
One-Bit Algorithms

Amotz Bar-Noy ∗ Joseph Naor † Moni Naor ‡

Abstract

Many algorithms in distributed systems assume that the size of a single message depends

on the number of processors. In this paper, we assume in contrast that messages consist

of a single bit. Our main goal is to explore how the one-bit translation of unbounded

message algorithms can be sped up by pipelining. We consider two problems. The first

is routing between two processors in an arbitrary network and in some special networks

(ring, grid, hypercube). The second problem is coloring a synchronous ring with three

colors. The routing problem is a very basic subroutine in many distributed algorithms; the

three coloring problem demonstrates that pipelining is not always useful.

∗Computer Science Department, Stanford University, Stanford, CA 94305. Supported in part by a Weizmann

fellowship and by contract ONR N00014-85-C-0731.
†Computer Science Department, Stanford University, Stanford, CA 94305. Supported by contract ONR

N00014-88-K-0166 and by a grant from Stanford’s Center for Integrated Systems. This work was done while

the author was a post-doctoral fellow at the University of Southern California, Los Angeles, CA.
‡IBM Almaden Research Center, San Jose, CA 95120. This work was done while the author was with the

Computer Science Division, University of California at Berkeley, and Supported by NSF grant DCR 85-13926.



1 Introduction

A distributed system may be viewed as a network whose nodes represent the processors. Two

nodes are adjacent if the two corresponding processors can communicate directly. An implicit

assumption in most distributed algorithms is that the message length is unbounded (O(log n)

bits where n is the number of processors in the network). This assumption does not take into

account that the capacity of a communication line must increase with the size of the network.

This is particularly critical in a dynamically growing network.

In this paper we go to the extreme and assume that only one-bit messages are permitted.

We call algorithms that obey such restrictions one-bit algorithms. Note that our model restricts

only the capacity of a communication line; in a single step, a processor can receive (send) bits

from (to) different processors. (Unlike other bit-models, see e.g. [5]).

This development is similar to the recent importance that bounded-degree networks have

acquired for practical reasons; in a real distributed system, the neighborhood size of a processor

is independent of n, the network size.

An algorithm that takes time t and sends a total of M bits, where the maximum length

of a single message is m, can be modified to a one-bit algorithm that takes at most time mt

and sends O(M) bits. The new algorithm sends the same messages as the old one, except it

sends them bit by bit sequentially. A processor cannot start responding to a message before

that message has completely arrived (m bits).

Our main goal is to find better one-bit algorithms by using pipelining. The intuition is that

a processor may not need all the bits of a message in order to start sending the bits of its next

message. We view one-bit algorithms as a first step in designing optimal algorithms in the

case that message length is bounded by a parameter m which is independent of the network

size. One should note that the concept of pipelining has appeared in the past in various areas

of computer science.

The first problem that we address in this paper is routing between two processors in a

network along one of the shortest paths between them, such that only processors that belong

to the path take part in the routing. We give upper and lower bounds for an arbitrary

network, and study the problem in the following networks: ring, torroidal k-ring (a mesh with

a wraparound) and hypercube. This is a basic subroutine in many distributed algorithms.

The second problem is coloring a synchronous ring with three colors. Our lower bound

implies that, for this problem, the translation of the unbounded-message solution into a one-bit

algorithm is optimal up to a constant factor. This demonstrates that allowing pipelining does

not always speed up the execution. We believe that this result has independent significance in

proving lower bounds in distributed systems.

Further research directions are converting fundamental distributed algorithms into efficient

one-bit algorithms for problems such as: minimum weighted spanning tree [3], choosing a

1



leader [6], fault tolerant systems [1], and more general routing problems.

A preliminary version of this paper appeared in the proceedings of the 7th Annual ACM

Symposium on Principles of Distributed Computing, Toronto (1988).

2 A routing problem

2.1 The problem

Let p and q be two distinguished processors in a distributed network. Processor p, the sender,

wants to send one bit whose value is ε to q, the destination, along one of the shortest paths

from p to q: p = x0 − x1 − · · · − xd = q. It is forbidden for any processor not on the path to

participate in a solution. In addition, q does not have to know who the sender is. The network

is asynchronous and the network topology is known to all the processors.

This problem is a relaxation of a natural routing problem where p wants to send a long

message to q and q should know who sent the message. Yet, it is general enough because p

can send q in the fastest way the rest of the message with its name p, and an end-of-message

symbol appended. Now, all the processors along the path know exactly where to forward the

bits.

We are mainly interested in optimizing t, the time complexity. In an asynchronous network,

t is measured by assuming that messages are transferred in one unit of time and the processors’

internal computation is not taken into account. An obvious upper bound is t ≤ d(dlog ne + 1)

where d is the distance between p and q. (We assume without loss of generality that the

processors are labeled from 1, . . . , n). This is a direct translation of the simple unbounded-

message-size algorithm, where each processor on the path sends the binary expansion of the

number q. An obvious lower bound is t ≥ d because it takes at least d units of time for the bit

to reach its destination.

Notations: Let α(k) be the number of bits needed to represent an integer k in a prefix-free

code (a code in which no codeword is a prefix of some other codeword) and let β(k) be that

representation. Clearly,

dlog ke ≤ α(k) ≤ 2dlog ke.

Let δ(x) denote the degree of x in the network and for every edge (x, y) let δ(x, y) denote the

index of y among the neighbors of x.

2.2 General bounds

An algorithm for an arbitrary network: (folklore) The sender, p, forwards along the

path “instructions” for x1, . . . , xd as to which edge xi should use in communicating. Each

xi waits until it knows about xi+1 and then forwards the rest of the bits. The pipelining is

2



achieved by forwarding these instructions in a prefix free code. A processor concludes that it is

the destination when it receives an instruction to use the edge from which it has just received

a message. Formally,

• p sends to x1:

β(δ(x1, x2))β(δ(x2, x3)) · · · β(δ(xd−1, q))β(δ(q, xd−1))ε.

• For 1 ≤ i ≤ d − 1, xi sends to xi+1:

β(δ(xi+1, xi+2)) · · · β(δ(q, xd−1))ε.

• q knows that it is the destination because it has received β(δ(q, xd−1)) from xd−1.

(It seems that variations on the above algorithm have perviously appeared in the literature

in other settings, and therefore we refer to it as folklore).

Theorem 2.1 The routing problem can be solved on any network in

d +
d
∑

i=1

α(δ(xi)) ≤ d + 2
d
∑

i=1

dlog δ(xi)e

time units.

Proof: The correctness of the algorithm is obvious and we prove the time complexity. The

sender sends the S =
∑d

i=1 α(δ(xi)) bits sequentially. Whenever xi receives ε it forwards ε

immediately. The sender sends ε after S units of time and it takes d units of time for ε to

reach q. All together the process lasts t = d +
∑d

i=1 α(δ(xi)).

Theorem 2.2 Denote by Γi(x) the number of processors in the network at distance i from x.

Then any solution for the routing problem takes at least d + log
(

Γd(p)
δ(p)

)

units of time.

Proof: The sender can choose one of its neighbors (δ(p) possibilities). This choice and the

bits it sends must determine the identity of q (out of Γi(p) possibilities). Hence, it must send

log
(

Γd(p)
δ(p)

)

bits. The extra d in the lower bound arises since the last bit arrives at q after d

units of time.

Corollary 2.1 For a bounded-degree network with maximum degree ∆ the results are tight up

to a constant:

log

(

∆(∆ − 1)d−1

∆

)

= (d − 1) log(∆ − 1)

≤ t ≤ d(1 + 2dlog ∆e).

Proof: The lower bound is achieved by applying the general lower bound to a ∆-regular tree

of height at least d.

3



2.3 The ring and the torroidal k-grid

Applying the general algorithm to a ring yields an algorithm with t = 2d. In this subsection

we improve this result to t = 1 + d3d/2e even if the processors are indistinguishable. (In this

case, the sender wants to send a bit to the processor at distance d from it.) In this setting we

present an almost matching lower bound of t ≥ d3d/2e.

The algorithm: Let d′ = dd/2e.

• If d is odd then the sender, p, sends the following sequence of bits: {1}d′0ε. Otherwise p

sends 0{1}d′−10ε.

• Let ε1, . . . , εk be the bits that xi receives from xi−1.

– If ε1 = 0 then xi forwards 1ε2 · · · εk.

– If ε1 = ε2 = 1 then xi forwards 0ε3 · · · εk. (xi absorbs ε1.)

– Otherwise, ε1 = 1 and ε2 = 0 then xi realizes that it is the destination and that ε3

is the information bit.

Theorem 2.3 The algorithm for the ring is correct and takes at most 1+d3d/2e units of time.

Proof: Assume that d is odd; the case where d is even is similar. The sender sends “1”, d ′

times followed by “0” and ε. Each processor at odd distance from p along the path absorbs

one of the “1”s. Hence, the first two bits that q receives are “1” and “0”. According to the

rules of the algorithm q concludes that it is the destination.

Each bit is either absorbed or forwarded and ε runs along the path without delay. Therefore,

t ≤ d′ + 1 + d ≤ 1 + d3d/2e .

Theorem 2.4 Any solution for the routing problem on a ring with identical processors must

take at least d3d/2e units of time.

Proof: We show that for every pair of consecutive processors along the path, at least one must

absorb the first bit it receives. In any optimal algorithm, every processor must have a rule for

the first bit it receives: either it absorbs “0” or “1” but it cannot forward both. Otherwise, the

message would never stop advancing. Without loss of generality, assume that every processor

absorbs “1”.

Let x and y be a consecutive pair of processors. If x does not absorb the first bit, it must

send “1”; otherwise, this “0” makes a full round of the ring. Consequently, y absorbs the first

bit it receives.

Thus, at least d′ = dd/2e processors absorb the first bit (q must absorb the first bit) and

this causes a delay of d′ units of time for ε.

4



It is possible to give bounds on variants of this problem where the processors are distin-

guishable. For instance, if d = O(n) the bound is t = d + Θ(
√

d), as opposed to the latter

bound (Theorems 2.3 and 2.4) which is t = d + Θ(d).

Now, we generalize the ring algorithm to the torroidal k-grid. For clarity, assume that

there is a fixed order of the k dimensions and the path follows that order. Moreover, assume

that p and q differ in all k dimensions. (If not, our algorithm can be easily generalized). We

use the following notation: x(i, j) indicates the j-th processor of the i-th dimension along the

path.

The algorithm: Let the path from p to q be:

p = x(1, 0) − · · · − x(1, d1) = x(2, 0) − · · ·

−x(2, d2) = · · · = x(k − 1, 0) − · · · − x(k − 1, dk−1)

= x(k, 0) − · · · − x(k, dk) = q,

where
∑k

i=1 di = d. The processor x(i, di) = x(i + 1, 0), an intersection processor, is the

processor on the path that switches the route to the i + 1st dimension.

For every dimension i, p sends 1 + ddi/2e bits according to the ring algorithm. In each

dimension εi indicates one of two possible changes of direction. These k sequences are followed

by (the real) ε. By receiving bits from a processor adjacent to q in the kth dimension, q

concludes that it is the destination.

Theorem 2.5 For the torroidal k-grid there is an algorithm for the routing problem that re-

quires

d +
k−1
∑

i=1

(

1 +

⌈

di

2

⌉)

=

⌈

3d

2

⌉

+ 2(k − 1)

time units.

2.4 The hypercube

Corollary 2.2 Every algorithm for solving the routing problem in the k-dimensional hypercube

requires at least

log

(k
d

)

k
≥ d log

k

d
− log k

time units.

5



Proof: Each processor in the hypercube is represented by a binary vector of length k. The

processors at distance d from p are those whose representation differs from that of p in exactly

d indices. Therefore, Γd(p) =
(k
d

)

.

The general upper bound yields a bound of d(1 + dlog ke). We can improve this result to

d+α(a1)+ . . .+α(ad) where
∑d−1

i=1 ai ≤ k. We assume that a total order is defined among the

hypercube dimensions, and all the processors are familiar with it. Moreover, each message is

sent according to this order.

We modify the general algorithm as follows. Instead of instructing xi which dimension

to use, p sends the difference between the dimension on which xi received messages and the

one on which xi should send messages. For example, suppose p and q differ on dimensions

8, 12, 20 and 25. Then, p sends β(4)β(8)β(5) to its neighboring processor on dimension 8. The

algorithm proceeds similar to the general one.

When xi receives β(ai) from dimension j, it forwards the rest of the bits on dimension

j + ai. The end of the process is indicated by ai = 0.

Theorem 2.6 There is an algorithm for the routing problem on the k-dimension hypercube

which takes at most

d + dα(k/(d − 1)) ≤ d(1 + 2dlog(k/(d − 1))e)

units of time.

Proof: The proof is implied by the fact that the maximum is achieved when ai = k
d−1 for

1 ≤ i ≤ d − 1 (ad is always 0).

3 The ring 3-coloring problem

A fundamental application of symmetry breaking is that of coloring a ring of n processors with

3 colors. We assume a completely synchronous unidirectional ring of n processors, where at

each round every processor sends its neighbor one bit. We are interested in the number of

rounds it takes until each processor is assigned one of three colors so that no two successive

processors are colored the same. At the beginning, each processor has a unique identification

number whose size is polynomial in n.

The complexity of the case where messages are unbounded has been completely charac-

terized: Cole and Vishkin [2] gave an algorithm that required O(log∗ n) messages (see also

[4]). Linial [7] showed that Ω(log∗ n) messages are necessary. We prove tight bounds on the

number of rounds of one-bit algorithms, and actually note that the [2] algorithm is optimal in

the one-bit model as well.

Corollary 3.1 (upper bound) There is an O(log n) solution for the ring 3-coloring problem.

6



Proof: Converting the [2] algorithm into a one-bit algorithm yields the upper bound. In that

algorithm r = O(log∗ n) messages are sent, where the ith message is of size c log(i) n for some

constant c. The number of bits that are sent is
∑r

i=1 c log(i) n which is O(log n).

Theorem 3.1 (lower bound) Every one-bit algorithm for the ring 3-coloring problem takes

Ω(log n) units of time.

Proof:

Proposition 3.1 If four consecutive processors in the ring send and receive exactly the same

bit sequence, then they cannot color themselves.

Proof: Among the four consecutive processors, at least two will be assigned the same color.

Since for each processor the other processors are indistinguishable, the two that get the same

color might be adjacent.

Each processor has a protocol P and denote by Pi the sub-protocol of P at the i-th round.

Pi can be viewed as a {0, 1}-labeling of the leaves of a full binary tree of depth i − 1. A

path from the root to a leaf in this tree corresponds to the messages received so far (with 0

represented by a left turn and 1 represented by a right turn), and the label corresponds to the

message that the processor sends in the kth round.

Proposition 3.2 if there are k + 4 consecutive processors, all having the same sub-protocols

P1, P2, . . . , Pk, then they cannot color themselves in k rounds.

Proof: The last 4 processors among these k + 4 processors will send and receive exactly the

same bits for the first k rounds. Hence, by Proposition 3.1 they cannot color themselves.

Proposition 3.2 yields a lower bound of Ω(log log n) rounds for 3-coloring. There are only

22k−1

different protocols1 up to the kth round. Hence, there must be n

22k−1
processors that

have the same protocols up to the kth round. If k < n

22k−1
− 4 and k + 4 of those processors

are consecutive, then they cannot color themselves. This implies that any algorithm takes at

least Ω(log log n) rounds.

Instead of counting the number of different protocols as we did above, we can count the num-

ber of different WYGWYS paths, defined as follows: Let P1, P2, . . . , Pk be the sub-protocols

for the first k rounds of a given processor. The What You Get is What You Sent (WYGWYS)

path of length k is the sequence of messages sent by this processor when its k predecessors in

the ring all have protocols P1, P2, . . . , Pk as their corresponding sub-protocols.

Note that if k consecutive processors in the ring all have the same WYGWYS path of

length k, then the last processor will output its WYGWYS path for the first k rounds and

therefore,

Proposition 3.3 k + 4 consecutive processors, all having the same WYGWYS path of length

1The assumption here is that a processor cannot be idle; this can only change constant factors.

7



k, cannot color themselves in k rounds.

There are only 2k different WYGWYS paths of length k. Hence, there must be n
2k different

processors that have the same WYGWYS path of length k. If k < n
2k − 4 and k + 4 of those

processors are consecutive in the ring, then the last four processors send and receive the same

bit sequence and so by Proposition 3.1 they cannot color themselves in k rounds.

For sufficiently large n, taking k to be log n − log log n, implies the claimed Ω(log n) lower

bound on the time.

Remark 1: The proof can be generalized to work for bidirectional rings as well.

Remark 2: The case of randomized algorithms has been studied by Linial and Naor [8], when

there is no restriction on the message length. It was shown to have complexity Θ(log∗ n).

For the one-bit message model, it can be shown that Θ(
√

log n) bits are both necessary and

sufficient.

8



References

[1] A. Bar-Noy and D. Dolev, Families of Consensus Algorithms, VLSI Algorithms and

Architectures, 3rd Aegean Workshop on Computing, Corfu, Greece (1988), pp. 380-

390.

[2] R. Cole and U. Vishkin, Deterministic Coin Tossing and Accelerating Cascades: Micro

and Macro Techniques for Designing Parallel Algorithms, Proceedings of 18th Sympo-

sium on Theory of Computing, pp. 206-219, 1986.

[3] R. G. Gallager, P.A. Humblet and P.M. Spira, A Distributed Algorithm for Minimum

Weight Spanning Trees, ACM Trans. on Program. Lang. & Systems, Vol. 5, pp. 66-77,

January 1983.

[4] A. Goldberg, S. Plotkin and G. Shannon, Parallel Symmetry Breaking in Sparse Graphs,

SIAM J. Disc. Math. Vol. 1, pp. 434-446 (1988).

[5] T. Leighton, Tight Bounds on the Complexity of Parallel Sorting, Proceedings of 16th

Symposium on Theory of Computing, pp. 71-80, 1984.

[6] G. Le Lann, Distributed Systems – towards a formal approach, Information processing

(editor b. gilchrist), pp. 155-160, 1977.

[7] N. Linial, Distributive Graph Algorithms - Global Solutions From Local Data, Proceed-

ings of 28th Symposium on Foundations of Computer Science, pp. 331-335, 1987.

[8] N. Linial and M. Naor, In preparation.

9


