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Abstract. This work describes schemes for distributing between n servers

the evaluation of a function f which is an approximation to a random

function, such that only authorized subsets of servers are able to com-

pute the function. A user who wants to compute f(x) should send x to

the members of an authorized subset and receive information which en-

ables him to compute f(x). We require that such a scheme is consistent,

i.e. that given an input x all authorized subsets compute the same value

f(x).

The solutions we present enable the operation of many servers, prevent-

ing bottlenecks or single points of failure. There are also no single entities

which can compromise the security of the entire network. The solutions

can be used to distribute the operation of a Key Distribution Center

(KDC). They are far better than the known partitioning to domains or

replication solutions to this problem, and are especially suited to handle

users of multicast groups.

1 Introduction

A single server that is responsible for a critical operation is a performance bottle-

neck and a single point of failure. A common approach for solving this problem

is the use of several replicated servers. However this type of solutions degrades

the security of the system if the servers should store secrets (e.g. keys) which are

required for cryptographic operations. A solution to both the availability and

the security problems is to design a system whose security is not a�ected if a

limited number of servers are broken into (see Section 1.2 for a discussion of the

availability and security issues for KDCs).

The problem of distributing the evaluation of trapdoor functions for public

key cryptography was extensively investigated (see e.g. [18, 17, 22, 42]). However,

the problem of distributing the functions needed for private key cryptography,
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in particular the distribution of the evaluation of pseudo-random functions, was

neglected (an exception is the work of [31]). Threshold evaluation of random-

like functions is required for seemingly unrelated applications, for example for

secure and e�cient metering of web usage [32], for threshold evaluation of the

Cramer-Shoup cryptosystem [13], and for the applications we discuss in this

paper (in particular, distributed KDCs and long-term repository for encrypted

data). These applications require that the protocol for the collective function

evaluation does not invovle communication between the parties which evaluate

the function. This requirement is not satis�ed by most threshold constructions

for public key cryptography.

This work describes schemes for distributing between n servers the evaluation

of a function f which is an approximation to a random function, such that only

authorized subsets of servers are able to compute the function. A user who

wants to compute f(x) should send x to the members of an authorized subset

and receive information which enables him to compute f(x). We require that

such a scheme is consistent, i.e. that given an input x all authorized subsets

compute the same value f(x).

Distributed and consistent evaluation of pseudo-random functions is useful

for many applications. The consistency property is especially useful for the fol-

lowing three types of applications:

(i) A distributed KDC system (DKDC), in particular for multicast commu-

nication. We describe this application in detail in Section 1.2.

(ii) Long-tem encryption of information, where a user might want to encrypt

personal information and keep the decryption keys safely distributed between

many servers (see Section 1.3).

(iii) A realization of a Random Oracle or of a beacon [41] that generates ran-

domness which should be shared by remote parties and used in a cryptographic

protocol.

We introduce the notion of a Distributed Pseudo-Random Function (DPRF).

We describe several constructions of approximations to random functions which

are useful for many of the applications of a DPRF. A threshold DPRF (depicted

in Figure 1) is a system of n servers such that any k of them can compute the

function f , but breaking into any k � 1 servers does not give any information

about f (for instance think of a system with n = 20 servers and a threshold of k =

3). The servers could be distributed across the network, and a party can contact

any k of them in order to compute f . If several parties need to compute f for the

same input they are not required to contact the same k servers but rather each

party can contact a di�erent set of k servers (e.g. those to which it has the best

communication channels). Furthermore, to reduce the latency of the computation

a party can contact the k servers in parallel. We also support DPRFs based on

general monotone access structures [7, 28, 3] rather than on threshold ones.

There are several scenarios where general access structures might be preferable

to threshold access structures (e.g. to allow e�cient implementations of quorum

systems [38] which enable fast revocation).

Our constructions can be further amended to be robust against servers which
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Fig. 1. A Distributed Pseudo-Random Function System.

send incorrect data to users who approach them, (the robustness is based either

on error-correcting mechanisms or on proof techniques). The constrcutions can

also be further improved to ensure proactive security (see [11] and references

therein for a general discussion of proactive security), which provides automatic

recovery from break-ins: The servers perform some periodic refreshment of their

secrets (e.g. once a day), and as a result only an adversary which breaks into k

servers in the same period can break the security of the system.

1.1 Our Solutions for a Threshold Access Structure

It is unknown how to perform a threshold evaluation of a pseudo-random func-

tion without requiring heavy communication between the servers for each given

input. Lacking a general construction we describe three di�erent approximations

of DPRFs with a threshold access structure.

The �rst construction generates f as an `-wise independent function. It pro-

vides information theoretic security as long as an adversary does not obtain `

di�erent values. The scheme is very e�cient and requires only multiplications

in a small �nite �eld (which essentially should only be large enough so that a

random element in it can be used as a key for a private-key encryption scheme).

The parameter ` can therefore be set to be rather large (even several millions).

The second construction is based on a computational assumption: the de-

cisional Di�e-Hellman assumption (see [9]). However the resulting function is

only weakly pseudo-random, i.e. it is pseudo-random as long as the inputs on

which it is evaluated are pseudo-random. The construction requires a user to

compute O(k) exponentiations in order to compute the function's output, and

a server should compute only a single exponentiation in order to serve a user.

The �rst two constructions can be easily amended to provide proactive security.

The third construction is based on a monotone CNF formula realizing the

threshold k-out-of-n function. This construction computes a full-edged pseudo-

random function and its security depends only on the existence of pseudo-random

functions. It can also be adapted to any access structure. Its drawback is that

it is only e�cient for moderate values of n and small values of k, and we do not

know how to enhance it to obtain proactive security.



The constructions and their properties are summarized in Table 1.

E�ciency Pseudo Number of Proactive Robust. General

randomness evaluations security access

`-wise ind. e�cient poly strong limited yes yes yes

DDH expensive poly weak unlimited yes yes yes

CNF exponential strong unlimited no yes yes

Table 1. A comparison of the threshold schemes.

DPRFs for general access structures: We present constructions of DPRFs

based on any monotone access structure. For example, an access structure based

on a quorum system allows for fast user revocation by accessing the servers

which are members of a single quorum. Our constructions are based either on

monotone symmetric branching programs (contact schemes), or on monotone

span programs.

1.2 Application to Key Distribution { DKDCs

A Key Distribution Center (KDC): A popular approach for generating

common keys between two parties without using public key cryptography is by

using a three-party trust model which includes a trusted key distribution center

(KDC). In networks which use a KDC there is a dedicated key between the

KDC and each of the members of the network. Denote by k

u

the key between

the KDC and party u. This is the only key that u has to store. Very informally,

when two parties (e.g. u and v) wish to communicate, one of them approaches

the KDC which then provides a random key, k

u;v

, and sends it to each of the two

parties, encrypted with their respective secret keys (i.e. E

k

u

(k

u;v

) (the encryption

of k

u;v

with the key k

u

) is sent to party u, and E

k

v

(k

u;v

) is sent to v). The

parties can now communicate using the key k

u;v

. This approach was initiated by

Needham and Schroeder in 1978 [40] and is widely implemented, most notably in

the Kerberos system (see e.g. [27]). Bellare and Rogaway [4] give a complexity-

theoretic treatment of this model, and present a provably secure protocol for

session key distribution based on the existence of pseudo-random functions.

The approach of using a KDC is appealing since each party should only store

a single key and when a new party is introduced there is no need to send keys

to other parties. However there are various problems in using KDCs, which are

due to the fact that a KDC is a single point of failure:

{ Security: The KDC knows all the keys that are used in the system, and if

it is broken into the security of the entire network is compromised.

{ Availability: (i) The KDC is a performance bottleneck, every party has

to communicate with it each time it wishes to retrieve a key. (ii) When

the KDC is down or unreachable no party can obtain new keys for starting



conversations on the network. (iii) The availability problem is ampli�ed when

trying to use a KDC to generate keys for multicast communication (i.e. to

be shared by more than two parties), since all the relevant parties have to

contact a single KDC.

In order to address these problems the common practice is to use multiple

KDCs. However, the known solutions are far from being perfect: (i) The secu-

rity problem is addressed by dividing the network into di�erent domains and

dedicating a di�erent KDC to each domain. When a KDC is broken into only

the domain to which it belongs is compromised. However, the management of

inter-domain connections is complicated and a KDC still holds all the secrets of

its domain. (ii) The availability problem is reduced by replicating the KDC and

installing several servers each containing all the information that was previously

stored in the KDC. This improves the availability but decreases security: there

are multiple sensitive locations and breaking into any of these replicated KDCs

compromises the security of the network. There is also an additional problem of

reliably synchronizing the information that is stored in the di�erent copies.

Multicast communication: The availability problem is relevant to unicast com-

munication between two parties but is even more severe for multicast communi-

cation. Multicast communication is sent to a (potentially large) number of par-

ties. Typical applications are the transmission of streams of data (such as video

streams) to large groups of recipients, or an interactive multiparty conference.

The large (exponential) number of groups in which a party might participate

prevents it from storing a key for each potential group. On the other hand, the

large number of parties which might require the service of the KDC worsen the

availability problem. For example, imagine a source which transmits many video

channels over the Internet, with hundreds of thousands of receivers all over the

world. A single KDC cannot handle requests from all these receivers. Alterna-

tively, consider a multinational company which uses a single KDC for providing

keys for virtual meetings of its employees. If some o�ces are disconnected from

the KDC then users in these o�ces cannot even obtain keys for virtual meetings

between themselves.

A Distributed KDC { DKDC: A DPRF can be used to construct a Dis-

tributed KDC (DKDC). A DKDC consists of n servers and a user should k

of them in order to obtain a key. The servers are responsible for a consistent

mapping between key names and key values

4

. Each KDC server should operate

as a server in the distributed evaluation of the pseudo-random function f . The

key for a certain subset S of users is de�ned as k

S

= f(S). This approach is

especially useful for generating keys for multicast groups with many members.

Each member might approach a di�erent authorized subset of the KDCs and

it is guaranteed that every user obtains the same key. It is also useful to use

4

Of course, consistency does not prevent groups of users from using di�erent keys at

di�erent times (session keys), if this is desired.



this construction to generate keys for unicast communication if each of the two

parties prefers to access a di�erent subset of KDCs.

Key granting policy:When a user requests a key from a KDC the KDC should

decide whether the user is entitled to receive this key. The question of how this

decision is made is independent of this work.

One appealing approach is when a group name is derived from the identities

of its members and then servers can easily verify whether a user that asks for

a key is part of the group of users that use the key. This method is good for

\mid-sized" groups. For larger groups the group name can be generated by a

method based on hash trees, and then a user can e�ciently prove to a server

that it is part of a group.

Another appraoch introduces an interesting billing mechanism for multicast

transmissions with k-out-of-n DKDCs: the user is required to pay each server

1=k of the payment needed for accessing the transmission, and to receive in

return the information the server can contribute towards the reconstruction of

the decryption key.

1.3 Long-term Encryption of Information

Suppose one wishes to store encrypted information so that it remains safe for

many years. A problem that immediately arises is where to store the keys used for

the encryption so that they would not be leaked or lost. Note that the question

of storing keys safely arises in many other scenarios, e.g. [8]. One possibility is

to use a DPRF as a long term key repository. We add to the system a collection

of n servers that act as the servers of the DPRF. These servers are trusted in

the sense that no more than k of them become faulty

5

. We should also have

some way to specify the policy determining who is allowed to decrypt the �le,

as the system is likely to be used by many users. We assume that the DPRF

has ways to check whether a user is allowed to obtain information with a given

policy (this is orthogonal to the issue at hand).

In order for a user to encrypt a �le X and decryption policy speci�ed by

who, it does the following

{ Choose an encryption key r for a conventional encryption scheme G and

encrypt the �le with key r. Let Y = G

r

(X).

{ Compute h = H(Y ) where H is a collision intractable hash function.

{ Apply to the DPRF to obtain s = f(h �who)

{ Put Y in the long term storage together with who and s� r.

To decrypt an encrypted �le Y with policy who and encrypted key s

0

:

{ Compute h = H(Y ).

{ Apply the DPRF to obtain s = f(h �who)

{ Decrypt Y with key s� s

0

to G.

5

In this case the desirability of proactive security is evident since the assumption is

that no more than k are broken into at any given period.



Note that we do not require the servers of the DPRF to store anything in

addition to their keys. All information related to the �le can be stored at the

same place. Also note that in order combat changes to the stored information

one should use parts of s as an authentication key to Y and r.

1.4 Related Work

DPRF systems perform multi-party computations. The generic solutions of [25,

6, 14] for multiparty computations are ine�cient for this application (even when

applied to the relatively simple pseudo-random functions of [36], see discussion

there). In particular, they require communication between the servers which are

involved in the evaluation of the function. Their security is also only guaranteed if

less than one third (or one half in the passive model) of the servers are corrupted.

There has been a lot of work on designing and implementing KDCs. A good

overview of this work can be found in [27] and a formal treatment of the problem

is given in [4]. Most of this work was for a trusted party which generates a key

\on-the-y", i.e. where consistency of the key is not required. While this model

may be more relevant to unicast it is less applicable when more than two parties

are involved.

Naor and Wool [39] considered a di�erent scenario for protecting databases,

and when adapted to our scenario their solution is one where the servers are

trusted never to reveal their secret keys, but some of them might not have re-

ceived updates regarding the permissions of users (which is a weaker assumption

than regarded in this paper).

Our �rst two constructions are similar in nature to the constructions of Naor

and Pinkas for metering schemes [32]. The problem they considered was to en-

able a server to prove that it served a certain number of clients (a representing

application might be to meter the popularity of web sites in order to decide on

advertisement fees). In general, not every solution for the metering problem is

relevant to the construction of a DPRF (for example, the output of the metering

computation should be unpredictable whereas the output of a DPRF should be

pseudo-random). The metering constructions achieve better robustness against

transmission of corrupt proof components than the robustness of our DPRF

schemes against corrupt key components. On the other hand the metering con-

structions do not provide proactive security (due to the lack of communication

channels between clients in that model) whereas we present very e�cient proac-

tive enhancements to the DPRF schemes.

Micali and Sidney [31] showed how to perform a shared evaluation of a

pseudo-random function with a non-tight threshold. They provided a lower

bound and a non-optimal probabilistic construction which is relevant only for

small values of k and n. We describe an deterministic construction for the sharp

threshold case which matches their lower bound.

Gong [26] considered a problem related to the DKDC application: a pair of

users A and B each have private channels to n servers, and would like to use

them to send a secret and authentciated message from A to B (e.g. a key which

they will later use). Some of the servers might be corrupt and might change the



messages they are asked to deliver (this problem is similar to that considered

by Dolev et al [19] since each server is essentially a faulty communication link).

Gong's scheme requires A to send through each server a message of length O(n)

2 De�nitions

2.1 The Model

The following model is used throughout this work.

Setting: We consider a network of many users (clients), which also contains n

servers S

1

: : : : ; S

n

. Each user u has a private connection with each of at least k

servers (in all but the proactive solutions these channels can be realized using

symmetric encryption. A future work [34] describes how to e�ciently maintain

these channels in the proactive model).

Initialization: At the initialization stage each server S

i

receives some secret

personal key �

i

which it would use in its subsequent operation. It is possible

that the values f�

i

g

n

i=1

were generated by a central authority from a system

key �. If this is the case then � is erased at the end of the initialization stage.

Preferably, the servers perform a short joint computation which generates the

values f�

i

g

n

i=1

, such that no coalition C of k � 1 servers can use its values to

learn anything about �

u

if u 62 C. This prevents even a temporary concentration

of the system's secrets at a single location.

Regular operation: A party u that wants to compute f(x), operates as follows:

{ It contacts k servers, S

i

1

; : : : ; S

i

k

, and sends to each of them a message hu; xi.

{ Each server S

i

veri�es that u is entitled to compute f(x). If so, it computes

a function F (�

i

; x), and sends the result to u through their private channel.

{ u computes f(x) from the answers it received using a function G, namely it

computes f(x) = G(h; F (�

i

1

; x); : : : ; F (�

i

k

; x)):

2.2 Requirements

There are two approaches to approximating random functions: pseudo-randomness

and `-wise independence. We present approximations to DPRFs which follow

both these directions.

Loosely speaking, pseudo-random distributions cannot be e�ciently distin-

guished from uniform distributions. However, pseudo-random distributions have

substantially smaller entropy than uniform distributions and are e�ciently sam-

pleable. Pseudo-random function ensembles, which were introduced in [24], are

distributions of functions. These distributions are indistinguishable from the uni-

form distribution under all (polynomially-bounded) black-box attacks (i.e. the

distinguisher can only access the function by adaptively specifying inputs and

getting the value of the function on these inputs). Goldreich, Goldwasser, and

Micali provided a construction of such functions based on the existence of pseudo-

random generators. See [23, 29] for further discussions and exact de�nitions of

pseudo-random functions.



We also use `-wise independent functions. Their di�erence from a pseudo-

random function is that more than ` values of an `-wise independent function

are not \random looking" (however, a set of at most ` values is completely

random rather than pseudo-random).

In a DPRF the ability to evaluate the function is distributed among the

servers. The process that is performed by the servers can be de�ned as k-out-of-

n threshold function evaluation.

De�nition 1 k-out-of-n threshold evaluation of a pseudo-random func.

Let F

m

= ff

�

g be a family of pseudo-random functions with security parameter

m, keyed by �. A k-out-of-n computation of F

m

is a triple of polynomial time

functions hS; F;Gi (the key sharing, share computation and construction func-

tions), such that

{ For every f

�

2 F

m

, S(�) = h�

1

; : : : ; �

n

i, such that

{ For every 1 � i

1

< � � � < i

k

� n, G(hi

1

; F (�

i

1

; x)i; : : : ; hi

k

; F (�

i

k

; x)i) =

f

�

(x). And,

{ For every 1 � i

1

< � � � < i

k�1

� n, given f�

i

j

g

k�1

j=1

, and given a set Y of

polynomially many values (where the inputs in Y were chosen adaptively,

possibly depending on f�

i

j

g

k�1

j=1

), and the values hf

�

(y); fF (�

i

; y)g

n

i=1

i for

every y 2 Y , the restriction of the function f

�

to inputs which are not in Y

is pseudo-random.

The de�nition of k-out-of-n threshold evaluation of an `-wise independent func-

tion is similar, except that F

m

is a family of `-wise independent functions, and

it is required that given the computation process of any ` � 1 function values,

any remaining value is uniformly distributed.

The most important requirement of k-out-of-n threshold function evaluation

is that the output of f be consistent. The protocol might be considered as a spe-

cial case of multi-party computations [25, 6, 14]. However although it might not

be obvious from �rst reading, our de�nition includes several e�ciency restric-

tions which do not exist in the de�nition of multi-party computations and which

are actually not satis�ed by the constructions of [25, 6, 14] (their constructions

are also for a joint computation by n parties, and are secure only against coali-

tions of less than n=2 or n=3 parties. Our requirement is for a joint computation

by k parties and security against k�1 servers, where k might be any number up

to n). The e�ciency requirements, which we explicitly state below, are needed to

minimize the communication overhead which is often the most important factor

of the system's overhead. The e�ciency requirements are:

Communication pattern: In the process of computing f(x) there is no com-

munication between the servers. The only communication is between the servers

and the party that computes f(x).

Single round: There is only a single round of communication between the

servers and the user. The user can send queries to the servers in parallel, i.e.

there is no need to wait for the answer from one server before sending a query

to another server.



Obliviousness: The query to one server does not depend on the identities of

the other servers which the user queries. This requirement is important if the

user might �nd (while in the middle of the process of querying the servers) that

some of the servers to which it applied are malfunctioning.

Additional requirements can be considered as security optimizations to the

original de�nition. They are not obligatory, but improve the quality of a DPRF

construction:

Robustness: If a server is controlled by an adversary it might send to the user

corrupt information which prevents the user from computing the correct value.

It is preferable if the user can identify when such an event happens.

Proactive security (or, Resilience to prolonged attacks): Proactive security

enables a system to maintain its overall security even if its components are

repeatedly broken into. Systems with proactive security typically use a security

parameter k and are secure as long as less than k system components are broken

into in the same time period (see [11] for a discussion of proactive security).

3 The Threshold Constructions

3.1 `-wise Independence based on Bivariate Polynomials

The �rst construction is based on a generalization of the secret sharing scheme of

Shamir [44] to bivariate polynomials. It is a threshold construction of an `-wise

independent function. The scheme can be used to generate more than ` values

as long as it is guaranteed that no adversary will get hold of ` values. It is not

necessarily decided in advance which values will be generated by the scheme.

Setting: The family F is the collection of all bivariate polynomials P (x; y)

over a �nite �eld H, in which the degree of x is k � 1 and the degree of y is

`� 1. The key � de�nes an element f

�

2 F (� consists of the k` coe�cients of

the polynomial). The output of the function is an element in the �eld H. All the

arithmetic operations performed by the scheme are over H.

Initialization: (we describe here an initialization by a central authority, later

we also describe how the servers can perform a distributed initialization). The

initializer of the system chooses a random key � which de�nes a random poly-

nomial P (x; y) from F . Each server S

i

receives the key �

i

= Q

i

(y) = P (i; �),

which is an `� 1 degree polynomial in y.

Operation: The value f(h) is de�ned as f(h) = P (0; h). Consider a user that

wishes to compute this value. Say the user approaches server S

i

, then it should

send him the information �

i;h

= F (�

i

; h) = Q

i

(h) = P (i; h). After receiving

information from k servers S

i

1

; : : : ; S

i

k

the user can perform a polynomial inter-

polation through the points fhi

j

; �

i

j

;h

ig

k

j=1

and compute the free coe�cient of

the polynomial Q

h

(x) = P (�; h), namely the value f(h) = P (0; h).

The following points can be easily veri�ed: (i) The scheme implements the

de�nition of k-out-of-n evaluation of an `-wise independent function. (ii) In a

DKDC application the size of an element in the �eld H should be the length of

the required key and can therefore be rather small (e.g. 128 bits). The scheme

can be therefore used to produce a large number of keys (e.g. ` = 10

6

).



Several modi�cations can enhance the above scheme: (i) Proactive security

can be easily obtained, see Section 5. (ii) In order to reduce the complexity of

the polynomial interpolation it is possible to use several polynomials of smaller

degree and map keys to polynomials at random. (iii) It is possible to perform a

distributed initialization of the polynomial P , and then the system's secrets are

never held by a single party. The initialization is performed by several servers

which each de�ne a bivariate polynomial, and the polynomial used by the system

is the sum of these polynomials. Only a coalition of all these servers knows shares

of other servers. The initialization uses a new veri�cation protocol we discuss in

Section 5.

Robustness: A simple and straightforward procedure to verify that a user is

receiving correct information from servers, it to require the user to get shares

from k

0

> k servers and use the error-correction properties of Reed-Solomon

codes to construct the correct share (see e.g. [30]).

3.2 Distributed Weak PRFs Based on the DDH Assumption

In this section we describe a di�erent kind of approximation for a DPRF: we

show a way to distribute a weak pseudo-random function [35, 37]. A function

f is a weak PRF if it is indistinguishable from a truly random function to a

(polynomial-time) observer who gets to see the value of the function on any poly-

nomial number of uniformly chosen inputs (instead of any inputs of its choice).

The de�nition of k-out-of-n threshold evaluation of a weak pseudo-random function

f is similar to De�nition 1. The only di�erence is that we require that given the

computation process of f on any polynomial number of uniformly chosen inputs,

the value of f on any additional uniformly chosen input is indistinguishable from

random (this implies that f remains a weak pseudo-random function).

The main advantage of a distributed weak PRF compared with distributed

`-wise independent function is that the former is secure even when the adver-

sary gets hold of any polynomial number of values. However, constructing a

distributed weak PRF requires some computational intractability assumption

(in particular, the existence of one-way functions). The speci�c construction de-

scribed here relies on the decisional version of the Di�e-Hellman assumption

(which we denote as the DDH assumption). This construction is rather attrac-

tive given its simplicity.

The applicability of weak pseudo-random function: Any distributed weak

pseudo-random function f can be transformed to a DPRF by de�ning f

0

(x) =

f(RO(x)), where RO is a random oracle (i.e., a random function that is publicly

accessible to all parties as a black-box; see [4]). Therefore, if one postulates the

existence of random oracles then the construction we present below can be used

for all the applications of DPRFs. However this construction may be applicable

even without the use of random oracles. Consider for example the application of

DKDCs for multicast communication. Here there may be several scenarios where

a distributed weak pseudo-random function is su�cient. One such scenario is

when there exists a public mapping H that assigns random names to groups of



users. The key of a group can be the value of the distributed function applied

to the group's name. It is conceivable that group names are chosen by some

trusted party (or by a distributed protocol between several parties), and kept in

some (possibly duplicated) publicly available server. In fact, using the speci�c

functions described below is secure as long as some member of the group chooses

the group name as g

r

and proves that it knows r.

In the scheme we describe below, the user who computes the function f

should perform k exponentiations. This overhead is larger than that of a Di�e-

Hellman key exchange. However, the overhead is justi�ed even for the DKDC

application, since the Di�e-Hellman key exchange protocol cannot be used to

solve the availability and the security requirements that underline our solution

of a consistent distribution of a KDC (and are especially important for multicast

communication).

Related distributed solutions were previously suggested for discrete-log based

signatures (e.g. [22]). The novelty in our work is the fact that we prove the

pseudo-randomness of the evaluated function.

Setting and Assumptions: The scheme is de�ned for two large primes P

and Q such that Q divides P � 1, and an element g of order Q in Z

�

P

. The

values P;Q and g are public and may either be sampled during the initialization

or �xed beforehand. We assume that for these values, the decisional version

of the Di�e-Hellman assumption (DDH-Assumption) holds. I.e., that given a

uniformly distributed pair hg

a

; g

b

i, it is infeasible to distinguish between g

a�b

and

a uniformly distributed value g

c

with non-negligible advantage. For a survey on

the application of the DDH-Assumption and a study of its security see [9].

The functions and their initialization: The family F is keyed by a uniformly

distributed value � 2 Z

�

Q

. For simplicity, we de�ne the function f

�

over hgi

(where hgi denotes the subgroup of Z

�

P

generated by g)

6

. The function f

�

is

de�ned by 8x 2 hgi; f

�

(x)

def

= x

�

mod P .

The value � is shared between the servers using the secret sharing scheme

of Shamir [44]: The initializer of the system chooses a random polynomial P (�)

over Z

�

Q

of degree k � 1 such that P (0) = �. Each server S

i

receives the key

�

i

= P (i). To facilitate robustness, the initializer also makes the values g

�

and fg

�

i

g

n

i=1

public. It is also possible to let the servers perform a distributed

initialization of f .

Operation: Consider a user that wishes to compute f

�

(h) and approaches a

set of k servers fS

i

g

i2J

. Each such server S

i

sends to the user the information

�

i;h

= F (�

i

; h) = f

�

i

(h) = h

�

i

. After receiving information from the k servers

the user can perform a polynomial interpolation through the points f�

i

g

i2J

in

6

In fact, one can de�ne f

0

�

over Z

�

P

by setting f

0

�

(x) = f

�

(x

0

) where x

0

=

x

(P�1)=Q

mod P . If f

�

is a weak PRF then so is f

0

�

since: (1) If x is uniform in

Z

�

P

then x

0

is uniform in hgi. (2) For any x

0

2 hgi one can e�ciently compute a

uniformly chosen ((P � 1)=Q)-th root of x

0

. Computing such roots is possible by a

generalization of Tonelli's algorithm presented by Adleman, Manders and Miller (see

[2] for a survey on this subject).



the exponent of h. I.e he can compute

f

�

(h) = h

�

= h

P

i2J

�

i;J

��

i

=

Y

i2J

h

�

i;J

��

i

=

Y

i2J

f

�

i

(h)

�

i;J

where all exponentiations are in Z

�

P

and the values f�

i;J

g are the appropriate

Lagrange coe�cients.

It is easy to verify that querying any k servers for the value f

�

i

(h) results in

the same �nal value f

�

(h). Memory requirements from each server are minimal

(i.e. storing a single value in Z

�

Q

). In order to serve a user each server should

perform a single modular exponentiation in Z

�

P

. A user is required to perform k

modular exponentiation in Z

�

P

.

The security of the scheme is proved by the following theorem.

Theorem2. If the DDH-Assumption holds then the above scheme is a k-out-

of-n threshold evaluation of a weak pseudo-random function.

Proof Sketch: For clarity, we ignore at �rst the issue of corrupted servers and

just prove that if the DDH-Assumption holds then F = ff

�

g is a family of weak

pseudo-random functions. Let D be an e�cient algorithm that gets the value of

f

�

on q � 1 uniformly chosen inputs x

1

; : : : x

q�1

and distinguishes f

�

(x

q

) from

random with advantage � (where x

q

is also uniformly distributed). We construct

an algorithm A that breaks the DDH-Assumption:

On input hg

�

; g

�

; zi, the algorithm A �rst samples random values fr

i

g

q�1

i=0

(in

f1; : : :Qg). ThenA invokesD and returns its output on the input fhq

i

; f

�

(q

i

)ig

q�1

i=0

and the additional pair of values hx

q

= g

�

; zi. Where for each i, q

i

= g

r

i

(and

therefore f

�

(q

i

) = g

��r

i

can be evaluated by A). It is easy to verify that the

advantage A has in distinguishing between the case that z is uniform in hgi and

the case the z = g

���

is at least �.

We now need to show that no coalition of k�1 corrupt servers S

i

1

; : : : ; S

i

k�1

can break the threshold scheme. The reason this holds is that such k� 1 servers

can be simulated by the algorithm D described above. To do so, D samples the

secret values of the k�1 servers (i.e., �

i

1

; : : : ; �

i

k�1

) by itself. Let P be the degree

k� 1 polynomial that interpolates these values and �. De�ne �

j

= P (j). D can

evaluate every g

�

j

using interpolation in the exponent of g and can therefore

evaluate all the values f

�

j

(q

i

). 2

Robustness: Since the values fg

�

i

g

n

i=1

are public each server can prove the cor-

rectness of any answer f

�

i

(x) = x

�

i

. This can either be done by a zero-knowledge

variant of Schnorr's proof for the value of the Di�e-Hellman function [43, 15] or

by the non-interactive version that uses random-oracles.

It is possible to perform a distributed initialization of the scheme, secure

against corrupt servers (even if their only goal is to disrupt the operation of the

system rather than to learn keys), and to achieve to achieve proactive security

for the scheme.



3.3 DPRFs based on Any Pseudo-Random Function

The following scheme can use any family of pseudo-random functions, but since

its overhead for the k-out-of-n access structure is O(n

k�1

) it is useful only if the

total number of servers n is moderate and the threshold k is small.

Setting: De�ne d =

�

n

k�1

�

, and de�ne the d subsets fG

j

g

d

j=1

as all the subsets

of n� k + 1 of the n servers.

Let F

m

be a collection of pseudo-random functions with security parameter

m. The key � is a d-tuple ha

1

; : : : ; a

d

i of elements from f1; : : : ; jF

m

jg, and de�nes

a d-tuple hf

a

1

; : : : ; f

a

d

i of elements from F

m

. The function f

�

is de�ned as

f

�

(x) = �

d

j=1

f

a

j

(x).

Initialization: A random key � is chosen. We would like that for every 1 �

j � d, all the servers in subset G

j

would receive the key to the function f

a

j

.

Therefore for every server S

i

, �

i

= fa

j

ji 2 S

j

g. Note that the union of the keys

of any k servers covers � and is therefore su�cient to compute f

�

.

Operation: The DPRF system would provide the value f

�

(h) = �

d

j=1

f

a

j

(h).

When a user approaches a server S

i

, and the server approves of the user com-

puting f(h), it should send to the user the information ff

a

j

(h)ja

j

2 �

i

g. I.e., the

server should provide to the user the output of all its functions on the input h.

After approaching k servers, the user has enough information to compute f

�

(h).

For any coalition of k� 1 serves there is a subset G

j

which does not contain

any member of the coalition and thus the coalition members cannot compute

f

a

j

. Therefore it is straightforward to prove that the construction is a k-out-of-n

evaluation of a pseudo-random function. The number of functions which each

server should be able to compute is

�

n�1

k�1

�

, and the total number of functions

is d =

�

n

k�1

�

. Therefore the scheme cannot be used for systems with a large

threshold. However, for a moderate n and a small k the overhead is reasonable

(e.g. for n = 50 and k = 4, d = 19; 600 and a server should compute 4; 606

functions).

Note that the user receives the value of functions f

a

j

from more than a single

server. Therefore if the user sends to servers the identities of the other servers

which it approaches, the communication overhead is reduced if a a simple map-

ping is used to ensure that the output of each function is sent once. Alternatively

the data redundancy can be used to provide robustness against corrupt servers

that send incorrect data to users.

Generalization: The scheme can be generalized to any access structure. The

construction we used corresponds to a monotone CNF formula which contains

all clauses of n � (k � 1) out of n elements. A similar formula can be used to

realize any access structure. The total number of pseudo-random functions used

is the number of clauses in the monotone CNF formula.

Comparison to previous work: Micali and Sidney [31] considered more gen-

eral access structures: they de�ned an (n; t; u)-resilient collection (with t < u <

n) which enables any subset of u (out of n) parties to perform the computation,

while no subset of t parties has this ability. We are interested in a sharp thresh-

old, which provides the best security, and therefore require that k = u = t+ 1.



Micali and Sidney proved a lower bound of

n!(u�t�1)!

(n�t)!(u�1)!

for the number of

functions in an (n; t; u)-resilient collection, and used the probabilistic method to

show the existence of a construction which is ln

�

n

t

�

times larger than the lower

bound. Our deterministic construction (for the sharp threshold case) matches

their lower bound, and is therefore optimal.

4 DPRFs with General Access Structures

4.1 Using Monotone Symmetric Branching Programs

We present here generalizations of the threshold schemes to access structures

based on monotone symmetric branching programs. In Section 4.2 we describe

constructions for access structures based on monotone span programs. This is a

further generalization in that any linear secret sharing scheme can be simulated

by a monotone span program of the same size (the converse is also true, i.e.

any monotone span program can be simulated by a linear secret sharing scheme

of the same size, see [3]). However, the constructions of this section are more

e�cient (especially for the DH based constructions), as described below.

The application of monotone symmetric branching programs (also called

monotone undirected contact schemes, and switching networks) to secret sharing

was suggested by Benaloh and Rudich [7, 28, 3] and enables to construct a secret

sharing scheme for any monotone access structure (the question is the size of

the shares). We �rst present the computational model of monotone symmetric

branching programs and then a corresponding DPRF construction.

Monotone symmetric branching programs: Let G = (V;E) be an undi-

rected graph,  : E 7! f1; : : : ; ng be a labeling of the edges, and s; t be two special

vertices in V . A monotone symmetric branching program is de�ned as a tuple

hG; ; s; ti and has boolean output. Given an input x = fx

1

; : : : ; x

n

g 2 f0; 1g

n

,

de�ne G

x

as the graph G

x

= (V;E

x

), where E

x

= fe j e 2 E; x

 (e)

= 1g. The

output of the program is 1 if and only if G

x

contains a path from s to t.

A DPRF construction: It is possible to construct DPRFs which are either

`-wise independent or weakly pseudo-random, based on monotone symmetric

branching programs. A user would have to receive information from a subset of

the servers whose characteristic vector corresponds to a \1" output of the mono-

tone symmetric branching program in order to obtain the required value. We

present here the `-wise independent construction. Note that the corresponding

DH construction is more e�cient than with monotone span programs since it

requires only multiplications and not exponentiations.

Initialization: A monotone symmetric branching program which realizes the re-

quired access structure is constructed. A random polynomial P

s

of degree `� 1

is associated with the node s. The values distributed by the system are de�ned

as f(h) = P

s

(h). A random polynomial P

v

of degree ` � 1 is associated with

any other vertex v, except for the vertex t to which the polynomial P

t

� 0 is

assigned. Every edge e = (u; v) is associated with the polynomial P

e

= P

u

�P

v

.

Server S

i

is given the all the polynomials associated with the edges which are

mapped to i (edges e for which  (e) = 1).



Reconstruction: A user which wants to obtain value f(h) should contact a priv-

ileged subset of the servers. Each server S

i

which is approached by the user and

approves of him evaluating f(h) should provide it with the values fP

e

(h) j (e) =

ig. If the user receives information from a privileged subset it can sum the values

that correspond to a path from s to t and get P

s

(h).

Quorum systems: A Quorum system is a collection of sets (quorums), every

two of which intersect (see [38] for a discussion and some novel constructions

of quorum systems with optimal load and high availability). A DPRF with an

access structure in which every privileged set must contain a quorum has several

advantages regarding its maintenance: for example, if a user should not be al-

lowed to compute f it is only required to inform all the servers in a single quorum

of this restriction, and then every privileged set of servers contains at least one

server which will refuse to serve that user. DPRFs with access structures based

on the paths quorum system [38] can be e�ciently realized by the constructions

we presented in this section.

E�ciency: The reconstruction of the secret in the Di�e-Hellman variant we

presented here requires the user to perform multiplications. It is more e�cient

than the reconstruction for the monotone span programs based Di�e-Hellman

scheme we present in Section 4.2, which requires the user to perform exponenti-

ations.

General prf: Note that a direct use of pseudo-random functions instead of the

polynomials or of the Di�e-Hellman construction is insecure. The reason is that

an edge (u; v) is associated with a function f

u

� f

v

and since there is no concise

representation for this function which hides f

u

and f

v

the server which is mapped

to the edge should get both functions f

u

and f

v

. Subsequently, the server can

compute f

u

(x) or f

v

(x) and not just f

u

(x) � f

v

(x). Therefore a server which

is mapped to an edge which touches s has the ability to compute by itself the

value of the shared function.

4.2 Using Monotone Span Programs

It is possible to construct DPRFs with access structures which are realized by

monotone span programs. Monotone span programs (MSPs) were introduced by

Karchmer and Wigderson [28] and their corresponding secret sharing schemes

are equivalent to linear secret sharing schemes in the sense that any secret

sharing scheme in one of these classes can be realized by a scheme of the same

size in the other class, see [3] for details. Recently MSPs were used by Cramer,

Damgard, and Maurer [16] to construct multi-party computation protocols for

general monotone sets of subsets of players, any one of which may consist of

cheaters. We �rst present the computational model of monotone span programs

and then a DPRF construction.

Monotone span programs: A monotone span program is de�ned by a triple

hK;M; i as follows. Let K be a �nite �eld and let M be a matrix with d rows

and e columns, and entries in K. The rows of M are labeled by a mapping to

server identities,  : f1; : : : ; dg 7! f1; : : : ; ng. For a subset A � f1; : : : ; ng, de�ne



M

A

as the matrix consisting of the rows of M which are labeled with i 2 A, and

let d

A

be the number of rows in this matrix.

Let � = (1; 0; : : : ; 0) 2 K

e

be the target vector (� can be replaced by any non-

zero vector in K

e

). An MSP computes a boolean function f : f0; : : : 1g

n

7! f0; 1g

de�ned by \f(x

1

; : : : ; x

n

) = 1 if and only if � is in the Image of M

t

A

, where

A = fijx

i

= 1g". That is, if there is a linear combination of the d

A

rows labeled

with an i for which x

i

= 1, that equals the target vector �. It is known that any

monotone boolean function can be computed by an MSP (and the question is

what size).

A DPRF construction: The construction is based on the MSP secret sharing

scheme. We can achieve either `-wise independence or weak pseudo-randomness.

A user would have to receive information from a subset of the servers which

corresponds to a \1" output of the MSP in order to obtain the required value.

Following we present the DH based construction.

Initialization: AnMSP which realizes the required access structure is constructed.

All operations are performed over an appropriate �eld. A vector of random values

�� = f�

1

; : : : ; �

e

g is associated with the columns of M . The function computed

by the system is de�ned as f(h) = h

�

1

.

Server S

i

is given the share �s

i

=M

fig

��, which is a vector of length d

fig

, the

number of rows in M

fig

.

Reconstruction: A user which wants to compute f(h) should contact a privileged

subset of the servers. Each server S

i

which is approached by the user and ap-

proves of computing f(h) should provide him with the values fh

�

j� 2 �s

i

g (i.e.

h raised to the power of each of the coordinates of �s

i

). . If the user receives

information from a privileged subset then there is a linear combination in the

exponents which obtains f(h) = h

�

1

. The user can perform exponentiations and

multiplications to compute this combination.

5 Proactive Security

Proactive security enables a system of servers to automatically recover from

repeated break-ins while preserving its security. The servers perform a periodical

mutual refreshment of their secrets, and security is preserved as long as not too

many servers are broken into between two refreshments (see [11] for a survey

of proactive security). We can amend our schemes with proactive security while

preserving consistency. The value of f(x) computed in two di�erent requests

would still be the same, even if several refreshment phases pass between the two

requests.

The periodic refreshment requires communication between the servers, which

is a new requirement for DPRFs. Alternatively, the refreshment can be controlled

by a single secure server which is the only party sending refreshment information

to servers. The system is kept secure as long as there is no break-in to this server,

but since this server can be highly guarded (e.g. kept o�-line at all times except

for refreshment phases) this scenario seems reasonable.



We describe very briey how proactive security is obtained. The periodic

refreshment phases employ techniques which are common in proactive refresh-

ments, and a novel method for verifying that the refreshment values sent by

each server are indeed correct. In the refreshment of the `-wise independent

construction, k servers S

1

; : : : ; S

k

should each generate a random bivariate poly-

nomial P

t

i

(x; y), subject to the constraint P

t

i

(0; �) = 0. Server S

i

sends to each

other server S

j

the restriction of its polynomial to x = S

j

, i.e. P

t

i

(S

j

; �). The

new polynomial of each server is the sum of its old polynomial with all the new

polynomials it receives.

The servers should run a veri�cation protocol for the values they receive in

the refreshment phase, in order to verify that S

1

; : : : ; S

k

send shares of polyno-

mials of the right degrees which are 0 for x = 0. This is essentially a veri�able

secret sharing (VSS) protocol. It is possible to use a VSS protocol which is very

e�cient in both its computation and communication requirements. Very briey,

the veri�cation is done by choosing a random point c, and requiring each S

i

to

broadcast P

t

i

(�; c). Each server should verify that P

t

i

(0; c) = 0 and that the share

it received agrees with this broadcast. Note that unlike the veri�cation proto-

cols of [6, 20] this protocol does not require communication between each pair

of servers. The random point c can be chosen in a very natural way, it can be

de�ned as a value of the previous polynomial at a point which is only evaluated

after the servers send the refreshment values.

Application to distributed initialization: The initialization of the sys-

tem can be performed in a distributed manner. It is then required to verify that

servers that participate in this process do not send incorrect data which would

disrupt the operation of the system, i.e. that they send shares of polynomials of

the right degrees. This veri�cation can be performed very e�ciently using the

above protocol and a broadcast channel (note that it is not required to verify

that the value of the polynomial is 0 for x = 0). The choice of the random point

should be done by a distributed protocol which generates several values, where

at least one of the values is guaranteed to be random.

Future Work

The most obvious open problem is coming with a construction which has all

the properties of a DPRF, i.e. of a function which is strongly pseudo-random

and can be evaluated a polynomial number of times. Another interesting line of

research is the design of oblivious DPRFs, in which the servers do not learn what

is the input x for which the user wants to compute f(x). Note that the oblivious

polynomial evaluation protocols of [33] are probably too expensive since the

number of 1-out-of-2 oblivious transfers is linear in the degree of the polynomial.
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