset S of random variables

from X

1

;X

2

; : : : ;X

m

of size at most d we have

jProb[

M

i2S

X

i

= 0]� Prob[

M

i2S

X

i

= 1]j � �:

An important property of d-wise �-bias probability spaces is: for any subset S of random

variables from X

1

;X

2

; : : : ;X

m

of size 1 � ` � d, the probability that the random variables

of S attain a certain con�guration deviates from 1=2

`

by at most �. Therefore d-wise �-bias

probability spaces are described as almost d-wise independent.

The size of the constructions of small bias probability spaces is Poly(d; 1=�; logm). More

precisely, there are constructions of size:

� O(

d logm

�

3

) { Naor & Naor [25] (optimized in Alon et al. [4])

� O(

d

2

log

2

m

�

2

) { Alon et al. [5]

If

1

�

= 2

d

+ 1 then the size of the �rst probability space is 2

O(d)

logm.

In order to obtain the d-intersection independent collection, set � < 2

�d

(say

1

�

= 2

d

+1).

From a d-wise �-bias probability space with m random variables we can get a d-intersection

independent collection:

16



� k = size of probability space

� points of probability space = elements of ground set B = f1; : : : ; kg

� S

i

= fall points such that X

i

= 1g

Recently Naor et al. [27] showed a better construction for d-intersection independent

collections which is of size d

O(log d)

2

d

logm. The disadvantage of their construction is that

it is a global one, in the sense that all the sets must be constructed together by a sequential

algorithm of complexity similar to the size of the collection. However, this seems to be

good enough for the purpose of designing local algorithms, since it can be thought of as a

\compilation phase".

8.3 E�cient recoloring

Let m = dlog ce and construct m subsets that are d-intersection independent. Let c(v)

denote the color of vertex v and for 1 � j � d let c

j

(v) denote the color of the jth neighbor

of v, where a color is a string of m bits. A vertex v with c(v) = b

1

b

2

: : : b

m

is recolored

according to the following:

1. Find i

1

; i

2

; : : : ; i

d

where i

j

is the index of �rst bit where c(v) and c

j

(v) di�er.

2. recolor v with x 2

T

d

j=1

S

b

i

j

i

j

.

The number of colors used following the recoloring is therefore k = O(d2

3d

logm) =

O(d2

3d

log log c) (or d

O(log d)

2

d

log log c in case we apply the construction of [27]) and the

claim below establishes that it is a proper recoloring procedure.

Claim 8.1 The above scheme is a correct recoloring.

Proof. First note that though i

1

; i

2

; : : : ; i

d

of step 1 need not be distinct, in the intersection

T

d

j=1

S

b

i

j

i

j

of step 2 there do not appear two sets S

0

l

and S

1

l

for 1 � l � m: if i

j

= i

l

then

S

b

i

j

i

j

= S

b

i

l

i

l

, since b

i

j

= b

i

l

. Therefore, from the d intersection property there is always an

x 2

T

d

j=1

S

b

i

j

i

j

and hence step 2 can be executed. As for correctness, we should show that

for all 1 � j � d, if c(v) 6= c

j

(v) then v and its jth neighbor are recolored with di�erent

colors. We claim that v and its jth neighbor choose new colors from disjoint subsets of B:

v will choose from a subset of S

b

i

j

i

j

and the jth neighbor of v will chose from a subset of

S

1�b

i

j

i

j

. 2

Example. We show a construction for c = 8 and d = 2. The algorithm reduces the number

of colors from 8 to 4. Let m = 3, k = 4 and B = f1; 2; 3; 4g. The system S

1

= f3; 4g,

S

2

= f2; 3g and S

3

= f2; 4g is 2-intersection independent. For a vertex colored 011 with

neighbors colored 101 and 010 the algorithm assigns i

1

= 1 and i

2

= 3. Therefore it looks

for a new color in S

0

1

\ S

3

= f2g. The new color is therefore 2.

17



3-coloring a ring: Suppose now that the above method for color reduction is applied

successively on the ring, i.e. a graph of degree 2, in order to obtain a legal 3-coloring. I.e.,

we start with a coloring of c colors and in each step replace the color of each vertex according

to the above algorithm. Note that this method reduces the number of colors for any c > 4

(see the example). When the number of colors is 4, it can be reduced to 3 by having each

vertex colored 4 choose a color in f1; 2; 3g not used by its neighbors (as in [16]). Since

each round reduces the number of colors used to order of log log the number of colors in

the previous round, the number of steps this procedure takes till a 3-coloring is found is in

(

1

2

+ o(1)) log

�

c. This bound is tight up to the o(1) term [20] (see also [26]).

Acknowledgments.

We thank the anonymous referees for their useful comments.

18



References

[1] Y. Afek, B. Awerbuch, and E. Gafni, Applying static network protocols to dynamic

networks, Proc. 28th IEEE Symposium on Foundations of Computer Science, 1987,

pp. 358{370.

[2] Y. Afek and E. Gafni, End-to-end communication in unreliable networks, Proc. 2nd

ACM Symposium on Principles of Distributed Computing, 1988, pp. 131-148.

[3] Y. Afek, S. Kutten, and M. Yung, Memory-e�cient self-stabilizing protocols for general

networks, Proc. 4th International Workshop on Distributed Algorithms, Lecture Notes

in Computer Science, Vol 486, Springer-Verlag, New York, 1990, pp. 15{28.

[4] N. Alon, J. Bruck, J. Naor, M. Naor, and R. Roth, Construction of asymptotically

good, low-rate error-correcting codes through pseudo-random graphs, IEEE Trans.

Information Theory 38 (1992), pp. 509-516.

[5] N. Alon, O. Goldreich, J. Hastad, and R. Peralta, Simple constructions of almost k-wise

independent random variables, Proc. 31st IEEE Symp. on Foundations of Computer

Science, 1990, pp. 544{553. See also: Random Structures and Algorithms 3 (1992),

pp. 289{304.

[6] B. Awerbuch, L. Cowen, and M. Smith, E�cient asynchronous distributed symmetry

breaking, Proc. 26th ACM Symposium on Theory of Computing, 1994, pp. 214{223.

[7] B. Awerbuch and S. Even, Reliable broadcast protocols in unreliable networks, Net-

works 16 (1986), pp. 381-396.

[8] B. Awerbuch, O. Goldreich, and A. Herzberg, A quantitative approach to dynamic

networks, Proc. 9th ACM Symposium on Principles of Distributed Computing, 1990,

pp. 189{203.

[9] B. Awerbuch, B. Patt-Shamir, and G. Varghese, Self-stabilization by local checking

and correction, Proc. 32nd IEEE Symp. on Foundations of Computer Science, 1991,

pp. 268{277.

[10] J. Bar-Ilan and D. Peleg, Distributed resource allocation algorithms, Proc. 6th Inter-

national Workshop on Distributed Algorithms, 1992, pp. 277{291.

[11] K.M. Chandy and J. Misra, The drinking philosophers problem, ACM Trans. Program-

ming Languages and Systems 6 (1984), pp. 632{646.

[12] M. Choy and A.K. Singh, E�cient fault tolerant algorithms for resource allocation

in distributed systems, Proc. 24th ACM Symposium on Theory of Computing, 1992,

pp. 593{602.

[13] R. Cole and U. Vishkin, Deterministic coin tossing with applications to optimal parallel

list ranking, Information and Control 70 (1986), pp. 32{53.

19



[14] P. Erd�os, P. Frankl, and Z. F�uredi, Families of �nite sets in which no set is covered by

the union of r others, Israel J. of Math. 51 (1985), pp. 79{89.

[15] G.N. Frederickson and N.A. Lynch, Electing a leader in a synchronous ring, J. Assoc.

Comput. Mach. 34 (1987), pp. 98{115.

[16] A.V. Goldberg and S.A. Plotkin, Parallel (� + 1)-coloring of constant-degree graphs,

Inform. Proc. Lett. 25 (1987), pp. 241{245.

[17] D.J. Kleitman and J. Spencer, Families of k-independent sets, Discrete Math. 6 (1973),

pp. 255{262.

[18] S. Kutten and D. Peleg, Fault-local distributed mending, Proc. 14th ACM Symposium

on Principles of Distributed Computing, 1995, pp. 20{27.

[19] S. Kutten and D. Peleg, Tight fault locality, Proc. 36th IEEE Symposium on Founda-

tions of Computer Science, 1995, pp. 704{713.

[20] N. Linial, Locality in distributed graph algorithms, SIAM J. Comput. 21 (1992),

pp. 193{201.

[21] N. Linial, Local-global phenomena in graphs, Technical Report 93-9, Hebrew Univer-

sity, Institute of Computer Science, 1993.

[22] N. Linial, D. Peleg, Yu. Rabinovich, and M. Saks, Sphere packing and local majorities

in graphs, Proc. 2nd Israeli Symp. on Theory of Computing and Systems, 1993, pp.

141{149.

[23] N.A. Lynch, Upper bounds for static resource allocation in a distributed system, J.

Comput. System Sci. 23 (1981), pp. 254{278.

[24] S. Moran, M. Snir, and U. Manber, Applications of Ramsey's theorem to decision tree

complexity, J. Assoc. Comput. Mach. 32 (1985), pp. 938{949.

[25] J. Naor and M. Naor, Small-bias probability spaces: e�cient constructions and appli-

cations, SIAM J. Comput. 22 (1993), pp. 838{856.

[26] M. Naor, A lower bound on probabilistic algorithms for distributive ring coloring, SIAM

J. Disc. Math. 4 (1991), pp. 409{412.

[27] M. Naor, L. J. Schulman, and A. Srinivasan, Splitters and near-optimal derandomiza-

tion, Proc. 36th IEEE Symposium on Foundations of Computer Science, 1995, pp. 182{

191.

[28] M. Naor and L. Stockmeyer, What can be computed locally?, SIAM J. Comput. 24

(1995), pp. 1259{1277.

[29] A.A. Sch�a�er and M. Yannakakis, Simple local search problems that are hard to solve,

SIAM J. Comput. 20 (1991), pp. 56{87.

[30] M. Schneider, Self-stabilization, ACM Computing Surveys 25(1) (1993), pp. 45{67.

20



[31] E. Styer and G.L. Peterson, Improved algorithms for distributed resource allocation,

Proc. 7th ACM Symposium on Principles of Distributed Computing, 1988, pp. 105{116.

[32] M. Szegedy and S. Vishwanathan, Locality based graph coloring, Proc. 25th ACM

Symposium on Theory of Computing, 1993, pp. 201{207.

[33] A.C.-C. Yao, Should tables be sorted?, J. Assoc. Comput. Mach. 28 (1981), pp. 615{

628.

21


